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ABSTRACT 

This paper points out the importance of Stochastic Dominance (SD) efficient sets being convex. We review 

classic convexity and efficient set characterization results on SD efficiency of a given portfolio relative to a 

diversified set of assets and generalize them in the following aspects. First, we broaden the class of 

individual utilities in Rubinstein (1974) that lead to two-fund separation. Secondly, we propose a linear 

programming SSD test that is more efficient than that of Post (2003) and expand the SSD efficiency criteria 

developed by Dybvig and Ross (1982) onto the Third Order Stochastic Dominance and further to 

Decreasing Absolute and Increasing Relative Risk Aversion Stochastic Dominance. The efficient sets for 

those are finite unions of convex sets. 
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1. INTRODUCTION 

 

Stochastic Dominance (SD) is a probabilistic concept of superiority among 

different random variables. Unlike parametric criteria such as Mean-Variance analysis, 

SD accounts for the whole range of distribution function, rather than its particular 

characteristics such as central moments. Although SD finds applications in a huge variety 

of areas ranging from medicine to agriculture (see, e.g., Bawa 1982; and Levy 1992, 

2006 for a survey and references, Eeckhoudt et al 2009 for recent applications), this 

paper focuses on its use in the area of finance. In financial decision making one has to 

select efficient portfolios from an available portfolio possibilities set on the basis of a 

tradeoff among their expected returns, associated risk of having extreme losses and the 

potential of earning excessive gains.  

We consider the expected utility framework where individuals select portfolios 

maximizing the expected value of their utility function which can capture different 

individual risk attitudes such as risk aversion, risk neutrality, risk seeking, or a 

combination of those for different levels of wealth. The non-parametric nature of SD 

criteria allows us to identify efficient portfolios without having to specify the utility 

functions explicitly. Instead, it employs some general restrictions such as non-satiation 

and risk aversion. The set of all portfolios supported by some utility function in a given 

class is called efficient set. It turns out that convex efficient sets have a special economic 

content and hence necessary and sufficient conditions leading to the convexity of 

efficient sets have been puzzling researchers for more than three decades. Rubinstein 

(1974) has shown that when preferences of all investors are similar enough, two-fund 

separation results. On the other hand, Dybving and Ross (1982) proved that if no 

assumptions on investors’ preferences are made other than concavity and monotonicity, 

the efficient set is generally non-convex. In line with this concave and monotone utility 

class Ross (1978) derived some assumptions on the distribution function of returns that 

lead to k-fund separation. Among recent researchers, Versijp (2007) reviewed 

Rubinstain’s result in relation to stochastic dominance and asset pricing models.  

In this paper we point out the importance of Stochastic Dominance efficient sets 

being convex, review classic convexity and efficient set characterization results and 

generalize them in the following aspects. First, we broaden the class of individual utilities 

in Rubinstein (1974) that lead to two-fund separation. Second, we expand the SSD 

efficiency criteria developed by Dybvig and Ross (1982) onto the Third Order Stochastic 

Dominance and further to Decreasing Absolute and Increasing Relative Risk Aversion 

Stochastic Dominance. The efficient sets for those are finite unions of intersections of 
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convex sets. We also give a linear programming SSD efficiency test which is more 

efficient than that of Post (2003) in case of unrestricted short sales. 

This paper is focused on portfolio efficiency with respect to a diversified portfolio 

possibilities set, normally a polytope whose vertices are the assets available to investors. 

Further, we consider discrete distribution of returns due to its interpretability via 

empirically observed data, as well as tractability of the computational methods involved. 

 This paper is organized as follows. Section 2 provides general assumptions and 

problem formulation, Section 3 points out the importance of efficient sets being convex 

and reviews the associated necessary and sufficient conditions, Section 4 suggests some 

efficiency tests for a given portfolio relative to various economically meaningful classes 

of utility functions, and finally Section 5 summarizes the major results and concludes the 

paper. 

 

  

2. GENERAL FRAMEWORK 

 

Consider a single period investment decision making problem under uncertainty in a 

classic expected utility framework, in which: 

 

1. Investors select investment portfolios to maximize the expected utility of the return 

on their investment portfolio. Let U = {u: ℝ → ℝ} denote the class of von Neuman-

Morgenstern utility functions and X be the m-by-n matrix of returns of n available assets 

in m states of the world. The probability of occurrence of state i is denoted πi. Naturally, 

0 < πi < 1, i=1…m, and ∑ i = 1 .. m πi = 1. Investors are uncertain about which of the states 

of nature will occur, but they know the underlying probabilities of the states with 

certainty. 

