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Introduction 



8 Chapter I 

Less than a decade ago Murry et al reported that infarct size in dogs sUbjected to a 40 min 

coronary artery occlusion was 29% of the anatomical area at risk. \Vhen the 40 min occlusion 

was preceded by 4 cycles of 5 min coronary artery occlusion and 5 min of reperfusion infarct size 

was only 7% III (Figure I). This protective effect of brief periods of reversible myocardial 

ischemia was tenned "ischemic preconditioning" and has now been confll1ued in a large number 

of other laboratory animals including pigs, rabbits and rats !2l, 

Non-preconditioned Preconditioned 

Ischemic LAD area 

4 x 5 min 40 min 

Infarct size 
(Infarcted Area as 
% of Area at Risk) 

--7' ( 29% 
/ 

------/(~/----------

4 days 
7% 

Figure I. Ischemic preconditioning protocol used by Murry et a/[l] in an in vivo dog model. Closed bars are periods 
of ischemiC stress applied by occluding the coronary artery of which the distibution zone became the area at risk 
(gray and black area in the heart). Infarct size (black area in the heart) was determined by histochemical techniques 
and is expressed as the percentage infarcted area of the area at risk. 

In chapter 2 we will review the experimental evidence of the protective effect of ischemic 

preconditioning and outline the problems that exist in obtaining clinical evidence for this 

phenomenon. 

It has been reported that not only total[I,3-10) but also partial[ll, 12] coronary artery occlusions can 

precondition the myocardium. Thus, Ovize et aftllJ observed in dogs myocardial necrosis after 

a 60 minute total coronary artery occlusion was less when coronary blood flow was reduced by 

50% for IS minute preceding that 60 minute coronary artery occlusion. In that study 15 minute 

of complete reperfusion between the partial coronary artery occlusion and the sustained total 

coronal), occlusion was necessary to obtain the reduction in infarct size. In contrast, we observed 

earlier in pigs that a 70% coronary flow reduction that lasted 30 min protected the myocardium 

during a subsequent 60 min total coronary artery occlusion without the need of intervening 
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reperfusion.112] These findings appear contradictory but could also suggest that the severity and 

duration of the flow reduction playa critical role in eliciting protection. Although ischemic 

preconditioning has been the topic of many studies, none of these investigated whether the 

protection by ischemic preconditioning was the same for the inner and outer myocardial layers 

across the left ventricular wall. It is well established that a partial coronary artery occlusion 

afiects perfusion of the subendocardial layers more severely than that of s1.1bepicardiallayers.ll3
-
18] 

11ms, differences in severity of ischemia across the left ventricular wall could produce different 

degrees of protection for different myocardial layers. 

To address these questions we investigated in chapter 3 (i) whether the protection by partial 

coronary artelY occlusions depends on the severity and(or) duration of the flow reduction and (Ii) 

the transmural distribution of this protection. These issues are of particular clinical interest, since 

preconditioning with partial occlusions mimics more closely the condition of patients suffering 

from coronary artery disease than the abmpt brief total occlusion and reperfusion sequences. To 

compare the protective effects of the partial and total coronary artery occlusion stimuli we also 

analyzed the subendocardial and subepicardial distribution of in:h'lfct size of pigs preconditioned 

with a brief total coronary artery occlusionYIJ 

Myocardial protection can be produced by a variety of stimuli causing myocardial ischemia. 

Thus, one or more brieftotaW] or partial18, II, 12] coronary artery occlusion(s) limit(s) infarct size 

produced by a sustained period of ischemia. Moreover, infarct size can also be limited by brief 

ischemia in adjacent myocardium[191, Thus a temporary interruption of oxygen supply either 

within or outside the myocardial region of interest can lead to protection. Recent studies suggest 

that stimuli that do not cause ischemia may also protect the myocardium, Thus, Ovize et aIPO} 

reported that an increase in left ventricular wall stretch produced by acute volume overload 

protected the myocardium against infarction during a subsequent 60 min coronary artery 

occlusion, Also two consecutive 2 min periods of rapid ventricular pacing in open-chest dogs 

reduced the incidence of ventricular arrhythmias during and inunediately following a subsequent 

25 min coronary artery occlusiotP1l, In chapter 4 we describe the effect -of rapid ventricular 

pacing on infarct size development produced by a sllstained coronary artery occlusion, 

Ischemic preconditioning has been described not only for the myocardium,[l] but also for the 

kidney,[22] skeletal muscle,I231 braitP~l and liver.[25} Furthermore, Przyklenk et 0/[19] reported that 

a brief coronmy artery occlusion preconditioned not only the myocardium within but also outside 

its perfusion territory ("remote" but intracardiac ischemic preconditioning). It is uhknown, 

however, whether remote organ ischemia can protect the myocardium against infarction. 

Therefore, we examined in chapter 5 whether brief remote organ ischemia prior to a 60-minute 

coronary artery occlusion limited myocardial infarct size. For this purpose, we produced transient 

ischemia in the small intestine or left kidney by occluding the anterior 
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Induction of organ protection: 

Same Organ 
ZAGER et 01 [22) 
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Protection: 

Kidney 

Induction of cardioprotection: 

tAD ,'OI.OtiO", Same Area 
MURRY et 01 [1) 
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/ 
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Figure 2. Background of protection by ischemia in organs other than the heart, Ischemic preconditioning is not an 
organ specific phenomenon and its protective effect is not limited to the area that has become ischemic but also 
expands to the 'virgin' adjacent area. In chapter 5 we investigated the effect of brief ischemia in other organs on 
myocardial infarction. LAD=left anterior descending coronary artery; LCX=iefi circumflex coronary artery. 

mesenteric artery or the left renal artery in rats and examined its effect on myocardial infarct 

size (Figure 2). Since body temperature may influence infarct sizcf26
,27] and cardioprotection by 

the adenosine deaminase inhibitor pentostatin was only observed in the presence of mild 

hypothennia128] studies were performed at two temperatures. Because results indicated that brief 

mesenteric artery occlusion provided cardioprotection at both temperatures, mesenteric artery 

occlusion was selected to examine the mechanism of protection by remote organ ischemia. To 

investigate whether a neurogenic pathway was involved we repeated the studies after ganglion 

blockade with hexamethonium. To determine whether activation of the neurogenic pathway 

occurred during remote organ ischemia or the subsequent 10 minutes of reperfusion, we also 

detel111ined infarct size after 60M minute coronalY artery occlusion in the presence of permanent 

mesenteric ariery occlusion. 
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In chapter 5, we showed that myocardial infarct size produced by a 60-minute coronary artery 

occlusion in rats was not different when the experiments were performed at normothermia 

(36.5"C-37.S0C) or hypothermia (30°C-3J°C) [29[. This finding is at variance with previous 

studies in rabbits [26J and swine [27J in which infarct size produced by 30J26J and 45-minute [27) 

coronary artery occlusion coronary artery occlusion was smaller at lower body temperatures. 

Reasons for the apparent discrepancy could be differences in species or the duration of the 

coronary artery occlusion. In chapter 6 we therefore investigated the importance of the duration 

of coronary artelY occlusion on the infarct size limiting effect ofhypothennia. Since hypothermia 

was associated with bradycardia, which could possibly limit infarct size per se pOJ, we studied an 

additional group of hypothermic rats in which heart rates were increased to heart rates at baseline 

of the normothermic animals. 

Initially, studies searching for the mechanism of ischemic preconditioning focussed on time 

characteristics and on extracellular endogenous and exogenous factors that either mimicked or 

inhibited the phenomenon. Protection proved to occur during two distinct episodes: a classical 

preconditioning period (first window of protection (FWOP)) that lasted 2 to 3 hours after the 

preconditioning stimulus was applied [1.21, and a second window of protection (S\VOP) between 

24 and 72 hours [31- 331. The meehanisms of protection for these two windows are most likely not 

the same. Endogenous factors rapidly produced agonists may activate intracellular pathways 

during P\VOP, while the slower process of in duet ion of heat-shock proteins may be involved 

during the S\VOP. Initially, attention focussed on activation of adenosine AI-receptors [34.35) or 

K\TP chalillel opening [36,37], as the mechanisms for protection during FWOP. More recently 

activation of protein kinase C has received wide attention /3S] (Figure 3). Prior to reviewing the 

role of protein kinase C in chapter 7, we introduce the biochemical properties of protein kinase 

C and discuss the limitations of the techniques used to investigate its role in ischemic 

preconditioning. Finally, the evidence that activation of protein kinase C and the intracellular 

signalling pathways leading to its activation playa pivotal role in the mechanism of ischemic 

preconditioning is summarized. 

In chapter 8 we investigated the role of protein kinase C in ischemic preconditioning and the 

protection obtained by remote organ ischemia (chapter 5). 
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Less than a decade ago Murry el al reported that infarct size in dogs subjected to a 40 min 

coronary artery occlusion was 29% of the anatomical area at risk. When the 40 min occlusion 

was preceded by 4 cycles of 5 min coronary artery occlusion and 5 min of reperfusion infarct size 

was only 7% {II, This protective effect of brief periods of reversible myocardial ischemia was 

termed "ischemic preconditioning" and has now been confirmed in a large number of other 

laboratory animals including pigs, rabbits and rats Ill. 

Protection by preconditioning has not only been connected with infarct size limitation but 

also with enhanced recovery of regional cardiac contractile function and anti-alThythmic activity 

P,4J. Because in large animal species the incidence of reperfusion arrhythmias is highest after 

coronary artery occlusions lasting between to and 30 min (which are too short to lead to 

infarction) the effect of ischemic preconditioning on in£1rct size, reperfusion arrhythmias and 

recovery of contractile function are usually studied in separate models. The anti-arrhythmic 

component of preconditioning has been convincingly demonstrated only in the rat; in other 

animal species this effect is less prominent [11. 

In this overview we will restrict the experimental evidence of the protective effect of 

preconditioning to infarct size limitation and outline the probJems that exist in obtaining clinical 

evidence for this phenomenon. However, clinical studies exclusively dealing with aspects of 

preconditioning in models of reversible ischaemia will also be discussed. 

Features of experimental studies on ischemic preconditioning with infarct size as endpoint 

Four distinct phases can be characterized in ischemic preconditioning experiments (i) the 

preconditioning stimulus, (ii) the intervening reperfusion period, (iii) the sustained coronary 

artery occlusion, which is followed by (iv) a sustained reperfusion period at the end of which the 

anatomical area at risk and infarcted area are determined. Important features of each of these 

phases have been summarized in Table I and will be discussed briefly. 

The preconditioning stimulus. Single or multiple brief total coronary artery occlusions 

varying from 2 to 10 min in duration have been used to precondition the myocardium, The 

minimum stimulus (threshold) to elicit preconditioning is not sharply defined but no data are 

available to suggest that occlusions less than 2 min can trigger preconditioning. However, two 

different subthreshold stimuli can produce preconditioning. Thus, Yao and Gross reported that 

while a brief coronary artery occlusion and low dose of the K+ATPchannel activator Bimakalim 

(see mechanisms) had no effect on infarct size when given separately, combined administration 

of these stimuli in dogs resulted in significant infarct size limitation [51. Not only total coronary 

artery occlusions, but clinically even more relevant, also partial coronary artery occlusions can 

precondition the myocardium [6.71. Ovize el af have described that cyclic coronary flow variation 

produced by a fixed stenosis and endothelial injury also preconditioned myocardium [81. Most 

investigators have used an impaired blood supply to induce preconditioning, but preconditioning 
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Table 1. Important features of preconditioning in experiments with infarct size as endpoint and 
the problems obtaining evidence in man. 

Features o/precollditlollillg III experlmeuts 

Precollditioulllg stilllll/US 
Ischemic 

single or multiple total coronary artel}' occlusions 
lasting from 2 to 10 min (supply ischemia) [1,2,7} 

severe partial coronary artery occlusions (supply 
ischemia) [6,7} 
moderate partial coromll}' artery occlusions + 
adrenergic stimulation (demand ischemia) [9} 
moderate fixed stenosis + endothelial injury [8} 

Non-ischemic 
heat stress (heat shock proteins) 
brief total occlusion of coronal}' artery supplying 
adjacent myocardium (remote preconditioning) {IOJ 
left ventricular volume loading {13 J 

transient hypoxia 
transient occlusion of renal artery? (remote 
'preconditioning') [II, 12} 

Pharmacological slIbstances 
adenosine, K\TP channel openers, protein kinase C 
activators [27,30-33} 
decreased threshold for ischemic preconditioning by 
subthreshold K\TPchannel activation [5} 

Illten'enillg (reperjilsloll) perioli 
mandatory following total occlusion (self evident) 
I min· 2 hours first window of protection 

[1,18] 
24 hours· ? second window of protection 

[15,16] 
not necessary following severe partial occlusions {7J 

Sustailled corolUu)' artery occlusloll 
duration limited to 90 min (species specific) [I] 

Slts/ailled reperjilSioll 
mandatol}' following the sustained coronary artel}' 
occlusion (selfe"ident) 

Otlter aspects of precollditionillg 
controversy about the loss of the protective clfect of 
preconditioning during first window (gradual decrease 
or "all or nothing" phenomenon) [20,21 I 
preconditioning can be reinstated after the protection 
is lost (22] 
tolerance develops with chronically applied 
preconditioning stimuli (24] 
preconditioning has been demonstrated in hypertrophic 
hearts (26} 

Problems illlllall ill obtailllllg e~'itfellce 

unknown if the duration and severity of anginal attacks 
arc sufficient to precondition the myocardium 
unknown if silent ischemia can precondition the 
myocardium 
unknown ifhibemation leads to preconditioning 

unknown if exercise stopped at the earlieast sign of 
ischemia can precondition myocardium 

unkno\\n ifdilated hearts in heart failure arc or can be 
preconditioned 

medication and other fonns of stress may interfere with 
the potential protective enect of the brief ischemic 
periods {treatment with K \TP channel openers for 
angina pectoris or treatment with K \TP channel 
blockers (Glibenclamide) for diabetes mellitus type II} 

reperfusion following anginal attacks may be 
incomplete and variable in duration 

occlusion that produces infarction may be incomplete 
and variable in severity 
collateral bloodflow to the area at risk is unknown 
onset and duration of occlusion cannot be accurately 
defined 

onset of reperfusion cannot be accurately defined 
reperfusion may be incomplete due to pre-existent 
coronary artel}' stenosis 

Detemlination of infarct size 
"infarct size" should be related to the anatomical 
area at risk; area at risk is usually not determined 
cnzyme leakage, preservation of left ventricular 
function or survival arc often used as endpoints; 
these may not accurately reflect the extcnt of the 
infarcted area 
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can also be obtained by increasing oxygen in the face of a maintained oxygen supply[91, Evidence 

is accumulating that the myocardium can also be preconditioned by ischemia in a remote region 

of the left ventricle. Thus, Przyklenk et at reported that a brief total coronary artery occlusion 

preconditions not only the myocardium within its perfusion territory but also protects the 

myocardium outside its territory [10], Another example of such remote ischemic preconditioning 

is the reduction in myocardial infarct size when a renal artery is transiently occluded prior to the 

coronary artery occlusion {II, 
12

1, The concept of cardiac protection without the need for ischemia 

is forwarded. Ovize et a/In] described that stretching the myocardium by volume loading reduces 

infarct size during a subsequent coronary artery occlusion. TIlls could provide an explanation tor 

the remote ischemic preconditioning experiments by Przyklenk ef al as severe regional ischemic 

contractile dysfunction leads to stretching of the adjacent nonRischemic myocardium {IO}. \Ve have 

shown that 30 min of rapid ventricular pacing also preconditions the myocardium (Chapter 5). 

Tills protection did not involve ischemia as high energy phosphates were not depleted during the 

ventricular pacing period, while systolic segment shortening recovered immediately (no stunning) 

and reactive hyperemia was absent after ventricular pacing was terminated. The mechanism 

involved activation of K+ATP channels as pretreatment with the K+ATP channel inhibitor 

glibenclamide prevented the protection by ventricular pacing. 

The intervening repel/usioll period It is self evident that an intervening reperfusion period is 

mandatory when myocardium is preconditioned with a total coronary artery occlusion as 

otherwise the period of sustained ischemia would merely be prolonged. Ischemic preconditiOlllng 

is a transient phenomenon as with reperfusion periods exceeding two hours the protective effect 

has dissipated 1141. However, when the duration of the intervening reperfusion period is increased 

to 24 hours the myocardium may again become preconditioned (15,
161. The evidence for this 

reappearance of protection is yet not as convincing as that for the classical preconditioning 1171. 

The necessitity of an intervening reperfusion period has been a point of discussion when 

myocardium is preconditioned by a partial coronary artery occlusion. Ovize et al could not trigger 

preconditioning with a 50% flow reductiou Iastiug 15 miu unless a period of complete 

reperfusion was allowed 161. In contrast. we found that a 70% flow reduction which was 

maintained for 30 min preconditioned myocardium without an intervening reperfusion period P}. 

\Vhether myocardium can be preconditioned when reperfusion during the intervening period 

after a brief total coronary artery occlusion is incomplete has not yet been investigated. These 

data would be of significant clinical importance as they are likely to mimic more closely the 

clinical situation than the abmpt occlusioIlRreperfusion protocols. 

The sustained total corOJ1wy arlelY occlusion. Studies in dogs suggest that with sustained 

coronary artery occlusions lasting longer than 90 min the protective effect of the preconditioning 

stimulus is lost !II. The protective effect of preconditioning should therefore be considered to be 

a shift in the time course of infarct size development {I,18}. 

The sllstained repeJ:filsion period Ischemic preconditioning could merely postpone myocardial 
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cell death during the early reperfusion period similarly to what has been described for a number 

of phannacological agents. That the protective effect of preconditioning persists and is not only 

a delay of cell death during the repemlsion period follows from studies that allowed 3-4 days of 

reperfusion prior to infarct size determination [1,19J. 

Other .features a/preconditioning. Some studies suggest a gradual disappearance of the 

protection effect already during the first hour of the intervening reperfusion period [20J, Our 

studies support the hypothesis that in the individual animal the protection does not wam off 

gradually but is more consistent with an Hall or nothingH phenomenon [211. 

A stimulus given immediately after preconditioning is lost will reinstate the cardioprotective 

action [221, but a stimulus given while the myocardium is still protected does not prolong the 

protective effect beyond that produced by the initial stimulus [231, Since patients may have 

multiple episodes of ischemia each day for a prolonged period of time, the question arises 

whether the protective action of ischemic preconditioning persists when multiple sequences of 

brief occlusions and reperfusions are continued for a period of hours to days, Cohen et al 

addressed this issue in awake rabbits subjected to 5 min occlusions at 30 min intervals for 8 

hours [241, After 3 to 4 days these repetitive occlusions did not protect the myocardium but after 

a stimulusM free period preconditioning could be recaptured with a single 5 min occlusion. 

Although it is unlikely that such a large array of multiple occlusions occurs in patients these data 

indicate that repetitive ischemia in patients could lose its protective effect, particularly as it is 

possible that preconditioning may already be lost after a smaller number of ischemic episodes, 

Many patients that encounter myocardial infarction are older than 50 years and are likely to 

have heal1s which are quite difterent from the normal hearts in which ischemic preconditioning 

has been demonstrated. The Framingham study revealed that left ventricular hypertrophy occurs 

in 12M40% of subjects older than 50 years [251. This would increase its potential clinical relevance 

if ischemic preconditioning could be demonstrated in hearts with left ventricular hypertrophy, 

Speechly-Dick el a{ indeed showed that rats with left ventricular hypertrophy can be 

preconditioned with a single 5 min coronary artery occlusion [261, 

Possible mechanisms of preconditioning 

Ischemic preconditioning has been demonstrated in several species which lack a significant 

coronary collateral circulation, and thus recmitment of co Hat era I blood flow by the brief ischemic 

periods can be excluded as a potential mechanism for ischemic preconditioning [271. Murry et al 

[II and others /2S1 reported reduced rates of glycolysis and high energy phosphate depletion, better 

preservation of pH and myocardial ultrastmcture during the sustained coronary artery occlusion 

of preconditioned hearts, The reduced rate of energy utilization was initially believed to result 

from a decrease in myocardial energy requirements secondary to the depressed contractile 

function produced by the brief period of reversible ischemia (Le. myocardial stUlUling), However, 

Matsuda ef al demonstrated that the myocardium remained protected when systolic segment 



20 Chapter 2 

shortening in stunned myocardium was recruited by infhsion of dobutaminc within the allocated 

2 hours interval between the short and the longlasting coronary artcry occlusions ml, indicating 

that myocardial stunning is not a prerequisite for triggering cardioprotection. 

It was not until Downey and co-workers proposed a role for adenosine that a large number of 

studies began to focus on (sub)cellular mechanisms [301, Mechanisms that arc currently ascribed 

a pivotal role in ischemic preconditioning include adenosine, K+ A1P channel activation, and G­

protcinlProtein kinase C activation. For a detailed description of these mechanisms the reader is 

referred to one of many extensive reviews [2)0-331, 

Evidence for the existence of ischemic preconditioning in patients 

No clinical study can meet the strict conditions outlined for the experimental studies in Table 

1. Consequently, direct evidence for the occurrence of ischemic preconditioning with infarct size 

as endpoint is not available. A main source of error lies in the inability to accurately define the 

onset, duration and the completeness of the different occlusion and reperfusion phases as these 

do not necessarily coincide with the onset or relief of anginal pain or changes in the 

electrocardiogram. The extent of coronary collateralization is another important determinant of 

infarct size, which CaiUlot be quantified with sufficient degree of accuracy. Another shortcoming 

of clinical studies is the inability to accurately determine infarct size, for which often indirect 

measures (enzyme leakage, survival or left ventricular function) have to be relied 011. The area 

at risk is most often not determined which makes it impossible to relate the amount of necrosis 

to the area at risk. Finally, patients may be on medication that is capable of mimicking or 

inhibiting ischemic preconditioning (aminophylline, K+ATP channel modulators). Because 

reperfusion is mandatory following the sustained period of ischemia for preconditioning to be 

able to limit infarct size, shldies performed during the pre- and thrombolytic eras should be 

differentiated (Table 2) [lH51. 

Because of these limitations we also review studies in which multiple periods of ischemia 

have been investigated usually as part of a diagnostic or therapeutic intervention. If the 

mechanisms responsible for ischemic preconditioning (infarct size limitation) arc the same as the 

mechanisms responsible for myocardial adaptation (lesser signs of ischemia during the second 

of two periods of reversible ischemia) this would provide strong, though indirect, evidence that 

ischemic preconditioning may occur in the human heart. 

Several patient categories have been identified in which myocardial adaptation might exist 

{.f6A
7

1, These include patients who have experienced two or more episodes of reversible ischemia, 

secondary to exercise stress tests, atrial pacing stress tests and percutaneous transluminal 

coronary angioplasty (Table 3) [48-651, Patients undergoing arterial cross-clamping as part of 
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cardiac surgery, and in-vitro studies in samples obtained from human hearts may provide 

additional evidence for ischemic preconditioning in man [66.68], 

Table 2. Evidence for ischcmic preconditioning to il'l'cvcrsiblc damage in man using 

indirect measurements of infarct size as endpoint. 

Allgina preceding il/farclioll 

Positi~'e results 

Without reperjusioll 

Referel/ces 

globallregionai wall function. ejection fraction [34·36J 

With I'epeljusioll (acute PTCA, thrombolysis) 

enzyme leakage [37J, [38J (T1MI-4) 

hypokinetic area/area beyond the stenosis [37] 

("IA/AR) 

heart failure, shock 

reocclusions 

short ternl survival 

Negalb'e results 

Without I'eperjusioll 

incidence of subendocardial infarction 

recurrent ischemia. infarct extension 

recurrent myocardial infarction 

heart failure 

short tenn survival 

long tenll survival 

With reperjusioll (acute PTCA, thrombolysis) 

recurrent angina and infarction 

residual stenosis 

heart failure 

Killip class 

[38J (T1MI-4) 

[39](TAMI) 

[39J (TAMI) 

[40J 

[46J (MiLlS) 

[4 I 1 (Framingham) 

[41J (Framingham) 

[40J 

[41] (Framingham) 

[42J (T1MIII) 

[42J (T1MIII) 

[43J 

[44J (ITPA/SMT) 

short teml sUfvival [42J (T1MIII), [43, 44] (ITPA/SMT), [45J 

long tenn survival [43] 

TAMI -l1lrombolysis and Angioplasty in Myocardial Infarction 

MILlS = Multicenter Investigation of the Limitation of Infarct Size 

TIMI = Thrombolysis in Myocardial Infarction 

ITPAiSMT = Intemational Tissue Plasminogen Activator i Streptokinase Mortality Trial 

PTCA = percutaneous transluminal coronary angioplasty 

lA = infarcted area 

AR = area at risk 
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Angina prior 10 an acute myocardial infarction Positive as well as negative results, which 

cannot be explained by the absence or presence of reperfusion by thrombolysis or acute 

percutaneous transluminal coronary angioplasty, have been reported in patients with angina prior 

to infarction (Table 2). Importantly, none of the studies reported positive results on long term 

survival. Tilis may be attributed to a greater prevalence of severe coronary artery disease and 

other risk factors such as age, smoking and presence of hypertension in the non-survivors. 

Because of the frequency of ischemic episodes prior to the occurrence of myocardial infarction 

it cantlot be excluded that in a number of patients tolerance to ischemic preconditioning had 

developed {241. Based on the currently available evidence it is premature to conclude that angina 

prior to myocardial infarction limits infarct size. Until more sensitive measures of infarct size and 

area at risk become available, and the incidence and duration and severity of occlusions can be 

more accurately determined, this question will likely remain unanswered. 

Repeated episodes of ischemia. In a large number of patients the first anginal attack in the 

morning is more severe than those occurring during the later hours of the day ('warm Upl 

phenomenon). A circadian variation in the autonomic tone may explain this observation 169J, but 

an alternative explanation could be that the less severe signs of ischemia during these later 

episodes are the result of adaptation triggered by the first episode. Exercise-induced ischemia is 

also less severe during the second of two identical exercise tests when these exercise tests are 

separated by a short recovery period [48.50J. It is unclear if exercise when stopped at the earliest 

signs of myocardial ischemia (as is often the case) is suntcient to protect the myocardium against 

irreversible damage during a subsequent myocardial infarction. 

Atrial pacing stress test. Early on it was recognized that the metabolic, electrocardiographic 

and functional responses to two pacing stress tests were not always reproducible when repeated 

at a short time interval. Several studies showed that the time to onset of angina was prolonged, 

while other signs of ischemia were less during the second test (Table 3), which is compatible 

with the hypothesis of myocardial adaptation. It is unknown whether pacing~induced ischemia 

may be too brief in duration and not sevcrc enough to elicit ischemic preconditioning. 

Angioplasty procedures. Several studies have reported that during the second balloon inflation 

signs of ischemia are less severe than during the first inflation (Table 3): Failure to observe 

adaptation might be due to the myocardium already being in an adapted state because of previous 

ischemic episodes [23] or had become resistant [24J. In addition, the duration of inflation might have 

been too short (60 sec) or the intervening reperfusion too long to trigger adaptation. Kerensky 

et al [62J reported that after pretreatment with intracoronary adenosine, the magnitude of ST­

segment changes during the first and second inflation was no longer different. Their findings 

could suggest that adenosine pretreatment already adapted the myocardium prior to the first 

inflation analogous to its protective effect on inf.:1rct size. Pretreatment with glibenclamide 

abolished the attenuation of intracoronary electrocardiographic changes during the second 
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Table 3. Myocardial adaptation to repeated episodes of reversible ischemia in man. 

Adaptation to angilla 

E.:wrcise stress lesl (" Warm tip" alld "Walk Ihrougll 1/ phellomelloll) 
decreased intensity of pain 
increased time to onset of pain 
less ST segment changes 
decreased anaerobic myocardial metabolism 
decreased myocardial 0l-demand (systemic hemodynamics) 
decreased myocardial 02-consumption 
increased coronary bloodflow 

Alrial paciltg stress test 
Positive results 

decreased intensity of pain 
increased time to onset of pain 
less ST segment changes 
decreased anaerobic myocardial metabolism 
decreased myocardial 02-coilsumptioll 
decreased myocardial 02-demand (systemic hemodynamics) 

Negatil'e results 
similar intensity of pain 
similar time to onset of pain 
similar ST segment changes 
similar anaerobic myocardial metabolism 
similar myocardial O~-collsumption 
similar myocardial 02-demand (systemic hemodynamics) 

Angiop/asl)' procedures 
Positive results 

decreased intensity of pain 
less ST segment changes 
decreased anaerobic myocardial metbolism 
improved global hemodynamics 

Negative results 
similar ST segment changes 
similar global hemodynamics 
similar anaerobic myocardial metabolism 

Aorlic ('ross clamp during caf(/iac surgery 
slowing of high energy phosphates degradation 

III )'ilro studies 
/solated h,IllUIII rigllt atrial tmbecu/(fe 

References 

[48J 
[49,50J 
[49,50J 
[50] 
[48,49J 
[50J 
[49J 

[51,52J 
[51 J 
[52-54J 
[52-54J 
[52J 
[53, 54J 

[55J 
[55] 
[51J 
[55J 
[55J 
[51] 

[56-60J 
[56-58J, [60-62J 
[57J 
[57,58J 

[63-65J 
[59J 
[65] 

[66J 

less deterioration of contractile function [67] 
HUll/till I'ellfricular mYllcyles 

decretlsed cell death, decreased H~, preserved aerobic myocardial metabolism [68] 

23 
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balloon inflation [60], suggesting that activation ofK\TP channels was involved in this study. 

Studies in human myocardial samples. Yellon et af [66J randomly assigned patients to a 

sustained period of global ischemia consisting of 10 min cross-clamping without (control) and 

with two preceding sequences of 3 min cross-clamping and two min of reperfusion 

(preconditioning). AIP levels were decreased after the preconditioning protocol when the 10 min 

cross-clamping period was started but by the end oftllis period AIP levels in the preconditioned 

group were higher than in the control group. These observations are in agreement with the 

original observations by Murry et at who showed that ischemic preconditioning slows energy 

metabolism during a sustained coronary artery occlusion [I]. 

\Valker et al 167l suspended right atrial trabeculae in an organ bath and preconditioned one 

group with 3 min of pacing (180 pulses/min) while Sl'perfusing the trabeculac with a hypoxic and 

substrate-free buffer. As an intervening reperfusion period the trabeculae were paced at 60 

pulses/min for 10 min in a reoxygenated buffer with substrate. The preconditioned group and a 

control group were then subjected to pacing (180 pulses/min) for 90 min during superfusion with 

a hypoxic and substrate-free buffer and by 120 min ofreoxygenation and pacing at 60 pulses/min. 

At the end of this period recovery of function was twice as in the preconditioned group period 

large as in the control group. 

Summary and Conclusion 

Direct clinical evidence for the classical preconditioning phenomenon with infarct size 

limitation as endpoint cannot be obtained but a number of patient groups have been identified 

in which adaptation to ischemia has been demonstrated by enhanced recovery of function or 

preservation of high energy phosphates in models of repeated ischemia such as atrial pacing 

stress tests, percutaneous transluminal coronair angioplasty and aortic cross-clamping during 

cardiac surgery. Evidence is accumulating that mechanisms which are operative in experimental 

ischemic preconditioning (infarct size limitation) are also operative in these clinical models of 

repeated reversible ischemia. Insight into the mechanisms responsible for ischemic 

preconditioning could potentially help to develop pharmacological agents which mimic 

preconditioning. This is especially attractive as several of the ischemic episodes maybe too short 

or not severe enough to trigger preconditioning. By a synergistic or additive action combination 

of such a stimulus and low dose of pharmacological agent might result in a protective action. If 

these agents were also to be used for treating cardiovascular conditions, such as the K\TPchatmel 

activator nicorandil for the treatment of angina pectoris, the cardioprotective effect could be a 

beneficial side effect. The cUlTentIy available protein kinase C activators are oncogenic, but with 

the recognition and better understanding of the different subtypes possibly involved in 

preconditioning, new protein kinase C activators may become available without these side­

effects. On the other hand, hearts of patients who regularly experience episodes of ischemia may 

be in a more or less permanent state of preconditioning afforded by one of these stimuli or have 
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developed tolerance. In this situation it is not unlikely that (additional) protection by a 

pharmacological agent cannot be accomplished at that time. It is reassuring, however, that in the 

animal preconditioning can be reinstated immediately after the cardioprotection is lost and that 

it can also be demonstrated in hearts with pathologic conditions such as hypertrophy. 

Finally, in view of the observations that cardioprotection may also be produced by transient 

ischemia in other organs and even some forms of stress which do not lead to myocardial 

ischemia, it could be envisioned that ischemic preconditioning is only one component of a 

general form of cardioprotection. 
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Endocardial and epicardial infarct size after preconditioning by a partial coronary 

occlusion without intervening reperfusion. 

Importance of the degree and duration of flow reduction 

Monique M.G. Koning, MD, PhD; Ben C.G. Gho, MD; Erik van Klaarwater, MSc; 

Dirk J. Duncker, MD, PhD; Pieter D. Verdonw, PhD. 

Backgroulld Recently, we reported that a partial coronary artery occlusion immediately 

preceding a sustained coronary artery occlusion limited infarct size. Vole now investigated 

whether the protection by partial coronary artery occlusions (i) depends on the severity and(or) 

duration of the flow reduction and (ii) varies in the different myocardial layers. 