2. Investors may diversify between available assets. Denote λ ∈ ℝ
n
 for a vector of 

portfolio weights. Unless otherwise specified, we assume that short sales are allowed and 

unrestricted. The portfolio possibilities set then becomes  

Λ ≡ {λ∈ℝn
: λT

e = 1}, and the set of all available allocations is  

MX = {x∈ℝ
m 
| x = Xλ , λ  ∈ Λ}. 

3. If a riskless asset is available in the market, it will be used either as part of X (a 

column with equal components), or separately (in which case X will be the set of risky 

assets only), whichever is more convenient. 

 

A given portfolio τ∈Λ is optimal for an investor with utility u∈U if and only if 
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Eu(Xτ) = supλ∈Λ Eu(Xλ)        (1) 

 

where Eu denotes the expected value of u. 

 

If π1, …, πm are probabilities of occurrence of the states of the world, then (1) becomes 

 

( ) ( )
1 1

sup
m m

i i

i i

i i

u x u x
λ

π τ π λ
∈Λ= =

=∑ ∑        (2) 

 

where x
i
 is the i

th
 row of X. 

In practical applications full information about utility functions is not available, 

and (2) cannot be verified directly. This provides the rationale for relying on a set of 

general assumptions, rather than a full specification of the utility function. The Second 

Order Stochastic Dominance criterion (SSD) restricts attention to the class of strictly 

increasing and concave utility functions, modeling thereby non-satiable and risk-averse 

preferences. The Third Order SD (TSD) assumes that in addition to SSD utilities are 

positively skewed. A portfolio τ is said to be optimal in given utility class U if and only 

if there exists u∈U such that τ is optimal for u in the sense of (1). 

A portfolio τ is efficient if it is not dominated by any other portfolio, that is 

∀λ ∈ Λ\{τ}  ∃ u ∈ U: Eu(Xλ) < Eu(Xτ). If both Λ and U are convex (as it will be the case 

in this paper), efficiency is equivalent to optimality due to the Minimax theorem (see e.g. 

Post (2003)) and thus the two concepts will be henceforth used interchangeably.  

 

An individual investor with utility u ∈ U is facing the following portfolio 

allocation problem: 

 

( ) ( )∑
=

−−
m

i

Ti

i evxu
1

1max λλπ
λ

        (3) 

 

where v is the Lagrange multiplier. It is known that linearity constraints do not alter 

convexity. So if we assume u(x) to be strictly concave and twice continuously 

differentiable in x, it will remain concave in λ. In fact, the Hessian of u with respect to λ 
is 

 

Hu = − Y
T
Y, where Y is an m-by-n matrix defined by ( )λiijij xuxY ′′−−= . 
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Therefore, Hu is always negative semidefinite, and u(⋅) is concave in λ.  
In light of above mentioned, the necessary and sufficient conditions for τ  to be the 

solution of (3) is that there exists v∈ℝ such that  

 

for all j = 1..n   ( )∑
=

=′
m

i

i

iji vxux
1

τπ       (4) 

Note that if a risk-free asset is available, due to (4) there should hold:  ( )∑
=

=′
m

i F

i

i
r

v
xu

1

τπ , 

 

where rF is the risk-free return. Thus, the optimality condition (4) takes on the form: 

 

for all risky assets j ( ) ( )∑
=

=′−
m

i

i

Fiji xurx
1

0τπ      (5) 

 

We could as well relax the twice continuous differentiability assumption for u; (4) would 

still hold in optimality if u′ is substituted by ∂u – any vector from the supergradient 

correspondence. 

 

3. CONVEXITY 

 

Program (3) represents portfolio formation of an individual investor having a 

particular well-behaved utility function u(). In macroeconomic settings one would like to 

study the aggregate investment decision of a large group of individuals, assuming all of 

them to be well-behaved, for instance non-satiable risk averters. A reasonable theoretical 

model should allow us to judge about all investors by a small number of large composite 

portfolios. The largest of those, the total value-weighted aggregate portfolio is generally 

referred to as the market portfolio, efficiency of which has been a starting point of many 

asset pricing theories, including the capital asset pricing model (CAPM).  

The simplest case when the market portfolio is efficient is two-fund separation, 

where any optimal portfolio is a linear combination of two assets, normally a risk-free 

asset and the market portfolio. In such economy any individual investor will hold a share 

of the same (risky) market portfolio and will invest the rest of his/her wealth in the risk-

free asset available, i.e. either borrowing or lending at the risk-free rate. Various 

assumptions lead to two fund separation, such as: mean-variance setting (when 

investment decision is a tradeoff only between mean and variance of underlying 

portfolio, see Markowitz (1952, 1987)), homogeneity of preferences (see Rubinstein 

(1974)), joint normal distribution of asset returns which is a common assumption of the 
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traditional Capital Asset Pricing Model (CAPM, see Cochrane (2005) for an overview) 

and quadratic utility functions.  

Despite its theoretical appeal, two fund separation is extremely restrictive and is 

very unlikely to hold in practice. A straightforward generalization of the concept, 

preserving the market portfolio efficiency, is k-fund separation, where each efficient 

portfolio is a linear combination of k fixed mutual funds. Naturally, k-fund separation is 

of practical and theoretical interest only when k << n. Generally k-fund separation holds 

in complete markets (see e.g. Dybving and Ross (1982)). Ross (1978) derives a necessary 

and sufficient condition for k-fund separation which however involves returns only; the 

result is hard to generalize on possible variation of individual preferences and is 

somewhat uninformative.
1
 

A natural further generalization of k-fund separability is convexity of efficient set. 

Indeed, the market portfolio is nothing else than a convex combination of all individual 

portfolios (with unknown positive weights), and therefore convexity of efficient set 

suffices for efficiency of the market portfolio. Indeed, we may assume without loss of 

generality that individual assets are optimal for at least one investor with a well-behaved 

utility function and therefore those assets are efficient (if however we do have an asset 

whose returns are strictly dominated by another marketed asset or fund, we may as well 

discard it, as no rational investor will invest in it). Clearly, the market portfolio is now an 

interior point of a polyhedron whose vertices are all efficient, and if the whole efficient 

set is known to be convex, the efficiency of the market portfolio automatically follows.  

In addition to being an implication of various asset pricing theories, efficiency of the 

market portfolio has an intuitive economic interpretation. Observing the popularity of 

large composite index funds (which proxy the market portfolio) among many individual 

and institutional investors in practice, many researchers argue that even heterogeneous 

investors models inconsistent with the two fund separation should imply efficiency of the 

market portfolio. Moreover, 2- and k-fund separation are just particular cases of efficient 

sets being convex.  

Conditions leading to convexity of efficient sets have been challenging 

researchers for more than three decades already, as it could deliver interesting 

aggregation results for the models of heterogeneous investors. If an economy is close to 

satisfy k-fund separation, there is no need for active investment, as every investor is 

better off investing into k available mutual funds (with specific allocation among those 

funds determined individually for each investor) and saving on transaction costs 

associated with actively trading strategies. The case when k-fund separation does not hold 

but the efficient set is convex is still of theoretical interest, as one could study utility 

                                                 
1
 In fact, Theorem 3 in Ross (1978) can be seen as a refinement of the classic definition of k-fund 

separability, as both are given solely in terms of returns and both assume k generating factors. 
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preferences that support large composite portfolios, or test implication of heterogeneous 

investors models, refining utility class on basis of observed individual allocations and 

composite market indices.  

The convexity puzzle can be tackled from two different perspectives – returns on 

underlying assets and preferences of individual investors. The former would lead the 

reader towards arbitrage pricing theories and various factor models, while the latter 

remains undiscovered. Dybvig and Ross (1982) do show on a simple example that SSD 

efficient set is generally non-convex. However, SSD efficient set comprises portfolios 

optimal for all non-satiable risk-averse preferences many of which are known to be 

unrealistic. For that reason, after reviewing and providing a more constructive proof of 

the results in Rubinstein (1974) related to 2-fund separation, we shall summarize the 

result of Dybvig and Ross (1982) and give efficiency tests for some refined utility classes 

containing far less unrealistic preferences than all risk averters.   