Melilods ami Results In 71 open·chest pigs (eight groups) left ventricular area at risk (AR) 

and infarct area (IA) were determined for the endocardial (I1\ndo and ARendo) and epicardial 

halves (IA"i and AR",), In control animals [60 min total coronary artery occlusion (TCO) 

followed by 120 min reperfusion (Rep)) there were highly linear relations between IA and AR 

in the endocardium (FO.98, p<O.OI) and epicardium (1~0.97 ,p<O.OI), which could be described 

by 11\"" ~ I.OIAR.,,,,, - 4.5 and by IA",i ~ 0.88AR.,pi - 3.6, respectively. In animals that underwent 

a 10 min TCO + IS min Rep prior to the 60 min TCO + 120 min Rep, IA in both myocardial 

layers were again highly linearly related with AR, with less steep slopes for both the endocardium 

(0.63) and epicardium (0.57) (both p<O.OI). Two groups of pigs were subjected to either a 30 or 

90 min 70% reduction in coronary blood flow (FR) immediately preceding the 60 min TCO + 
120 min Rep, without intervening reperfusion, A 30 min 70% FR decreased IA to the same 

degree in the endo- and epicardial half. A 90 min 70% FR resulted in protection in the 

epicardium (p<0.0 I) but not in the endocardium, most likely because 90 min 70% FR without 

60 min Teo already caused infarction which was more severe in the enda- than in the 

epicardium (p<0.01). Endocardial and epicardial IA after either a 30 or 90 min 30% FR prior to 

the 60 min TCO was not different from that in the control group, indicating that this mild flow 

reduction failed to limit irreversible damage. 

COllclusions Thirty or ninety min of severe (70%) but not mild C30%) coronary flow 

reductions protected against myocardial infarction. The protection by a 70% FR was influenced 

by the duration of FR as a 30 min 70% FR similarly decreased IA in the endocardial and 

epicardial halves, while 90 min 70% FR preferentially limited IA in the epicardial half. These 

fhidings suggest that perfusion abnormalities immediately preceding an infarction could be an 

important source of infarct size variability in patients. 

Keywords myocardial ischaemia, myocardial infarct size, systolic segment shortening, pig, 

anesthetized, coronary blood flow. 
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Recently, it has been reported that not only total[I-9] but also partial[IO,IIJ coronary artery 

occlusions can precondition the myocardium, Thus, Ovize et aP IO
] observed in dogs that the 

development of myocardial necrosis during 60 min total coronary artery occlusion was attenuated 

when coronary blood flow was reduced by 50% for 15 min preceding the sustained coronary 

artery occlusion, In that study 15 min of complete reperfusion between the graded coronary artery 

stenosis and the sustained total coronary occlusion was necessary to. obtain the reduction in 

infarct size, In contrast, we observed in pigs that a 70% coronary flow reduction that lasted 30 

min protected the myocardium during a subsequent 60 min total coronary artery occlusion 

without the need ofintenrening reperfusionP I] These findings appear contradictory but could also 

suggest that the severity and duration of the flow reduction playa critical role in eliciting 

protection. Although ischaemic preconditioning has been the topic of many studies, none of these 

investigated whether the protection afforded was the same for the different myocardial layers 

across the left ventricular wall. It is well established that a partial coronary artery occlusion 

affects perfusion of subendocardial~ more severely than of subepicardial layers.{1l-17] Thus, 

differences in severity of ischaemia across the left ventricular wall could produce different 

degrees of protection for different myocardial layers. 

To address these questions we investigated (i) whether the protection exerted by partial 

coronary artery occlusions depends on the severity and(ar) duration of the flow reduction and (ii) 

the transmural distribution of this protection. These issues are of particular clinical interest, since 

preconditioning with partial occlusions mimics more closely the condition of patients suffering 

from coronary artery disease than the abmpt brief total occlusion and reperfusion sequences. To 

compare the protective effects of the partial and total coronary artery occlusion stimuli we also 

analyzed the subendocardial and subepicardial distribution of infarct size of pigs preconditioned 

with a single 10 min total coronary artery occlusion.[IO] 

Methods 

Experimental Design 

All experiments were performed in accordance with the "Guiding principles in the care and 

use of animals" as approved by the Council of the American Physiological Society and under the 

regulations of the Animal Care Committee of the Erasmus University Rotterdam, 

Experimelltal Grollps (figllre I) 

The results of eight groups of animals are presented. A total of79 animals entered the study, 

of which 20 animals underwent a single 60 min total coronary artel), occlusion (TCO), followed 

by 120 min of reperfi.sion (Rep) (Group I), while II animals underwent a 60 min TeO preceded 

by a single 10 min TCO + 15 min Rep (Group 2). Four groups underwent a partial coronary 

artery occlusion of either 30 min [Group 3 (n~1 0) and Group 6 (lF8)] or 90 min [Group 4 (n~9) 

and Group 7 (n~8)], before the ar1ery was occluded completely for 60 min without intervening 
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reperfusion. The partial occlusions were chosen such that coronary blood flow was reduced by 

either 70% (Groups 3 and 4) or 30% (Groups 6 and 7) of baseline. When necessary, small 

adjustments were made in the volume of the balloon to keep the flow at its reduced value during 

the partial coronary artery occlusion period. In all animals the ischaemic myocardium was 

reperfused for 120 min following the 60 min total coronary artery occlusion. Because it is 

conceivable that episodes of ischaemia lasting longer than 30 min already lead to necrosis before 

the 60 min Teo period, two groups of animals underwent 90 min of either 70% FR (Group 5, 

n~8) or 30% FR (Group 8, n~5) followed by 120 min Rep withollt the 60 min TCO. Transmural 

infarct size data of 12 animals afthe control group and 10 animals that were preconditioned with 

a single 10 min total coronary artery occlusion, as well as 7 animals with a 30 min 70% FR have 

been presented in an earlier study. (II) 

EXPERIMENTAL GROUPS 
Group _____ =6iolmliniiiTICiiO~ _ ___.:1~2~O,/m,i/n Rep 1 (n~19) Controt . _ 

Stimuli 
2 (n= 10) 10 min TCO + 15 min Rep ___ -.fI7l:L__.I ••• L ___ ,,/ ,>'/'----__ 

3 (n~9) 30 min 70% FR ____ .G1;r;·.xoz> ••• L ___ ----,'/ ,/'----__ , r 

4 (n=7) 90 min 70% FR cl/'5vZ"Z/2·,:S;:v§v'5'Zc2<j, ••• L ___ --,'/ //'----_---" l..! ) r 

5 (n=7) 90 min 70% FA [7-,,·2:/,27;)/':;/,,·.;';",2/;)/;], lL ______ --,'/ ,/'----_---" 
7 r 

6 (n=7) 30 min 30% FA 

7 (n=7) 90 min 30% FA 

8 (n=5) 90 min 30% FR 

[2] :::: FR :::: Flow Reduction 

-----===-.... L-----7///--~ 7 r-

=
====-___ -,</ L-/ --" , ~ 

~===~--------7/ L/ __ --' "'- 7 /' 

time (min) 
• = TCO = Total Coronary Artery Occlusion 

Figure 1. Experimental protocols of the 8 groups of animals in which the distribution of infarction size was 
detemlined. TIle 60 min total coronary artel), occlusion (60 min TeO) has been indicated in black. flow reductions 
have been indicated with a cross-hatch pattern, Teo = total coronary artery occlusion, Rep = reperfusion, FR = flow 
reduction, The number of animals which completed the experimental protocols has been presented in parentheses, 

Surgical Procedures 

Domestic Yorkshire-Landraee pigs (IF79, 25-35 kg, HVC, Hedel, The Netherlands) were 

anaesthetised with pentobarbital and instrumented for measurement of arterial blood pressure and 

control of arterial blood gases,[lg] After administration of pancuronium bromide (4 mg i.v., 

Organon Teknika B.V., Boxtel, The Netherlands), a midline thoracotomy was performed and an 
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electromagnetic flow probe (Skalar, Delft, The Netherlands) was placed around the ascending 

aorta to measure cardiac output. In the control animals the left anterior descending coronary 

artery (LA DCA) or its diagonal branchcs supplying the left ventricular anterior wall were 

dissected free from the surrounding tissue to allow placement of a microvascular clamp. The 

anatomic location of the occlusion site was varied to create areas at risk of different sizes. {II] In 

the animals which underwent a partial occlusion preceding the total coronary artery occlusion, 

a proximal segment of the LADCA was dissected free for the placemcnt of a probe for pulsed 

Doppler flow velocimehy (Oystal Biotech, Hopkinton, MD, U.S.A.) and an inflatable balloon 

(R.E. Jones, Silver Spring, MD, USA) to occlude the vessel in two stages. In the animals of 

groups 4-8, the great cardiac vein was catmulated to allow selective sampling of venous· blood 

draining the myocardium perfused by the LADCA. 

Regiolla/ll1yocardial COlltractile FUllction 

A pair of ultrasonic crystals (Sonotek Corporation, Del Mar, CA, USA) was positioned into 

the subendocardial layers of the left ventricular myocardium in the distribution legion of the 

LADCA for the measurement of segment sh0l1ening by sonomicrometry (Triton Technology, San 

Diego, CA, USA). From the segment length tracings the segment lcngth at the start of ejection 

(EL, onset of positive ascending aortic flow) and the length at thc cnd of systole (ESL, positive 

aortic flow crossing the zero flow line) were determined and regional segment sh0l1ening during 

ejection was computed as: 

SS(%) ~ 100 x (EL - ESL)IEL, 

while post-systolic segment shortening was computed as: 

PSS(%) ~ 100 x (ESL -minimal segment length)/EL. 

Experimelltal Protocols 

After completion of the instrumentation, a stabilization period of at least 30 min was allowed 

before the animals were subjected to the experimental protocols. Systemic haemodynamic 

variables and regional segment length changes were recorded throughout the experimental 

protocols. \Vhen necessary, in the animals subjected to the partial coronary altery occlusions 

(Groups 3-8) small adjustments were made in the volume of the balloon to keep the flow at its 

reduced value during the partial coronary artery occlusion period. In case of ventricular 

fibrillation defibrillation was started within 30 s, using DC countershocks (15-30 Watt). If 

defibrillation was successful within 1 min animals were allowed to complete the experimental 

protocol, since this procedure does not produce irreversible damage. Animals in which 

defibrillation could not be accomplished within I min were excluded from further study. 
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Area at Risk alld Illfarct Area 

Validation of the methods to determine the area at risk and infarct area has been described 

extensivelyp,J9,20] Briefly, following reocclusion of the LADCA the area at risk was identified 

by an intra~atrial injection of 15 ml of a 10 % (w/w) solution of tluorescein sodium (Sigma 

Chemical Co, St. Louis, USA). Ventricular fibrillation was produced with a 9V battery and the 

heart was excised. Both atria, the right ventricular free wall and the left ventricular epicardial fat 

were removed. The left ventricle (LV) was filled with alginate impression material (Bayer 

Dental, Leverkussen, Gennany), cooled in crushed ice and sliced parallel to the atrioventricular 

groove into 5 segments. The cut sur£1ce(s) of each segment and the demarcated areas at risk CAR) 

were then traced onto a transparent acetate sheet under an ultraviolet light. The viable 

myocardium was then stained deeply purple by incubating the segments for 20 min in 0.125 g 

para-nitrobluetetrazolium (Sigma Chemicals Co., St. Louis, USA) per litre of phosphate buffer 

(pH 7.1) at 37°C and the non-stained pale infarcted tissue was traced onto the acetate sheet. The 

surface of each ring was subsequently subdivided into a subendocardial (inner) half and a 

subepicardial (outer) half by drawing a line which divided the myocardial wall into two layers 

of equal thickness. Division into two layers was done as it provides information on the 

transmural distribution of infarct size, yet preserving sufficient accuracy of infarct size 

determination in the two halves. Surface areas of the subendocardial and subepicardial halves, 

and of the subendocardial and subepicardial areas at risk and infarct areas (IA) were determined 

and averaged for the basal and apical side of each individual ring. Then the fraction of the ring 

that was infarcted and at risk was multiplied by the weight ofthe ring to yield the weight of the 

infarct area and area at risk for that ring. The weights of the subendocardial and subepicardial 

halves and the total weight of each ring were then summed to yield the LVendo• L Vepi and total LV 

masses. The weights of the endocardial, epicardial and total areas at risk of each ring were 

summed to yield the total AR.:lldo, ARepi and total AR masses; the weights of the endocardial, 

epicardial and total infarct areas of each ring were summed to yield 11\ndo, IAepi and total IA 

masses. Endocardial, epicardial and total IA and AR data were expressed as a percentage of 

LVelldo, LVepi and total LV masses, respectively. 

Data Analysis alld Presentation 

In earlier studies we observed that in pigs the relation between IA and AR is highly linear but 

not proportional i.e. the linear regression line has a positive intercept on the AR-axis. 11 Because 

this makes the IN AR ratio dependent on the absolute AR, infarct size data arc presented by 

plotting the IA as a function of AR. Linear regression analysis was performed to determine the 

relation between endocardial and epicardial IA and AR in the control group and the 'animals 

preconditioned with 10 min Teo + 15 min Rep. For the animals that underwent the two-stage 

coronary artery occlusion the individual data are presented. Intergroup differences in 11\000' Il\pi' 

or total IA were analyzed. with AR.:lldo' ARepi or total AR as respective covariatcs, by analysis 



Preconditioning by partial coronary artery occlusion 35 

of covariance (AN COY A) followed by modified Bonferroni procedure to correct for multiple 

comparisonsYI] Intragroup differences between IA.:ndo and IAepi were, analyzed with AR.:ndo and 

ARepi as respective covariates, using ANCOV A for repeated measures. The incidence of 

ventricular fibrillation was analyzed by Fisherts exact test. Haemodynamic data were analyzed 

with two-way (experimental group and time course) ANOYA followed by paired t-test 

(intragroup comparison) or unpaired tRtest (intergroup comparison). A p value of less than 0.05 

was considered statistically significant (twoRtailed). Data are presented as mean(SEM). 

Results 

Mortality alld Exclusiolls 

In both the control group (60 min TCO, Group I) and the 10 min TCO + 15 min Rep group 

(Group 2), onc animal was excluded because defibrillation was unsuccessful during the 60 min 

TCO. Two animals which underwent a 30% FR [one pig for 30 min (Group 6) and the other for 

90 min (Group 7)] could also not be defibrillated during the 60 min TCO period. Two animals 

died because defibrillation was unsuccessful during 70% FR (15 min and 20 min after onset of 

the flow reduction in Groups 4 and 5, respectively), while one animal in Group 5 was excluded 

from study because of technical failure of the balloon occluder. One animal was excluded from 

Group 4 because of incomplete reperfusion due to vasospasm after 60 min TCO. Infarct sizes 

have therefore been presented for 71 of the 79 animals that entered the study. 

Velltricular Fibrillatioll (Table 1) 

During the 60 min TCO ventricular fibrillation occurred in 8 of the 20 control animals, and 

in 5 of the II animals that had been subjected to 10 min TCO + 15 Rep (p~NS). Animals that 

fibrillated during 60 min TCO had larger areas at risk than animals that did not fibrillate (35±3% 

vs 19±2%, respectively. p<O.Ol). A 30 min 70% FR also failed to exert a protective effect on the 

incidence of ventricular fibrillation during the subsequent 60 min TCO (area at risk 27±2%) but 

ventricular fibrillation was absent (0 of 8, p<0.05 vs control group) in the animals that were 

preconditioned with 90 min 70% FR (area at risk 38±3%). In contrast, the incidence of 

ventricular fibrillation during the 60 min TCO in the groups preconditioned with either a 30 or 

90 min 30% FR (area at risk 35±2%) was not different from the control group. Thus, while the 

protective effect of a 90 min 70% FR could not be explained by differences in area at risk, the 

findings indicate that severity and duration of the partial flow reduction critically determine its 

protection against ventricular fibrillation duration a sustained ischaemic episode. Upon 

reperfusion ventricular fibrillation was rare, which is in agreement with studies showing that 

ventricular fibrillation occurs predominantly after TCOts with a duration between 10 min and 30 
min. [22,23J 
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Table 1. Ventricular fibrillation in all experimental groups 

Groups Preconditioning slimulus 60 min Teo Reperjllsioll 

(I) Control 8(20)' 2(19)' 

(2) 10 min Teo + 15 min Rep + 60 min Teo 2(11 )" 5(11)' 3(10)" 

(3) 30 min 70% FR +60 minTeD 0(9) 3(9) 0(9) 

(4) 90 min 70% FR +60min TCO 1(9) 0(8)' 0(7) 

(5) 90 min 70% FR 1(8) 0(7) 

(6) 30 min 30% FR + 60 min TCO 3(8)' 2(8)' 1(7) 

(7) 90 min 30% FR + 60 min TeO 0(8) 6(8) 0(7) 

(8) 90 min 30% FR 0(5) 0(5) 

Between parentheses are the total numbers of animals per group at that moment still in the study. Teo - Total 
coronary artery occlusion, Rep = Reperfusion, FR = Coronary Flow Reduction, • one pig fibrillated during both 
60 min TeO and Reperfusion, b one pig fibrillated during both the preconditioning stimulus and Reperfusion, Cone 
pig fibrillated during both the preconditioning stimulus and 60 min TeO, ·p<0,05 vs Control 

In/arct Area - Area at Risk Relatioll in COlltrol Pigs aud Pigs Preconditioned witlt a Sillgle 

10 mill TeO (figure 2) 

In the control group there was a linear relation (r=O.98, p<O.OOI) between Il\ndoand AR(ndo 

which could be described by I1\,do ~ 1.0 I AR,"dO - 4.5. In Ihe epicardial half of Ihe left ventricle 

we also observed a linear relation (1"""0.97 , p<O.OOI) which could be described by I1\pi ~ 

O.88AR"pi - 3.6. ANCOV A (with AR"oJo and AR"pi as respeclive eovariales) revealed that 11\,do 

was slighlly larger than 11\" (p<0.05). 
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Figure 2. Individual data points detennining the relation betwecn infarcted area and area at risk in the transmural 
left ventricular wall (left pane\). epicardium (middle panel) and endocardium (right panel), expressed as a 
percentage of left ventricular (LV), endocardial (L V.d .,) or epicardial mass (LV.vJ, respectively. Shown are the 
regression line and individual data points in thc control group (60 min total coronary occlusion, TCO)(open circles) 
and the individual data points in the animals preconditioned with 10 min TCO + 15 min Rep prior to the 60 min 
Teo (closed circles). Infarct size limitation aftbrded by the \0 min TCO + 15 min Rep was of similar magnitude 
in the cndo- and epicardium. 
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Preconditioning With 10 min TeO + 15 min Rep decreased infarct size in both the inner and 

outer half ofthe left ventricle. The infarct areas in the endocardium and epicardium were again 

linearly related with the areas at risk: 11\,do ~ 0.63AR",o - 3.19 (FO.79; p<O.OI) and 

11\" ~ 0.57 AR"p' - 3.38 (FO.94; p<O.OI). ANCOVA (with ARe"""or ARep,as covariates) indicated 

that both 11\"", and 11\" were smaller in the 10 min TCO + 15 min Rep group compared to the 

control group (both p<O.OI). The degree of protection afforded by 10 min TCO + 15 min Rep 

was nearly identical for the imler and outer halves of the left ventricle (F~0.68; p~0.42). 
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Figure 3. Individual data points detemliuing the relation beh\'een infarcted area and area at risk in the transmural 
left ventricular wall (left panel), epicardium (middle panel) and endocardium (right pane!), expressed as a 
percentage of left ventricular (LV), endocardial (LV end,,) or epicardialillass (LVe,.), respectively. Shown are the 
regression line and individual data points for the control group (60 min total coronary occlusion, TCO)(open 
circles), and individual data points for animals subjected to a 30 min 70% coronary flow re'duction (FR) followed 
by60 min TCO (closed squares), a 90 min 70% FR followed by 60 min TCO (closed triangles pointing upward), 
and a 90 min 70% FR without the 60 min TCO (open triangles pointing downward). Note that a 70% FR which 
itself resulted in significant infarction after 90 miu, still provided protection against the irreversible damage 
produced by 60 min TCD. 
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Occlusioll 

70% Flow Reductioll (figure 3) 

Transmural lnjil/'ci Size. When the 60 min TCO was preceded by a 30 min 70% FR, 

transmural infarct size was significantly smaller compared to the control group. Extending the 



38 Chapter 3 

duration of the 70% FR to 90 min produced similar protection against infarction compared to the 

30 min 70% FR animals. A 90 min 70% FR without the 60 min TCO already resulted in some 

myocardiaillecrosis. Nonetheless the individual transmural data points of animals subjected to 

a 90 min 70% FR and 60 min Teo remained below the regression line of the control group 

(p<0.0 I) indicating protection against irreversible myocardial damage produced by the 

subsequent 60 min TCO. 

Distribution of Infarct Size. The 30 min 70% FR decreased infarct size in both endo- and 

epicardial halves compared to the control group (p<0.0 I). The protection tended to be greater in 

the epicardium than in the endocardium but this failed to reach statistical significance (p~0.16). 

When the duration of the 70% FR was extended to 90 min, infarct size limitation in the outer half 

of the left ventricle was similar to that observed with the 30 min 70% FR. Infarct size was also 

reduced in the endocardium (p<0.05 vs control group), but the degree of protection produced by 

the 90 min 70% FR was greater in the epicardium than in the endocardium (p<O.O I). The 90 min 

70% FR alone resulted in infarction in both endo- and epicardium, with the greater infarct size 

in the endocardium (p<0.01 endocardium vs epicardium). The addition of a 60 min TCO 

increased infarct size slightly further in both endocardium (p<0.05) and epicardium (p<0.0 I), so 

that the amount of additional necrosis produced by the 60 min TCO was not different for the 

endocardium and the epicardium (p~0.20). 

30% Flow Reduction (figure 4) 

Transmural Infarct Size. Transmural infarct size in animals subjected to a 30 min 30% FR 

prior to the 60 min TCO was not different from that of the control group (figure 4). Extending 

the period of flow reduction to 90 min did also not alter infarct size produced by a 60 min TCO, 

indicating that exposure to such mild flow reductions fails to limit irreversible ischaemia damage 

during a subsequent 60 min TCO. A 90 min 30% FR without the 60 min TCO did not produce 

myocardial necrosis (figure 4). 

Distribution of Infarct Size. Endocardial and epicardial infarct sizes in animals subjected to 

the 30 or 90 min 30% FR prior to the 60 min TCO were not different from those of the control 

group (figure 4). The 90 min 30% FR alone did not produce myocardial necrosis in either the 

outer or inner half of the left ventricle. 

Systemic Haemodynamic Variables and Segment Sltortening (Table 1/) 

Baseline values (n~71) of heart rate (l10±2 beats min· I
), mean arterial blood pressure (89±1 

mmHg), cardiac output (2.9±0.1 L min· l
) or the product of heart rate and systolic arterial pressure 

(l2200±270 beats nmlHg min· l
) were not statistically different between the eight experimental 

groups. In all groups the 60 min TCO tended to increase heart rate, but this reached levels of 

statistical significance only in groups 3,4 and 7. Although in most groups cardiac output was 

significantly lower at the end of the 60 min Teo compared to baseline levels, mean a011ic 
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Figure 4.lndividual data points detemlining the relation between infarcted area and area at risk in the transmural 
left ventricular wall (left panel), epicardium (middle panel) and endocardium (right panel), expressed as a 
percentage of left ventricular (LV), endocardial (LV.od~) or epicardial mass (LVopJ' respectively. Shown are the 
regression line and individual data points for the control group (60 min total coronary occlusion, TCO)(open 
circles), and individual data points for animals subjected to a 30 min 30% coronary flow reduction CFR) followed 
by 60 min TCO (closed squares), a 90 min 30% FR followed by 60 min TCO (closed triangles pointing upward), 
and a 90 min 30% FR without the 60 min TCO (open triangles pointing downward). Note that a 30% FR which 
itself did not result in significant infarction after 90 min, failed to protect against the irreversible damage produced 
by 60 min TCO. 

pressure was generally maintained. The preconditioning stimuli had only minor effects on heart 

rate or mean aortic blood pressure. In the 10 min TeO + 15 min Rep group, the preconditioning 

stimulus produced significant decreases in cardiac output (l4±3% from baseline, p<O.O I) and a 

reduction in segment shortening in the LADCA perfused area (to 61±6% of baseline, (p<O.Ol)), 

with no effect on heart rate or central arterial blood pressure. Similarly, the 70%FR produced a 

16±2% decrease in cardiac output and decreased segment shortening to 13±5% of baseline. In 

contrast, a 30% FR produced a significant decrease in segment shortening (to 63±8% of 

baseline), with negligible effect on global cardiac pump function. 
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Table II: Systemic hacmodvnamics! global and regional Ill~focardial function in group:s 1-8. 

Baseline End·stimulus 60min TeO 120min Rep 

Group I (0=19) 
HR 114±3 120±5 119±5 
MAP 89±1 89±2 88±2 
CO 3.0±0.2 2.5±0.I' 2.4±0. I' 
ss I 5.5±!. I 0.9±0.5' 1.8±0.5' 

Group 2 (n~IO) 
HR 107±6 108±4 113±4 117±7 
MAP 90±2 90±2 86±3 83±3 
CO 3.2±0.2 2.8±0.I' 2.3±0. I' 2.2±0.1' 
SS 20.7±1.9 11.7±1.4' 1.7±1.2' 2.0±I.I' 

Group 3 (n~9) 
HR 91±7 92±6 103±6' 134±7' 
MAP 90±2 88±3 90±1 83±3 
CO 2.7±0.2 2.4±0.2' 2.3±0." 1.8±0. I' 
SS 18.4±1.4 2.7±1.3' -0.4±0.8' -1.2±0.7' 

Group 4 (0=7) 
HR III±II 119±13 126±13' 144±IO' 
MAP 90±2 86±3 81±4' 78±4' 

CO 2.8±0.2 2.2±0.2' 2.1±0.2' 1.7±0.1' 

SS 15.9±1.5 0.9±0.9' -0.3±0.2' 0.0±0.6' 

Group 5 (0=7) 
HR 100±4 102±4 126±II' 

MAP 85±2 78±4 71±6 

CO 2.7±0.2 2.2±0.2' 1.9±0. I' 
SS 16.4±3.0 2.4± 1.9' 1.4±1.2' 

Group 6 (1\=7) 
III< 127±11 120±12 131±12 155±II' 

MAP 91±2 84±3' 78±4' 73±3' 
CO 3.2±0.3 2.8±0.3' 2.4±0.2' 2.3±0.3+ 
SS 17.6± 1.5 1O.1±3.I' 1.7±1.1' 1.4±0.9' 

Group 7 (n=7) 
HR 113±8 112±8 125±9' 133±9' 
MAP 84±3 83±3 79±3 77±5 
CO 2.4±0.2 2.3±0.1 1.9±0.9 1.7±0.2' 

SS 17.7±1.I 14.5±1.0+ -0.1±0.3' 0.4±0.5' 

Group 8 (n=5) 
IIR 115±7 120±6 136±9' 
lvlAP 89±4 85±6 90±5 
CO 3.1±0.2 2.8±0.3 2.8±0.3 
SS 13.1±2.7 7.1±3.3' 8.0±2.0 

TCO -Total coronary artery occlusion, Rep-Reperfusion. HR-heart rate (bpm), MAP-mean aortic pressure 
(mmHg), CO=Cardiac output (Umin). SS=segment shortening during left ventricular ejection (%). Data are mean 
±SEfvl. ·p<O.05. ·p=O.07 vs Baseline. See figure 1 for description of the groups. 
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Relation to InfarCt Size. Analysis of covariance with the infarct area as depen~ent factor, the 

experimental groups as independent factor, and the area at risk and rate pressure-product (either 

at baseline or at the onset of 60 min TCO) as covariates did not reveal a significant correlation 

between the product of heart rate and systolic arterial pressure and infarcted area (p>O.l 0). 

Similar results were obtained when heart rate or systolic arterial pressure were entered as separate 

covariates into the ANCOV A. 

There was no correlation between the loss of systolic wall thickening produced by the 

preconditioning stimuli and the infarct size. Similarly, we did not observe a correlation between 

ejection segment shortening at the end of 120 min Rep and IAiAR ratio, indicating that ischaemic 

preconditioning did not lead to improved functional recovery during the first 120 min of 

reperfusion. In contrast, a modest but significant (r=0.49, p<O.OI) inverse correlation was 

observed between the magnitude of post-systolic shortening (a marker of myocardial tissue 

viabilityY241 of the anterior wall at the end ofreperfusion and transmural IAiAR. 

Respollses o/Regiollal Myocardial Per/I/siol/, Metabolism al/d COl/troctife FI/I/ctiollto Partial 

Corollary Artery Oec/I/siol/s. (figl/re 5) 

The 30% and 70% reductions in coronary blood flow resulted in decreases in myocardial 

oxygen consumption as the increase in oxygen extraction, which was significantly greater in the 

70% FR than in the 30% FR animals, was clearly insufficient to compensate for the decreases 

in coronary flow. The decreases in flow were accompanied by a flow reduction dependent 

increase in the arterio-coronary venous pH difference, which is in this model highly linearly 

related to lactate release due to increased anaerobic metabolismPS
] Another indication of 

ischaemia was the flow reduction dependent loss of segment shortening and appearance of post­

systolic shortening. All variables remained constant between 15 min and 90 min of 30% FR and 

70% FR, with the exception of the arterio coronary venous pH difference which recovered 

towards baseline levels. This suggests that despite ongoing hypoperfusion, anaerobic metabolism 

could have been due to the loss of myocytes allowing the remaining myocytes to shift from 

anaerobic to aerobic metabolism. However, necrosis is unlikely to occur within 30 min, at which 

time significant recovery of the pH difference was noted. Furthermore, in ~he 30% FR animals 

no necrosis occurred, thus excluding myocyte dropMout as a mechanism for the metabolic 

adaptations in that group. 

Discussion 

This study has presented several new findings. I) Infarct size limitation afforded by a single 

10 min total coronary miery occlusion and 15 min reperfusion preceding a 60 min total (jOfonary 

aliery occlusion is distributed homogeneously across the left ventricular wall in pigs. 2) Infarct 

size was also limited by a 30 Of 90 min 70% FR prior to a 60 min Teo without the need for 

intervening reperfusion. The transmural distribution of this protection depended critically on the 
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anterior descending coronary artel), produced by 30% (circles) and 70% (squares) coronary blood flow reductions 
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coronary blood flow, MV02 = myocardial oxygen consumption, ~ = fractional myocardial oxygen extraction 
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duration offIow reduction. Thus, whereas a 30 min 70% FR produced similar decreases in infarct 

size in the inner- and outer half of the left ventricle, a 90 min 70% FR resulted in preferential 

epicardial infarct size limitation. 3) Protection against myocardial infarction or ventricular 

fibrillation was not afforded by either a 30 or 90 min 30% flow reduction. 4) The incidence of 

ventricular fibrillation during the 60 min total coronary artery occlusion was not altered by the 

30% flow reduction but was significantly reduced when a 90 min 70% FR preceded the sustained 

ischaemia period. The implications of these findings will be discussed in detail. 

Trallsmllral Distriblltioll of lllfarct Size ill COlltrol Pigs alUl ill Pigs sllbjected to a Brief Total 

Coronary Artery Occlusion. 

In the present study we found a linear relation between IA and AR (both expressed as percent 

of left ventricular mass) with a positive intercept on thc AR-axis, which was similar for the 

endocardial and epicardial half of the Icft ventricle in pigs subjectcd to a 60 min TCO. In 

anaesthetized and awake dogs, IA and AR arc also linearly related with a positive intercept on 

the AR_axis,f26-281 but in contrast to swine, the AR-intercept in dogs is considerably higher in the 

epicardium than in the cndocardiumY81 The consequent heterogeneity of transmural infarct size 

distribution in dogs is likely in part due to the transmural gradient of collateral blood flow in thc 

dog heart. But also in pigs, in which total coronary artcry occlusions result in transmurally 

homogeneous blood flow reductions, infarction progresses from inncr to outer iayer,[29,30] possibly 

due to higher energy demands in the itUler layers. In agreement with these findings we observed 

that for a given area at risk the infarct area produced by 60 min total coronary artery occlusion 

was larger although only slightly (but significant by ANCOV A) in the endocardial than in the 

epicardial half ofthe left ventricle. 

In pigs preconditioned by a 10 min TeO + 15 min Rep the relation between infarct area and 

area at risk was linear, with a similar AR-intercept but with a lower slope than for the animals 

in the control group. The decrease in slope was similar in the endo- and epicardium indicating 

that in pigs the protection afforded by the 10 min occlusion was identical in the imler and outer 

half of the left ventricle. 

Partial Corollary Artery Occlusioll,' Importallce of Degree ami Duratioll of Flow Reduction 

for Illfarct Size Limitation. 

In the present study the myocardial protection was not different after 30 min or 90 min 

exposure to the coronary flow reductions, but critically depended on the degree offlow reduction. 

Thus, a 70% reduction of coronary flow preceding the 60 min TeO reduced infarct size, whereas 

a 30% reduction in coronary m1ery flow did not protect the myocardium. Recently, Ovize et apJO] 

reported that moderate myocardial ischaemia in dogs caused by a 50% reduction in myocardial 

blood flow lasting for 15 or 25 min failed to reduce infarct size during a subsequent 60 min TeO 

unless intervening reperfusion was allowed. The present study suggests that a partial coronary 
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artery occlusion, immediately preceding a sustained coronary artery occlusion, can afford 

protection provided that the degree of tlow reduction is sufficiently severe. 

The protection produced by the 30 min 70% FR did not differ between endo- and epicardium. 

However, when the duration of70% FR was extended from 30 min to 90 min, infarct size after 

the 60 min Teo was significantly larger in the endocardial than in the epicardial half of the left 

ventricle. A 90 min 70% FR witholl/ the 60 min TCO produced larger infarct size in the 

endocardium than in the epicardium, which likely results from the more severe flow reductions 

in the inner- than in the outcr layers distal to a coronary artery stenosis. The additional necrosis 

produced by the 60 min TeO was not different for the endocardium and epicardium. Thus, the 

observation that a 90 min 70% FR resulted in less infarct size reduction (compared to the control 

group) in the endocardium than in the epicardium was due to a greater degree of irreversible 

damage in the endocardium already produced by this duration of severe flow reduction. However, 

of greater importance is the observation that despite the production of significant endocardial 

necrosis by the 90 min 70% FR itself, endocardial infarct size after the subsequent 60 min TeO 

was still less than endocardial infarct size in the control group. 

\Vhile ischaemia was not severe enough to produce myocardial necrosis after 90 min, a 30% 

reduction coronary blood flow did produce ischaemia as indicated by a 39±6% decrease in 

systolic segment shortening. It is well established that metabolism of an ischaemic segment 

changes continuously during a fixed reduction in coronary blood flow, while contractile function 

remains depressed. Studies from several laboratories, including our own, have shown that 

myocardial lactate production and efflux of potassium ions increase during the early period of 

a fixed flow reduction, but that there is a llonnalization of ischaemia~induced metabolic changes 

as the hypoperfusion is pro!ongedPI.J5J Specifically, a 30~40% coronary blood flow reduction in 

pigs produces metabolic abnormalities (increase in myocardial lactate content and production and 

a decrease in myocardial phosphocreatine levels) that reach a nadir at approximately 15 min after 

the onset of flow reduction followed by significant recovery towards baseline within 60 

min.[17,29.3JJ Thus, lack of necrosis after 90 min of 30% FR despite continuing myocardial 

hypoperfusioll and hypotllllction could be due to metabolic adaptations. This also supported by 

the observations regarding the 30% FR in the present study. Thus, the arteria-coronary venous 

pH difference increased during the early (15 min) phase of 30% FR, but partially recovered 

during the remainder of the 90 min period. The metabolic recovery also suggests that a period 

of 30% flow reduction in pigs lasting longer than 90 min is not likely to produce myocardial 

necrosis. 

Ninety min of 30% flow reduction alone did not result in necrosis in either epi~ or 

endocardium, whereas 90 min of70% flow reduction produced necrosis in both the endocardium 

and epicardium . .In the present study we did not measure the transmural distribution of 

myocardial blood flow but previous studies, including from our own laboratory, reported that a 

70% coronary flow reduction in pigs is associated with approximately 80% reduction in blood 
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flow to the inner half and approximately 60% reduction in blood flow to the outer half ofthe left 

ventricle. [14, IS) In contrast, a 25-30% reduction in total myocardial flow resulted in approximately 

20% flow reduction to the epicardial half and approximately 40% flow reduction to the 

endocardial halfJl2. 13, 17, 35] Thus. the observation that a 90 min 30% FR did not produce 

endocardial necrosis but a 90 min 70% FR produced epicardial necrosis is likely the result of the 

more severe epicardial flow deficit during 70% coronary artery flow reduction than the 

endocardial flow deficit associated with 30% flow reduction, 

Iscllaemic preconditiollillg alld l'entricular fibrillatioll during subsequent sustailled ischaemia 
Studies in rats rep0l1ed that single or multiple brief total coronary artelY occlusions decrease 

the incidence of ventricular fibrillation during a subsequent sustained period ofischaemiaP6, J7] 

Also. a preliminary study in pigs reported that a single 5 min total coronary artery occlusion 

followed by 30 min of reperfusion reduced the incidence of ventricular fibrillation during a 30 

min occlusion. iJ7) In contrast, we failed to observe a decrease in the occurrence of ventricular 

fibrillation during the 60 min TCO when preceded by a 10 min TCO + 15 min Rep. An 

explanation for the different results in our study and that of ParraH and Vegh[35] is not readily 

found but could be due to a number of factors such as different durations of the preconditioning 

stimulus and the intervening reperfusion periods and the areas at risk. In the present study a 

partial coronary artel)' occlusion immediately preceding the sustained period of ischaemia 

(analogous to Harris! two-stage coronary artery occlusionj3S] significantly suppressed the 

occurrence of ventricular fibrillation provided that the duration and severity of flow reduction 

were sufficient. These findings are in agreement with earlier studies from our laboratory that 

partial flow reductions can decrease the incidence of ventricular fibrillation during a sllstained 

coronary artery occ1usionP2] 

To study the effects of preconditioning on infarct size, a 60 min total coronary artcry 

occlusion was used that resulted in significant myocardial necrosis. Since ventricular fibrillation 

during reperfusiol1 in pigs occurs predominantly after occlusions of 10-30 min [22, 23) these 

arrhythmias were rare in the present study. Consequently, the eff1cacy of preconditioning on 

fibrillation during reperfusion could not be assessed. 

Methodological COllsideratiolls 
In the present study experiments were performed in pigs. Pigs lack a significant innate 

coronary collateral circulation, which results in less variability in infarct size due to collateral 

blobd flow during the sustained coronal)' artery occlusion. compared to species such as the dogP' 

39] In agreement with this we observed a very tight relationship between AR and IA. Another 

advantage of the lack of collaterals is that the reductions as measured with a flow probe on a 

proximal coronary artery reflects the flow in the myocardium, thereby allowing more stringent 

control of the level of flow reduction. 
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In the present study infarct size produced by a 60 min coronary artery occlusion was 

determined in myocardium rcperfused for two hours using paraMnitrobluetetrazolium sodium. In 

viable myocytes paraMnitrobluetetrazoliulll is reduced to form a dark purple diformazan 

precipitate by intracellular diaphorases that use NADH or NADPH as electron donors,lzol False 

positive staining is minimized by allowing myocardial reperfusioll to facilitate washout ofNADH 

and NADPH from necrotic myocardium. Schaper e/ aP9] reported that only 30 min of reperfusion 

is sufficient for accurate detection of infarct size. Homeffcr et alf40) also evaluated para­

nitrobluetetrazolium staining for the detenllination of myocardial infarct size in pigs and reported 

that infarct size produced by 15, 30 or 90 min coronaty artery occlusion was not different when 

either 2 or 48 hours of reperfusion were allowed. Fujiwara e/ afl411 showed that detennination of 

infarct size produced by a 60 min total coronary artery occlusion in porcine myocardium 

reperfused for I hour was identical to infarct size detennined after 3 and 7 hours of reperfusion. 

In the latter study, histochemical analysis of infarct size correlated weB with histological 

measurements. The available evidence clearly indicates that two hours of reperfusion following 

a 60 min coronalY artery occlusion allows accurate histochemical determination of infarct size 

with para-nitrobluetetrazolium staining in pigs. 

Clill;cal Refevallce 

Until recently, myocardial preconditioning was studied using brief total coronary artery 

occlusions followed by complete reperfusion. These abmpt total occlusion and reperfusion 

sequences are useful for the study of basic mechanisms of myocardial preconditioning hut do not 

reflect the clinical situation where patients with myocardial infarction often have significant 

coronary artery lesions associated with (transient) reductions in coronary blood flow. In this 

respect it is also of interest that Schulz e/ al142! have shown that a complete coronary occlusion 

without intervening reperfusion preconditioned myocardium against infarction produced by a 

partial occlusion. The present study shows that a partial flow reduction can be a preconditioning 

stimulus that is as effective as the classical brief total occlusion and reperfusion sequence, 

provided that the degree of flow reduction is sufficiently severe. Our data also suggest that mild 

flow reductions, even when sustained for 90 min, will not produce sufficient stimulation to 

precondition the myocardium. Our findings may have implications for interpretation of clinical 

shldies in which the effects of reperfusion therapy on infarct size are evaluated, as the myocardial 

perfusion status immediately preceding the coronary artery occlusion may be an important source 

of infarct size variability. 
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Rapid Ventricular Pacing Produces Myocardial Preconditioning 

by Non-ischemic Activation ofK\TP Channels 

Monique M.O. Koning, MD, PhD; Ben C.O. Gha, MD; Erik van Klaarwater, MSc; 

Rene L.J. Opstal, Bsc; Dirk J. Duncker, MD, PhD; Pieter D. Verdouw, PhD. 

Backgrollnd Rapid ventricular pacing reduces ventricular arrhythmias during a subsequent 

sllstained period ofischemia and reperfusion. \Ve investigated whether rapid ventricular pacing 

also limits myocardial infarction and determined the role of myocardial ischemia and activation 

of K+ ATP channels in the protection afforded by ventricular pacing. 

Methods and Results Myocardial infarction was produced by a 60 min coronary artery 

occlusion in open-chest pigs. Infarct size of pigs subjected to 10 min of ventricular pacing at 200 

beats pennin followed by 15 min of normal sinus rhythm prior to the occlusion (83±2% ofthe 

area at risk, mean±SEM) was not difierent from control infarct size (85±2%). 111irty min pacing 

followed by 15 min sinus rhythm resulted in marginal albeit significant reductions in infarct size 

(72±2%, P<0.05 versus control). In contrast, 30 min pacing immediately preceding the occlusion 

without intervening sinus rhythm resulted in considerable limitation of infarct size (62±4%, 

P<0.05). The K'AlPchmmcl blockcr glibenciamide abolishcd the protection by pacing (7S±5%, 

P=NS). K\TP channel activation did not appear to involve ischemia: (i) myocardial endo/epi 

blood flow ratio was I.07±0.OS, (ii) phosphocreatine and A TP levels and arterial-coronary 

venous differences in pH and PC02 were unchanged, (iii) endMsystolic segment length did not 

increase and post-systolic shortening was not observed during pacing, and (iv) systolic shortening 

recovered immediately to baseline levels and coronary reactive hyperemia was absent following 

cessation of pacing. 

COllclusiolls Ventricular pacing preconditioned myocardium via nonMischemic activation of 

K+ ATPchannels. 

Keywords infarct size, myocardial blood flow, swine, tachycardia, transmural distribution of 

myocardial infarction. 
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Myocardial preconditioning can be induced by a variety of ischemic stimuli. Thus, one or 

more brief totalll1 or partialP, 31 coronary artery occlusions can limit infarct size produced by a 

sustained ischemic period. Moreover, infarct size can be limited by transient ischemia in adjacent 

myocardiuml4l or even different organs.I5.6) In all these studies a temporary intemlption of oxygen 

supply either within or outside the myocardial region of interest was required to produce 

preconditioning. Recent studies suggest that non-ischemic stimuli may also precondition the 

myocardium. Thus, Ovize et aP) reported that an increase in left ventricular wall stretch 

produced by acute volume overload protected the myocardium against infarction during a 

subsequent 60 min coronary artery occlusion. Also two consecutive 2 min periods of rapid 

ventricular pacing in open-chest dogs reduced the incidence of ventricular arrhythmias during 

and inunediately following a subsequent 25 min coronary artery occlusionsl . In contrast, Marber 

et a~9J failed to show a protective effect of a single five min period of rapid atrial pacing against 

myocardial infarction in the rabbit heart. To date no study has addressed the effect of rapid 

ventricular pacing on infarct size development produced by a sustained coronary artery 

occlusion. 

In the present study we therefore investigated whether rapid ventricular pacing preceding a 

60 min total coronary artery occlusion (60min TCO) altered infarct size development in open­

chest pigs. In two groups of animals we studied the effects of either 10 min or 30 min of rapid 

ventricular pacing followed by 15 min of noruml sinus rhythm on infarct size produced by 60min 

TCO, analogous to the classical preconditioning model of a brief ischemic stimulus followed by 

rcperfusion. In view of our earlier findings that ischemia produced by a partial coronary artery 

occlusion can precondition the myocardium without the need for intermittent reperfusion3
, we 

also studied a third group of animals in which the 30 min rapid ventricular pacing period 

preceded the 60min TCO without normal sinus rhytlun. If rapid ventricular pacing produces 

protection by inducing ischemia,l8.to] protection is likcly to be distributed heterogeneously across 

the left ventricular wall because ischemia would occur prcdominantly in the inner layers. 

Consequently, infarct size was also determined for the outer and inner halves of the left ventricle. 

To explore the mechanism of preconditioning produced by rapid ventricular pacing, we 

investigated if ischemia occurred in animals subjected to 30 min of rapid ventricular pacing 

followed by 180 min of nonnal sinus rhytlun without 60min TCO. Also, in view of evidence that 

ventricular pacing can activate ventricular K+ chatmels,III.12) and that activation ofK+ ATPcharmels 

is cardioprotective in pigs,IIJ.J.t) we also studied the role ofK+ATPchatmels in preconditioning 

induced by rapid ventricular pacing. 

Methods 

All experiments were performed in accordance with the nGuiding principles in the care and 

use of animals II as approved by the Council of the American Physiological Society and under the 

regulations of the Animal Care Committee of the Erasmus University Rotterdam. 
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Experimental Groups 

Studies were perfonllcd in a total of 46 pigs assigned to six experimental groups (Figure I). 

In five groups, animals underwent a 60 min total coronary artery occlusion (60min TCO) 

foHowed by 120 min of reperfusion. Eleven animals served as control and underwent only a 

single 60min TCO. Two groups of animals underwent a 60min TCO preceded by either 10 min 

(IF4) or 30 min (n~6) of rapid left ventricular pacing (RVP) at 200 bpm and 15 min of normal 

sinus rhythm. In 18 animals the GOmin TCO was preceded by 30min RVP at 200 bpm without 

an intermittent period of normal sinus rhythm; 7 of these animals were pretreated with 

glibenclamide (I mglkg, iv) 10 min before the start of RVP. This dose of glib en clam ide was 

chosen as it was previously shown to block preconditioning by a single 10 min coronary 

occlusion in pigs. IS In the latter two groups ventricular pacing was terminated immediately 

«10 s) following the start of the GO min left anterior descending coronary artery (LADCA) 

ligation. To evaluate wether RVP produced myocardial ischemia, wall function in the distribution 

area of the LADCA, high energy phosphates, oxygen consumption and regional myocardial blood 

flow were obtained in seven animals throughout a 30 min period of left ventricular pacing at 

200 bpm followed by 180 min of normal sinus rhytlull. 

EXPERIMENTAL GROUPS 
Group 
1 (n~ 12) Control 

Stimuli 
2 (n~6) tOmlnRVP+15minNSR 

3 (n~7) 30minRVP+15mlnNSR 

60 min TCO 120 min Rep 
_ _ ----.J __ ~----?/ L..-/ -----" 

7 / 

___ JIX~,[I=' JlIIIIIIIIIl __ 7/ //~_~ 
~ 7 r 

_JIE0S/3/~/z.[I·~IIIIIIIIII~_-7/L/ __ ~ 
- 7 / 

4 (n=7) 30mlnRVP+Glib+15minNSR _JI=V<;<:X3';XZ,~K.=.J.IIIIIIIIII~_-77//"/'-_~ 
5 (n~ 12) 30mlnRVP 

Glib 
6 (n~8) Glib+30minRVP -,JL...IV"'7"2SV~'], 1I1I1I1I1I~--7/ L/'-_--' - 7 / 

7 (n=7) 30minRVP+180mlnNSR 

LI--LI--~I-----LI--7J/// I 
Glib = glibenclamide (1 mg/kg, Iv) -60 -30 0 60 180 

[SJ:::: RVP :::: Rapid Ventricular Pacing time (min) 

o = NSR :::: Normal Sinus Rhythm 

• :::: TCO :::: Total Coronary Artery Occlusion 

Figure I. Experimental groups in which the effect of rapid ventricular pacing on infarct size after a 60 min total 
coronary arter), occlusion was determined. Filled bar = 60 min total coronary artery occlusion (60min TeO), hatched 
bar = rapid ventricular pacing (RVP). NSR = nomlal sinus rh)1hm, Rep = reperfusion, Glib = glibenc1amide (I 
mgik, iv). 
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Surgical procedure 
Domestic Yorkshire-Landrace pigs (25-35 kg, HVC, Hedel, The Netherlands) were sedated 

with ketamine (20 mg/kg, im), anesthetized with pentobarbital (25 mg/kg, iv) and instmmented 

for measurement of arterial and left ventricular pressure and control of arterial blood gases. 16 

Following administration ofpancuroniulll bromide (4 mg Lv., Organon Teknika B.V., Boxtel, 

The Netherlands) and a midline thoracotomy, an electromagnetic flow probe (Skalar, Delft, The 

Netherlands) was placed around the ascending aorta to measure cardiac output (Figure 2). The 

left anterior descending coronary artery (LADCA) was dissected free from the surrounding tissue 

to allow placement of a microvascular clamp (groups 1-5) and a Doppler flow probe (Crystal 

Biotechlnc., Hopkinton, MD, U.S.A.) (groups 2-6). In the animals that underwent RVP an 

electrode was attached to the anteriolateralleft ventricular wall close in the vicinity of the apex 

for stimulation of the myocardium by electrical monophasic stimuli with an amplitude of2 mA 

and a frequency of 3.33 Hz. A small cannula was inserted into the vein accompanying the 

LADCA for the withdrawal of local venous blood for the determination of blood gases. 

aortic pressure .' 

EM flow probe 

.' 
.' 

II 
/I 

atraumatic -+,1'---+1-1 
clamp 

LV Pressure 

coronary doppler 
flow probe 

atrial catheter 

coronary venous 
catheter 

SL crystals 
(LCXCA) 

SL crystals 
(LADCA) 

pacing electrode 

Figure 2. Schematic presentation of the experimental model. The pacing electrode was inserted into the superficial 
layers of the anteriolateral wall of the left ventricle. Pairs of ultrasonic crystals were inserted into the mesocardial 
layers of the left anterior descending coronary artery (LA DCA) area and the left circumflex coronary artery 
(LCXCA) area. The LA DCA was occluded althe site of the clamp causing the shaded area to become ischemic. 
The site of the clamp was varied in the control animals to create a range of areas at risk. LV = left ventricle, EM 
= electromagnetic, SL = segmenllength. 
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Regional Myocardial Function 

In all six groups, pairs of ultrasonic crystals (Sonotek Corporation, Del Mar, CA, USA) were 

positioned into the midmyocardial layers of the left ventricle in the distribution areas of the 

LADCA and the left circumflex coronary artery (LCXCA) for the measurement of regional 

segment shortening by sonomicrometrYI4,16] (Triton Technology Inc., San Diego, CA, 

USA)(Figure 2). From the segment length tracings systolic segment length at the end of diastole 

(EDL, onset of positive ascending aortic flow) and the length at the end of systole (ESL, end of 

positive aortic flow) were determined and regional systolic segment shortening (8S) was 

computed as: 

SS(%) ~ 100· (EDL - ESL)/EDL, 

and post-systolic segment shortening (PSS) was calculated as: 

PSS(%) ~ 100 • (ESL - minimum segment length)/EDL. 

Regional Myocardial Blood Flows 

In the animals of group 6 (Figure I) we also investigated the effects of rapid ventricular 

pacing on the distribution of transmural myocardial blood flow. For this purpose, the left atrial 

appendage was cannulated for injection of 1-2 .106microspheres, lS±l (SD) ~tm in diameter 

(NEN Company, Dreieich, Germany), labelled with either 95NB, I03Ru, 1 JJSn, 46SC or J41Ce. 

Processing of myocardial tissue samples and computation of blood flow data have been described 

earlier.llS) 

High Enel'gy Phosphate Metabolism 

High energy phosphates were measured in transmural myocardial biopsies, taken with a Tm­

Cut needle ('[ravenol Laboratories Inc., Deerfield, IL, USA) from the area perfused by the left 

circumflex coronaty artery (LCXCA) at baseline and immediately before the 60min TCO. This 

procedure allowed assessment of the effects of ventricular pacing on high energy phosphate 

metabolism without interfering with the infarct size determination in the area perfused by the 

LADCA. Biopsies were innnediately dipped into 0.9% NaCI at O°C to remove adherant blood, 

frozen in liquid nitrogen (within 10 s) and stored until analysis at -SO°C. Adenine nucleotides 

(ATP, ADP, AMP), creatine (Cr) and creatine phosphate (CrP) were measured by isocratic ion­

pairing high perfomance liquid chromatography as previously described.lIS] From these 

measurements CrP/Cr and CrP/ATP ratios were calculated to estimate changes in oxidative 

phophorylation potential. Energy charge was calculated as (A TP + 0.5 ADP)/[ ATP + ADP + 
AMPj,lI7] 

Experimental protocols 

After completion of the instnullcntation, 5,000 LU. of heparin were administered 
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intravenously and a stabilization period of at least 30 min was allowed before baseline data were 

obtained of systemic hemodynamic variables, coronary blood flow and regional segment length 

changes. The animals were then subjected to one of the six shldy groups (Figure 1). In case of 

ventricular fibrillation defibrillation using DC countershocks (15-30 Watt) was started within 10 

s. If defibrillation could not be accomplished within 2 min, animals we,re excluded from further 

study. Throughout the experimental protocol body core temperature was rigorously controlled 

with a heating pad to maintain temperature within a narrow range (37~38°C) to minimize 

temperature-induced infarct size variability.(l8.19] 

In the animals of groups 3 and 6 arterial and coronary venous blood samples for the 

detcnnination of oxygen content and pH were withdrawn at baseline, at lO min and 30min RVP 

and at 2, 5 and 15 min of nonnal sinus rhytlun. In the animals of group 6 measurements were also 

made at 60, 120 and 180 min ofnonnal sinus rhythm. Myocardial biopsies for the measurement 

of high energy phosphate levels in the LCXCA perfused area were obtained at baseline and at 

30min RVP. The effects ofRVP on the distribution of myocardial blood flow were determined 

in group 6 by injection of radioactive microspheres at baseline and at 30min RVP. 

Area at risk and infarct size 

Validation of the methods to determine the area at risk and infarct size has been described 

extensively.ll.f.201 Briefly, following reocclusion of the LADCA the area at risk was identified by 

an intra-artrial injection of30 ml ofa 5 % (w/w) solution of fluorescein sodium (Sigma Chemical 

Co, St. Louis, USA). Ventricular fibrillation was then induced with a 9V battery and the heart 

was excised. Both atria, the right ventricular free wall and the left ventricular epicardial fat were 

removed. The left ventricle was filled with alginate impression material (BayerDental, 

Leverkusen, Germany), cooled in crushed ice and sliced parallel to the atrioventricular groove 

into 5 segments. The cut surface(s) of each segment and the demarcated areas at risk (AR) were 

then traced on an acetate sheet under UV light. The viable myocardium was then stained deeply 

blue by incubating the segments for 20 min in 0.125 g para~nitrobluetetrazolium (Sigma 

Chemicals Co., St. Louis. USA) per liter of phosphate buffer (pH 7.1) at 37'C. The non-stained 

pale infarcted tissue was traced onto the acetate sheet. The surface of each ring was subdivided 

into an endocardial (inner) half and an epicardial (outer) hatfby drawing a line which divided the 

myocardial wall into only two layers of equal thickness. Division into two layers was done as it 

provides information on the transmural distribution of intarct size, yet preserving sufficient 

accuracy ofintarct size determination in the two halves. Surf.'lce areas of the subendocardial and 

subepicardial halves, and of the subendocardial and subepicardial areas at risk and infarct areas 

CIA) were determined and averaged for the apical and basal side of each individual ring. The 

fraction of the ring that was infarcted and at risk were then multiplied by the weight of the ring 

to yield the weight of the area at risk and infarct area for that ring. Subsequently, the weights of 

the subendocardial and subepicardial halves and the total weight of each ring were summed to 
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yield the L Vendo' L Vepi and total LV mass. The weights of the endocardial, epicardial and total 

areas at risk of each ring were summed to yield A~ndo' ARepi and total AR mass; the weights of 

the endocardial, epicardial and total infarct areas of each ring were added to yield I~ndo' IJ\pi and 

total IA mass. Endocardial, epicardial and total AR and IA data were expressed as a percentage 

of LVendo' LVepi and total LV mass, respectively. 

Data analysis 

Infarct size data have been presented by plotting the IA against AR for the endocardial and 

epicardial half and for the whole left ventricular wall. Linear regression analysis was performed 

to detenniue the relation between endocardial and epicardial IA and AR in the control group. For 

all experimental groups individual infarct size data points are presented. Intergroup differences 

between IA"dO' IA,pj or total IA were analyzed by analysis of covariance (ANCOV A), with 

AR.:ndo. A~pi or total AR as covariate. \Vhen a significant effect was observed comparisons 

between individual groups were made with ANCOV A followed by modified Bonferroni 

procedure to correct for multiple comparisons. Intragroup differences between IA.:ndo and IAepi 

were analyzed using ANCOV A for repeated measurements, with AR-endo and A~pi as covariates. 

The effect of rapid ventricular pacing on the incidence of ventricular fibrillation during 60min 

TCO was analyzed by Fisher's exact test. 

Hemodynamic and regional myocardial function data were analyzed by two-way ANOVA 

followed by either paired t-test (intragroup) or unpaired t-test (intergroup) with modified 

Bonferroni procedure to correct for multiple comparisons. A P value less than 0.05 was 

considered statistically significant (two-tailed). Data are presented as Mean ± SEM. 

Results 
Ventricular Fibrillation and Mortality 

In the control group one animal was excluded because of unsuccessful defibrillation during 

the 60min TCO. All other animals that fibrillated were defibrillated successfully. Table I shows 

that ventricular fibrillation occurred in 7 of the 11 control animals during the 60min TCO. The 

incidence of ventricular fibrillation in all groups that were subjected to rapid ventricular pacing 

before the 60min TCO (groups 2-5) was not significantly different from the control group 

indicating that in this model RVP did not protect against ventricular fibrillation during the 

subsequent coronary artery occlusion. Ventricular fibrillation was rare when reperfusion was 

reinstated which is in agreement with previous observations that in pigs ventricular fibrillation 

during reperfusion occurs predominantly following 10-30 min coronary artery occlusions.l2 lJ 
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Table 1. Ventricular fibrillation ill all pigs 

Experimental groups 

Control 

10 min RVP + IS NSR + 60 min TCO 

30 min RVP + 15 NSR + 60 min TCO 

30 minRVP 

Glib + 30 min RVP 

+ 60 min TCO 

+60min TCO 

60minTCO 

7(11 )' 

1(4) 

4(6) 

6(11) 

2(7) 

Reperfusion 

1(10)' 

0(4) 

0(6) 

0(11) 

0(7) 
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In parentheses is indicated the total number of animals per group at the onset of each intervention. TeO - Total 
coronary artery occlusion; RVP = rapid ventricular pacing at 200 beats per minute; NSR = nOnllal sinus rhythm; 
Glib = Glibenclamide 1 mglkg Lv. as a bolus 10 min prior to the onset of RVP; 0 one pig fibrillated during both 60 
min TCO and Reperfusion. 

Infarel Area - Area at Risk Relation 

Mean areas at risk (expressed as percentage of left ventricular mass) for the five experimental 

groups of animals which undenvent the 60min TeO were not different from each other (34±2%, 

34±2%, 37±2%, 31±2% and 31±3% for groups 1,2,3,4 and 5, respectively; F~I.O, P~O.4I). 

In the 10 control animals transmural infarct area was linearly related with the area at risk 

(FO.92, P<O.OO I; Figure 3). Separation of the left ventricular wall into two layers of equal 
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Figure 3. Effects of rapid ventricular pacing on the transmural, endocardial and epicardial relations between infarct 
area (lA) and area at risk (AR). Shown are the relations in the control group (60 min of total coronary artery 
occlusion, 60min TCO) and animals subjected to either 10 or 30 min of rapid ventricular pacing (RVP) separated 
from the 60min TeO by 15 min of normal sinus rhythm (l5min NSR). Note that while IOmin RVP had no effect 
on transmural infarct size (F=0.6, P=NS), 30min RVP produced a small, but statistically significant decreases in 
transmural infarct size (F=13.3, P<0.005). This was due to a selective reduction in epicardial infarct size (F=lIA, 
P<O.01), as endocardial infarct size was not significantly altered (F=3.4, P=NS). NS=not signiticant. 
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Figure 3 Effects of rapid ventricular pacing on the transmural, endocfirdial and epicardial relations between infarct 
area (IA) and area at risk (AR). Shown are the relations in the control group (60 min of total coronary artery 
occlusion, 60min TeO) and animals subjected to either 10 or 30 min of rapid ventricular pacing (RVP) separated 
from the 60min Teo by 15 min ofnonnal sinus rhythm (15min NSR). Note that while IOmin RVP had no effect 
on transmural infarct size (F=O.6, P=NS), 30mm RVP produced a small, but statistically significant decreases in 
transmural infarct size (F=I3J, P<O.005). 1l1is was due to a selective reduction in epicardial infarct size (F=ll A. 
p<o.o I), as endocardial infarct size was not significantly altered (F=3A, P=NS). NS=not significant. 

thickness revealed a highly linear relation in both endocardial half (f'=0.91, P<O.OO I) and 

epicardial half(f'=0.88, P<O.OOI) of the left ventricle. Ten min ofRVP, separated from the 60min 

TeO by a 15 min period of nonnal sinus rhythm, failed to reduce transmural, epicardial and 

endocardial infarct size compared to the control group (Figure 3). When the period of rapid 

venticular pacing was extended to 30 min, infarct size in the endocardial half was again not 

significantly different from that in the control group (F~3.4, P~0.09), but now small albeit 

statistically significant reductions in epicardial (F~ IIA, P<O.O I) and transmural (F~ 13.3, 

P<0.005) infarct size were observed (Figure 4). In this group of animals the transmural IAiAR 

ratio was also significantly lower than that in the control group (72±2% versus 85±2%, P<O.O I). 

The transmural IA in eight of the eleven animals that underwent 30min RVP immediately 

followed by 60min TCO was located well below the regression line describing the relation 

between IA and AR in the control group (Figure 5). The IAJ AR of this group of animals was 

62±4% (P<O.O I versus control group). ANCOV A showed that 30min RVP inlllediately followed 



Rapid Ventricular Pacing produces myocardial protection 59 

Transmural Epicardial Endocardial 
50 50 50 

Iil 40 0 'M' 40 i 40 

/.! w .& 0 ~ 
~ 

~ 30· Eo 30 E 30 P 0 

"i '?J" 20 
0 • • t- 20· rI'" 00 • '?J" 20 

t- • • .... ..... 'II' t< 
~ 10 F=21.7 ~ 10 • Foo16,5 - 10 • F=17.6 

P<O,01 P<O.01 ~ P<O.01 
0 0 0 

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 

50 50 50 

Ii' 40 

/. 
~ 40 /,t ~ 40 

/ ~ ~ 
~ 

Eo. 30 Eo 30 E 30 .0 
"i :i2O • t- 20· • '?J0 20 . 

t- i. ~ 10 ~ 10 F=2.3 F=1.5 
~ 

10 ~ F=1.7 
P=NS P=NS P=NS 

0 0 0 
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 

AR (%LVmass) AR (%LVePlmass) AR (%LVe~dOmaSS) 

o 60min Teo 

• 30min RVP + 60min Teo 

• GI b + .30min RVP + 60min Teo 

Figure 4. Effects of rapid ventricular pacing on the transmural, endocardial and epicardial rclations between infarct 
area (IA) and area at risk (AR). In the top panels are shown the control animals (60 min of tot a! coronary artery 
occlusion, 60lllin TeO) and the animals subjected to 30 min of rapid ventricular pacing (RVP) immediatley 
preceding the 60min TCO. 30min RVP produced significant reductions in transmural (F=19.l, P<O.OOI), epicardial 
(F=IS.7, P<O.OOS) and endocardial (F=I3.8, P<O.005) infarct size. 111e lower panels illustrate that pretreatment with 
glibenclamide (Glib, I mgfkg, intravenous) prcvented the protective effects of rapid ventricular pacing. NS=not 
significant. 

by 60min TCO significantly reduced infarcted area for a given area at risk compared to the 

control group (F~ 19.1, P<0.0005). Further analysis indicated that the infarct size reduction was 

not different between subepicardium and subendocardium (Figure 5). Pretreatment with 

glibenclamide abolished the protective effect of 30min RVP in both the endocardial and 

epicardial halves (Figure 5). This is tilfther illustrated by the IA/AR ratio which was 78±5% 

(P~NS versus control group and P<0.05 versus 30min RVP + 60min TCO). 

Hemodynamic Responses to Rapid Ventricular Pacing and Total Coronary Artery 

Occlusion (Groups 1-5). 

In the tive groups that underwent 60min TeO (groups 1-5), there were no significant 

differences between heart rate (l08±3 bpm, n=38), mean aortic pressure (85±1 mmHg), cardiac 

output (2.8±O.1 Limin), LVdP/dt",,, (191 O± I 00 nunHg/s) or LV end-diastolic pressure 



Table 2. Systemic hemodynamics at baseline, during 30 minutes of rapid ventricular pacing and during subsequent 15 min of normal sinus 
rhythm. 

Rapid Ventricular Pacing (min) Normal Sinus Rhythm (min) 
Baseline 

10 30 0.5 2 5 IS 

HR 108 ±4 200 ± 0* 200 ± 0* 137 ± 4* 133 ± 3* 132 ± 3* 126 ± 3* 119±3'" 

CO 2.& ± 0.2 1.8±0.1* 1.9±0.1* 3.1 ± 0.2 3.2 ± 0.3 3.1 ± 0.1 2.9±0.1 2.6 ± 0.1 

SV 26±2 9± 1* 9± 1* 23 ± 1 24± 2 23 ± 1 23 ± 1* 22± 1* 

MAP 83 ±. 2 55 ±3* 61 ±2* 94 ±4* 97 ±4* 97± 3* 93 ±2* 84±2 

SVR 31 ± 1 31 ±2 33 ± 2 32± 3 32 ±4 31 ± 1 33 ± 1 33 ± 1 

LVdP/dt", •• 17&0± 130 1980 ± 220 2010 ± 160 1770± 150 1820 ± 130 1840 ± 100 1910 ± 160 1600 ± 140 

LVEDP 9±1 7±1 8±1 8± I 8±1 8± I 8 ± I 8±1 

MW 231±12 102±9* 1l6±9* 294±25* 312±30* 302±14* 271±12* 218±10 

HR"" heart rate (bpm): CO 0;;; cardiac output (Llmin): SV :::: stroke volume (ml); MAP"" mean arterial pressure (mmHg); SVR:= systemic vascular resistance (mmHglLlmin); 
LVdP/dtma.~:::: maximum risc in left ventricular pressure (mmHgls): LVEDP "" left ventricular end diastolic blood pressure (mmHg); MW = myocardial work, MAP·CO 
(mmHg·Llmin). Data are mean±SEM. n=13; * P<0.05 vs baseline. 
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(9±1 mmHg) at baseline. Rapid ventricular pacing in groups 2, 3 and 4 was associated with 

immediate decreases in mean arterial blood pressure (38±3 %), cardiac output (41±2%) and 

stroke volume (69±2%), while systemic vascular resistance, left ventricular end diastolic pressure 

and LVdP/d~a'( remained unchanged. This hemodynamic profile was maintained during the 

remainder of the ventricular pacing period and was not different between the Huee groups. In the 

animals of groups 2 and 3, in which pacing was tenninated without an immediate occlusion of 

the LADCA, all variables returned to baseline within 1 min of normal sinus rhythm except for 

heart rate which remained slightly (-15 bpm) elevated during the 15 min following cessation of 

ventricular pacing. In groups 1-4 (n=31), total coronary artery occlusion resulted in decreases in 

cardiac output (15±3%) and increments in heart rate (15±4%) and LV end-diastolic pressure 

(37±8%) compared to baseline values (all P<0.05), with no significant decrease in mean aortic 

pressure (4±3%); these responses were not different between the four ~roups. None of the 

hemodynamic variables recovered significantly toward baseline levels during 120 min of 

reperfusion. 