 

3.1 HOMOGENEOUS PREFERENCES 

 

Rubinstein (1974) considers three heterogeneous investors models in which individual 

preferences are modeled according to the following utility functions: 

 

(a) u(x) ~ – exp(–x/A),    A>0 

(b) u(x) ~ – ln(A + x),   A>0       

(c) u(x) ~ (A + Bx)
1–b

/(1–b),  A>0, B>0, b>0, b≠1 

 

Rubinstein shows that the two-fund separation results if all agents have the same taste 

parameters B and beliefs π, but may have different parameters A’s in (a) and (b) and A’s 

and B’s in (c). He assumes availability of a risk-free asset and requires in addition that 

B=1/b in (c). Below we sketch a more constructive proof of the two fund separation than 

the original one of Rubinstein and show that varying B’s across individuals will not alter 

the two fund separation, as long as the agents have the same power parameter b, even if b 

≠ 1/B, thereby generalizing the result of Rubinstein. 

Since all the functions above are strictly concave and twice continuously 

differentiable, sufficient and necessary condition for portfolio optimality is (4). Let rF be 

the risk free rate, X – all risky assets. It is convenient to split the portfolio into its risk-free 

investment α and the remaining risky part (1–α). The portfolio allocation program now 

becomes 

 



 - 8 - 

( )( ) ( )∑
=

−−−++
m

i

Ti

Fi evxru
1

111max λλααπ
λ

      (6) 

  

The optimality conditions (4) are now: 

 

( ) ( )( )

( ) ( )( )
1

1

1 1 1 ,              1..

1 1 0

m
i

i ij F

i

m
i i

i F F

i

x u r x v j n

r x u r x

π α α α τ

π τ α α τ

=

=


′− + + − = ∀ =


 ′− + + − =


∑

∑
   (7) 

 

Let us start with the exponential utility class. 

 

(a) u(x, A) = – exp(–x/A),  A>0.   

Suppose a portfolio (α1, (1–α1)τ) is optimal for u(x, A1). By (7) this happens if and only 

if 

( ) ( )( )( )

( ) ( )( )( )

1 1 1 1 1

1

1 1 1

1

1 exp 1 1 / ,              1..

exp 1 1 / 0

m
i

i ij F

i

m
i i

i F F

i

x r x A v j n

r x r x A

π α α α τ

π τ α α τ

=

=


− − + + − = ∀ =


 − − + + − =


∑

∑
  (8) 

One can check by straightforward substitution to (8) that for any A2>0 the optimal 

portfolio for investor with utility u(x, A2) will be (α2, (1–α2)τ), for some α2 for α2 = 1 – 

A2/A1(1–α1). This proves that the efficient portfolio corresponding to u(x, A2) has the 

same composition of risky assets. Due to uniqueness of the solution to (7), and continuity 

of f(A2) = 1 – A2/A1(1–α1) as a function of A2, the two-fund separation follows. 

 

Note that we can make derivations above only if α1 ≠ 1, that is, not all the budget is 

invested in the riskless asset. The portfolio (α =1, 0) will not be optimal for any agent 

u(x, A) with A>0, except only for the case when X happens to satisfy the second equation 

in (8) for α = 1. However, the risk-free asset will always be asymptotically efficient as 

risk aversion increases. 

 

(b) u(x) = – ln(A + x),  A>0 
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Similarly to (a) one can show that portfolio (α2, 1–α2) where 

( ) ( )1 1 2 1

2

1

1 1

1

F

F

A r A

A r

α α
α

+ + − −
=

+ +
 is optimal for u(x, A2) whenever (α1, 1–α1) is optimal 

for u(x, A1). 

 

 

(c) u(x) = (A + Bx)
1–b

/(1–b),  A>0, B>0, b>0, b≠1 

 

Again, a portfolio (α1, (1–α1)τ) is optimal for u(x, A1, B1) if and only if 

 

( ) ( )( )( )

( ) ( )( )( )

1 1 1 1 1 1

1

1 1 1 1

1

1 1 1 ,              1..

1 1 0

m b
i

i ij F

i

m b
i i

i F F

i

x A B r x v j n

r x A B r x

π α α α τ

π τ α α τ

−

=

−

=


− + + + − = ∀ =


 − + + + − =


∑

∑
 

 

Similar equations for u(x, A2, B2)  

( ) ( )( )( )

( ) ( )
( )

( )( )( ) ( )
( )

( )
( )

( ) ( )
( )

( )( )