Glibenclamide produced modest increments in left ventricular end-diastolic pressure from 

9±1 to 11±3 (P<O.05) and mean aortic pressure from 84±3 mmHg to 95±4 mmHg (P~O.055). 

The the latter was due to systemic vasoconstriction as cardiac output was not altered by the K\TP 

channel blocker. Glibenclamide had no effect on LADCA blood flow, LADCA vascular 

resistance or systolic segment shortening in the LADCA perfused segment. Pretreatment with 

glibenclamide enhanced the pacing-induced decreases in mean a0l1ic pressure (56±4%), cardiac 

output (62±3%), and coronary blood flow (40±6%) but had no effect on hemodynamic changes 

produced by 60min TCO. 

Effect of Rapid Ventricular Pacing 011 Myocardial Pcrforllance (Groups 3 and 6). 

Rapid ventricular pacing in groups 3 and 6 was associated with inunediate decreases in mean 

arterial blood pressure and cardiac output and hence myocardial work, while LvdP/dt"m~" systemic 

vascular resistance, and left ventricular end diastolic pressure were maintained (Table 2). Thirty 

min of rapid ventricular pacing decreased coronary blood flow by 20±5% (n= 13) accompanied 

by a small increase inm),ocardial ox),gen extraction from 72±2 % to 76±2 ~ (P<O.05, Table 3). 

Oxygen consumption per gram of myocardium tended to decrease during RVP tIus failed to reach 

levels of statistical significances. Microsphere data revealed that the subendocardial to 

subepicardial blood flow ratio at 30min RVP was maintained well above unity (l.07±O.08, n~6) 

although absolute levels were slightly lower than at baseline (1.23±O.07) (P<O.05). Coronary 

vascular resistance (calculated as mean arterial pressure divided by coronary blood flow per g of 

myocardium) was also maintained during pacing. Fractional systolic shortening decreased 

markedly in both the LADCA and the LCXCA perfused segments. However, this was due to a 

marked decrease in end-diastolic length of both the LADCA (l7±1 %) and the LCXCA (15±2%) 

perfilsed segments as end-systolic length of both LADCA (4±1 %) and LCXCA (5± 1 %) segments 



Table 3. Regional myocardial performance at baseline, during and following 30 minutes of rapid ventricular pacing and during subsequent 
15 min of normal sious rhythm. 

Rapid Ventricular Pacing (min) Normal Sinus Rhythm (min) 
Baseline 

10 30 0.5 2 5 15 

LADCA 

CSF 1.73±0.18 1.47 ± 0.16 1.38 ± 0.18* 1.93 ± 0.21 1.91 ± 0.21 1.77 ± 0.20 1.70 ± 0.20 1.58 ± 0.21 

CYR 0.55 ± 0.06 0.47 ± 0.08 0.52 ± 0.06 0.54 ± 0.05 0.56 ± 0.06 0.61 ± 0.06 0.62 ± 0.06 0.62 ± 0.06 

cvPOz 23.8±0.8 222±O.9 23.1±1.5 26.7±1.6'" 24.8±1.1 23.5±0.8 

Oz extraction 72±2 76±2* 76±2* 68±4 71±2 73±1 

MYO, 6.84 ± 0.78 6.16±0.73 6.01 ± 0.87 6.47 ± 0.90 6.93 ± 0.87 6.62 ± 1.02 

EDL 9.50±0.23 7.88±0·.18* 7.89±0.21 * 9.86±0.26 9.87±0.24 9.71±0.21 9.59±0.20 9.34±0.22 

ESL 7.96±0.20 7.72±0_17* 7.70±0.19"' 8.33±0.24 8.22±0.21 8.19±0.17* 8.07±0.16 7.96±0.17 

SS (%) 16.2 ± 0.9 2.8 ± 1.2* 2.5 ± 1.4* 14.8 ± 0.8 15.8 ± 0.9 15.6 ± 0.7 15.8 ± 0.5 14.8 ± 0.8 

PSS (%) 1.3 ± 0.6 0.6 ± 0.4 0.8 ± 0.5 3.3 ± 0.9 2.4 ± 0.6 2.1 ± 0.5 2.3 ± 0.7* 1.4 ± 0.5 

LCXCA 

EDL 10.87±0.35 9.1 9±0.41 * 9.16±0.39'" 10.86±0.44 10.85±0.49 10.79±0.38 10.73±0.36 10.58±0.36' 

ESL 9.31±0.32 8.70±0.38* 8.71±0.31'" 9.43±0.46 9.61±0.48 9.54±0.33"' 9.43±032* 9.37±0.31 

SS (%) 14.8 ± 1.5 9.7 ± 2.4* 9.8 ± 2.3"' 12.7 ± 1.6 12.9 ± 1.5 10.8± 1.3* 12.1 ± 1.3* 11.6 ± 1.2'" 

PSS (%) 0.7± 0.4 0.2 ± 0.2 0.1±0.1 0.4 ± 0.2 0.6 ± 0.3 0.6 ± 0.2 0.4 ± 0.2 0.4±0.2 

LADCA - left anterior descending coronary artery: LCXCA - left circumflex coronary artery; CBF - coronary blood flow (ml"min-1_g-1): CVR "" coronary vascular resistance 
(mmHg-mt1.min-g): cvPOz "" coronary venous partial O2 pressure (mmHg); O2 extraction"'" Oz extraction of the LADCA area (% of arterial O2 content); MVQ "" Q -consumption 
of the LADCA area ()lI"min-1-g- I); EDL"" end diastolic segment length (nun): ESL"" end systolic segment length (nun); SS "" segment shortening; PSS "" post~systolic segment 
shortening.Data are mean±SEM, n=13~ * P<0.05 vs baseline. 



Rapid Ventricular Pacing produces myocardial protection 63 

decreased slightly (Table 3). Furthennore the decrease in systolic shortening during RVP was not 

accompanied by the appearance of post-systolic shortening. Throughout the pacing protocol the 

arterial-coronary venous differences in pH (O.04±O.OI and O.04±O.OI at baseline and 30min RVP, 

respectively) and in pCO, (II.4±O.5 mmHg and IO.2±O.9 mmHg at baseline and 30min RVP, 

respectively) were maintained. In further support of aerobic metabolism we also did not observe 

decreases in ATP levels (36.3± 1.4 ~lmol/g protein at baseline vs 36.5± 1.4 ~mol/g protein at 

30min RVP), CrP/Cr ratio (1.24±O.12 vs I.36±O.12), CrPI A TP ratio (1.52±O.26 vs 1.65±O.29) 

or energy charge (O.922±O.003 vs O.924±O.003), at 30min RVP versus baseline, respectively. 

Immediately after RVP was stopped systemic hemodynamic variables recovered to baseline 

values except for heart rate which remained slightly elevated following restoration to normal 

sinus rhythm. Mean aortic pressure increased to levels slightly higher than baseline during the 

tIrst min but had recovered to baseline levels at 15 min after cessation of rapid ventricular pacing. 

During the first minute of post-pacing systolic shortening in both the LADCA and LCXCA 

perfused segments recovered to baseline values, although this was followed by a slight decrease 

in systolic thickening in the LCXCA area during the remainder of the protocol. Because reactive 

hyperemia was also absent these findings indicate that 30min RVP was not associated with 

myocardial ischemia. 

Discussion 
The present study has yielded several important findings: 1) infarct size after 60 min coronary 

artery occlusion is limited when the occlusion is immediately preceded by a period of rapid 

ventricular pacing. 2) In contrast, when the period of rapid ventricular pacing was separated from 

the 60 min total coronary artery occlusion period by 15 min of nomlai sinus rhythm the protective 

effect of rapid ventricular pacing was nearly completely lost. 3) Pretreatment with glibenclamide 

abolished the protective effect of rapid ventricular pacing suggesting the involvement of 

activation ofK+ATPchmmeis in the preconditioning and 4) the pacing-induced activation K+ATP 
chatmels was not due to myocardial ischemia. 

The protection afforded by rapid ventricular pacing against irreversible myocardial damage 

produced by a sustained period of ischemia was reversed by glibenclamide indicating that K\TP 

channels mediate, at least in part, the protective mechanism of rapid ventricular pacing. Since 

we and others have shown that K\TP chatmel blockade inhibits ischemic preconditioning in 

several species including rabbits,[22] dogs!23] and swine,[15,H] it could be hypothesized that 

ventricular pacing produced preconditioning via induction of myocardial ischemia. In support 

of this hypothesis Vegh et a~8] and Szilvassy et aP IO
] reported that ventricular pacing produced 

myocardial ischemia as judged from myocardial ST-segment elevation. In contrast, in the open­

chest pig model used in the present study we failed to observe evidence of myocardial ischemia 

during rapid ventricular pacing at 200 bpm: (i) transmural myocardial blood flow during rapid 
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ventricular pacing remained equally distributed across the hmer and outer layers of the left 

ventricular wall, (ii) the decrease in systolic shortening was entirely due to a decrease in end­

diastolic length, not aan increase in end-systolic length, (iii) development of post systolic 

shortening was not observed,{2S] and (iv) no changes were observed in myocardial ATP and 

phosphocreatine levels, energy charge and arterial or coronary venous pH levclsp6] Furthermore, 

following restoration to normal sinus rhythm evidence for myocardial ischemia during the 

preceding period of rapid ventricular pacing was also absent because (v) reactive hyperemia did 

not occur, (vi) coronary venous oxygen tension was minimally affected following restoration to 

normal sinus rhythm (vii) systolic segment shortening recovered instantaneously to baseline 

levels at which it was maintained throughout the subsequent 180 min nonnal sinus rhythm period 

and (viii) there was no sustained post-systolic shortcning during Ilormal sinus rhythm suggesting 

that post-ischemic myocardial sturuling did Ilot occur. These findings fail to support the 

occurrence of significant myocardial ischemia in the present study. Although we cannot entirely 

exclude the occurrence of subtle subendocardial ischemia, this certainly would have been 

insufficient to induce ischemic preconditioning as Ovize et aPl have shown that a 25 min 50% 

flow reduction immediately preceding a 60 min total coronary artery occlusion (resulting in total 

loss of contractile function in the area perfused by the partially occluded coronary artery) failed 

to limit infarct size. In addition, we recently observed that 30 min or 90 min periods of 30% 

coronary blood flow reduction, associated with a 25% decrease in systolic segment shortening 

(due to an increase in end-systolic length), did not protect the myocardium against infarction 

produced by 60 min of total coronary artery occlusion immediately following the 30% flow 

reduction (chaptcr 3). Therefore if some endocardial might have gone undetected it is highly 

unlikely that this was responsible for the protective effect produced by rapid ventricular pacing. 

Although the exact mechanism ofK+ATPchannel activation by ventricular pacing catinot be 

determined from the present study, there is ample evidence that ventricular pacing is capable of 

activating transient outward K+ currents. Thus, Geller and Rosenl12J observed that an increase in 

electric activation rate of canine ventricular slabs from 90 pulses per min to 130 pulses per min 

shortened the action potential. The action potential shortening persisted for several min after the 

activation rate was lowered to 90 pulses per min, indicative of myocardial "memoryl1 for the 

activation stimulus. The persistent shortening of the action potential could be antagonized by 

blockade ofthe transient outward K+ current. Although the specific role of K+ATP channels was 

not investigated in that study, our findings that after 15 min after cessation of30 min of rapid 

ventricular pacing a small but statistically significant reduction in infarct size occurred, suggest 

that K+ATr challl1el activation by ventricular pacing may also display memory. Interestingly, 

GeHer and Rosen[l2] reported that cardiac memory in isolated slabs of canine ventricular 

myocardium was only produced when the activation sequence was abnormal (stimulation from 

the lateral side of the preparation. i.e. perpendicular to the fiber axis, mimicking ventricular 

pacing[Il]) but not when the activation sequence was normal (stimulation from the basal end of 
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the preparation in the direction of the fibers, mimicking atrial pacing). This could explain why 

Marber el aft') failed to observe a protective effect of 5 min of alrial pacing followed by 10 of 

normal sinus rhythm on myocardial infarct size in rabbit hearts. 

Ventricular pacing afforded myocardial protection which was slightly greater in the epicardial 

half than in the endocardial half,vhen pacing was followed immediately by the 60 min coronary 

artery occlusion. In' addition, protection was marginal in the subepicardiulll but absent in the 

subendocardium when a 15 min period ofnonnal sinus rhythm was allowed between the pacing 

period and the sustained occlusion. There is evidence that the K+ chmmels are heterogeneously 

distributed across the left ventricular wall. Geller and Rosen{12] reported that transient outward 

repolarizing K+ currents in the epicardium increased more than in the endocardium during altered 

myocardial activation sequence. Also, Litovsky et ap71 reported that acetylcholine sensitive K+ 

channels are present in the epicardium but not in the endocardium. The distribution ofK+ATP 
channels is presently unknown, but our findings that 30 min of rapid ventricular pacing followed 

immediately by a sustained period of ischemia limited infarct size in both endo- and epicardium 

indicate that ventricular pacing can stimulate both endocardial and epicardial K\TP channels. 

Following cessation of pacing the protective effect appeared to be lost more rapidly in the 

endocardium than in the epicardium. There is evidence that exposure of the myocardium to 

repeated periods of ventricular pacing progressively prolongs cardiac memory.!'l] It is thus 

possible that repeated bouts of rapid ventricular pacing in pigs could have resulted in greater 

infhrct size limitation compared to a single episode when pacing was separated by 15 min from 

the sustained coronary artery occlusion. 

Conclusions 

Thirty min of rapid ventricular pacing decreased myocardial infarct size produced by a 60 

min total coronaty artery occlusion in open-chest pigs. The magnitude of protection was greatest 

when the period of ventricular pacing immediately preceded the sustained period of ischemia, 

as the protection was nearly completely lost when 15 min of normal sinus rhythm separated the 

rapid ventricular pacing period from the sustained occlusion. The protective effect of pacing was 

abolished by K\TP chatlllel blockade indicating that K+ ATr channel activation is involved in the 

mechanism of protection. Since we failed to observe significant myocardial ischemia during 

rapid ventricular pacing, it appears that K+ ATP channel activation was produced via a non­

ischemic mechanism, possibly an alteration in ventricular activation sequence. 
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Myocardial protection by brief ischemia in 

noncardiac tissue. 

Ben C.G. Gho, MD; Regien G. Schoemaker, PhD; Mirella A. van den Doel, BSc; 

Dirk J. Duncker, MD, PhD; Pieter D. Verdouw, PhD. 

Backgroulld Brief coronary artery occlusions (CAO) protect both the artery's own perfusion 

territory ("myocardial preconditioning") and adjacent "virgin" myocardium. \Vhether ischemia 

in remote organs protects myocardiml1 is unknown. We examined whether brief occlusion of the 

anterior mesenteric artery (MAO) or left renal artery (RAO) protects against myocardial 

infarction. 
Methods alld Results Area at risk (AR) and infarcted area (IA) were determined in 

anesthetized rats after 180 minutes ofreperfusion following a 60-minute CAO. At nonnothennia 

(36.S-37.SoC body temperature), IAIAR was 68±2% (mean ± SEM, IFII) in control rats and 

S0±3% (n~9, P<.OOI) in rats preconditioned by IS-minute CAO, 10 minutes prior to 60-minute 

CAO. A IS-minute MAO was equally protective (IAlAR~SO±3%, n~IO, P<.OOI), while IS­

minute RAO failcd to limit IAIAR (72±S%, n~8). Hypothemlia (30-31 °C body temperature) did 

not effect IAIAR (67±3%, IFII) in control animals, but enhanced protection by IS-minute CAO 

(JAlAR~22±3%, n~8), while protection by IS-minute MAO (IAlAR~ 44±S%, n~II, P<.OOI) 

was minimally enhanced. Hypothermia unmasked protection by IS-minute RAO 

(IAlAR~46±6%, n~9, P<.OI). Hexamethonium (20 mg/kg IV) did not alter protection by IS­

minute CAO, but abolished protection by IS-minute MAO. When MAO was sustained 

throughout the study, cardioprotection was absent. 

COllclusion Brief ischemia in "remote" organs protects myocardium against infarction as 

effectively as myocardial preconditioning. The mechanism of protection by MAO differs from 

that of CAO as ganglion blockade abolished protection by MAO but not by CAO. The 

neurogenic pathway is activated during reperfusion after I5-minute MAO as sustained MAO 

failed to produce cardioprotection. 
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Ischemic preconditioning has been described not only for the myocardium,ll] but also for the 

kidney,J2l skeletal muscle,P] brainl4] and liVCr.15J Furthermore, Przyklenk et af6] reported that a 

brief coronary artery occlusion (CAO) preconditioned not only the myocardium within but also 

outside its perfusion tcrritOlY ("remote" but intracardiac ischemic preconditioning). It is 

unknown, however, whether remote organ ischemia can protect the myocardium against 

infarction. 

Therefore, we first examined whether brief remote organ ischemia prior to a 60-minute CAO 

limited myocardial infarct size. For this purpose, we produced transient ischemia in the small 

intestine or left kidney by occluding the anterior mesenteric artery (MAO) or the left renal artery 

(RAO) in rats and examined its effect on myocardial infarct size. Since body temperature may 

influence infarct sizeP,8J and cardioprotection by the adenosine deaminase inhibitor pentostatin 

was only observed in the presence of mild hypothermia[9] studies were performed at two 

temperatures. Because results indicated that brief MAO provided cardioprotection at both 

temperatures, MAO was selected to examine the mechanism of protection by remote organ 

ischemia. To investigate whether a neurogenic pathway was involved we repeated the studies 

after ganglion blockade with hexamethonium. To determine whether activation of the neurogenic 

pathway occurred during remote organ ischemia or the subsequent 10 minutes of Reperfusion, 

we also determined infarct size after 60-minute CAO in the presence of permanent MAO. 

Methods 

Experimental Design 

Experiments in ad libitum fed male \Vistar rats (± 300 g) were perfomled in accordance with 

the Guiding principles in the care and use of animals as approved by the Council of the 

American Physiological Society and under the regulations ofthe Animal Care Committee of the 

Erasmus University Rotterdam. 

Effect of 15-/1/;lIl1le MAD or 15-II/;lIl1le RAD Oil Illfarct She Prodllced by 60-1I/;/I/lle CAD 

(Prolocol I). 

Nine groups were studied in this protocol (Figure 1). Eight groups underwent a 60-minute 

occlusion of the left anterior descending coronary artery followed by 180 minutes ofReperfusion 

at 110nnothermia (36.5-37.5"C body core temperature) (groups 1-4) or hypothermia (30-31"C 

body core temperature) (groups 6-9). Control groups I and G underwent a 25-minute sham period 

prior to the GO-minute CAD. Groups 2 and 7 underwent either a 15-minute CAD, groups 3 and 

8 a 15-minute MAO and groups 4 and 9 a 15-minute RAO each followed by Reperfusion starting 

10 minutes prior to 60-l11inute CAO. One group ofnormothenllic rats (group 5) underwent only 

a IS-minute CAO to determine whether the classical ischemic preconditioning stimulus produced 

irreversible myocardial damage. 



72 

137.5• 36.5· 
2 

3 

4 

5 

~'Or 30·C 
7 

8 

9 

Chapter 5 

EXPERIMENTAL GROUPS (Protocol I) 

(n= 11) 

(n=9) 

(n= 10) 

(n=8) 

(n=4) 

(n= 11) 

(n=8) 

(n= 11) 

(n=9) 

Stimulus ------.. GOmin CAD 180mln Rep 

~--~==~~ Sham 

15min CAO + 10min Rep 

15min MAO + 10min Rep 

15min RAD + 10mln Rep 

15mln CAO + 250min Rep 

Sham 

15min CAD + 10m!n Rep 

15m!n MAO + 10min Rep 

15m!n RAO + 10min Rep 

.. 
[7] 

o .. 
.. 
IZl 

o 

-25-100 60 240 

time (min) 

Figure I. Schematic presentation ofthe 9 groups in which the protection by IS-minute renal artery and mesenteric 
artery occlusions against infarct size produced by 6O-minute CAD was studied (Protocol I). CAO=ieft anterior 
descending coronary artery occlusion; MAO=anterior mesenteric artery occlusion; RAO=iefi renal artery occlusion; 
Rep=reperfusion. 

lill'olpemellt of Nellrogellic Pathway ill Cardioprotectioll by IS-millllte MAO (Protocol II). 

Six groups of rats were studied after pretreatment with the ganglion blocker hexamethonium 

(20 mg/kg IV) 15 minutes before the ischemic stimulus was applied (Figure 2). Groups 10-12 

were studied during normothermia and groups 13-15 during hypothennia. In groups 10 and 13 

the effcct of ganglion blockade on infarct size produced by 60-minute CAO was studied. The 

effect of ganglion blockade on cardioprotcction by 15-minute CAO was studied in groups II and 

14, and that by 15-minute MAO in groups 12 and 15. 

III/portallce of Reper/llsiollfor Cart/ioprotectioJl by MAO (Protocol III). 

To investigate whether activation orthe neurogenic pathway occurred during occlusion or 

reperfusion of the anterior mesenteric artery we determined infarct size produced by 60-minute 

CAO in the presence of a permanent MAO (Figure 3). 

Surgical and Experimental Procedures 

Rats were anesthetized 'with pentobarbital (60 mglkg IP) and intubated for positive pressure 

ventilation (Harvard) with room air. A PE- 10 catheter was positioned in the thoracic aorta for 
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Figure 2. Schematic presentation of the 6 groups in which the effect of ganglion blockade by hexamethonium, 
(HEX, 20 mglkg IV) on the protection by IS-minute MAO against myocardial infarct size produced by a 6O-minute 
CAO was studied (Protocol II), For further details see Figure I, 

EXPERIMENTAL GROUP (Protocol III) 

Stimulus ----,,'+' GOmin CAO 180mln Rep 

l~-~:;:g 16 (n=6) 265mln MAO p/z»')')zzzzzzzzzzz///zzd 

l~b:g 17 (n=8) 265m1n MAO rzz))))))/z/zz/zzzzzzzzzzA 

60 240 

time (min) 
Figure 3. Schematic presentation of the 2 groups in which infarct size produced by 6O-minute coronary artel)" 
occlusion (CAO) was studied in the presence of sustained anterior mesenteric artery occlusion (MAO) (Protocol 
III). 

measurement of arterial blood pressure and heart rate (Baxter Diagnostic Inc.). A PE-50 catheter 

was positioned in the inferior caval vein for infusion ofhaemaccel. After intercostal thoracotomy 

the pericardium was opened and a silk (6-0) suture was looped under the coronary aliery for later 

production of CAO)IO· 11] Following laparotomy, a catheter was positioned in the abdominal 

cavity to allow intraperitoneal infusions of pentobarbital for maintenance of anesthesia. Then, 

the anterior mesenteric artery or the left renal artery was dissected free and a suture was placed 

around thc artery to facilitate later MAO and RAO with an atraumatic clamp. After applying the 

ischemic stimulus, the abdomen was closed. The control and the classical ischcmic 
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preconditioning groups underwent the same procedure, but without dissection of the renal or 

mesenteric artery. 

Body core temperatures were continuously measured rectally using an electronic thermometer 

(Electromedics Inc.) and were maintained in the designated range using either heating pads or 

ice-filled packages. Except during application of the coronal), artery occlusions and reperfusions 

the thoracotomy site was covered with aluminium foil to prevent heat loss from the thoracic 

cavity. The adequacy of this procedure was verified in five rats in which simultaneous 

measurements of rectal and intrathoracic temperature showed no differences at baseline 

(37.2±0.2"C and 36.9±0.02"C, respectively) or at the end of60-minute CAO (36.9±0.2"C and 

36.8±0.2 "C, respectively). Rats that fibrillated during ischemia or reperfusion were allowed to 

complete the protocol when conversion to normal sinus rhythm occurred spontaneously within 

I minute or when resuscitation, by gentle thumping on the thorax, was successful within 2 

minutes after onset of fibrillation. Occlusion as well as reperfusion were visually verified by 

appearance and disappearance of myocardial, small intestinal or renal cyanosis. 

Measurement of Area at Risk and Infarcted Area 

At the end of the experiment the heart was quickly excised and cooled in ice~cold saline, 

before it was mounted on a modified Langendorff apparatus and perfused retrogradely via the 

aorta with 10 ml ice~cold saline to wash out blood. [1O, I IJ After the coronary ligature was retied the 

heart was perfused with 3 ml Trypan Blue (0.4%, Sigma Chemical Co.) to stain the nonllally 

perfused myocardium dark blue and delineate the non-stained area at risk (AR). The heart was 

then frozen at -80°C for 10 minutes and cut into slices of I mm from apex to base. From each 

slice, the right ventricle was removed and the left ventricle (LV) was divided into the AR and the 

remaining left ventricle. The AR was then incubated for to minutes in 37°C Nitro-Blue­

Tetrazolium (Sigma Chemical Co.; I mg per I ml Sorensen buffer, pH~7.4), which stains vital 

tissue purple but leaves infarcted tissue unstained. After the infarcted area (lA) was isolated from 

the non-infarcted area the different area's of the left ventricle were dried and weighed separately. 

Data Analysis and Presentation 

Infarct area (% total L V m~') was analysed using ANCOV A with IA as dependent variable, 

experimental groups as independent factor and AR (% total LV mass), the heart rate- systolic 

arterial blood pressure product and temperature as covariates. Infarct size (lAiAR in %) was 

analysed using one way ANOV A followed by unpaired t-test and modified Bonferroni 

correctiotl.l12] Hemodynamic variables were compared using two way ANOV A for repeated 

measures followed by the paired or unpaired t~test and modified Bonferroni correction. Data are 

presented as mean ± SEM. 
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Results 

Mortality 

Eight out ofthe 89 rats that entered protocol I (one rat in each of the groups 1,2,3,8 and 9 

and three rats in group 4) and seven out of the 49 mts that entered protocol II (I rat in each of the 

groups 12 and 15,2 rats in group 13. and 3 rats in group 14) were excluded because of sustained 

ventricular fibrillation. In group 16 (protocol III) I oCthe 9 rats had to be excluded. 

Areas at Risk in the Three Study Protocols 

There were no significant differences between AR of the experimental groups (Table I). 

Effect of IS-minute MAO or IS-minute RAO on Infarct Size Produced by 6O-minute CAO 

(protocol I). 

Normothermia (Figure 4, Table 1). There was a strong linear relationship between IA and 

AR of control mts which underwent the 60-minute CAO (lA~O.76(±O.04)AR-1.93(±1.20); 

r2~O.98, P<.OOI). A single IS-minute CAO limited IAiAR produced by 60-minute CAO to 

50±3% against 68±2% in the control groups (P<.OOI). The IS-minute CAO itself resulted in 

negligible necrosis (lAlAR~3±1%, IF4). A IS-minute MAO was equally protective 

(IA1AR~50±3%, P<.OOI) as IS-minute CAO, while IS-minute RAO failed to protect the 

myocardium (IAlAR~72±5%). 

Hypothermia (Figure 4, Table I). IAiAR of the hypothermic control groups (67±3%) was 

similar to IAiAR of the normothermic control group (lA~O.74 AR-1.80, r'~O.90, P<.OOI) . In 

contrast, protection by IS-minute CAO was greater during hypothermia (lAlAR~22±3%, P<.OOI) 

than during normothermia (P<.O I). The limitation ofIAi AR to 44±5% (P<.005) by IS-minute 

MAO was not different from that produced by IS-minute MAO during normothermia. The 15-

minute RAO, ineffective during normothermia, limited IAiAR to 46±6% during hypothermia 

(P<.O I versus hypothermic control). 

Involvement of Neul'Ogenic Pathway ill Cardioprotection by IS-minute MAO (protocol II). 

Figure 5 and Table I illustrate that during normothermia as well as hypothermia ganglion 

blockade had no effect 011 infarct size produced by 60-minute CAO (IN AR~68±3% alld 

IAlAR~67±3%, respectively) and illfarct size limitation by IS-minute CAO (IA1AR~54±3%, 

P<.OOI and IAlAR~18±4%, P<.OOI respectively). III contrast, cardioprotection by IS-minute 

MAO was completely abolished by ganglion blockade during both normothermia 

(IA1AR~74±2%) and hypothermia (IA1AR~69±3%). 

Importallce ofMcsenteric Artel)' Rcperfusion for Cardiopl'Otectioll by MAO (protocol III). 

Figure 6 and Table 1 show that when MAO was sustained throughout the experimental 

protocol, myocardial infarct size was not ditferent from that of the control animals 

(lAlAR~70±3% and 63±3% at normothermia and hypothermia, respectively). 



Table 1. Effect of Remotc Organ Ischemia on Infarct Size produced by 60-minute Coronary Artery Occlusion in Rats 

Protocol I 

(Ganglion inlact) 

Sham + 60min CAO 

15min CAO+JOmin Rep+60min CAO 

15min MAO+10min Rep+60min CAO 

15min RAO+]Omin Rep+60min CAO 

Protocol II 

(After ganglion blockade) 

Sham+60min CAO 

15min CAQ+l0min Rep+60min CAO 

15min MAO+]Omin Rep+60min CAO 

Protocol III 

Pennanent MAO+60min CAO 

36.S w 37.5"C 

31±4(n=11) 

47±4 (n~9) 

42±4 (n=IO) 

35±8 (n=8) 

37±5 (n=7) 

45±3 (n=7) 

40±3 (n~7) 

36±4 (n=6) 

AR(%LVmaJ 

30-31°C 

36±4 (n~ll) 

40±5 (n~8) 

41±3 (n=11) 

37±2 (n=9) 

35±3 (n=7) 

35±2 (n=7) 

37±3 (n=o7) 

34±2 (n=8) 

IAlAR(%) 

36.5-37.5°C 

68±2 

50±3'" 

50±3* 

72±5 

68±3 

54±3* 

74±2 

70±3 

30-31 "c 

67±3 

22±3",t 

44±5'" 

46±6",t 

67±3 

18±4",t 

69±3 

63±3 

Sham=control group undergoing 60 min CAO without ischemic stimulus. CAO=coronary artery occlusion: MAO=mesenteric artery occlusion.., RAO=renal artery occlusion; 
Rep-=;;rcperfusion; Hcx=hexamethonium (20 mg/kg IV). Permanent MAO started 25 min before the onset of 60 min CAO and was maintained until the end of the three hour 
repcrfusion period. Date are mean ± SEM. * P<.05 vs Control; tP<.05 vs corresponding 36.5-37.5°C group. 
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Figure 4. Scatlerplots show effects of 15-minute CAO, IS-minute MAO, or 15-minute RAO on the relation 
between IA and AR produced by 6O-minute CAO during nonnotilernlia and hypothennia. The regression Jines are 
for the 60-minule CAO control groups. * P<O.05. For further details see Figure 1. 
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I. 
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Table 2. Systemic Hemodynamics ill Rats of Protocol I 

BL Organ Ischemia Organ Rep CAD Rep 
(15 min) (10 min) (60 min) 180min 

Normothermia 

Sham (,,~JO) 

IIR 340±8 350±12 344±9 355±9 332±6 

M/\P 77±5 87±6' 86±5' 70±5 66±5' 

15111ill CAD + 10lllin Rep (n=9) 

HR 366±11 357±16 360±11 359±7 351±8 

MAP 89±5 78±6' 77±4 75±3' 69±3' 

/5min MAO + IOmin Rep (n=IO) 

HR 358±7 368±6 356±6 356±8 351±7 

MAP 98±6 110±4' 84±6' 73±4' 68±4' 

15min RAG + JOmill Rep (11=4) 

HR 350±17 348±19 354±15 330±12 333±10 

MAP 92±7 95±7 99±4 69±6 70±6 

Hypothermia 

Sham (1/=7) 

HR 284±12' 266±15" 266±14" 288±8f 249±7" 

MAP 86±4 84±6 86±5 95±4 74±3 

15min CAD + 10m;" Rep (1/=8) 

IIR 320±12' 303±8' 288±12' 276±14" 245±14" 

MAP 94±4 80±4' 83±4' 75±S' 61±3' 

15111;11 MAO + IOmi" Rep (1/=5) 

HR 267±14' 260±12' 254±13' 252±13' 217±8' 

MAP 90±4 99±6 83±3 85±7 71±4 

15111;11 RAD + IOmill Rep (11=7) 

HR 252±llt 252±16' 263±16' 251±27' 222±1 r' 
MAP 67±5 76±6 79±5 72±6 59±5 

BL-baseline; Rep-reperfusion; CAO-coronary artery occlusion; Sham-control group undergoing 60 min CAO 
without organ ischemia stimulus; i-IR=heart rate (beats/min); MAP=mean arterial blood pressure (mmHg); 
MAO=mesentric artel)l occlusion; RAO=rcnai artery occlusion; Rep=reperfusion. ·P<.05 vs Baseline. tp<.05 vs 
corresponding nonnothennia group. There were no significant dift'erences between the preconditioning groups and 
the corresponding sham group for both heart rate and mean aortic pressure. All data are mean ± SEM. 
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Hemodynamics 
Heart Rate alld Meau Arterial Blool! Pressure 

Protocol! Under normothermic baseline conditions heart rate (351±5 bpm), mean arterial 

blood pressure (86±3 IllIllHg), or the product of heart rate and systolic arterial blood pressure 

(34500± 1300 bplll'lllmHg) were not different in groups 1-4 (Table 2). Hypothermia did not 

affect mean arterial blood pressure (84±3 nunHg) but decreased heart rate (285±8 bpm, P<.OO I) 

and the rate pressure product (2841 O± 1400bpm'lmnHg, P<.OOI). There were also no differences 

in baseline values of heart rate and arterial blood pressure between groups 6-9. 

None of the ischemic stimuli had an effect on heart rate during either normothermia or 

hypothermia. A IS-minute CAO resulted in a 12±3 mmHg (P<.05) decrease in mean arterial 

blood pressure, which did not recover during the 10 minutes of Reperfusion. In contrast, 15-

minute MAO and IS-minute RAO produced increases in mean arterial blood pressure of 11±3 

mmHg (P<.05) and 6±3 IllmHg (P<.05), respectively. In the MAO-groups arterial blood pressure 

decreased to below baseline values during the 10 minutes of Reperfusion but was maintained at 

1l±3 mmHg (P<.05) above baseline in the RAO-groups. 

Protocol II Administration of hexamethonium caused decreases in mean arterial blood 

pressure of 24±3 mmHg (P<.05) and 20±6 IllmHg (P<.05) during normothermia and 

hypothermia, respectively, and decreases in heart rate of 34±5 bpm (P<.05) and 58±6 bpm 

(P<.05 vs normothennia), respectively. IS-minute CAO decreased mean arterial blood pressure 

slightly further (7±3 mmHg, P<.05), whereas MAO caused an increase in mean arterial blood 

pressure (18±2 mmHg, P<.05). These responses were not different from those observed in the 

absence of hexamethonium in protocol I (Table 3). 

Protocol III Heart rate did not change in either group during the experimental protocol. After 

onset of pennanent MAO mean arterial blood pressurc increased by 14±3 mmHg (P<.05) during 

nOlll1othennia and by 16±S nunHg (P<.05) during hypothermia, but returned to baseline levels 

during thc 6O-minute CAO (Table 4). 

Lack of Effect of Systemic HemodYllamics 011 Illfarct Size 

Multivariate regression analysis of the groups in protocol I demonstrated that in the two 

shalll- and two MAO-groups AR explained 99% (r'~O.99) and 93% (r'~O.93), respectively, of 

the variability in IA with no contributions of temperature or rate-pressure product measured at 

the onset of 60-minute CAO. In both CAO- and RAO-groups AR explained 88% and 90% ofIA 

variability, respectively, whereas AR together with temperature explained 94% and 94% of the 

variability ofIA with no contribution of the rate-pressure product. Similarly, ANCOVA (with 

temperature as independent factor and AR and the rate-pressure product as co-variants) 

demonstrated that temperature but not diflerent hemodynamic conditions explained the enhanced 

protection in the hypothermic RAO- and CAO-groups. There was no correlation between the 

mean arterial blood pressure response to the preconditioning stimuli and INAR in the CAO-, 
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Table 3, Systemic Hemodynamics in Rats of Protocol II 

BL Hex Organ Ischemia Organ Rep CAO Rep 
(15 (15 min) (10 min) (60 min) (180min) 

min) 

Normothermia 

Hex COl/fro/ (11=7) 

HR 354±9 323±5' 325±6 320±5 333±5 329±7 

MAP 89±9 64±4' 64±5 64±5 66±4 66±3 

Hex15mill CAO+}O min Rep (n=7) 

HR 341±10 308±4' 313±7 309±5 314±9 315±8 

MAP 92±6 65±2' 62±5 61±4 62±3 66±3 

Hex 15min MAO+/O mill Rep (n=7) 

fiR 358±7 320±8' 334±6 319±11 337±14 341±6 

MAP 85±6 64±4' 82±St 61±4 66±7 67±4 

Hypothermia 

Hex control (11=7) 

HR 25l±IOt I 97±S't 213±9tt 206±8 225±8H 223±6tt 

MAP 91±3 71±3' 81±3 76±4 74±4 74±2 

Hex /5mill CAO+/Omin Rep (11=7) 

HR 260±12' 19S±7't 202±91 204±8' 211±81 203±IO, 

MAP 87±6 69±4' 58±2f 66±4 69±7 62±5 

Hex J 5min MAO+ 10 min Rep (n=7) 

HR 268±JSI 213±8'1 221±91 215±JOt 231±14' 219±9! 

MAP 82±6 62±2' 79±4 t 62±3 67±3 59±5 

BL baseline (pre hexamethonium); Hex hexamethonium (15 min post-administration); Rep reperfusion; 
CAO=-coronaf), artery occlusion; Sham=controi group undergoing 60 min CAD without organ ischemia stimulus; 
HR=heart rate (beats/min); MAP=mean arterial blood pressure (mmHg); MAO=mesentric artery occlusion; 
RAO=renal artery occlusion; ·P<O.05 HEX vs Baseline; tp<.05 vs Hex; ;P<.05 vs corresponding nomlOthemlia 
group. All data are mean ± SEM. 

MAO, and RAO-groups, indicating that the pressure responses to 15-minute CAO, MAO or 

RAO were not responsible for the decrease in IAI AR. This is supported by the observation that 

despite a pressor response to the permanent MAO, this stimulus failed to limit infarct size. 

In both the hexamethoniulIl treated sham- and MAO-groups, AR explained 99% of the 

variability in IA with no contribution of either temperature or rate~pressure product measured at 

the onset of 60,minute CAO, In the CAO-groups, AR explained 82% of the IA variability, 

whereas AR together with temperature explained 97% of IA variability, again with no 

contribution of the rate~pressure product. Taken together with the observation that 
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Table 4. Systemic Hemodynamics in Rats of Protocol III 

BL Organ Ischemia Organ Ischemia CAD Rep 
(15 min) (25 min) (60 min) ISO min 

Normothermia 

Permanent MAO (n=6) 

HR 353±8 360±14 355±15 362±6 340±23 

MAP 95±7 I09±7' I04±8 90±8 54±3' 

Hypothermia 

Permanent MAO (n=8) 

HR 247±6t 243±St 232±St 234±6t 24S±9t 

MAP 97±6 1I3±4' 101±3 93±3 77±4' 

BL-baseline; Rcp=reperfuston; CAO-coronary artery occlusion; HR-heart rate (beats/min); MAP-mean arterial 
blood pressure (mmHg); MAO=mcsentric artery occlusion; Rep=reperfusion. ·P<.05- vs Baseline. tp<.OS vs 
corresponding nomlOthemlia group. All data are mean ± SEM. 

hexamethonium had no efiect on the relation between IA and AR or lAiAR despite the decreases 

in herut rate and arterial blood pressure, the data clearly indicate that AR, temperature and brief 

remote organ ischemia, but not hemodynamic conditions were determinants of lA. 

Discussion 

Until now the protective efiects of ischemic preconditioning have only been investigated in 

models in which the preconditioning stimulus was applied to the organ that was also sUbjected 

to the prolonged period of ischemia. [1-5] The present study investigated whether ischemia in an 

organ other than the heart could limit infarct size produced by a sustained coronary artery 

occlusion and examined the mechanism(s) leading to cardioprotection. For this purpose we first 

investigated if protection by remote organ ischemia could be organ specific, and evaluated the 

effects of ischemia in two different organs, the kidney and small intestine. Secondly, we 

performed our studies at two different body temperatures (36.5-37.5'C and 30-31 'C). This 

approach was chosen because earlier studies have shown that infarct size development depends 

on temperature{7,8J but also because the ability of the adenosine deaminase inhibitor pentostatin 

to limit myocardial infarct size was only observed at lower body temperature.[9] The major results 

of the tirst part of the present study were that (i) ischemia in remote organs can limit myocardial 

infarct size as effectively as ischemic myocardial preconditioning with 15-minute CAO since 15-

minute MAO limited infarct size to the same extent as ischemic myocardial preconditioning 

during normothermia, (ii) the degree of protection depends on body temperature as I5-minute 

RAO failed to protect the myocardium during normothermia but was protective during 

hypothermia, and (iii) the protection by ischemic myocardial preconditioning was more 

pronounced during hypothennia than during normothermia though infarct size produced by 60-

minute CAO per se was not different during normothermia and hypothermia. Because of the 
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results of the first part of the study we selected the IS-minute MAO stimulus to examine its 

mechanism of protection. To investigate the involvement of a neurogenic pathway, we examined 

the effect of ganglion blockade on the protection by 15-minute MAO as well as 15-minute CAO. 

Ganglion blockade abolished the protection by IS-minute MAO during both normo- and 

hypothermia, but had no effect on in~1rct size produced by 60-minute CAO and protection by 

ischemic myocardial preconditioning at either temperature. These results demonstrate the 

involvement of a neurogenic pathway in the protection by I5-minute MAO, indicating that 

protection by remote organ ischemia may be different from that by ischemic myocardial 

preconditioning. However, our data do not exclude a common intramyocardial endpoint for the 

mechanism of protection by remote organ ischemia and ischemic myocardial preconditioning, 

e.g. activation of protein kinase C,l13·15] 

The final question we addressed was whether activation ofthe neurogenic pathway occurred 

during MAO or in the ensuing 10 minutes ofReperfusion. The observation that pennanent MAO 

failed to limit myocardial infhrct size produced by 60-minute CAO indicates that reperfusion of 

the small intestine was mandatory to activate the neurogenic pathway. These data could be 

interpreted to suggest that upon reperfusion substances released in the mesenteric bed (e.g. 

oxygen derived free radicals[161, cytokines[I1]) stimulate afferent neurofibers. From the present 

study it cannot be determined whether these neurofibers are activated within or outside the 

mesenteric bed. Future studies should therefore be directed at examining the factors involved in 

activating the neurogenic pathway upon release of the MAO and how this activation results in 

limitation of myocardial infarct size. 

The finding that I5-minute MAO protected the myocardium during both normothermia and 

hypothermia, whereas the I5-minute RAO was only protective during hypothermia might suggest 

that I5-minute RAO resulted in a subthreshold stimulus during normothermia. The renal and 

mesenteric artery are of similar size in terms of amount of total blood flow, but whereas the 

anterior mesenteric flow is considered almost completely nutrient flow, less than 10% of renal 

blood flow is nutrient flow.ll 8J Consequently, the amount of tissue that becanlc ischemic during 

renal at1ery occlusion was less than during mesenteric artery occlusion so that the stimulus by 

RAO may have been below threshold. We can therefore not exclude that multiple or a single 

longer renal occlusion or bilateral renal artery occlusion could have protected the myocardium. 

In this respect it should be kept in mind that in ischemic myocardial preconditioning the severity 

of ischemia appears to be more important than its duration in order to elicit cardioprotection. [19} 

Neveliheless, briefintermption of renal aliery blood flow protected the heart during hypothermia. 

There have been preliminary reports that a renal artery occlusion may reduce infarct size 

produced by a coronary artery occlusionpo, 21} In our earlier stud)A211 we did not control 

temperature as rigorously as in the present study. In subsequent experiments we observed that 

without appropriate measures, temperature can decrease easily by as much as 3-4 °C during the 

course of surgical instrumentation. \Ve can therefore not exclude that in our earlier study the 
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effects by the 15-minute RAO occlusions were due to the presence ofhypothennia. 

An intriguing finding in the present study was that hypothermia per se had no effect on 

infarct size in the control rats, but unmasked a protective effect by I5-minute RAO. In contrast, 

the protection by IS-minute MAO tended to be enhanced but this was not statistically significant. 

The lack of effect of hypothermia on infarct size in the control rats seems at variance with 

previous observations in rabbitsPl However, in that study a different temperature range (35-

42°C) was employed while the sustained coronary artery occlusion lasted only 30 minutes. At 

30 minutes of occlusion infarction progresses rapidly in the rabbit so that a small delay of 

infarction by a decrease in body temperature may have a greater effect on infarct size. It is 

possible that in rats infarcts produced by 60-minute CAO are less susceptible to the delay in 

infarction produced by a decrease in body temperature. This hypothesis is supported by two 

recent studies in swinc. Whereas Duncker ef a/18] observed that a decrease in body temperature 

from 39°C to 35°C reduced infarct size produced by 45-minute CAO by more than 80%, 

fvIcClanahan ef aP9) reported that a decrease in temperature from 37°C to 35°C had no effect on 

infarct size following 60-minute CAO. These findings indicate that the effect of temperature on 

infarct size may depend critically on the experimental model, including the duration of the 

sustained CAO. 

In contrast to the lack of effect of temperature on infarct size in the control rats, hypothennia 

markedly modified the efficacy of the preconditioning stimuli. \Vith the exception of the 

mesenteric preconditioning stimulus, which was only slightly but not significantly enhanced by 

the presence of hypothermia, protection by intramyocardial ischemic preconditioning was 

enhanced and a cardioprotective effect of brief renal ischemia now emerged. The mechanism of 

this synergistic (intramyocardial ischemia) or urllllasking (renal ischemia) action of hypothermia 

is not readily explained. The present study excludes a contribution of activation of a neural 

pathway, as hexamethonium did not affect the enhanced protection of ischemic myocardial 

preconditioning by hypothermia. l\kClanahan el aPl reported that either mild hypothennia or 

adenosine deaminase inhibition alonc had no effect on infarct size. In contrast, when these 

stimuli were combined a significant reduction in myocardial infarct size was observed. Their 

findings are in agreement with the present study and suggest that body temperature even when 

it does not alter infarct size by itself can signific~mtly modify the cardioprotective effects of other 

physiological or pharmacological interventions. The protection by I5-minute MAO was not 

signiticantly increased when experiments were performed at hypothermia, which might suggest 

that the stimulus was already maximally effective at normothermia. 

~lethodological Considerations 

In the present study body core temperature was measured rectally. That this temperature 

retlects intrathoracic temperature was demonstrated in five rats in which simultaneous 

measurements of rectal and thoracic cavity temperatures were not difterent (see Method section). 
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The question could be raised whether these rectal measurements reflect intramyocardial 

temperature. In a previous study in swine,IS] rectal temperature exceeded Illoycardial temperature 

on average by only 0.3°C at baseline, while at the end of 4S-millutc CAO, intramyocardial 

temperature was 0.3 °C lower than rectal temperature. Those findings suggests that although 

subtle differences in temperature of myocardium and rectum may have been present in tlus study, 

these were small compared to the 6°C rectal temperature difference in the normothermic and 

hypothennic groups. 

An increase in myocardial stretch produced by rapid volume loading can limit infarct size 

produced by a 60-minute CAO in dogsP2J \Ve did not measure left ventricular diastolic volume 

or pressure, and can therefore not exclude that MAOR or RAORillduced pressor responses 

produced stretch mediated cardioprotectioll. However, such a mechanical pathway of protection 

appears unlikely as ganglion blockade abolished the MAO-induced protection, even though the 

pressor response persisted. 

Clinical Implications 

The present study may have important clinical implications as it suggests that ischemia in 

remote organs could result in cardioprotection when preceding a coronary thrombotic event. 

Thus, patients suffering from abdominal angina or perhaps even intermittent claudication might 

conceivably have a longer time-window for thrombolytic therapy to salvage ischemic 

myocardium. The present study also supports earlier reports that myocardium can be protected 

by stimuli which do not produce myocardial ischemia such as myocardial stretcrJ22J or ventricular 

pacing. (23J The ability of such diverse stimuli, e.g. nonRischemic myocardial stimuli and nonR 

myocardial ischemic stimuli, to protect the myocardium may hamper the unequivocal 

demonstration of ischemic myocardial preconditioning in many~·26J 

Conclusion 

The present study is the first to demonstrate that not only brief ischemia in an adjacent 

myocardial region, but also a brief period of ischemia followed by reperfusion in a remote organ, 

such as small intestine or kidney, can protect the myocardium against itTeversible damage 

produced by a prolonged coronary artery occlusion. Mesenteric atiery occlusion and reperfusion 

resulted in protection both during hypo- and normothermia, whereas the protection by renal 

ischemia was only apparent under hypothennic conditions. The mechanism of protection by brief 

mesenteric artery occlusion involved a neurogenic pathway that required mesenteric artery 

reperfusion for its activation. 
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The myocardial infarct size limiting effect of low body temperature in rats 

depends on the duration of the coronary artery occlusion 

Backgroulld A reduction in body temperature has been reported to result in smaller 

myocardial infarct size produced by a 30~ and 45-minute coronary artery occlusion (CAO) in 

rabbits and swine respectively. However, in rats we previously found that infarct size produced 

by a 60-minute CAO at nonnothermia (36.5°C-37.5°C) or at hypothermia (30°C-31°C) did not 

differ. Consequently, in the present study we examined whether the protective effect of low body 

temperature depends on the duration of the CAO. 

Methods al/d Results Area at risk (AR) and infarcted area (IA) were determined in 

anesthetized rats after 180 minutes of reperfusion following CAD's varying between 15 and 120 

minutes. During normothermia, INAR was 3±1 % (mean ± SEM, IF4), 48±9% (n~6), 62±6% 

(n~ll), 68±2% (n~ll) and 75±3% (n~4) after 15-, 30-, 45-, 60- and 120-minute CAO, 

respectively. During hypothermia, INAR was 14±3% (n~5 , P<O,OI), 54±2% (n~7, P~NS), 

69±2% (IFIO, P~NS) and 72±I% (n~2, P~NS) after 30-,45-,60- and 120-minute CAO, 

respectively (P vs corresponding normothermia groups). Although, hypothermia was 

accompanied by a lower heart rate (275±8 bPlll, n=24, vs 355±5 bpm during normothermia, 

n~28), elimination of hypothermia-induced bradycardia by atrial pacing at 360 bpm did not 

increase the INAR produced by 30-minute CAO (l2±2%, n~5, P~NS vs 30-minute CAO during 

spontaneous sinus rhythm). 

COllclusioll The myocardial infarct size limiting effect of low body temperature depended 

critically 011 the duration ofthe coronary artery occlusion, but was independent of its effects on 

heart rate and systolic arterial blood pressure. 

Key Words: infarct size, temperature 
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Introduction 

Recently, we showed that myocardial infarct size produced by a 60-minute coronary artery 

occlusion (CAO) in rats was not different when the experiments were perfonlled at noml0thenllia 

(36.5°C-37.5°C) or hypothermia (30°C-31°C) [11. This finding is at variance with previous 

studies in rabbits [2J and swine [3J in which infarct size produced by 30- [2J and 45-minute {3J CAO 

was smaller at lower body temperatures. Reasons for the apparent discrepancy could be 

differences in species or the duration of the CAD. Consequently, the present study investigated 

the importance of the duration ofCAO on the infarct size limiting effect of hypothermia. Since 

hypothenl1ia was associated with bradycardia, which could possibly limit infarct size per se [4], 

we studied an additional group ofhypothenllic rats in which heart rates were increased to heart 

rates at baseline of the normothermic animals. 

Methods 

Experimcntal Design 

Experiments in ad libitum fed male \Vistar rats (± 300 g) were perfonned in accordance with 

the Guiding principles in the care and use of animals as approved by the Council of the 

American Physiological Society and under the regulations of the Animal Care Committee of the 

Erasmus University Rotterdam. 

Expcrimental Groups. 

Ten groups of rats were studied (Figure 1). Five groups (groups 1-5) were subjected to left 

anterior descending coronary artery occlusions of different durations followed by 180 minutes 

ofreperfusion during nOl1nothenllia (36.5°C-37.5°C body core temperature), while five groups 

(groups 6-10) were studied during hypothermia (30°C_31°C body core temperature). Groups 1, 

2,3,4 and 5 underwent CAD's of 15,30,45,60 or 120 minutes, respectively, while groups 6, 

7, 8 and 9 were subjected to CAD's of30, 45, 60 or 120 minutes, respectively. Group 10 was 

subjected to 30-minute CAD followed by 180 minutes of reperfusion, while heart rate was raised 

to 360 bpm to detennine the contribution of bradycardia to the temperature-induced infarct size 

limitation. Infarct size data of rats of groups 1,4 and 8 have been reported earlier [ll. 

Surgical and Experimental Pl'ocerlul'Cs 

Rats were anesthetized with pentobarbital (60 mg/kg IP) and intubated for positive pressure 

ventilation (Harvard) with room air. A PE-l 0 catheter was positioned in the thoracic aOl1a for 

measurement of arterial blood gases, arterial blood pressure and heart rate (Baxter Diagnostic 

Inc.). A PE-50 catheter was positioned in the inferior caval vein for infusion of polygeline 

(35mglml). After intercostal thoracotomy the pericardium was opened and a silk (6-0) suture was 

looped under the coronaty artery for later production of CAD (1, 5, 6). In rats of group 10, a 

pacing electrode (negative pole) was implanted in the wall of the left atrial auricle while the zero 
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EXPERIMENTAL GROUPS 
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Figure I. Schematic presentation of the 10 groups in which the effect of temperature on the relation between infarct 
size and duration of the coronary artery occlusion was studied. CAO=ieft anterior descending coronary artery 
occlusion; Rep=reperfilsion. 

electrode was positioned in the major pectoral muscle. Following laparotomy, a catheter was 

positioned in the abdominal cavity to allow intraperitoneal infusions of pentobarbital for 

maintenance of anesthesia. 

Body core temperatures were continuously measured rectally using an electronic thermometer 

(Electromedics Inc.) and were maintained in the designated range using either heating pads or 

ice-filled packages. Except during application of the coronary artery occlusions and reperfusions 

the thoracotomy site was covered with aluminium foil to prevent heat loss from the thoracic 

cavity. The adequacy of this procedure has been verified earlier (chapter 5) III. Rats that fibrillated 

during occlusion or reperfusion were allowed to complete the protocol when conversion to 

normal sinus rhythm occurred spontaneously within 1 minute or when resuscitation, by gentle 

thumping on the thorax, was successful within 2 minutes after onset of fibrillation. Occlusion as 

well as reperfusion were visually verified by appearance and disappearance of myocardial 

cyanosis. 

Measuremcnt of Area at Risk and Infarcted Area 

At the end of the experiment the heart was quickly excised and cooled in ice-cold saline 

before it was mounted on a modified Langendorff apparatus and perfused retrogradely via the 

aorta with 10 ml ice-cold saline to wash out blood 15
,6). After the coronary ligature was retied the 

heart was perfused with 3 ml Trypan Blue (0.4%, Sigma Chemical Co.) to stain the normally 
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perfused myocardium dark blue and delineate the non-stained area at risk (AR). The heart was 

then frozen at _80°C for lO minutes and cut into slices of I mm from apex to base. From each 

slice, the right ventricle was removed and the left ventricle (LV) was divided into the AR and the 

remaining left ventricle. The AR was then incubated for 10 minutes in a 37°C Nitro-Blue­

Tetrazolium solution (Sigma Chemical Co.; 1 mg per I ml Sorensen buffer, pH=7.4), which 

stains vital tissue purple but leaves infarcted tissue unstained. After the infarcted area (IA) was 

isolated from the non-infarcted area, the different area's of the left ventricle were dried and 

weighted separately. In addition, the isolation technique show an increased variability in 

measuring infarct size at smaller area at risks, we therefore excluded animals in which the area 

at risk was below 20% of left ventricular dry weight. 

Data Analysis and Presentation 

The effects of temperature on infarct size (lAiAR * 100%) were analysed using Two way 

ANOVA with IAiAR as dependent variable, and temperature and duration of CAO as 

independent factors. \Vhen a significant effect was observed, post-hoc testing was performed 

using the unpaired t-test with a modified Bonferroni correction [1[. Heart rate, mean arterial blood 

pressure and the rate-pressure product (heart rate * systolic arterial bloodpressure) were analyzed 

using three way (CAO duration, temperahlre and time) ANOVA for repeated measures followed 

by the paired or unpaired t-test and modified Bonferroni correction. Data are presented as mean 

±SEM. 

Results 

Mortality. 

One of the rats (group 4) that entered the study was excluded because of irreversible 

ventricular fibrillation, while one animal had to be excluded because of technical failure. 

Areas at Risk (Table 1). 

There were no significant differences between AR of the 10 experimental groups. 

Time course of infarct size development (Figure 2, Table 1). 

NOl'mothel'mia. IAiAR of groups I, 2, 3, 4 and 5 was 3± I %, 48±9%, 62±6%, 68±2% and 

75±3% afier 15-, 30-, 45-, 60- and 120-minute CAO, respectively, demonstrating that the 

suspectibility of the myocardium to the development of irreversible damage increased sharply 

between 15 and 30 minutes (3% of the AR per min). 

Hypothermia IAiAR of gonps 6, 7 and 8 was 14±3% (n=5, P<O.Ol vs corresponding 

nonnothennia group), 54±2% (n~7, P~NS), 69±2% (IF I 0, P~NS) and 72±1 % (IF2, P~NS) after 

30-, 45-, 60-, 120-minute CAO, respectively. These data show thatduring hypothennia the most 

sensitive period for the development of irreversible damage was delayed, but that the sensitivity 



Table I. Effect of Temperature on Infarct Size produced by Coronary Artery Occlusion of Different Durations in Rats 

AR(%LYmw) IAIAR(%) 

36.5°C~37S'C 300C~31 °C 36.5°C-37.S0C 30°C-31°C 

Control 

IS-minute CAO 44±4 (n"4) 3±1 

30-minute CAO 39±4 (n"6) 40±3 (n"5) 4S±9 14±3* 

45-minutc CAO 44±3 (n"6) 38±3 (n=7) 62±6 54±2 

60-minute CAO 38±3 (0=8) 39±3 (0=10) 71±2 69±2 

120-min CAO 43±3 (n"4) 34±2 (0=2) 75±3 72±1 

Pacing +30-minute CAO 42±3 (n"7) 12±2"l" 

CAO'""coronary artery occlusion; Pacing=atrial pacing at 360 bpm started 25 minutes before the onset CAO and was maintained until the end of the three hour reperfusion period. 

Date arc mean ± SEM. * P<.05 vs nonnothermic group (36.5°C-37.S°C); tP<.05 vs corresponding group with the same temperature and occlusion duration. Table 1 
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Figure 2. Effect of temperature on the infarct size after CAO's of difterent duration. Experiments were performed 
at nomlOthennia (36.5°C-37,5°C, 8) and hypothemlia (30°C-31°C, 0). * P<.05 vs nomlOthemlic group, IA and 
AR are infarcted area and area at risk respectively. Data are mean±SEM. 

per se was unaltered (2.7% of AR per min), \Vhen the occlusions were maintained for longer than 

45 minutes, IAI AR was not different for the normothermic and hypothermic rats. 

\Vhen the 30-minute CAO experiments were performed during atrial pacing at 360 bpm 

INAR was I2±2% (group 10, P<O.OS vs group 2), which was not different from the INAR of 

14±3% in group 6. 

Hemodynamics 

Heart Rate, Mean Arterial Blood Pressure amI Rate-Pressure Product (Figure 3). 

Under nonnothenllic baseline conditions heart rate (355±5 bpm, n=28), mean arterial blood 

pressure (89±4 mmHg, n~28), or the rate-pressure product (36600± ISOO bpm.mmHg, n~28) 

were not different in groups 1-5. Hypothermia did not affect mean arterial blood pressure (92±3 

1l11l1Hg, IF24) but decreased heart rate (27S±8 bp1l1, P<.OOI) and the rate-pressure product 

(28700±1SOO bpm·nullHg, P<.OOI, IF24). There were no differences in baseline values of heart 

rate, mean arterial blood pressure and the rate-pressure product between groups 6-9. In group 10 

heart rate, mean arterial blood pressure and the rate-pressure product during atrial pacing were 

not significantly different from the respective baseline levels in the nonllothermia group 2. 



Table 2. Heart Rate and Mean Arterial Blood Pressure in Rats undergoing Coronary Artery Occlusion under Normo- and Hypothermia. 

BL Pre CAO CAO CAO CAO CAO Rep 
(15 min) (30 min) (45 min) (60 min) (180 min) 

Normothermia (36.5°C-37.s°C) 

I5-minute CAO (n~.f) 
HR 32S±5 328±5 323±15 330±I3 
MAP 66±3 66±3 63±5 56±4 

30-minute CAO (n~6) 
HR 363±8 355±8 357±8 348±9 357±5 
MAP 87±4 97±3 78±5 84±6 79±9 

.f5-minute CAO (n~6) 
HR 36S±5 347±13 355±7 343±10 360±9 360±17 
MAP I07±6 90±9 79±6 83±5 93±5 66±7 

60-minule CAO (n=7) 
HR 351±9 351±9 356±7 360±8 364±10 361±11 336±7 
MAP 78±7 82±8 75±IO 75±9 74±7 67±6 62±6 

Hypothermia (30°Cw31 0c) 

30-minule CAO (n=;;5) 
HR 25S±15 240±16 260±16 252±20 254±13 
MAP 93±5 83±8 86±7 92±8 83±2 

.f5-minute CAO (n~7) 
HR 266±12 257±5 277±13 282±15 287±14 272±14 
MAP 92±2 90±4 84±6 99±5 lOl±4 77±3 

60-minute CAO (n==7) 
HR 286±14 269±17 285±15 290±14 286±12 289±9 251±8 
MAP 84±6 84±6 83±8 94±7 97±8 9S±5 75±4 

Pacing + 30-minute CAO (n-=:=7) 
HR 284±5 360±1 348±12 360±1 360±1 
MAP 79±8 7S±5 7S±6 86±7 72±4 

BL-baseline: CAO-·coronaI)' artery occJusion~ Rep Reperfusion~ HR heart rate (bpm)~ MAP~ean arterial blood pressure (mmHg); Pacing atrial pacing at 360 bpm. ·P<.05 
vs Base!ine. ~P<.05 vs corresponding normothermia group. [ P<.05 vs corresponding time point. There were no significant differences between the groups for both heart rate 
and mean aortic pressure. AU data are mean ± SEM. 
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Figure 3. Relation between the rate-pressure product (HR *SAP) and infarct size (IA/AR) for rats that underwent 
a 30-minute CAO .• normolhennia, 0 hypothemlia, 6. hypothennia and atrial pacing at 360 bpm, fA and AR are 
infarcted area and area at risk respectively. Data are mean±SE!'vt. 

Figure 3 shows that the bradycardia-induced decrease in the rate-pressure-product did not 

contribute to the limitation in in£'uct size in the hypothermia group. 

Discussion 

Some ten years ago Voorhees el ailS] reported that in dogs at temperatures below the normal 

range (~26°C) infarct size produced by a 5-hour coronary artery occlusion was less than in 

normothermic animals (~39°C). The results of that study must be interpreted with caution 

because infarct size was determined inU11ediately at the end afthe 5 hour occlusion period using 

nitroblue tetrazoliul11 staining. To minimize £1lse positive staining myocardial reperfusion must 

be allowed to facilitate washout of nicotinamide-adeninedinucleotide from necrotic 

myocardium!')!. Voorhees et al [S] did not allow reperfusion of the ischemic myocardium and 

intarct size may therefore have been underestimated. Furthel111ore, the authors reported collateral 

blood flow data which were much higher than usually measured during coronary artery occlusion 

in dogs [IS!. Finally. infarct size was expressed as a percent of the left ventricle without taking into 

acollnt the size of the area at risk. 

Recently. Chien et al (2) reported a steep relation between body core temperature in the 
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"nonnothenllic" range (35°_42°C) and myocardial infarct size ill rabbits subjected to a 3D-minute 

CAO and 3 hours ofreperfusion, so that an increase of 1°C resulted in 12% infarction of the area 

at risk with 110 infarction Deeuring at a body core temperature of 34.5°C. Duncker el at [3J showed 

an even steeper relation between body core temperature and infarct size produced by a 45 minute 

coronary artery occlusion and four hours of reperfusion in swine as as 20% of the area at risk 

became infarcted with a IOC increase in temperature in the range of 35°C to 39°C. 

In contrast to these studies in an earlier Shicly in rats we could not show a protective effect 

ofhypothennia on infarct size determined 3 hours after a 60-minute CAO [II, \Ve hypothesized 

that the discrepancy with the earlier studies could be caused by either a difference in the duration 

of the CAD or a difference in species. The present study demonstrates that the infarct size 

limiting effect of hypothermia depends on the duration of the coronary artery occlusion. Thus, 

when in rats the coronary artery was occluded for 30 minutes, hypothcmlia was protective (5.2% 

of the area at risk per l°C) , but when the duration of the CAD was extended to 60 minutes the 

protective effect ofhypothcrmia could not be detected (Figure 4). 

Rabbits and swine like rats display a steep relation between occlusion duration and infarct 

size. It is likely that in species like the dog and baboon in which infarction progresses more 

slowly [10.11 1, the effect of temperature will be less than in species sllch as swine, rabbits cmd rats. 
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Figure 4. Sensitivity (% infarction of AR per 1°C) for devclopment ofirrcversible damage during a 30-minute CAO 

in rats. Experiments were performed at nomlOthemlia (0) and hypothemlia (0). * P<.05 vs normothermic group, 

t P<.05 vs nonnothermic group.IA and AR are infarcted area and area at risk respeetivcly. Data are mean±SEM. 