2 2 2 2 2

1

2 22 1 2
1 1 1 1

1 1 1 12

1

1 1 2 2
1 1 2 2 2 2

1 1

1

2 2
1 2

1 1

1 1 1

1 1
1 1

1 11
1 *

1 1
1 1 1

1

1
,  

1

m b
i

i ij F

i

b

i

F
m

i ij

i i

F F

b b

x A B r x

B A B
A B r x

B B
x

B
B r A B r x

B

B
v v

B

π α α α τ

α α
α α τ

α αα
π α

α α
α α α τ

α

α
α

−

=

−

=

− −

− + + + − =

 − −
+ + + − − − − −−  − = − −

 − + + + + + −
−  

   −
≡   −   

∑

∑

       1..j n∀ =

 

 

are satisfied for  

 

( ) ( )
( )1112

2112112
2

11

BABrB

BArBBBA

F

F

++
+++−

≡
α

α , 

which proves the two-fund separation even for the case of different taste parameters. 
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Note that this proof generalizes Rubinstein’s result, as agents are allowed to have 

different taste parameters (B’s) now, provided they agree on the power parameter b, 

while Rubinstein explicitly assumes B = 1/b. 

Note also that one explicit assumption behind the derivations above is that the 

number of underlying assets (including the riskless one) is less than or equal to the 

number of states: n + 1 ≤ m.  

 

 

4. GENERALIZING PREFERENCES: NON-CONVEXITY AND SOME HIGHER 

ORDER EFFICIENCY TESTS 

 

So far we have analyzed the set of utilities leading to two-fund separation. 

Although this is a particular case of convex SD efficient sets, it only allows for 

homogeneous utilities among all investors in the sense that the preferences of all 

investors are assumed to be parameterized by one or two single parameters which implies 

that investors have very similar tastes and as a result take similar investment decisions. 

Therefore we would like to broaden the class of individual utility functions to allow for 

heterogeneity among investors. The question is whether the efficient sets for those 

extended utility classes remain convex. Consider first the set of all risk-averse and non-

satiable investors. 

 

Dybvig and Ross (1982) give a simple example of a non-convex second order SD (i.e. 

when U = U2 = {u: ℝ→ℝ: u′(x)>0, u″(x)<0, ∀x∈ℝ}) efficient set with 3 assets and 4 

states. They state the following necessary and sufficient conditions for SSD efficiency of 

portfolio x
0
. 

 

An allocation x
0∈MX is efficient in U2 if and only if there exists z

0 ∈ ℝ
m
 such that: 

 

(i) x
T
z
0
 is constant for x∈MX       (9) 

(ii) 
j

j

i

i
ji

zz
xx

ππ

00
00 ≥⇒< , ∀ i, j 

(iii) z
0
 > 0     

 

Vector z
0
 can be interpreted as a vector of marginal utility rationalizing portfolio x.

 

Condition (i) holds only if short sales are allowed and unrestricted. Otherwise (i) holds 

only for strictly interior points. In general (i) reads: (x
0
)
T
z
0
 ≥  x

T
z
0
,  ∀x∈MX. Conditions 
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(ii) and (iii) reflect the existence of a strictly concave supporting utility function and the 

equality sign may be changed, depending on the properties of the utility class considered. 

For instance, for strictly concave functions there should hold: 00

00

ji

j

j

i

i xx
zz

≤⇒≥
ππ

; if the 

functions are in addition differentiable then 00

00

ji

j

j

i

i xx
zz

<⇒>
ππ

.  

The non-convexity example of Dybvig and Ross is both disappointing and 

challenging. It shows on one hand that even relative to the set of rather well-behaved 

preferences the market portfolio can be inefficient. On the other hand, the result 

challenges us to examine more refined utility classes – after all, if the utility set is 

restricted to nearly-homogeneous investors like in Rubinstein (1974), not only convexity 

follows, but even two-fund separation. Taking this into account, below we derive 

efficiency tests for some higher order SD criteria. In that section we analyse the case 

when short sales are allowed and unrestricted, for two reasons. As a matter of fact, most 

of the efficiency tests published by far assume away short sales. However, efficiency of a 

given portfolio in the unrestricted case implies its efficiency in the restricted case, too, 

whereas a portfolio efficient relative to a restricted portfolio possibilities set may very 

well be inefficient with respect to the same set with the short sales restriction relaxed. 

Therefore, the unrestricted case can be seen as a generalization of the restricted short 

sales and has a practical advantage of not having to specify the exact boundaries for short 

sales. Moreover, as we shall show further in this section, some algorithms proposed 

below have superior properties in terms of computational complexity relative to 

traditional methods in the case when no short sales are assumed. Finally, some of the 

efficiency tests are only applicable when short sales are restricted, for instance Post 

(2003) test assumes the portfolio possibilities set to be a polyhedron, so the formulation 

of the test includes the vertices of this set explicitly.  