Temperature and myocardial infarct size 97 

Mechanisms by which hypothermia could exert protection 

The role of myocardial oxygen demand at the onset of the coronary atiery occlusion as a 

detemlinant of infarct size is controversial. A positive correlation [12, J3] as well as no relation [13-

17] between the rate-pressure product and infarct size have been reported, Nienaber et al [4] 

produced bradycardia in dogs with a synthetic opiate to lower the metabolic demand at the onset 

of a 24 hour coronary artery occlusion thereby producing a smaller infarction compared to a 

group of animals with a high metabolic demand at the onset of coronary artery occlusion, It 

cannot be excluded that the obtained protection by bradycardia was actually a direct result of~­

opoid receptor stimulation [18J, In collateral deficient species such as rabbit and swine infarct size 

does not appear to be correlated with the rate-pressure product {14, 
171, In the study by Duncker et 

al [3J univariate or stepwise multivariate regression analysis did not reveal a significant correlation 

between temperature and systemic hemodynamic variables at baseline or myocardial blood flow 

under baseline conditions, suggesting that temperature did not exert its effect by altering 

myocardial oxygen demand at the onset of occlusion. Similarly, in rabbit hearts [2J and rat hearts 

(present study) the infarct size limiting effect of hypothermia was unmitigated when 

hypothennia-induced bradycardia was prevented. It is likely that during coronary artery occlusion 

when contraction ceases, energy utilization is no longer reflected by the rate-pressure product 

Cellular determinants of myocyte viability distal to a coronary artery occlusion are 

incompletely understood, but may include depletion of high energy phosphate pools below a 

critical level (A TP<l 0% of normal), or damage to mitochondrial membranes and sarcolemma 

with altered ion homeostasis. Since many enzyme systems in manunalian membranes (including 

ATPases) are temperature sensitive, a decrease in temperature might decrease infarct size through 

reduction of energy utilization with consequent slowing of high energy phosphate depletion, In 

agreement with this hypothesis, Jones el a1 120} reported that a 3°e decrease in temperature 

markedly slowed the rate of ATP depletion and lactate production in the globally ischemic 

isolated dog heart. There is evidence that a decrease in temperature can result in decreased 

fluidity and, consequently, decreased ion permeability ofmembranes[21,221, The latter mechanism 

has been implicated in the protective effect of hypothermia against calcium overload associated 

with the calcium paradox [21J and during reoxygenation following hypoxia in isolated perfused 

rodent hearts [23J. Thus, potential mechanisms through which a lower temperature decreases 

infarct size likely include a decrease in energy utilization and/or maintained ion homeostasis 

during ischemia and reperfusion, 

Methodological Considerations 

iVfeasurement of temperature_ In the present study body core temperature was measured 

rectally. That this temperature reflects intrathoracic temperature was demonstrated in five rats 

in which simultaneous measurements of rectal and thoracic cavity temperatures were not 

different [11. The question could be raised whether these rectal measurements reflect 
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intramyocardial temperature. In a previous study in swine [3], rectal temperature exceeded 

moycardial temperature on average by only 0.3°C at baseline, while at the end of 45-minute 

CAO, intramyocardial temperature was 0.3°C lower than rectal temperature. Those findings 

suggest that although subtle differences in temperature of myocardium and rectum may have 

been present in the present study, these were likely to be small compared to the 6°C rectal 

temperature difference in the normothermic and hypothermic groups. 

Area at risk. Early canine studies of the effects of coronary artery occlusion on myocardial 

infarction used occlusions at an anatomically identical site, expressing in~1rct size as a percent 

of the left ventricle [19
1, However, variability in the pattern of distribution of terminal arterial 

branches can result in substantial variability of the myocardial mass perfused by the occluded 

arterial segment [151, To take into account this anatomic variability in coronary vascular 

distribution, infarct size is generally expressed as a percent of the area at risk, Recently, it was 

shown that even in collateral deficient species like rabbit [24J and swine [!4J the relation between 

the area at risk and the infarcted area has a positive intercept through the area at risk axis, As a 

result the ratio ofinfarcted area divided by the area at risk depends on the size of the area at risk, 

However, in rats the intercept through the area at risk axis is not different from zero, implying 

that infart size expressed as a percentage ofthe area at risk is independent of the area at risk Ill, 

which justifies the use of infarct size expressed as a percent of the area at risk in the present 

study. 

Collateral bloodj/oll' to the Area at Risk. In species with substantial and variable degrees 

of native collateral circulation such as the dog, collateral blood flow to the ischemic region exerts 

a protective effect on infarct size [10, 13,25,
26

1, The rat does not possess an extensive collateral 

circulation and collateral blood can therefore be excluded as a confounding factor. 

Conclusions. 

The myocardial infarct size limiting effect of low body temperaturc depended critically on 

the duration of the coronary artery occlusion, but was independent of its effects on heart rate and 

systolic arterial blood pressure. 
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Does Protein Kinase C Playa Pivotal Role in the Mechanisms of Ischemic Preconditioning? 

Ben C.G. Gho, MD; YVOIme E.G. Eskildsen-Helmond, MSc; Sandra de Zeeuw, MSc; 

Jos MJ. Lamers, PhD; Pieter D. Verdollw, PhD. 

Summary. TItis communication reviews the evidence for the pivotal role of protein kinase 

C in ischemic myocardial preconditioning. It is believed that several intracellular signalling 

pathways via receptor-coupled phospholipase C and its "cross-talk" with phospholipase D 

converge to activation of protein kinase C isozymes which is followed by phosphorylation of 

until now (a number of) unknown target proteins which produce ischemic preconditioning. 

After briefly introducing the general biochemical properties of protein kinase C, its isozymes 

and the limitations of the methodology used to investigate the role of protein kinase C, studies 

are discussed in which phanuacological inhibition and activation and (inuuunore)activity and/or 

isozymes measurements of protein kinase C isozymes were applied to access the role of 

activation of protein kinase C in ischemic myocardial preconditioning. 

Conclusion. It is concluded that definitive proof for the involvement of protein kinase C in 

preconditioning requires future studies which must focus on the isozyme(s) of protein kinase C 

that are activated, the duration of action, cellular translocation sites and the identity and stability 

of (covalently bound phosphate) of phosphorylated substrate proteins. 

Key JVords. myocardial ischemia; infarct size; myocardial protection; ischemic preconditioning; 

protein kinase C; phospholipase C; phospholipase D 
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Introduction 

Ischemic preconditioning is not an organ specifIc phenomenon, as it does not only occur in 

the heart [1,21, but also in kidney 131, liver {4] and skeletal muscle [51, while the brain is protected 

against the consequence of a new ischemic event at 24 hours after the preconditioning stimulus 

was applied [6J. Furthermore, brief ischemic in organs other than the heart may also limit 

irreversible damage produced be a subsequent coronary artery occlusion. Thus, in rats a 15-

minute occlusion of the mesenteric arteI)' 10 minutes prior to a 60-minute coronary artery 

occlusion limited myocardial infarct size by 40% [7). Since ganglion blockade abolished 

myocardial protection by mesenteric arteI)' occlusion-reperfusion but not by brief coronary artery 

occlusion-reperfusion, the mechanism of protection by brief ischemia-reperfusion in other organs 

appears to differ from that by brief myocardial ischemia-reperfusion [71. 

Initially, ischemic preconditioning studies focussed on time characteristics and the search 

for extracellular endogenous and exogenous factors that either mimicked or inhibited the 

phenomenon. It proved that protection occurred during two distinct episodes: a first window of 

protection (F\VOP) that lasted 2 to 3 hours after the preconditioning stimulus was applied {1,21, 

and a second window of protection (S\VOP) between 24 and 72 hours [S-1OI, The mechanisms of 

protection for these two windows are most likely not the same. Endogenous rapidly factors 

produced agonists may activate intracellular pathways during F\VOP, while the slower process 

of induction of heat-shock proteins may be involved during the S\VOP. Initially, attention 

focussed on activation of adenosine AI-receptors [11,121 or K+ATP chatmel opening (lJ, 141, as the 

mechanisms for protection during F\VOP. More recently activation of protein kinase C has 

received wide attention {15}, Prior to reviewing the role of protein kinase C, we first review the 

current state of knowledge of the molecular mechanism(s) of ischemic preconditioning and 

introduce the generally ktlO\\,ll biochemical properties of protein kinase C and before discussing 

the limitations ofthe techniques used to investigate the potential role of protein kinase C. Finally, 

the evidence that activation of protein kinase C and the intracellular signalling pathways leading 

to its activation playa pivotal role in the mechanism of ischemic preconditioning is summarized. 

However, not all studies support a role for protein kinase C in preconditioning and this issue 

rcmains therefore controversial at the present time, 

.Most studies on ischemic preconditioning used in£'1fct size as endpoint, but other endpoints 

such as recoveI)' of contractile function, and protection against rcperfusion-induced ventricular 

arrhytlunias have also been used. Because these other endpoints require different experimental 

conditions (Le, shorter duration of the sllstained occlusions) we have limited ourselves to studies 

which used infarct size as endpoint. For this same reason we have excluded studies on ischemic 

preconditioning in other organs. 
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Figure 1. Isozymes of prole in kinase C, the functional domains in their primal)' structure, and receptor-coupled 
phospholipase C-mediated signal transduction leading to protein kinase C activation. The various protein kinase 
C isozymcs share some sequence homology and have all a common ATP-binding site(C3) and catalytic site (C4). 
Only protein kinase Ca, -Pl' -Pl and -y have a Ca2

' binding site (e2) and 1 ,2-diacylglyceroJ (I ,2-DAG) - binding 
site (C I). In the inactivated state the isozymes of protein kinase C are folded so that an endogenous "pseudo 
substrate" region on the N-temlinal part of the protein occupies the catalytic site (C·tenninal part). When agonisls 
(see text) bind to their specific receptors linked to phospholipase C in the cardiac sarcolemma, receptor activation 
is followed by phospholipase C catalyzed hydrolysis of Pldlns(4,5)P2 to foml inositol-I,4,5-trisphosphate 
(Ins(I,4,5)PJ). Ins(I,4,5)P) releases Cal + from the Ins(1 ,4,5)P) receptor-sensitive Cal

< storage sites in the cardiac 
sarcoplasmic reticulum. Ptdlns(4,5)P2 hydrolysis also fOrulS 1,2-diacylglycerol (1,2-DAG), which increases the 
affinity ofsomc isozymes for Ca2

t-. When the intracellular free Ca2' concentration increases, some isozymes become 
more lightly associated with membranes containing the negatively charged head groups ofPldSer, allowing 1,2-
DAG to reach its binding site (CI) on the protein kinase C. The 1,2-DAG·protein kinase C complex npproaches 
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the membrane by placing.the kinase in a pocket ofnegativcly-charged head groups ofPtdSer in which Ci+ remains 
attracted. When this occurs, the conformation of protein kinase C changes, exposing the unoccupied catalytic site, 
thereby allowing the kinase to phosphOl)'Jate cellular proteins. 11Iere is also evidence that specific binding proteins 
(e.g. MARCKS and RACK) determine the cellular translocation process of protein kinase C isozymes. The 
membrane-bound protein kinase C-DAO-(Ca2+)-mcmbrane complex only slowly dissociates and this property is the 
basis for the commonly used "translocation assay" for assessment ofPKC activation. Figure adapted from Zeisel 
e/ al lH1 , with pernlission of the FASEB Journal. 

Current state of knowledge ofthc molecular mechanism(s) of ischemic preconditioning 

Activation of receptors by exogenously administered stimuli such as adenosine {II. 12], 

bradykinin {16, 171, noradrenaline [18, 19J, acetylcholine (20,21 1, endothelin-l In) or opiates {23J mimic 

myocardial protection by ischemic preconditioning. Intracellular signalling by these stimuli, via 

GTP-binding-protein-linked receptors and phospholipase C and possibly phospholipase D (see 

later) [24,25], leads to activation of one or more isozymes of the protein kinase C family which then 

phosphorylate putative target proteins [15,
26

1. Possible target proteins are those that regulate 

opening ofK\TP channels [13, 14, 27J, activate ecto-5'-nucleotidase {28J (during F\VOP) or modulate 

transcriptional regulation of the expression of heat shock proteins 129,301 (during S\VOP). For 

instance, K\TP chaImcls are opened when all ischemic preconditioning stimulus is applied, while 

blockade ofK+ATP chaImels prevents ischemic preconditioning [13.141. It is likely that modulation 

ofK+ATP channels in the mitochondria, sarcoplasmic reticulum or the nucleus are involved in the 

mechanism of protection as blockade of the action potential shortening by dofetilide does not 

abolish protection by ischemic preconditioning pl}. Since protein kinase C can be activated via 

various receptors linked to phospholipase C- and possibly phospholipase D-mediated signalling 

pathways, these receptors may act synergistically (IS]. Opening of K\TP channels by 

pharmacological substances lowers the threshold for ischemic preconditioning P21, which is 

consistent with the hypothesis that K\TP channels arc target proteins for protein kinase C. 

Kitakaze et at 128) reported that ischemic preconditioning increased ecto-51-nucleotidase activity 

and that activation of protein kinase C increases ecto-5 1-nucleotidase activity in isolated rat 

cardiomyocytes, supporting the candidacy of ecto-5'-nucleotidase as another target protein of 

protein kinase C. 

General biochemical properties of protein kinase C 

In general, the confonnation of protein kinases consists of two regions which are connected 

by a region functioning as a hinge. The protein substrate fits into the groove between the two 

regions and interacts with a catalytic domain and cofactors interacting with the regulatory domain 

{33], The specificity of protein kinases such as cyclic AivfP dependent protein kinase, Ca2+_ 

calmodulin dependent protein kinase (CaM-PK) and protein kinase C for their substrate proteins 

is detennined by both the primary sequence of these proteins around their phosphorylation site 

and the capacity of these sites to interact with the catalytic domain of the protein kinase. 

Generally, protein kin8ses are inactivated by the interaction between a pseudo substrate region 
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in the protein kinase's primary sequence and the active site [331, This restraint is removed during 

activation by changes in protein kinase conformation due to interaction of second messengers 

(e.g. cyclic AMP, 1,2-diacylglycerol (l,2-DAG) and Co") with the protein kinase's regulatory 

sites and by competition between the protein substrates and the pseudo substrate site, all present 

at the N-terminal region of the primary structure of the protein kinases (Figure 1). Indeed, 

activation of most protein SerinefThreonine (Scrrrhr) kinases is preceded by receptor activation 

followed by synthesis or release of low-molecular-weight protein kinase effectors or second 

messengers. 

Protein kinases can be divided in several types. Protein kinase A is a cyclic ANIP dependent 

proteiIvSerrrhr kinase, while protein kinase C is a group of protein-Serrrhr kinases which are 

phosphatidylserine (ptdSer-), 1,2-DAG- and/or Ca"-dependent. Recently, protein kinase D was 

discovered in COS cells to be dependent onl,2-DAG and phorbol esters, but infonnation on this 

enzyme in myocardium is not yet available pSI. In myocardial cells protein kinase C regulates 

various processes, including myocardial contraction, ion transport, energy metabolism, gene 

expression and hypertrophic growth [25, 36, 371. The role of protein kinase C in growth and 

proliferation has been implied by its identification as a high-affinity intracellular receptor for 

tumor-promoting phorbol esters which directly activate most protein kinase C isozymes in a 

relatively unspecific maruler. Phosphorylation of target proteins by protein kinase C isozymes 

depends on their intracellular location at the time of action, This compartmentalization may be 

caused by the architecture and intracellular localization of anchor proteins e.g. the so-called 

receptors for activated C kinase (RACK) [38.
391. Therefore, after protein kinase C is activated it 

translocates to other cellular compartments such as the sarcolemma where it exerts its principal 

action (Figure 1). However, several other compartments such as mitochondria, myofibrils, 

sarcoplasmic reticulum and the perinuclear zone also possess specific receptor sites for protein 

kinase C isozymes {40J. 

Protein kinase C isozymes. 

The protein kinase C family can be divided into three distinct subfamilies on basis of their 

structure and catalytic and regulatory properties (Figure I). Classical protein kinase C isozymes 

(cPKC's) such as protein kinase C-a, -PI' -p, and -yare activated by Ca'· ,PtdSerand 1,2-DAG 

or phorbol esters such as phorbol-12-myristate-13-acetate (PMA). Novel protein kinase C 

isozymes (nPKC's) such as protein kinase C-o, -E, -t), -8 and -11 are Ca2t independent and only 

need PtdSer and 1,2-DAG (or PMA) to become activated. Atypical protein kinase C isozymes 

(aPKC's) are protein kinase C-(, -\ and -A which are also Ca'·independent and only require 

PtdSer, to become activated (Figure 1), At present, the still growing number of isozymes can be 

discriminated by immunoblot or immunohistofluorescence analysis, Most investigators use 

histone III-S as substrate and y-32P-Iabelled ATP as phosphate donor to measure protein kinase 

C activity, which reflects the activity of some of the isozymes present in the cellular fraction, 
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Histone IlI-S, is a poor substrate for some nPKC's (0, E and 11) compared to the other isozymes 

(a, PI' Il" y) [411. Moreover, techniques such as hydroxylapatite high-pressure-Iiquid­

chromatography can be used to determine the activity of protein kinase C isozymes after 

separation [421. Measurement of the mRNA concentration using specific cDNA probes on 

Northern blotting can also be used for the detection of protein kinase C isozymes (431, but mRNA 

levels offer only limited infonllation because these do not always reflect the functional activities 

of the isozymes. 

In a preliminary study it was found that a, 13, E and ( are the most prominent isozymes in the 

rat heart (HI. Similar observations have been made in cultured neonatal rat cardiomyocytes [45J and 

adult rat cardiomyocytes [~6J. However, in a more recent study in adult rat ventricular myocytes, 

protein kinase C-E was abundantly present and protein kinase C-a could not be detected [47.48J, 

while in another study protein kinase C- a, -0, -E, -11, -8, -(, -).. and -l were detected in adult rat 

heart [~9J. In the canine heart the presence of protein kinase C-a, -PI' -P2' -y, -0, -E, -t, -8 and-( 

has been described [50]. Thus, the species and the type of assays determine the pattern of protein 

kinase C isozymes. Furthermore, the affinity and the specificity of the antibodies used to detect 

the protein kinase C isozymes determine the abundancy of detection but not the absolute 

concentration of the isozyme in vivo. In the pig, using rabbit polyclonal antibodies, we have 

demonstrated the presence of protein kinase C-a and -E, while the isozymes -0 and -( were 

undetectable. Other isozymes were not studied [5IJ. The studies carried out on myocardial 

hOlllogenates do not only include myocytes but also fibroblasts, smooth muscle cells and 

endothelial cells. Consequently, the protein kinase C isozymes of these cells in these 

homogenates all togcther are measured. So far, in only one study immunohistochemistry was 

used to detect the isozymes in situ [~81. In that study it was concluded that protein kinase C-o is 
probably the most important isoform involved in preconditioning in the rat heart {48J. 

PI"otein kinase C in coupling phospholipase e- to phospholipase D-activation 

Endogenous ligands such as adenosine Al -, a[-adrenergic- and muscarinic agonists) 

bradykinin, angiotensin II. endothelin-l or opiates stimulate, via the receptor-G-protein coupled 

to phospholipase. the intracellular signalling pathway. [15, ~8< 52.56J. Phospholipase C catalyzes 

hydrolysis of phosphatidylinositol-4,5-biphosphate (Ptdlns (4,5)P,) which leads to formation of 

the second messengers inositol-I,4,5-trisphosphate (Ins(l,4,5)PJ ) and 1,2-DAG (Figure I) [251, 

These messengers. directly or indirectly, activate Ccr+ -independent and/or Ca2
+ -dependent protein 

kinase C isozymes and calmodulin-dependent protein kinase (Carvl-PK). The activated protein 

kinase C isozymes and/or CaM-PK phosphorylate specific target proteins which may be 

responsible for FWOP. Phospholipase D, another 1,2-DAG forming enzyme, can be strongly 

stimulated by phorbol esters [.1b.45.5U7,58], It lIses phosphatidylcholine (PtdCho) as substrate and 

its activation leads initially to formation of phosphatidic acid (PtdOH) and choline [59[, PtdOH 

is rapidly hydrolysed to I ,2-DAG and inorganic phosphate (P,) by PtdOH hydrolase. The 1,2-



Table 1. Protein kinase C inhibitors and nrotection bv ischemic nreconditioning. ----------- -------------------

Model Species CP-Stimulus Prolonged· Protein kinase C inhibitor Evalu.ation Result Reference 
»(l+R) (min) Stimulus (ISUFR) 

!(R) (min) 

Isolated heart "", 3x(SI+SR) 301(120R) Polymyxin B. before PC-stirn ISL Abohshes [66] 
3x(SI+SR) 301(120R) Chclerythrine. before PC-stirn ISL Abolishes 

lx(2I+10R) 201(40R) Staurosporinc. beforc PC-stirn FR Abolishes [481 
Phenylcphrine+l0R 20I(40R) Staurosporine. before PC-stirn FR Abolishes 
Ix(2I+I0R) 201(40R) Chelerythrine. before PC-stirn FR Abolishes 
Phenylephrine+ 1 OR 20I(40R) Chelerythrine, before PC-stirn FR Abolishes 

Rabbit 1»(SI+l0R) 30I(l20R) Staurosponne, before and after PC-stirn ISL Failed to abolish [17} 
lx(SI+l0R) 30I(120R) Staurosporine, after PC-stirn ISL Abolishes 
Brndykinln 30I(120R) Staurosporine, after PC-stirn ISL Abolishes 
Brndykinin 301(l20R) Polymyxin B, 50 min starting S min before PC-stirn ISL Abolishes 

l»(SI+10R) 301(lSOR) Polymyxin B. S min after PC-stirn ISL Abolishes [521 

Phenylephrine 301(120R) Polymyxin B, before and after PC-stirn ISL Abolishes [5SJ 

Angiotensin 1I 30I(120R) Polymyxin B, 50 min starting Smin before PC-stirn ISL Abolishes [S6J 

In Vivo "", Ix(5J+l0R) 451(150R) Chelerythrine, after PC-stirn ISL Abolishes [S3] 

3»(31+SR) 90I(240R) Calphostin C, before and after PC-stirn ISL Abolishes [68] 

Rnbbit lx{SI+IOR) 30I(lS0R) Staurosporine,5 min after PC-stirn ISL Abolishes [S2J 
Ix(SI+IOR) 301(ISOR) Polymy;<in B. 5 min :liter PC-stirn ISL Abolishes 

lx(51+10R) 301(lSOR) Chelerythrine, 8 min after PC·stim ISL Abolishes [67J 

lx(SI+l0R) 30I{JSOR) Staurosporine, before PC-stirn ISL Partw.lly ubolishes [63] 
lx(Sl+IOR) 301(ISOR) Colchicine. 30 min before PC-stirn ISL Abolishes 

Do, 4x(5I+1OR) 60I(240R) H-7 (IV). before, during and after PC-stirn ISL Failed to ubolish [64J 
4x(51+10R) 601(240R) H-7 (1C). before. during and after PC-stirn ISL Failed to abolish 
4x(5I+l0R) 60I(240R) Polymyxin B, before. during and after PC-stirn ISL Failed to abolish 

4x(51+5R) 901(360R} Polymy;<in B. S min before and during PC-stirn ISL Abolishes [28] 
4x(SI+SR) 901(360R} GFI 09203X. 5 min betbre and during PC-stirn ISL Abolishes 
Methoxamine 9OJ(360R) Polymyxin B. S min before and during PC-stirn ISL Abolishes 
Methoxamine 9OI(360R) GFJ09203X. S min before and during PC-stirn ISL Abolishes 

Pig 2x(10I+30R) 60I(120R) Stallrosponne ISL Failed to abolish [69] 
BIS 601(120R) Bisin.dolylmaleimide ISL Mimics 

I""ischemia; R reperfusion; CP cardioprotective; BIS bisindoiyimaieimide; H-7 1-(5-isoquinoiinesuifonyl)-2-methylpiperazine; ISL infarct size limitation; FR~functional 
recovery. 
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DAG formed by phospholipase D potentially contributes to activation of protein kinase C 

isozymes [51 1, Stimuli such as noradrenaline, angiotensin II and endothelinwl stimulate both 

phospholipase C and phospholipase D 145,58, 601, In fact, protein kinase C has been proposed to 

function as a switch which reduces the rate of Ptdlns(4,5)P, hydrolysis catalyzed by 

phospholipase C and stimulates the rate ofPtdCho hydrolysis catalyzed by phospholipase D 151. 

58, 591, Through this "cross talk"- mechanism between phospholipase C and D, the cardiomyocytes 

may be continuously supplied with 1,2wDAG after receptor stimulation, because the ceBular 

concentration ofPtdCho is about 100 times higher than that ofPtdlns(4,5)P2,The continuous 

production of 1,2wDAG could be of importance for maintenance of activation of the protein 

kinase C isozymes involved in ischemic preconditioning, 

Evidence for a role of protein ldnasc C in ischemic preconditioning 

Inhibition a/protein kinase C Cfable I) 

Selective inhibition of protein kinase C activation by administration of inhibitors prior to or 

after applying the cardioprotective stimulus is one approach to investigate the role of protein 

kinase C in ischemic preconditioning, Depending on the inhibitor, protein kinase C function can 

be blocked at its catal)1ic or regulatory sites (Figure 1), It is also possible to downregulate protein 

kinase C activity by prolonged (1-2 days) stimulation with phorbol ester I'\{. This last approach 

has not been used in ischemic preconditioning, but is ofinterest in view of the development of 

tolerance to ischemic preconditioning when a very large number of brief occlusion-reperfusion 

sequences are applied[62l, 

The most prominent drugs used to inhibit protein kinase activation or translocation are 

staurosporine [11,48,51,631, 1 w(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7) 127,6--11, chelel)'thrine 

153,65--611, calphostin-C [68], polymyxin B [11,52,55,56,6-.1,661• bisindolylmaleimide [28,69] and colchicine 

[631, Staurosporine, H-7, and polymyxin B are non-specific inhibitors of protein kinase C 

compared to cyclic AMP-dependent protein kinase, CaM-PK or protein-Tyr killases 1701. All non­

selective inhibitors act on the catalytic domain of protein kinase C, which contains a high degree 

of sequence homology with other protein kinases, The more specific inhibitor calphostin-C [711 

acts on the regulatory domain (Figure I), Chelerythrine, another specific inhibitor [611 interacts 

with the catalytic domain but also competes with the classically used protein substrates of protein 

kinase C {S7J, Furthennore, polymyxin B directly blocks 1('" AlP channels, one of the possible target 

proteins of protein kinase C and is therefore not well suitable to investigate the role of protein 

kinase C in ischemic preconditioning [72, 7J], Moreover, it is unknown whether protein kinase C 

inhibitors are equipotent for all enzyme isozymes, It is quite feasible that the degree of inhibition 

depends on both the isozyme 160, 1-.1-76] and species, Table I shows that polymyxin B ]661, 

staurosporine [48J and chelerythrine [48J abolished the protective effect in isolated rat hearts and 

calphostin-C [68J and chelerythrine [53] in the in vivo rat model. Polymyxin B 111, 52, 55, 56J and 



Table 2. Protein kinase C activators and mlCocardial infarct size. 
Model Species CP-Stimulus Prolonged- Evaluation Result Reference 

x(I+R) (min) Stimulu.~ (ISLlFR) 
I(R) (min) 

]$olatcd he:trt R" SAG 20I(40R) FR Mimics [48J 

Rabbit PMA 301(180R) ISL Mimics [52J 
OAG 30I(180R) ISL Mimics 

PMA 301(120R) ISL Mimics [63J 

In Vivo R" DOG 451(150R) ISL Mimics [53J 

Rabbit PMA 30I(180R) ISL Mimics [63J 

Pig PMA None ISL Failed to mimic [69J 

I""ischemia; Ro;;reperfusion; CP=cardioprotective; SAG=lwstearoyl-2~arachidonoyl glycerol; PMA=phorbol-12-myristate~13-acetate: OAG=oleyl acetyl-glycerol; DOG=1,2-
dioctanoyl sn-glycerol: ISL=infarct size limitation: FR=functional recovery. 
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staurosporine (171 abolished protection in ill vitro and polymyxin B [52], staurosporine [52,63], 

chelerythrine [67] and colchicine 163J in in vivo rabbit modeL In dogs, the data are different as 

Przyklenk el at [64] observed that polymyxin Band H-7 did not abolish cardioprotection by 

ischemic preconditioning, In a preliminary study in pigs, staurosporine and bisindolylmaleimide 

limited infarct size [69), These studies suggest a different role for protein kinase C in rats and 

rabbits than for dogs and pigs. The different results in rat, rabbit and pig could be related to 

species~dependent differences in myocardial expression, in the task performed and the site of 

translocation of the various isozymes [38,39,48, 6-t, 771, Moreover, the various isozymes might be 

activated differently by Ca2+, 1,2~DAG and free fatty aeids [24.
25

,36,37], 

Reviewing the studies using phannacological blockade one is tempted to conclude that the 

protein kinase C family is involved in the mechanism of ischemic preconditioning in rat and 

rabbit. However, none of the studies investigated whether blockade of protein kinase C actually 

occurred in the in vivo modeL In vitro assays of enzyme activity will not provide conclusive 

answers either because these have to be performed in subcellular fractions in the absence of the 

inhibitor due to the isolation procedure and in the presence of optimal amounts of 1 ,2~DAG 

and/or Ca2
+, The ideal experimental design would be to study the enzyme activity in vivo by 

measuring phosphorylation degrees of one or more of the unknown specific target proteins, 

Aclivalioll o/proleill killase C (Table 2) 

Activation of protein kinase C by administration of phorbol esters, such as 12-0~ 

tetradecanoyl phorbol-13-acetate (TPA) and PMA [21.66] or 1,2-0AO analogues such as 1-

stearoyl-2-arachidonoyl glycerol (SAO) ]48], 1,2-dioctanoyl "II-glycerol (000) lOll and oleyl 

acetyl-glycerol (OAG) [64J prior to a sustained coronary artery occlusion has been a second 

approach to investigate the role of protein kinase C in ischemic preconditioning, The advantage 

of using phorbol esters over 1 )-DAG as activating substances is that they are not metabolized 

and produce prolonged protein kinase C activation, Protein kinase C translocation takes place 

after phorbol ester (or the I ,2-0AO analog) is bound to the enzyme's regulatOly domain whereby 

it obtains not only an increased aft111ity for acidic membrane phospholipids (PtdScr) but also an 

increased activity (Figure I). 

PMA and severall,2-DAG analogs mimic preconditioning in the rat [53] and rabbit {52.63], but 

PMA failed to limit infarct size in pigs [69J, Przyklenk el al [6-t] measured protein kinase C 

translocation after administration of PMA in dogs, Although these studies lack information 

regarding activation (translocation) of the isozyme(s) in relation to the protective effect, the 

results with activators suggest a role for protein kinase C in ischemic preconditioning in rat and 

rabbit. Furthennore, the route of administration and the dose used may be different for the large 

animal studies and the in vitro and vivo studies of small animals. For instance, Vogt et a/{69] used 

intramyocardial administration of PMA (1 ~{.r..1) to activate protein kinase C but failed to mimic 

the protective effect of ischemic preconditioning, However, the dose could have been too high 



Table 3. Protein kinase C translocatioDiactivation and erotection h;y ischemic Ereconditioning. 
Model Species CP·Stimulus Prolonged. PKC :tSsay Result Reference 

x(l+R) (min) Stimulus 
l(R)(min) 

Isolated heart Rot Ix(21) none immunohisto fluorescencc PKC-o to s:ll'co1emma. € to nucleus, no (, 0:, i3J [48] 
Phcnylephrine none lmmunohisto fluorescence PKC·o to s:lI'co1emma.' to nucleus, no E, 0:, i3J, T] 

In Vivo Do, 4x(SI+iOR) None Fluorescent to binding by confocal microscopy No PKC translocation [64] 
4x(SI+I0R) None Activity by protein phosphorylation No PKC activation 
None lOi Activity by protcin phosphorylation PKC activation vs Coni 
4x(SI+IOR) lOi Activity by protein phosphorylation PKC activation vs Coni 
PMA None Activity by protein phosphorylation PKC activation 

Dog 4x(51+SR) None Activity by protein phosphorylatIon PKC activation [28] 

Pig Jx(JOl+7.5R) Nonc Immunoreactivity on Western blot PKC-€ translocation [58] 
Ix(lOI+7.5R) None Activity by protein phosphorylation PKC-€ translocation 

Pig 2.-.(10+30) None Activity by protein phosphorylation PKC activation [69] 
PMA None Activity by protein phosphorylation PKC activation 

I"'ischemia; R""reperfusion; CP=cardioprotective; PMA""phorbo!-12-myristate-13-acetate; PKC= protein kinase C. 
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because Cohen el al l781 found that 0.2 nM PMA was protective while 2 nM PMA was damaging 

in the isolated rabbit heart. It is feasible that in that study the low dose of PMA activated an 

isozyme that is protective, while at the higher dose an isozyme was activated that was damaging 
[78J, 

Measuremellls o/proleill killase C-lralls/oealioll (aelivalioll) (Table 3) 

Translocation of protein kinase C from the cytosol to the membrane has been investigated 

employing; (1) immunoblot analysis using protein kinase C isozyme-specific antibodies of SDS­

electrophoretically separated subcellular fractions isolated from myocardial homogenates [44,51, 

691; (2) immunohistofluorescence detection (with confocal microscopy) of protein kinase C 

isozymes in sections of myocardial tissue 148, 6-41; (3) assay of total protein kinase C activity in 

subcellular fractions isolated from myocardial homogenates by measurement ofC~+ - and/or 1,2-

DAG-dependent 32p incorporation from y-32P-labelled ATP into histone III-S or a protein kinase 

C isoenzyme-specific substrate protein such as peptide-€ [51,54,6-4, 79J or other peptides [28,6-41, A!l 

three methods have their limitations, For instance, in protein phosphorylation or inununo­

reactivity assays, cardiac biopsies are usually rapidly frozen in liquid N,. followed by preparation 

of particulate fractions from the hOl11ogenates. It can not be excluded, however, that 

relocalization or (in)activation occurs during isolation of the subcellular fractions. In the 

subfractions both the basal rate and the maximum rate of histone III-S (or other substrate protein) 

phosphorylation are measured in the presence of Ca'·, PtdSer and I ,2-DAG. The results of these 

measurements only reflect the total protein kinase C activities in the subcellular fractions. 

Moreover, histone III-S is, a relatively poor substrate for some nPKC's (0, € and 11) compared 

to the cPKC's [411. Therefore, measurements of the rate of 32p incorporation into the synthetic 

protein kinase C-E-specific substrate peptide-€ may provide the required information about the 

E isozyme 1511. It should also be noted that mixed micelles ofCa'·-1,2-DAG-PtdSer elllbedded 

in Triton-X-IOO micelles, used to activate proteih kinase C in the 32p incorporation assays, only 

mimic the cellular membrane envirorunent of protein kinase C in the intact cell. It is unknown 

whether myocardium is preconditioned homogenously or heterogeneously, In the latter case, the 

sampling site of the biopsy may pose a restriction. Because, protein kinase C assayed in 

subcellular fractions isolated from homogenates of whole myocardial tissue represents a mixture 

of activities of myocytes, fibroblasts, smooth muscle cells and endothelial cells, 

Inununohistofluorescence measurements must therefore be perfonned to provide information on 

the cell type involved in protein kinase C translocation/activation, Measurements of protein 

kinase C isozyme activity by immunohistofluorescence must, however, be interpreted with 

caution, because the specific antibodies are not always capable to distinguish active from inactive 

protein kinase C isozymes. 

\Veinbrenner et ai, using \Vestem blotting, showed in rats a rapid translocation of the Ca2
+_ 

dependent protein kinase C isozyme a and the Ca2t -independent isozymes (0, E and () to the 
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sarcolemma after brief ischemia and increased expression of the Ca2+-independent of protein 

kinases C-o and -E in the cytosol after prolonged ischemia [241, Mitchell et all using 

immullohistofluoresccnce, showed in rat hearts that protein kinase C-O translocated from the 

cytosol to the sarcolemma after both brief ischemia and ai-adrenergic stimulation [48], Brief 

ischemia also caused translocation of protein kinase C-E from the cytosol to the nuclear region. 

Measurements of other protein kinase C-isozymes (0:, Pl' ( and 11) did not provide evidence for 

occurrence of translocation after brief ischemia or ai-adrenergic stimulation [48
1, These results 

provide the first evidence that (at least in the rat) specific protein kinase C isozymes arc involved 

in ischemic preconditioning. 

Przyklcnk el al used a probe consisting of the protein kinase C inhibitor bisindolylmaleimide 

conjugated to fluorescein that selectively binds to active protein kinase C and observed no 

difference in the total amount and the cellular distribution of protein kinase C fluorescence with 

preconditioning in dogs [M). The advantage of this method over immunofluorescence is that it 

distinguishes between active and inactive protein kinase C. In their study Przyklenk et al also 

obtained quantitative information on the changes in the amount and subcellular distribution of 

protein kinase C by measuring the rate ofJlp incorporation into the threonine group of a protein 

kinase C-spccific peptide, which was not further specified [M). A small rise in protein kinase C 

activity was found in the membrane fraction isolated from biopsies obtained after 10 min of 

ischemia compared to those isolated after four sequences of 5 min occlusion-reperfusion or no 

intervention 1M ). However, no difference in protein kinase C activity between matched groups of 

controls and 'ischemic preconditioned' dogs could be measured at time points comparable to the 

onset of the long occlusion or at 10 min into sustained ischemia IMI. Using the same protein 

kinase C analysis, Vogt el al found a modest (10 to 20%) redistribution of protein kinase C from 

the cytosol to the membrane fraction in pig hearts subjected to 10 min of ischemia [691. In contrast 

to the studies by Przyklenk e/ al [641, Kitakaze e/ al PSI observed in the same canine model a 

marked translocation of Ca~+ - and lipid-dependent protein kinase C activity in cytosol and 

membrane fractions isolated from preconditioned epi- as well as endomyocardium. These authors 

ascribed their positive findings to the time of measurements (5 min after the preconditioning 

stimulus against 10 min by Przyklenk el al [MJ). 

\Vc studied translocation of protein kinase C enzyme activity by 31p incorporation into histone 

III-S and E-peptide and immunoreactivity of a number of protein kinase C isofonns (a, E, 0 and 

() of cytosolic and membrane fractions isolated from biopsies of porcine myocardium 

preconditioned by a lO-minute coronary artery occlusion and 7.5-minutes ofreperfusion [5I, SOI. 

Cal" and I ,2-DAG-stimulated protein kinase C activity with histone III-S as substrate was higher 

in the cytosolic and particulate fractions isolated from the preconditioned myocardium than from 

the control region. Significant Ca2
> -independent, 1,2-DAG-stimulated phosphorylation of E­

peptide was found in the cytosolic fractions, but not in the particulate fractions. However, no 

signiticant increase of 1,2-DAG-stimulated phosphorylation of E-peptide in the cytosolic fraction 
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from the preconditioned myocardium was observed. These were rather unexpected findings in 

view of our protein kinase C~E inullunoreactivity measurements (see below). The cytosolic and 

particulate fractions were also examined by immunoblot analysis using rabbit polyclonal 

antibodies specific for protein kinase C~a, ~o, ~E and ~C isozymes [511. This analysis revealed 

signHicant levels of expression of the Ca2t ~independent isozyme protein kinase C~E, the abundant 

presence of protein kinase C~a, while protein kinase C~O and -C were virtually undetectable. The 

immunoreactivity data also indicate that neither the (Ca'· and I ,2-DAG)-stimulated histone lII-S 

and peptide-E kinase activities of the cytosolic nor those of the particulate fractions reflect the 

relative immunoreactivities in the corresponding fractions. In contrast to the 32P~incorporation 

data, the immunofluorescence data suggested that the total amount and subcellular distribution 

of protein kinase C~a and -E was not altered in the preconditioned region compared to the non~ 

ischemic region of the left circumflex coronary artel)'. Therefore, by using immunofluorescence 

we were unable to detect the occurrence of ischemia-induced expression of protein kinase C or 

ischemia-induced translocation of protein kinase C from the cytosolic to the particulate fraction 

of the protein kinase C isozyme ~a, ~o, ~E or C. On the other hand, binding proteins, such as 

myristoylatcd-alanine-rich-C-kinase-substrate (MARCKS) and RACK may determine whether 

activated protein kinase C isozymes translocate and are providing another mechanism for 

functional specificity to specific intracellular locations. Thus, in the in vitro phosphorylation 

assays of the subcellular tractions, different amounts of ~vlARCKS- or RACK~bound protein 

kinase C isozymes can alter the protein kinase C activity measured [8!}. This could cause the 

discrepancy between the activity assays and "'estern blotting. Nevertheless, our results on 32p 

incorporation demonstrate an increase ill cytosolic and membralle~bound protein kinase C 

activities due to brief ischemia and supports a role for protein kinase C in ischemic 

preconditioning in pigs [511. 

Concluding remarks 

At present MARCKS is the only endogenous target protein for protein kinase C, that has 

been shown to be phosphorylated in preconditioned rabbit myocardium. However, the fanner is 

believed to be an intracellular location site rather than a protein lactor intimately involved in the 

protective response [l\21. Irrespective of the target protein(s) we are deating with, its (their) 

covalently bound phosphates must be relatively stable during the 2 to 3 hours in which the 

cardioprotection is present (F\VOP). Furthermore, the precise time point that protein kinase C 

is maximally translocated (activated) during ischemia or rcperfusion (preconditioning stimulus) 

is unknown and consequently also the time point at which the enzyme reaches the target proteins 

for catalyzing their phosphorylation. It is quite feasible that protein kinase C is removed from its 

translocation site or proteolytically degraded after it has performed its action and thereafter it is 

not longer detectable by immunoreactivity or activity measurements. It is therefore mandatory 

to determine the time course of translocation/activation and subsequent 
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relocalizationlinactivation or proteolytic degradation of the protein kinase C isozyme and the 

time course(s) of phosphorylation and dephosphorylation or proteolytic degradation of the target 

protein(s). Because the time course of weaning of the protective effect of the FWOP is roughly 

known, the time course of dephosphorylation/inactivation of the target protein could be 

correlated to the time course of weaning of protection. Candidate target proteins of protein kinase 

C involved in the F\VOP are c.g. the K+ATPchannel [13, 14j and/or the ecto~51-nucleotidase 128], but 

experimental evidence for phosphate incorporation into these proteins or regulating proteins is 

lacking. If the K\1J' chaIll1cl or the ecto-S-nucleotides are target proteins the most likely 

translocation site for the protein kinase C isozyme(s) involved in the F\VOP is the sarcolemma. 

Protein kinase C is involved in the agonist-receptor interaction induced changes in gene 

expression of many cells {25, 36, 37, 74, 75, 41, 831. Taking into account the time required for inducing 

heat shock/stress proteins [29, 30J the former may only play a role in S\VOP. Therefore, a 

transcription factor involved in the regulation of expression of heat shock/stress proteins could 

be another potential target protein of protein kinase C. If true, the nucleus may be the 

translocation site for the protein kinase C isozyme(s). 
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Myocardial pl'Otein kinase C isozymes-cx, -0, -E and -( in classic 

ischemic preconditioning and cardioprotection by remote organ 

ischemia 

Backgrolilld. \Ve have shown in rats that not only brief coronary artery occlusion (CAO) 

(ischemic preconditioning) but also brief anterior mesenteric miery occlusion (MAO) limits 

myocardial infarct size produced by a sustained coronary artery occlusion. It has been postulated 

that intracellular translocation of protein kinase C following activation of receptors is involved 

in ischemic preconditioning. In the present study we investigated the cellular distribution of 

myocardial protein kinase C isozymes ~a, -0, -E and -( in rats after brief MAO and CAD in order 

to investigate the possible involvement of activation of protein kinase C in the cardioprotection 

by brief MAO and CAO. 

Methods alld Results. In 3 groups of anesthetized rats left ventricular free wall was isolated 

after a 25Rminute sham period or after 15 minutes CAO and 10 minutes reperfusion or after 15 

minutes MAO and 10 minutes reperfusion. Tissue samples were processed to isolate cytosolic 

and membrane fractions wherein the immunoreactivities of protein kinase CRa, RO, RE and R( were 

measured by \Vestern blotting. Total protein kinase C activity was also measured in the 

subcellular fractions using (y"P-)ATP and histoll III-S as a substrate. Protein kinase C-a, -O,-E 

and R( immunoreactivities expressed as percentage of the chemiluminescence counts per pg of 

the total protein content of the cytosolic and membrane fraction of the matched control 

experiment tended to decrease in the cytosolic fractions of the CAO. Only the decrease in 

cytosolic protein kinase CRo was significrult (P=O.Ol). No changes of the protein kinase CRa, RO, 

RE and R( immunoreactivities in the mem.brane fractions were observed. In the MAO group no 

changes of the protein kinase CRa, RO, -E and R( immunoreactivities in the cytosolic as well as 

in the membrane fractions were observed. By histon IIIRS phosphorylation no cluUlges of protein 

kinase C isozymes in the cytosolic fractions of the CAO and MAO were found. Moreover, Ca2+ 

and (1,2)diacylglycerol dependent activity was virtually absent in membranes. 

Conclusion. On basis of the immunoreactivity measurements we conclude that protein 

kinase CRo may trrulsiocate after CAO but not .MAO but disappearance of its immunoreactivity 

from the cytosol is not accompanied by an increase of immunoreactivity in the membrane. The 

observed change in cytosolic protein kinase C-O immunoreactivity in CAD did also not lead to 

changes in protein kinase C activity measured by histon III-S phosphorylation. 

Key JVol'ds. myocardial infarct size, signal transduction, protein kinase C, ischemic 

preconditioning, intestinal ischemia, remote cardioprotection 
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Introduction 

Exposure to brief periods of acute myocardial ischemia protects the heart against infarction 

during a subsequent longer episode of ischemia [I, 21. Tills phenomenon (ischemic 

preconditioning) is neither a tissue specific phenomenon as it has been described not only for the 

myocardium, but also for the kidney [31, brain [41, liver [51, skeletal muscle [61, lung PI and intestine 

181 nor a species specific phenomenon as it has been demonstrated in i.e. the rat [91, rabbit 1101, dog 

[II and pig [Ill, Furthermore there are indications that ischemic preconditioning also can be elicited 

in the human heart during angina pectoris preceding an acute myocardial infarction and 

percutaneous transluminal coronary angioplasty 112, 131, In our previous study we have shown that 

a brief period of mesenteric artery occlusion and reperfusion (MAO) also protects the 

myocardium [141, Thus, ischemic preconditioning may be an intrinsic protective property 

occurring within each cell type but the mechanism leading to this phenomenon does not 

necessarily have to be the same in each cell type, For instance, we observed that MAO-induced 

cardioprotection can be but the CAO-induced cardioprotection cannot be blocked at a neurogelllc 

levell14I• However, MAO- and CAO-induced cardioprotection may still have a common endpoint, 

e,g. activation of protein kinase C isozyme(s), Despite the numerous efforts to elucidate the 

molecular mechanism(s) by which transient ischemia protect(s) the myocardium the mechatllsm 

of ischemic preconditioning remains incompletely understood, Advanced hypotheses point 

toward a role for activation of adenosine [JS, J6J or activation ofK+ATP receptor chaJlllels {!7, J81, 

More recent studies suggest that endogenous ligands such as adenosine-A J, a)-adrenergic and 

muscarinic agOlllsts, bradykinin, angiotensin II, endothelin-l 1)9,201 and opioids [211 initiate an 

intracellular signalling pathway by acting via G-protein-coupled receptors, which leads to 

activation of phospholipase C-p {!9,22-
27

1, Currently there is some evidence suggesting the 

involvement of phospholipase D in addition to phospholipase C in the production of 

(I,2)diacylglycerol ((I,2)DAG) [281, Activation of phospholipase C-p (and D) increases the levels 

of the second messenger inositol-l,4,5-triphosphate (Ins(1 ,4,5)P) which mobilizes intracellular 

Ca" and 1,2-diacylglycerol ((I,2)DAG) which activates protein kinase C isozymes [191, These 

messengers can act synergistically by activation of the Ca2+-dependent, (1,2)DAG stimulated 

protein kinase C isozymes and Ca2+-calmodulin dependent protein kinase (CaM-PK), Activated 

protein kinase C isozymes and/or CaM-PK then phosphorylate specific proteins that ultimately 

lead to cardioprotection. In line with this hypothesis, the rate of dephosphorylation by 

phosphoprotein phosphatases of the specific phosphoproteins involved in preconditioning, should 

determine the period in which the protective state is maintained, The protective state of the 

myocardium appears to occur in two stages, The first window of protection (F\VOP) occurs 

immediately after the preconditioning stimulus has been applied and lasts about 2 hours [1, 291. A 

second window of protection (SWOP) appears approximately 24 hours aftcr applying the 

stimulus [30,31] and has weaned off after 3 days [321, It is most likely that F\VOP is based upon 
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changes in protein kinase C induced phosphorylation of specific proteins. The protective state 

expresses itself by a delay in the development of infarctionf\I, Thus early reperfusion after a 

prolonged coronaty artery occlusion remains a necessity to effectively limit infarct size after 

ischemic preconditioning. Consistent with the protein kinase C hypothesis is the assumption that 

all known stimuli which mimic the protective state of preconditioning converge into the 

activation of specific isozymes of the protein kinase C family via receptor-mediated activation 

of phospholipase C-p or -D [33, 34J, K+ATP -channels [17,18J and ecto-S'·nucleotidase (35] has already 

been proposed as target proteins of protein kinase C. Long-term protein kinase C stimulation is 

known to down regulate the enzyme providing a possible mechanism of tolerance development 

to continuous stimulation [361, 

Unfortunately, the pattem oftranslocation or activation of protein kinase C and the protein 

kinase C isozymes has only been investigated by immunohistochemistry in the rat after ((,­

adrenergic stimulation [251, In this study we measured the (immunore)activities of protein kinase 

C isozymes of subcellular fractions in the cardioprotection in rats obtained by brief anterior 

mesenteric artery occlusion and classic ischemic preconditioning in order to elucidate the 

underlying (different) mechanisms, or speaking in terms of Brooks and Hearse [37J in order to 

resolve the question whether protein kinase C is a player or spectator in ischemic 

preconditioning? 

Materials and Methods 

All experiments were perfonned in accordance with the Guldillg principles in the care and 

lise of animals as approved by the Council ofthe American Physiological Society and under the 

regulations ofthe Animal Care Committee ofthe Erasmus University Rotterdam, Ad libitum fed 

male \Vistar rats (± 300 g, TNO Zeist, The Netherlands) were used in all experiments, 

Surgical procedures 

The in situ rat heart model for ischemia and reperfusion and remote cardioprotection has 

been extensively described in our previolls study [141, Briefly, rats were anesthetized with 

pentobarbital (60 mg/kg intra peritoneal) and intubated for positive pressure ventilation (Harvard) 

with room air. A PE-IO catheter was positioned in the thoracic aorta via the right carotid artery 

for measurement of arterial blood pressure and heart rate (Baxter Diagnostic Inc.), APE-50 

catheter was positioned in the inferior caval vein via the left femoral vein for infusion of 

Haemacccll (Behring Pharma). After intercostal thoracotomy the pericardium was opened and 

a silk (6-0) suture was looped under the left anterior descending coronary artery (LADCA) for 

sham or later production ofa coronary artery occlusion [38,39J, Following laparotomy, a catheter 

was positioned in the abdominal cavity to allow intra peritoneal infusions of pentobarbital for 

maintenance of anaesthesia. Subsequently the anterior mesenteric artery was dissected free and 
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a suture was placed around the artery for sham operation or to facilitate later a mesenteric artery 

occlusion with an atraumatic clamp. After the ischemic stimulus was applied, the abdomen was 

closed. The sham operated rats (Sham), as well the .MAO rats as the CAO rats which underwent 

the classical ischemic preconditioning protocol were subjected to the same procedures. Body core 

temperature was continuously measured rectally using an electric thermometer (Electromedics 

Inc.) Temperatures were maintained at 36.5-37.5°C using a coverage of the rat with aluminum 

foil and heating pads. \Vhen rats encountered ventricular fibrillation during ischemia or 

reperfusion, they were allowed to complete the experimental protocol when conversion of 

ventricular fibrillation occurred spontaneously within 1 minute or when resuscitation by gentle 

tiulInping on the thorax, was successful within 2 minutes after the onset of fibrillation. Occlusion 

as well as reperfusion were visually verified by appearance and disappearance of myocardial or 

small intestinal cyanosis. 

Experimental groups 

Left ventricular free wall of anesthetized rats was isolated after a 25-minute sham period 

in the Sham group (n= 1 0) or after 15 minutes CAO and 10 minutes reperfusion in the CAO 

group (n~ 1 0) or after 15 minutes MAO and 10 minutes reperfusion in the MAO group (n~ 1 0) 

(Figure I). 

137.5'C t 1 36.5'C 
2 

3 

Experimental Groups 

(n ~ 1 0) Con (Sham) 

Stimulus. r PKC 
measurement 

(n~10) 15min CAO + 10mln Rep 

(n ~ 1 0) 15min MAO + 10min Rep 

IIIIIIL 

~ 

-25-100 

time (min) 

Figure I. Schematic presentation of the 3 experimental groups in which the left ventricular free wall was isolated 
for protein kinase C analysis (immunoreactivity and enzyme activity). PKC=protein kinase C; Sham=control; 
CAO=left anterior descending coronary artery occlusion (closed bars); MAO=anterior mesenteric artery occlusion 
(hatched bars); Rep=reperfusion. 

Protein kinase C-Cf., -0, -E and -( imlJlllflO analysis 

Frozen left ventricular tissue samples (5-10 mg wet weight) of 8 animals of each 

experimental group were pulverized (Braun Mikro Dismembrator) under liquid N2 temperature 
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in 200 ~I homogenization buffer containing 25 mM Tris/HCI (PH 7.4), 5 mM EGTA, 2 mM 

EDT A and 5 mM dithiothreitol (DTT), thawed and subsequently centrifuged for 20 minutes at 

19,000 rpm in a JA 20 rotor (Beckman Model J2-21 Centrifuge) at 4°C and the obtained 

supernatants (cytosolic fractions) were stored frozen (M80°C) for the ultimate protein kinase C 

(inmumore)activity measurements. The sediments werc resuspended in 200 ~l homogenizing 

bufier containing 1% (v/v) TritOIlMX-lOO. Next, the suspensions were incubated for 60 minutes 

on ice and centrifuged again as above. The supernatants containing the solubilized membranes 

(membrane fractions) were used for protein kinase C analysis and the sediment discarded. Protein 

levels in 15 ~tl of the cytosolic and solubilized membrane fractions were determined using the 

standard Bradford procedure. Protein kinase C-rt, -n, -E and -( of the cytosolic and solubilized 

membrane fractions were separated on sodium dodecylsulfate polyacrylamide gel electrophoresis 

(SDS-P AAGE) and detected by imlllunoblotting following the procedure for protean II mini gel 

set up of Biorad with a 10% gel (Western-blot) and detection of the innnunoreactivity by the 

ECL"I kit (SupersignaITh' CL-HRP Substrate System GS-363 from Biorad (USA)) on the CL­

screen in the Molecular Imager (GS-363) [281. In each gel that was run, samples of the cytosolic 

as well as membrane fraction of one experiment of the Sham (control), CAO and MAO group 

were applied so that relative chemiluminescence data were normalized to the total protein content 

of the cytosolic and membrane fractions and these could all be expressed as percentage of the 

counts of the cytosolic and membrane samples of the Sham group. 

Protein kinase C activity measurements by histonill-S phosphOlylafioJ1 

In 7 animals of each experimental group protein kinase C was assayed in both the cytosolic 

and membrane fractions. The reaction medium for the basal activity of protein kinase C 

contained 10 ~tl of the reaction medium without Ca'+ (100 mM Tris/HCI (pH 7.5) and 25 mM 

MgCI,),5 pI of 100 mM p-mercaptoethanol, 1 ~I of 0.05% (w/v) histon Ill-S, 2.5 pI of 4 ~M 

phosphoprotein phosphatase inhibitor okadaic acid, 21.5 ~II water, 5 ~tl of I 00 ~IM y32P_A TP (50-

100 cpm/pmol) and 5 ~II tissue sample. The reaction medium for the Ca'" phosphatidylserine 

(PtdSer) and (I,2)DAG dependent activity of protein kinase C contained 10 pI of the reaction 

medium with Ca" (100 mM Tris/HCI (PH 7.5), 25 mM MgCI" and 2.5 mM CaCI,), 5 pi of 100 

mM p-mercaptoethanol, 5 ~tl of an uItrasonified mixture of 0.016% (w/v) phosphatidylserine 

(ptdSer) and 0.004% (w/v)(I,2)DAG, I ~II of 0.05% (w/v) histon III-S, 2.5 ~I of 4 ~M okadaic 

acid, 16.5 ~I water, 5 ~I of 100 ~M y32P_ATP (50-100 cpm/pmol) and 5 ~I tissue sample. The 

assay mixtures were preincubated at 30°C for 2 minutes and the reactions were stat1ed by adding 

5 pI of the tissue samples and stopped after 5 minutes by spotting 25 III reaction mixture directly 

on \Vhatman P8I paper. Protein kinase C activity was measured as 32p incorporation using the 

Molecular Phosphor Imager (OS-363) {281. The activity was then expressed as pmol 32p per min 

per J-lg protein. 
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It should be noted that protein kinase C isozyme (immunore)activity distribution was only 

determined in cytosolic and solubilized membrane fractions. After solubilization of the 

membranes a particulate fraction which likely contains cell organelles such as mitochondria, 

myofibrils and nuclei. \Ve were not able to measure (immunore)activity of protein kinase C 

isozymes accurately in tIus particulated fractions. The reason was the low activities and the 

inhomogeneity of the particulated sllspensions. 

Data analysis 

Comparisons between groups were analyzed using ANOV A and a post hoc Student - t - test. 

Results were described as mean±SEM and a P-value <0.05 was considered significant. 

Results 

HemodYllamic measuremellts 

Heart rate and mean arterial blood pressure 

Under normothermic (36.5-37.5°C) baseline conditions heart rate and mean arterial blood 

pressure were not significantly different between the Sham (control), CAO and MAO groups 

(Table I), Heart rate and mean arterial bloodpressure did not change during the 15-minute CAO 

and MAO and the subsequent 10 minutes of reperfusion, 

Table 1. Systemic hemodynamics in rats dOl'ing the intervention of Sham, CAO and MAO 

BL Organ Ischemia Organ Rep 

(15 min) (10 min) 

Sham (1l~7) 

HR 373±7 370±9 364±6 

MAP 98±6 95±7 88±6 

15 min CAD + 10 min Rep (n~7) 

HR 369±11 377±8 373±12 

MAP 93±7 88±8 83±8 

15 min MAO + 10 min Rep (1l~8) 

HR 369±8 363±8 356±8 

MAP 98±7 109±5 '95±6 

BL baseline; Rep=reperfusioll; CAD coronary artery occlusion; Sham control group without ischemia stimulus; 
HR=heart rate (beats/min); MAP=mean arterial blood pressure (mmHg); tv1AO=mesenteric artery occlusion. There 
were no significant differences between the preconditioning groups (CAD and MAO) and the corresponding sham 
group for both heart rate and mean aortic pressure, All data arc mean ± SEM. 
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Proleill klllase C isozyme measurements by lmmlllloreaclivlty 

Protein kinase C isozymes ~a, -0, -E and -( were measured by immunoreactivity. In the CAO 

group immunoreactivity of the cytosolic and the membrane fractions of protein kinase C 

isozymes -ct, -0, and -E tcnded to decrease, and -( tcnded to increase. However, only the decrease 

of protein kinase C isozyme-o immunoreactivity in the cytosolic fraction is significantly different 

(P~O.oI and P~O.OOI respectively) (table 2). In addition, cytosolic protein kinase C-O decreased 

in the:MAO group but this was not significant (P=O.ll and P=O.067, respectively), Protein kinase 

C-a, -0, -€ and -( immunoreactivity in the membrane fractions remained unchanged. The ratio 

membrane over cytosolic protein kinase C isozymcs-a, -0, -E and -( also did not show significant 

differences between the 3 groups. On the basis of these measurements it may be concluded that 

protein kinase CMo translocates/disappears from the cytosol but the disappearance of 

immunoreactivity is not accompanied by an increase in the membrane fraction after a CAO 

period. 

Proteill kinase C activity measurements by histon III-S phosphorylatioll 

No evidence of translocation of protein kinase C activity by histon IHMS phosphorylation 

from the cytosol to the membrane was found (table 3). Moreover, Ca2t _ cmd (1,2)DAG dependent 

activity was vittually absent in the membrane fractions, which was rather unexpected based upon 

the immunoreactivity measurements. Furthermore, the observed changes in immunoreactivity 

of the cytosolic protein kinase C-O in CAO did not lead to changes in protein kinase C activity 

by histon III-S phosphorylation in the cytosolic fractions. 

Discussion 

Protein kinase C, first identified in the brain [40-431, is present in all organs and some of its 

functions in the myocardium have now been recognized {l9,~1. In myocardial cells, protein kinase 

C regulates processes such as contractility, ion channel function, energy metabolism, specific 

gene expression and hype11rophic cell growth [451. The specificity of action or the protein kinase 

isozymes most likely depends on their intracellular location. The translocation is guided by the 

architecture and intracellular localization of anchor proteins, the so-called receptors for activated 

C kinase (RACKs) [46. 471. After activation, protein kinase C isozymes translocate to other cellular 

compartments such as the sarcolemma where they may have their actions. Mitochondria, 

myofibrils, the sarcoplasmatic reticulum or the perinuclear zone arc other possible action sites. 

The translocation process may occur via the cytoskeleton or by active transport directed .by 

microtubuli [481. 

The protein kinase C isozymes can be divided into 3 subgroups. The classical protein kinase 

C-u is activated by phosphatidylscrine (PtdSer), Ca:!t and (l,2)DAG. The novel protein kinase 

isozymes C-O and -E require PtdSer and (l,2)DAG for their activation but are Ca2' independent 



Table 2. Protein kinase C isozymes (a, 0, E and 0 in cytosolic and membrane fractions and the ratio measured by immunoreactivity. 

PKC-C( PKC-o PKC-E PKC-( 

Grou~ Cytosol Membrane Ratio Cytosol Membrane Ratio Cytosol Membrane Ratio Cytosol Membrane Ratio 

Sham (n=8) 88±6 12±3 12.0±3.4 51±6 49±6 1.2±O.3 76±8 24±8 6.0±2.9 86±6 14±6 3.5±O.7 

CAO (n=8) 77±24 IO±2 lO.9±2.5 21±4* 33±13 l.O±O.3 49±29 26±14 2.8±1.4 59±29 77±42 4.8±4.5 

MAO (n=8) 95±23 12±3 10.8±2.9 34±6 42±9 l.O±O.2 72±14 41±12 2.1±O.4 68±31 11±4 3.2±1.6 

PKC=protein kinase C. Values are mean chemiluminescence counts (immunoreactivity) as percent of Sham (Control) ± SEM, * P<O.05 vs Sham. 

Table 3. Protein kinase C activity (basal and Ca2++(l,2) diacylglycerol (DAG) activated) in cytosolic and membrane fractions measured as histon IIJ-s phosphorylation. 

Cytosol 

Groups Basal Ca'>+(1.2) DAG 

Sham en=7) 35±5 30±8 

CAO (n=7) 35±7 49±12 

MAO (n=8) 37±7 35±7 

Values are mean pmol 32P/minlJ,1g protein ± SEM (histon III-S phosphorylation). 

Basal 

42±7 

35±4 

37±5 

Membrane 

Ca'>+(I.2) DAG 

-9±5 

-2±2 

-1±8 
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and the atypical protein kinase C-( only need PtdSer, but no Ca" and (l,2)DAG. Weinbrenner 

et al (49J showed that protein kinase eRa, -0, -€ and -( are the most prominent isoforms in the rat 

heart which were also found in cultured neonatal (53] and adult rat cardiomyoC)1es [HI, 

'Veinbrenncr el al [49] also showed a rapid translocation of the Ca2+ independent protein kinase 

C isozymes -0, -E and -( and of the Ca2+ dependent protein kinase e-a to the membrane 

occurring after a brief ischemic period. Prolongation of the ischemic period led to increased 

expression of Ca2
+ independent [onns of protein kinase e-a and -E in the cytosol. Thus, in these 

shldies it appears that distribution of protein kinase C isozymes-a, -0, -E and -( was altered by 

briefi~chemia. On the basis afthe previously reported presence of these isozymes in the rat we 

have chosen to investigate myocardial protein kinase C isozymes-ct, -0, -€ and -( in classic 

ischemic preconditioning and cardioprotection by remote organ ischemia. For translocation 

measurements of protein kinase C isozymes from cytosol to membrane we have used two 

methods, both inlluunoblot analysis using protein kinase C isozyme-specific antibodies [28.49,50] 

and the assay of protein kinase C activity by Ca2+ and/or (1,2)DAG-dependent 32p incorporation 

from y32p labelled ATP into histon III-S 122,28,51, 521. 

On the basis of our inllllunoreactivity measurements we conclude that the cytosolic 

inmlUnoreactivity of protein kinase C isozyme-o in the CAO group was decreased but that the 

decrease was not accompanied by a rise in immunoreactivity in the membrane fraction. In 

addition it was also shown that the total immunoreactivity of the cytosolic and the membrane 

fraction is lower than in the Sham group. This could mean that a small part of protein kinase C-o 

is translocated e.g. to the myofibrils, mitochondria and the perinucJeus in which protein kinase 

C (immunore)activity could not accurately be measured (See Materials and Methods). A part of 

the activated (translocated) enzyme molecules in the membrane could also disappeared due to 

degradation. Although cytosolic protein kinase C-o decreased and so could first have been 

translocated (activated) by the ischemic preconditioning stimulus, the (in)direct involvement of 

this isozyme in the eventually protective effect is not proven by this finding. For the latter 

purpose it should become possible to specifically inhibit protein kinase C-O. At present no 

method is available. In the MAO group protein kinase C-o only tended to disappear from the 

cytosolic fraction. \Ve therefore tempt to conclude that protein kinase C isozymes-u, -0, -€ and 

-( are not involved in the mechanism of the cardioprotective effect of MAO. In the latter the 

cardioprotection could involve another pathway, which could directly interact with the commo.n 

protective pathway of ischemic preconditioning beyond the protein kinase C cascade or could 

be a totally different pathway besides the one of ischemic preconditioning leading to protection. 

The basal protein kinase C activity and the maximum excitable activity in the presence of 

Ca'" PtdSer and (1,2)DAG with histon lll-S as substrate were measured in the cellular 

subfractions. The protein kinase C activity measurements did not show any diHerences between 

the Sham, CAO and the MAO group. Thus, at least the observed changes in protein kinase C-o 
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by immunoreactivity in CAO have not led to changes in total protein kinase C activity by histon 

III-S phosphorylation. The 0 isozyme is not dependent on Ca2+ but even the Ca2+ and (l,2)DAG 

independent activities were showing no differences. It should be noted that the immunoreactivity 

measurements are reflecting the individual protein kinase C isozymes while the activity 

measurements are a sunullation of the activities of all protein kinase C isozymes together, a part 

being increased while another part being constant or decreased. It was also remarkable that there 

was virtually no Ca2t dependent activity in the membrane fractions, whereas the presence of the 

Ca2+ dependent isozyme a in this fraction was shown by immunoreactivity. 

Methodological considerations. 