 

 

4.1 SSD EFFICIENCY 

 

Although many SSD efficiency tests have been proposed already, see Post (2003), 

Dentcheva and  Ruszczynski (2003), Kuosmanen (2004), Post and Versijp (2007) among 

others, we shall focus on linear programming formulations only, since such methods have 

the lowest computational complexity which is often a burden for real-life data sets, 

particularly when it comes to repeating the test many times for statistical inference and 

bootstrapping or high dimensionality of the data (see for instance Dentcheva and  

Ruszczynski, 2006).  The least computationally demanding SSD efficiency test known by 
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far is Post (2003). In this section we derive another LP test that is even more efficient 

than that of Post (2003) in the case when short sales are unrestricted. In the following 

section we derive a TSD efficiency test, also exploiting the special structure of portfolio 

possibilities set and thereby improving its computational complexity. 

Consider a given portfolio x. As the ordering of states of the world is not relevant, 

we may assume without loss of generality that x is sorted in ascending order:  

x1 ≤ x2 ≤ … ≤ xm. 

In order to determine if x is SSD efficient, we need to find a supporting gradient vector z. 

First note, that the condition 

∀α∈Λ:  (Xα)
T
z = C          (10) 

is equivalent to  

X
T
z = Ce. 

We are interested in the case when the market is incomplete and m > n. Without loss of 

generality we may assume that the first n rows of X are linearly independent. Partitioning 

X into X1 (first n rows) and X2 (the rest (m–n) rows), we may write: 

[ ] CezXzXzXXzX mn

T

n

TTT =+== +  : )1(2 : 1121  

Therefore, the general solution of (10) has m–n free parameters and can be expressed as 

( ) ( )










 −
=

−

β
βTT XCeX

z 2

1

1 ,        (11) 

where β is (m–n)-parameter vector. Since only the ordering of elements of z matters, z  

can be normalized, so that C = 1. 

Given the criteria above, the portfolio x is efficient if and only if there exists a decreasing 

positive vector z satisfying (11). If exists, it is also a strictly interior point to the following 

set: 

 

{β ∈ ℝ
m–n

 such that ( ) ( )








−≤







−
−

−

−

−

nm

T

nm

TT eXD
I

XXD
0

1

12

1

1 β }    (12) 

where 

  





























−

−

−

−

≡

−

−−
−
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−−

1
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1
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2

1

2

1

1
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This test can be equivalently formulated as the following linear program: 

 

( ) ( )1 1

1 2 1

, 
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m n m n
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θ β θ
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− −
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− −
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ℝ ℝ

    (13) 

 

Portfolio x is SSD efficient if and only if (13) is either unbounded or θ*>0.
2
  

 Efficiency test (13) is less computationally demanding than that of Post (2003), 

since (13) has m – n + 1 variables and m constraints, which is n variables and n
2
 non-

zeros in the constraints matrix less than in Post (2003). By changing variables  

γj = πj+1 βj+1 –  πj βj,   j = 1 … m–1, and γm = πm βm, one can transform (13) to the standard 

form (max{c
T
γ: Aγ ≤ b, γ ≥ 0}) with an n-by-(m–n) matrix of constraints. The number of 

non-zeros in this matrix is a good indicator of computational complexity of a linear 

program (for instance, Performance World (2009) ranks linear programs based on this 

criterion). The test of Post (2003) in the same standard form will have an n-by-m matrix 

of constraints all the elements of which are generally non-zeros. The difference of n
2
 non-

zero elements confirms the computational advantage of (13) relative to Post (2003). 

The computational advantage of (13) becomes particularly eminent when n 

approaches m and in the case of bootstrapping when the efficiency test has to be run 

many times on multiple data samples generated from the estimated joint distribution of 

asset returns. However, for large values of n one needs to invert a larger X1 prior to 

solving (13). Should X happen to be particularly ill-conditioned, one may use the 

following equivalent test without decomposing X. 

 

{ }
,

max :   ,   0
m

T

d
X Ud e d

θ
θ

∈ ∈
= ≥

ℝ ℝ

,       (14) 

 

were U is an upper triangular m-by-m matrix adjusted by the probabilities of the states of 

nature, d is an m-vector representing the probability-adjusted step differences of vector z, 

that is dj = πj+1 zj+1 –  πj zj,   j = 1 … m–1, and dm = πm zm. 

Portfolio x is efficient if and only if θ*>0. 

                                                 
2
 Equivalently, x is SSD inefficient if (13) is infeasible. The case θ*=0 also implies inefficiency (non-

optimality) by our definition. Some authors consider portfolios corresponding to θ*=0 efficient as well. In 

this case the efficiency criterion can be easily adjusted without altering computational complexity of (13). 
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Program ((14) has m + 1 variables and n equality constraints which is similar to 

Post (2003) test in terms of computational complexity. However, the two tests are 

applicable in different circumstances: (13) applies when no short sales restrictions are 

postulated, whereas the test of Post (2003) requires portfolio possibilities set to be 

bounded and to contain the subject portfolio x in its interior. 

 

 

4.2 TSD EFFICIENCY 

 

A portfolio x
0∈MX is Third Order SD (TSD) efficient if and only if there exists u0∈U3 

such that Eu0(x
0
) = sup {Eu0(x) : x∈MX}, where U3 = U2 ∩{u: u

(3)
(x)>0}. 

 

Employing concavity of the first derivative of any function in U3, it is straightforward to 

formulate TSD efficiency criteria: 

A portfolio x
0∈MX is efficient in U3 if and only if there exists z

0∈ℝm
 such that: 
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The corresponding TSD efficiency test for a given portfolio also leads to a linear 

programming formulation. Indeed, the TSD criteria is nothing else but 
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System (15) can be solved via the same program (13) that was applied to the SSD test, 

with redefined matrix D. Therefore, the TST test is a linear program with m – n + 1 

variables and m constraints.  

 

4.3 SD FOR DECREASING ABSOLUTE RISK AVERSION (DSD) 

 

It is well accepted within expected utility framework that rational individuals 

possess decreasing absolute risk aversion (DARA)
3
. Let us examine Stochastic 

Dominance efficiency relative to this class of utility functions. Define 

Ud = U2 ∩{d/dx[–u″(x)/u′(x)]<0, ∀x}.  

An allocation x
0∈MX is efficient in Ud (DSD efficient) if and only if there exists u0∈Ud 

such that Eu0(x
0
) = sup {Eu(x

0
) : x∈MX }. 

 

To express the risk aversion property in terms of supporting vectors, we have to adapt the 

efficiency criterion. Let 
)(

)(
)(

xu

xu
xr

′
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−≡  be the ARA of u(x). We have:  

u′(x) = exp(–∫r(x)dx + C), and if x1<x2<…<xn, then 
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3
 See e.g. Pratt (1964) for formal derivation and discussion. 
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As we can see, a decreasing sequence {ri} exists if and only if 
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We are now ready to adapt the efficiency definition to the class of Ud. 

An allocation x
0∈MX is efficient in Ud (DSD efficient) if and only if there exists z

0∈ℝm
 

such that: 
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Note that DSD efficiency implies TSD efficiency. That follows from the fact that 
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xu

xuxuxu
xr . This is also consistent with DSD-TSD criteria: (iv) in 

DSD implies (iv) in TSD, since the geometric average (in DSD) can never exceed the 

arithmetic average (in TSD). 

We are now ready to formulate a test for DSD efficiency of a given portfolio 

which will no longer be linear, but still a convex program. Indeed, any 
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4
 By y = ln(x), x∈ℝm

, we mean element-wise logarithm, that is, y∈ℝm
 and yi = ln(xi). Similarly, z = y÷x, 

x,y∈ℝm
, means z∈ℝm

 s.t. zi = yi / xi. 



 - 17 - 

 



























≡

−−

−−−

11

222

222

111

000

00

000

00

000

mm

mmm

ba

cba

cba

cba

D

⋱

⋱

⋱⋱⋱

⋱

, with 

















=−=

−=













−
−

≡

−
−

−
≡

−
−

≡

−−

++

+++

+

1   ,1

)2...(1  ,

1

11

1

11

12

112

1

mm

ii

i

iiii

i

ii

i

ba

mi

xx
c

xxxx
b

xx
a

. 

 

 Even though the constraints on β are no longer linear, they are still convex, and therefore 

we can find strictly feasible points (or establish that they do not exist) efficiently. 

 

 

4.4 SD FOR DECREASIND ABSOLUTE AND INCREASING RELATIVE RISK 

AVERSION (DISD) 

 

In addition to DARA, relative risk aversion is often postulated to be increasing among 

rational individuals (see e.g. Pratt). In this section we examine optimality conditions in 

the utility class Udi combining the two risk aversion properties: 

Udi = Ud ∩{d/dx[–xu″(x)/u′(x)]>0, ∀x>0}.  

The utility functions under consideration are therefore those having decreasing absolute 

(DARA) and increasing relative risk aversion (IRRA). 

A portfolio x
0∈MX is said to be efficient in Udi (DISD efficient) if and only if there exists 

u0∈Udi such that  

Eu0(x
0
) = sup {Eu(x

0
) : u∈Udi}. 

Given the ARA values ri and ri+1 (s.t. ri ≥ ri+1) at nodes xi and xi+1, the IRRA requirement 

restricts r(x) to lie above
5

1
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xx

ii

x

xr
xf , imposing thereby an extra condition:  

rixi ≤ ri+1xi+1, i = 1, …, n.        (21) 

 

Conversely, if (21) holds, we can always construct 
1

)(
+

=

i

i

x

xx
xr such that xr(x) will be non-

decreasing, provided 

                                                 
5
 f(x) is a limiting case of ARA in order for RRA to remain non-decreasing in the interval [xi-1, xi]. It is the 

solution of {(f(x)x)′ = 0, f(xi)=ri}. 
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This leads to the following DISD efficiency criterion: 

An allocation x
0∈MX is efficient in Udi (DISD efficient) if and only if there exist z

0
 and 

r∈ℝm
 such that: 
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The condition above is far less convenient than those for TSD or DSD, as both r and x are 

now entering (iv) and (v) in both linear and logarithmic form. 

 

5. CONCLUDING REMARKS 

 

We have pointed out the importance of stochastic dominance efficient sets being convex 

and further summarized and extended conditions leading to convexity of efficient sets. 

This property has important practical (passive vs. active investment strategies, efficiency 

of mutual funds) as well as theoretical value (heterogeneous investors models and asset 

pricing) and can be analyzed from two different, but interrelated aspects: the returns on 

underlying assets and the utilities of individual investors. Restricting distributions of 

returns typically leads to various Factor Models, where complete class of non-satiable 
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and risk-averse investors is assumed. Restricting the set of utilities can also affect 

efficient sets considerably, as can be seen e.g. in Rubinstein (1974). Unfortunately the 

extent to which restrictions on sets of utilities affect convexity has not been duly 

researched. 

 

Based on the efficiency criteria (9), Dybving and Ross (1982) derive the following 

characterization of SSD efficient sets: 
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Where the union is taken over all z∈Z having different orderings {zj/πj}. Since the 

dimensionality of z is m, the number of different orderings is at most m! Thus ESSD is a 

union of a finite number of convex sets. 

By analogy, we can explicitly characterize TSD efficient sets: 
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Since all restrictions on x are linear, ETSD is again a union of convex sets. 

The same applies for DSD: 
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The DISD efficiency characterization is slightly more complex, as r appears along with z: 
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It is not clear if EDISD is necessarily non-convex. On the other hand, it is hard to find a 

general set of assumptions that would guarantee convexity of a union of convex sets, in 

contrast to the intersection of convex sets which is automatically convex.  

 Regarding the link between utility functions and convexity of efficient sets, there 

are only extreme cases known so far – when investors are nearly homogeneous (like in 

Rubinstein (1974)), in which case efficient sets are normally rays or lines, and when 

investors’ preferences are spanned unrealistically broadly, like the whole U2, where 

efficient sets are too large (even without portfolio restrictions on short sales) and non-

convex.  

 A possible extension of the current research could lie in searching for a 

reasonable set of well-behaved utility functions for which the efficient sets would be 

large enough and convex. In analogy to arbitrage pricing theories and factor models for 

returns, one could try to parameterize investor’s preferences. The expo-power utility 

function of the form u(x) = θ – exp(– β x
α
), where θ >1, α ≠ 0, β ≠ 0, αβ > 0, seems to be 

a good candidate for that, as it allows all possible combinations of absolute (increasing, 

decreasing or constant) and relative (increasing or decreasing)  risk aversion with just two 

key parameters.  

In addition to the convexity analysis, we have also derived some higher order 

stochastic dominance efficiency tests in which we incorporate some meaningful 

restrictions on the set of utilities well recognized in the expected utility framework, such 

as decreasing absolute and increasing relative risk aversion.  
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