The methods used for protein kinase C analysis may be limited in establishing which of the 

protein kinase C isozymes are translocated and definitively activated. Redistribution or 

inactivation (proteolysis) could have occurred during the preparation of subfractions and analysis 

of protein kinase C (immunore-)activity [281. It is also possible that the samples taken from the 

myocardium for measuring the activity were heterogenous in being preconditioned or not. The 

problem ofthe protein kinase C isozymes (immunore)activity measurement in the particulated 

fraction containing myofibrils, mitochodria, nuclei etc. could not be solved at this time. The 

material can be disolved at high ionic strength but the effect of this treatment on protein kinase 

C activity is not known. The interpretation of the immunoreactivity data of the protein kinase C 

isozymes applied on tissue fractions may be very preliminar, because generally spoken the 

antibodies do surely not distinguish between inactive and active form enzymes. (For further 

details see chapter 8) 

Conclusion 

After briefCAO cytosolic protein kinase C-O decreased. Thus, the cytosolic protein kinase 

C-O may be translocated to an unknown subcompartment, and was at least not kept in the 

membrane fraction. Tllis could mean that it is translocated to the myofibrils, nlitochondria and/or 

the peri nucleus. It may also be decreased due to partial degradation of the activated enzyme. 

Although protein kinase C-o was decreased in the cytosol by the ischemic preconditioning 

stimulus, its involvement in the eventually protective effect is far from proven. Specific 

inhibition of this isozyme is needed. Unfortunately, at present this is technically not possible. In 

the MAO group no alterations of protein kinase C-O were found to occur in this form of 

cardioprotection. Therefore, we conclude that protein kinase C-O may be involved in either 

ischemic preconditioning and that the cardioprotective effect of MAO likely involves another 

pathway, which could directly interact with the common protective pathway of ischemic 

preconditioning beyond the protein kinase C cascade or could be a totally different pathway 

besides the one of ischemic preconditioning leading to protection. 
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The original observation by Murry e/ al [IJ that in dogs myocardial infarct size produced by 

a 45-minutc coronary artery occlusion is reduced from 29% to 7% of the area at risk when the 

45-minute occlusion is preceded by four sequences of 5-minute occlusions and 5 minutes of 

reperfusion initiated numerous efforts for the search of the mechanism of cardioprotection by 

ischemic preconditioning and the description of the experimental conditions under which 

cardioprotection can be demonstrated. Major conclusions of these studies are that (i) ischemic 

preconditioning has been demonstrated in every species, including rat, rabbit and swine, in which 

the phenomenon has been investigated [21, (ii) the phenomenon is not restricted to the heart but 

also occurs in other organs such as kidney [3J, skeletal muscle [4], brain 15] , liver (6], lung P] and the 

intestine [8], although in these organs other endpoints than infarct size limitation have been used 

and (iii) the molecular mechanism leading to cardioprotection is still not fully understood 

although several hypotheses have been fonvarded based on endogenous production of adenosine, 

activation ofK+ATP channels and/or protein kinase C activation [9, W]. 

During the last number oryears we have investigated cardioprotection in a number of animal 

models in order to mimic the clinical situation more closely and to investigate whether stimuli 

which do not lead to myocardial ischemia can also protect the myocardium [11-11\. More 

specifically, we investigated whether partial coronary artery occlusions without intervening 

reperfusion, rapid ventricular pacing and brief ischemia in other organs alter myocardial infarct 

size produced by a prolonged coronary artery occlusion. Clinical parallels to the latter is stenosis 

ofthe renal artery or chronic reduced arterial circulation to the lower extremities (claudication). 

Furthermore the possible involvement of protein kinase C in ischemic preconditioning and 

remote cardioprotection was investigated. Experiments were perfonned in anesthetized pigs and 

rats, in which area at risk and in£1rct size were determined using established techniques. Pigs 

were used in those studies in which we also studied regional myocardial function and metabolism 

in detail. 

Ischemic pl'econditioning by partial coronary artery occlusion without intervening 

l'eperfusion 

In chapter 3 we addressed the possibility to precondition myocardium with partial occlusions 

without an intervening reperfusion period. This model is similar to the two-stage occlusion 

model used by Harris [181_ By occluding a coronary artery partially for 30 minutes prior to a 

complete occlusion, Harris showed that the incidence of ventricular fibrillation was markedly 

reduced. \Ve hypothesized that the reduction in ventricular fibrillation after the coronary artery 

was completely occluded might be the consequence of a preconditioning efiect during the partial 

occlusion [12, 131. In the clinical setting a brief abmpt total coronalY artery occlusion is usually not 

followed by complete reperfusion before that artery is occluded for a sustained period and an 

in£'1rction develops. If stringent conditions, such as abrupt brief total coronary artery occlusion 
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and intervening complete reperfusion, would be required to precondition the myocardium, it is 

very unlikely that ischemic preconditioning has a clinical analog (chapter 2). Several groups of 

investigators have investigated the requirements of brief total ischemia and complete reperfusion 

and shown that myocardium can also be protected by moderate partial coronary artery occlusions 

in the presence of adrenergic stimulation (demand ischemia) or endothelial injury [19, 20]. 

Furthennore, Ovize et al 12l ] showed that a sufficiently severe coronary artery occlusion can 

precondition the myocardium, provided that a period of complete reperfusion separated the 

partial and total occlusions. From their shIdy this group of investigators concluded that 

intervening complete reperfusion is a prerequisite of ischemic preconditioning by a partial 

occlusion. We have challenged the generalization of this conclusion because it is based on only 

one degree of flow reduction. \Ve hypothesized that partial occlusions might be able to 

precondition myocardium and limit infarct size during a subsequent complete occlusion without 

an intervening reperfusion period, but that the severity and the duration of the partial coronary 

occlusions could playa role. \Ve have investigated this hypothesis in open~chest anesthetized 

pigs which were instrumented for measurement of global and regional myocardial performance 

(chapter 3, figure I). 

In this ShIdy we revealed that flow reductions of 70% but not of30% were capable to reduce 

infarct size (chapter 3, figures 3 and 4). Because a flow reduction will affect perfusion of the 

inner half of the myocardium more severely than the outer half we hypothesized that the degree 

of protection could be different for the inner (endocardial) and outer (epicardial) halves of the 

myocardium. Analysis of our results showed that protection with the 70% flow reduction was 

more pronounced in the epicardial than in the endocardial half. Based on earlier observation with 

radioactive microspheres, we may assume that with the 30% flow reduction, the endocardium 

had at least become as ischemic as the epicardial half with the 70% flow reductions. Nevertheless 

we did not observe any protection in the endocardial half with the 30% flow reductions. The 

reason is yet unclear, but may be related to the lesser degree of ischemia during the 30% flow 

reduction thereby providing a subthreshold stimulus. Another explanation for this observation 

could be that the protection involves K+ ATP channels and that these channels are not 

homogeneously distributed throughout the myocardial wall but that they .are predominantly 

located in the epicardial layer of the myocardial wall. The latter is recently shown in a study by 

Miyoshi et al [22] in which they reported a different response of the epicardial and endocardial 

layers to K\TI' channel modulators which suggested a lower threshold for the activation and/or 

a denser distribution ofK+ AlP channels or other K+ chamlels at the epicardial layer . The finding 

that partial occlusions protect the myocardium against the development of irreversible damage 

during a subsequent total occlusion may be useful to the clinical condition that a coronary 

stenosis becomes totally occluded by a thrombus. The results of these shldies if applicable to 

man, imply that shIdies evaluating the effectiveness of pharmacological agents in thrombolysis 
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trials should take into account the existence and the severity of preexisting stenosis as ischemic 

preconditioning could be a confounding factor. In the present study we have only investigated 

partial occlusions which lasted 30 minutes or longer. It is of interest to study whether partial 

occlusions of much shorter duration can precondition the myocardium without intervening 

reperfusion period. 

Infarct size limiting effect of rapid ycntricular pacing 

From several studies it has become clear that a variety of stimuli, which do not produce 

myocardial ischemia, are also capable to limit infarct size during a subsequent sustained coronary 

artery occlusion. We further addressed this issue by applying rapid ventricular pacing (RVP) 

prior to a 60-l11inute coronary artery occlusion in anesthetized pigs. Ventricular pacing was 

chosen as a stimulus because ventricular pacing prior to a coronary artcry occlusion (CAO) 

reduces the incidence of ventricular arrhythmias and fibrillation [231. In that study it was assumed 

that ventricular pacing (at 300 bpm in dogs) produced myocardial ischemia in view of the 

occurrcnce ofST segment changes [23J. However, no attempts were made to confirm the presence 

of myocardial ischemia by abnonnalities in myocardial contraction and metabolism. In chapter 

4 we therefore first detailed the functional and metabolic changes that occurred in anesthetized 

pigs when the left ventricle was paced at 200 bpm [14] and concluded from these studies that 

ventricular pacing did not produce myocardial ischemia because (i) transmural myocardial blood 

flow remained equally distributed across the imler and outer layers of the left ventricular waU, 

(ii) the decrease in systolic shortening was entirely due to a decrease in end~diastolic length, (iii) 

postsystolic shOltening did not develop, and (iv) there were no changes in myocardial ATP and 

phosphocreatine levels, energy charge, and arterial or coronary venous pH concentrations. Other 

signs that ischemia did not develop during ventricular pacing were (v) the absence of reactive 

hyperemia aftcr pacing was stopped and (vi) the immediate recovery of systolic segment 

shortening indicating that post ischemic myocardial stunning did not occur. 

It proved that when 10-minute RVP and 60-minute CAO were separated by 15 minutes of 

normal sinus rhythm (NSR), infarct area over area at risk (IAlAR) was not different from the 

control group but when the duration ofRVP was extended to 30 minutes a small protection was 

obselved (chapter 4, figure 4). Without a period of normal sinus rh)1hm between the 30-minute 

RVP and the 60-minute CAO IAIAR was markedly limited but the protection was less than with 

ischemic preconditioning (chapter 4, figure 5). The finding that the 15 minutes ofNSR already 

attenuated protection by 30-minute RVP also implies that the time course of protection by 

ventricular pacing is different from that by ischemic preconditioning. K+ATP channel activation 

proved to play a role in the protection by rapid ventricular pacing as pretreatment with 

glibellclamide abolished the protection. The observation that administration of glibenclamide 

after the period of ventricular pacing was tcrminated did not attenuate the protection strongly 
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suggests that K+ AlP channels did not have to remain activated after the protective stimulus had 

been applied. TIlis is at variance with observations in ischemic preconditioning experiments as 

in these experiments glibenclamide abolished the protection independent whether administration 

occulTed prior or after the brief coronary artery occlusion (preconditioning stimulus). The results 

of this study confirm that myocardium does not first have to be ischemic for a brief period in 

order to increase its tolerance to the development of irreversible damage during a sustained 

coronary artery occlusion and suggests that the myocardium is able to protect itself against the 

development of irreversible damage by a large number of stimuli prior to sustained coronary 

artery occlusion and which mayor may not produce ischemia in the jeopardized myocardium. 

It remains of interest that the protection by RVP appears not only to be less potent than by 

ischemic preconditioning, but also that the protection has a much narrower time window. In some 

preliminary studies we have shown that RVP leads to activation of protein kinase C. In future 

studies it would therefore be interesting to relate the time course of protein kinase C activation 

to activation of K+AlP channels. 

Cardioprotection by brief ischemia in remote organs and the infarct size limiting effect 

of low body temperature 

In chapter 5 we hypothesised that brief ischemia in remote organs might also limit infarct 

size in the myocardium, because a brief coronary artery occlusion does not only linlit infarct size 

inside but also outside its distribution territory 1241. 

In the first series of experiments we investigated in anesthetized male \Vistar rats whether 

briefischemia in remote organs limited myocardial infarct size (chapter 5 figure 1). To this end 

rats were subjected to either a 15-minute (left) renal artery occlusion (RAO) or a I5-minute 

mesenteric artery occlusion (MAO) 10 minutes prior to a 60-l11inute left anterior descending 

coronary artery occlusion and 180 minutes of reperfusion. Experiments were performed at 

36.5°C-37.5°C (normothermia) and 30°C_31°C (hypothermia). Our study reveals that (i) in 

control animals the relation between IA and AR is llighly linear without a positive intercept on 

the AR-axis unlike in pigs in which there is a positive intercept on the AR-axis in the IA-AR­

relation 125J, (ii) in control animals development of the infarct areas was the same in the two 

temperature ranges (chapter 5 figure 4 and table 1). These data appear to contradict those 

reported for rabbits !26] and swine [27J. Thus, Chien el al [261 reported a steep relation between body 

core temperature in the Unonnothennicu range (35°_42°C) and myocardial infarct size in rabbits 

subjected to a 30-minute CAO and 3 hours of reperfusion, so that an increase of 1°C resulted in 

12% infarction of the area at risk with no infarction occurring at a body core temperature of 

34.SoC. Duncker el al l27J showed an even steeper relation between body core temperature and 

infarct size produced by a 45 minute coronary artery occlusion and four hours of reperfusion in 

swine as 20% ofthe area at risk became infarcted with a 1°C increase in temperature in the range 
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of 35°C to 39°C. However, in those last studies different temperature ranges were used, while 

the coronary artery occlusions were also shorter (30 min - 45 min). The importance of the 

duration of the coronary artery occlusion in studying the temperature-dependency of infarct 

development is supported by the study from McClanahan ef ai, who showed that the infarct area 

produced by a 60-minute CAO was not affected when body temperature was decreased from 

37"C to 35°C [281. We addressed this hypothesis in chapter 6 and demonstrated that the infarct 

size limiting effect ofhypothennia depends all the duration ofthe coronary artery occlusion. (For 

details see further). 

Our studies in chapter 6 also revealed that (iii) protection by 15-minute CAO was much more 

pronounced during hypothermia than normothermia, Because temperature had no effect on 

infarct area in the control animals, we conclude that the IS-minute CAO stimulus was morc 

effective during hypothermia than during normothermia, (iv) the IS-minute MAO limited 

myocardial infarct size both in the normothermic and hypothermic temperature ranges. The 

protection during hypothermia was, at variance with the classical ischemic preconditioning 

stimulus, only slightly larger than during normothermia, (v) the 15-minute RAO was not 

protective during normothermia but limited myocardial infarct size when experiments were 

performed during hypothermia (chapter 5 table I). We can only speculate on the reason why the 

IS-minute MAO was effective and the IS-minute RAO ineffective during nonnothennia. An 

argument could be that the IS-minute RAO produced less severe ischemia than the IS-minute 

MAO as only approximately 10% of renal artery flow (compared to 90% of mesenteric flow) is 

needed for nutritional flow. 1111.1s, the less severe ischemia produced by the IS-minute RAO may 

therefore 110t have been severe enough to trigger myocardial protection. 

In the following series of experiments we investigated whether the mechanism of 

cardioprotection by remote brief organ ischemia differed from that by brief myocardial ischemia. 

Because protection by IS-minute MAO occurr~d during normothermia as well as hypothermia 

we selected this stimulus for investigation of its mechanism. \Ve first evaluated whether a 

neurogenic mechanism could he involved in the protection by IS-minute lviAO. To this end 

infarct size was determined after neurogenic blockade with hexamethonium. \Ve showed that 

hexamethonium neither affected IAI AR in the control animals nor in the animals preconditioned 

with IS-minute CAO, regardless of whether the experiments were performed during 

normothermia or hypothermia. In contrast protection by IS-minute MAO was completely 

abolished after pretreatment with hexamethonium (chapter S figure 3 and S and table I). 

These data demonstrate that activation of the neurogenic pathway was involved in the 

protection by IS-minute MAO but not by IS-minute CAO. In the next series of experiments we 

investigated whether activation of the neurogenic pathway had occurred during early ischemia 

or during the 10-minute intervening reperfusion period, which separated the period from brief 

intestinal ischemia from the sustained coronary artery occlusion. \Ve therefore studied the effect 
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ofa pennanent mesenteric artery occlusion starting 25 min prior to the onset of the 60-minute 

CAO on myocardial infarct size. In these experiments, MAO failed to limit infarct size produced 

by 60-minute CAO and the neurogenic pathway appears therefore to be triggered during early 

reperfusion of the mesenteric artery (chapter 5 figure 3 and 6 and table I). In addition to these 

experiments we performed experiments to answer the question whether it is possible to protect 

the myocardium with MAO when the neurogenic pathway (and a possible downstream cascade) 

triggered during reperfusion of the intestinal bed arrived the myocardium after the onset of the 

long-tenn coronary artery occlusion. Thus in these experiments the mesenteric artery occlusion 

was terminated 1 minute after the onset of the long-term coronaty artery occlusion. It was 

revealed that, MAO failed to limit infarct size and it seemed that the stimulus via the neurogenic 

pathway (cascade) must arrive at the myocardium before the onset of the myocardial ischemic 

period. 

From our experiments we can not conclude that protection by IS-minute RAO also involves 

a neurogenic pathway. Furthermore, although protection by IS-minute MAO appears to differ 

from that by 1S-minute CAO we cannot exclude the possibility that these two approaches to 

cardiac protection have a conUllon endpoint such as the intracellular activation of protein kinase 

C (chapter 7 and 8). 

Thc myocardial infarct size limiting effect of low body tcmperature in rats depends on 

the duration of the coronary al'fcry occlusion. 

As already stated recently, Chien et at [26] and Dunckel' et at [27J showed a steep relation 

between body core temperature and myocardial infarct size. In contrast to these studies our study 

in rats described in chapter 6 did not show a protective effect of hypothermia on infarct size 

detemlined 3 hours after a 60-minute CAO [171. In chapter 6 we demonstrated that the infarct size 

limiting effect of hypothermia depends on the duration ofthe coronary artery occlusion. Thus, 

when in rats the coronary artery was occluded for 30 minutes, hypothennia was protective (5.2% 

of the area at risk per 1°C), but when the duration of the CAO was extended to 60 minutes the 

protective effect of hypothermia could not be detected (chapter 6 figure 4). 

There are several hypotheses by which hypothermia could exert protection. For instance a 

role myocardial oxygen demand at the onset of the coronary artery occlusion as a determinant 

ofinfarct size is postulated but is controversial. A positive correlation [29,30] as well as no relation 

[30-33} between the rate-pressure product and infarct size have been reported. Nienaber et at [341 

produced bradycardia in dogs with a synthetic opiate to lower the metabolic demand at the onset 

of a 24 hour coronary artery occlusion thereby producing a smaller infarction compared to a 

group of animals with a high metabolic demand at the onset of coronary artery occlusion. It 

cannot be excluded that the obtained protection by bradycardia was actually a direct result of fl­

opioid receptor stimulation [35J. In collateral deficient species such as rabbit and swine infarct size 



144 Chapter 9 

does not appear to be cOlrelated with the ratcwpressure product [J2, 331, In the study by Duncker et 

al [27] univariate Of stepwise multivariate regression analysis did not reveal a significant 

cOlTclation between temperature and systemic hemodynamic variables at baseline or myocardial 

blood flow under baseline conditions, suggesting that temperature did 110t exert its effect by 

altering myocardial oxygen demand at the onset of occlusion. Similarly, in rabbit hearts [26] and 

rat hearts (chapter 6) the infarct size limiting effect of hypothermia was unmitigated when 

hypothermiawinduced bradycardia was prevented. It is likely that during coronary artery 

occlusion when contraction ceases, energy utilization is no longer reflected by the rateMpressure 

product. The present findings therefore lend further support to those studies that could not find 

a relation between the development of infarct size and energy demand at the time of occlusion 

as originally proposed. 

The role of protein kinase C in ischemic preconditioning and cal'diopl'otection by 

ischemia in other organs 

Activation of receptors by exogenously administered stimuli such as adenosine [36, 371, 

bradykinill138,39J, noradrenaline [40,41], acetylcholine [42,43], endothelinM! [44J or opiates {45] mimic 

myocardial protection by ischemic preconditioning. TIllS led to the hypothesis that intracellular 

signalling by these stimuli, via GTP-binding-protein-linked receptors and phospholipase Cop and 

possibly phospholipase D [46,47], leads to activation of one or more isozymes of the protein kinase 

C family which ultimately phosphorylate putative target proteins directly involved in 

cardioprotection {IO,48]. Consistent with the hypothesis is that direct activators of protein kinase 

C, phorbol esters, have been reported to mimic ischemic preconditioning [49] and inactivators of 

protein kinase C, such as staurosporin or chelerythrine can block ischemic preconditioning (49,50] 

(chapter 7). Possible target proteins of protein kinase C could be those that regulate opening of 

K+ ATr chatmels [51· 53J, activate ectoM5'Mnucleotidase [54] (during the first window of protection 

(F\VOP) [55}) or modulate transcriptional regulation of the expression of heat shock proteins [56, 

57} (during the second window of protection (SWOP) [SS.60}). For instance, K+ ATP chatmels are 

opened when atl ischemic preconditioning stimulus is applied, wIllIe blockade ofK+ATP channels 

prevents ischemic preconditioning ISI,52}, However, blockade of the action potential shortening 

by dofetilide does not abolish protection by ischemic preconditioning [61} therefore it is likely that 

modulation of K\w chatmels in the mitochondria, sarcoplasmic reticulum or the nucleus are 

involved in the mechanism of the protection. The presence of these channels in the mitochondria 

[62,63] or other types of K + channels in the sarcoplasmic reticulum [64,65] or the nucleus are shown 

[66] but their role in ischemic preconditioning is not yet investigated. 

Since protein kinase C can be activated via various receptors linked to phospholipase CM and 

possibly phospholipase D-mediated signalling pathways, these receptors may act synergistically 

[IO}, Opening ofK+ An' channels by pharmacological substances lowers the threshold for ischemic 
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preconditioning [67J, which is consistent with the hypothesis that K+ ATPchannels are target proteins 

for protein kinase C. Kltakaze e/ al [54J reported that ischemic preconditioning increased ecto-5'­

nucleotidase activity and that activation of protein kinase C increases ecto-S'-nucleotidase 

activity in isolated rat cardiomyocytes, supporting the candidacy of ecto-5'-nucleotidase as 

another target protein of protein kinase C. 

At present myristoylated-alanine-rich-C-kinase-substrate (MARCKS) is the only endogenous 

target protein for protein kinase C that has been shown to be phosphorylated in preconditioned 

rabbit myocardium. However, the fonner is believed to be an intracellular location site rather 

than a protein factor intimately involved in the protective response [68J. Irrespective of the target 

protein(s) we are dealing with or its (their) covalently bound phosphates must be relatively stable 

during the 2 to 3 hours in which the cardioprotection is present (F\VOP). Furthermore, the 

precise time point at which protein kinase C is maximally translocated (activated) during 

ischemia or reperfusion (preconditioning stimulus) is unknown and consequently also the time 

point at which the enzyme reaches the target proteins for catalysing their phosphorylation. It is 

quite feasible that protein kinase C is removed from its translocation site or proteolytic ally 

degraded after performing its action and thereafter the enzyme is not longer detectable by 

immunoreactivity or activity measurements. It is therefore mandatory to determine the time 

course of translocation/activation and subsequent relocalizationlinactivation or proteolytic 

degradation of the protein kinase C isozyme and the time course(s) of phosphorylation and 

dephosphorylation or prokolytic degradation of the target protein(s). Because the time course 

of weaning of the protective effect of the FWOP is roughly known, the time course of 

dephosphorylation/inactivation of the target protein could be correlated to the time course of 

weaning of protection. Candidate target proteins of protein kinase C involved in the F\VOP are 

e.g. the K+ATP charulel {51. 52} and/or the ecto-5'-nucleotidase [5-1J, but experimental evidence for 

phosphate incorporation into channel proteins and/or enzymes or regulating proteins is lacking. 

If the K\TP channel or the ecto-S'-nucleotidase are its targets the most likely translocation site 

for the protein kinase C isozyme(s) involved in the FWOP is the sarcolemma. 

Protein kinase C is involved in the agonist-receptor interaction induced changes in gene 

expression of many cells [41, 69.7~J. If we take into account the time required for inducing heat 

shock/stress proteins (56,57J the induced changes by protein kinase C may only playa role in the 

S\VOP. Therefore, a transcription factor involved in the regulation of expression of heat 

shock/stress proteins could be another potential target protein of protein kinase C. If true, the 

nucleus is the most likely translocation site for the protein kinase C isoZYl11e(s) in causing the 

protection. 

The protein kinase C isozymes can be divided into 3 subgroups. The classical protein kinase 

C-a is activated by phosphatidylserine (PtdSer), Ca" and (1,2)DAG. The novel protein kinases 

C-O and -E require PtdSer and (l,2)DAG for their activation but are Ca2
+ independent and the 
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atypical protein kinase C-( only needs PtdSer, but no Ca" and (l,2)DAG. Weinbrelmer ef at [751 

showed that protein kinases C-a, -0, -E and -( are the most prom.inent isozymes in the rat heart 

which were also found in cultured neonatal (76) and adult rat cardiomyocytes [771, \VeinbrCIUlcr et 

at (75] also showed a rapid translocation afthe Ca2+ independent isozymes, namely protein kinases 

Cwo, -E and -( and the Ca2
+ dependent protein kinase C-o: to the membrane after a brief ischemic 

period. An extension of the ischemia period led to increased expression of Ca2+ independent 

forms of protein kinases Cwo and -E in the cytosol. Thus, in these studies it appears that the 

distribution of protein kinase C isozymes-u, -0, -E and -( were altered. Therefore we 

investigated in chapter 8 myocardial protein kinase C isozymes-u, -0, -E and -( in classic 

ischemic preconditioning and cardioprotection by remote organ ischemia (chapter 8, figure 1). 

For the measurements of the translocation of protein kinase C isozymes from cytosol to 

membrane we have applied two methods, namely immunoblot analysis using protein kinase C 

isozyme-specific antibodies [69,75,
781 (chapter 8, table 1) and assay of protein kinase C activity by 

Ca'+ and/or (1,2)DAG-dependent phosphate incorporation into histonlIl-S [69.76.79. 8°1 (chapter 8, 

table 2). 

In the CAO cytosolic protein kinase C-o disappeared, but was not found back in the 

membrane fraction. It could mean that protein kinase C-O translocates to the myofibrils, 

mitochondria or the perinucleus and/or the activated enzyme is not detectable anymore due to 

degradation of the enzyme in the membrane fraction. Although protein kinase C-o was found to 

be decreased in the cytosol, the involvement of this event in the ultimate protective effect is not 

proven. Specific inhibition of protein kinase C-O is needed for the latter which is at present not 

possible. In the MAO group protein kinase C-O tended to disappear from the cytosolic fraction. 

Thus when it is concluded that protein kinase C-o is involved in ischemic preconditioning, 

the cardioprotective em~ct of MAO must involves another pathway, which could directly interact 

with the conunon protective pathway of ischemic preconditioning beyond the protein kinase C 

cascade or could be a totally different pathway besides the one of ischemic preconditioning 

leading to protection. 
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Future perspectives 

The neurogenic and other mediators of remote cardioprotection 

In chapter 5 the phenomenological characteristics of the myocardial infarct size limiting 

effect of ischemia in the small intestines were determined. Briefly, (i) infarct size limitation 

afforded by brief ischemia in the slllall intestines is temperature dependent, (ii) it involves a 

neurogenic pathway as it could be blocked by ganglion blockade (hexamethonium), (iii) tlus 

neurogenic pathway is activated during reperfusion of the ischemic small intestines, (iv) the 

signal must arrive in the myocardium before it becomes ischemic as the infarct size limiting 

effect could not be shown when reperfusion of the small intestines was induced 1 minute after 

the onset of the coronary artery occlusion (preliminary experiments not described in this thesis). 

TIle infarct size limiting effect of low body temperature depends on the duration of the coronary 

artery occlusion (chapter 6) and the infarct size limiting effect of prior brief ischemia in the 

kidney is temperature dependent; this implicates that the latter also depends on the duration of 

the coronary artery occlusion. The involvement of a neurogenic pathway which is activated 

during reperfusio~ of the ischemic small intestines and the observation that the signal must arrive 

before occlusion of the coronary artery suggests a two step mechanism in which a circulating 

mediator could be involved. It may be possible that autocoids trigger a neurogenic pathway 

during the intervening reperfusion of the small intestines and this neurogenic signal could trigger 

the release of a circulating mediator which reaches the myocardium during the intervening 

reperfusion period. Another possibility is that processing of the received signal by the 

myocardium that leads to the protective effect demands energy, which is only available during 

the intervening reperfusiog period. In future studies (i) the infarct size limiting effect of brief 

ischemia in other organs has to be further characterised by determining the window of protection 

(ii) the existence of a "second window of protectionu has to be investigated 24 hours after the 

stimulus has been given; (iii) the organ specificity of this phenomenon has to be studied and (iv) 

it has to be shown whether the infarct size limiting effect in the myocardium is also seen in other 

organs such as brains. In addition, (v) studies must be performed to detellnine more precisely the 

mechanism by investigating the role of substances such as bradykinin, oxygen radicals, and 

adenosine in the ischemic organ or the heart in a donor~recipient model i~ which the circulation 

of the organ that has to become ischemic is shunted to another animal so that the circulation of 

the heart and the target organ is separated from each other to permit specific application of 

pharmacological inhibitors/activators to the target organ or to the heart. 

The cellular mechanism of preconditioning 

In chapters 7 and 8 we already addressed the potential role of protein kinase C in the 

mechanisms of ischemic preconditioning. \Ve also delineated the limitations and the difficulties 
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of the procedures used. Thus interpretation of the data obtained must be done with caution. The 

role of protein kinase C in the mechanism of ischemic preconditioning remains therefore a 

controversial issue (see chapter 7). One afthe reasons is that protein kinase C represents multiple 

isozymes (more than 12). It is not possible to measure the translocation of each isozyme by 

activity individually. Thus, activity measurements show only the activity of protein kinase C 

isozymes all together. Moreover in all studies only one time point was chosen to determine 

translocation of (usually only a few) isozymes and activity of total protein kinase C. The time 

course of translocation is therefore still not known. Furthermore, measurements 

(phosphorylation/dephosphorylation/inhibiting) on potential target proteins have not yet been 

done. So in future studies the time course and the subcellular compartment to which several 

protein kinase C isozymcs translocates must be determined by isozyme and activity 

measurements in sequentiaVserial biopsies taken at different time points during the experiment. 

Furthermore, it will be necessary to develop specific blockers for isoZYl11cs of protein kinase C 

to see whether these can inhibit cardioprotection induced by CAO and/or MAO. In addition the 

place of the opening of the KATP chatmcl in the cascade of intracellular signal transduction 

pathway should be investigated by simultaneously inhibiting this channel by glibenciamide and 

protein kinase C isozyme protein and activity measurements. 

The mechanism of the infarct size limiting effect of low body temperature 

The infarct size limiting effect of low body temperature depends on the duration of the 

coronary artelY occlusion. Thus in rats for body temperatures around 30°C the protective effect 

could only be shown between 20 and 40 minutes of coronary artery occlusion. This implicates 

that the effect is only a delay in the infarct size development and not an absolute abolishment of 

infarction. Evidence suggests that myocardial cell death due to ischemia is mostly determined 

to be apoptotic cell death [81J (see below). This is rather unexpected because apoptosis is an 

energy dependent process. The enzymatic reactions involved are, as any other, temperature 

dependent. Thus, ill our experiments the lower body core temperature of the rats has reduced the 

rate of the genome~progral11med process of apoptosis. Another factor is the known effect of 

temperature changes on the membrane fluidity. Some enzymes involved in apoptosis, are 

membrane bound and so their catalytic function dependent on the fluidity of the membranes. 

The role of apoptosis in myocardial ischemia~rcperfusion injury and preconditioning 

The ultimate protection of the myocardium against ischemia is still the termination of 

ischemia by restoring the blood flow to the jeopardized myocardium. However, reperfusion after 

an infarction inducing ischemic period may act as a double edged sword as it will not only lead 

to salvage of jeopardized tissue but may also promote an extension of the infarcted area 181· 84] 

("reperfusioll iqjuryU [85,86]). In the setting with myocardial infarction as endpoint and reperfusion 
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injury thus refers to the,death of myocytes that are still viable at the onset of reperfusion. 

However "reperfusion injuri' has been questioned by several groups of investigators [87. 881. 

Jennings and Reimer have ascribed this extension to a "delayed ischemic injury" i.e. injury that 

is induced during the ischemic period but comes at first to expression during reperfusion [891. Pure 

ischemic injury and combined ischemic-reperfusion injury have different histological 

characteristics i.e. the wnount of coagulation necrosis and contraction band necrosis is different 

between the pure ischemic injury and the combined ischemic-reperfusion injury [90). In infarctions 

produced by an 8 hour coronary artery occlusion without reperfusion, 98% of the infarction 

consists of coagUlation necrosis. Tn contrast, the infarctions produced by a 1 hour occlusion 

period with I to 7 hours ofreperfusion show 30% contraction band necrosis and 70% coagulation 

necrosis. It is not known how the ratio between coagUlation necrosis and contraction band 

necrosis varies with the duration of the ischemic period. These different morphological 

characteristics could reflect a different modality of cell death and the mechanism in causing these 

different forms of cell death could be different. It is quite feasible that apoptosis plays a role in 

ischemic-reperfusioll injury. Apoptosis as a mode of cell death has been recognized in the mid 

70's and is currently acknowledged to exist in normal tissue to maintain balance between cell 

homeostasis and cell proliferation and differentiation. The characteristic events of apoptotic cell 

death which occur in a fixed sequence are cell shrinkage, loss of environmental contact of the 

cell, dense chromatin condensation of the nucleus, cellular budding and fragmentation, and rapid 

phagocytosis by macrophages or adjacent cells 191
, 921. Gottlieb et at [93) have recently shown that 

reperfusion injury induces apoptosis in rabbit eardiomyoc}1es. Apoptotic cells are programmed 

to die in a certain manner and the authors ascribed to the reperfusion after the ischemic period 

as the trigger because they could not detect any signs of apoptosis when the myocytes were 

subjected only to 30 min or 4.5 hours of ischemia. In this study there was no group which 

received a shorter period ofreperfusion after the ischemic period. More recently Kajstura et at 

{SII shows that apoptotic and necrotic myocyte cell deaths are independent contributing variables 

of infarct size in rats. In these experiments rats were subjected to 20 minutes to 7 days of 

coronruy artery occlusion. The contribution of myocyte necrotic and apoptotic cell death to the 

myocardial infarction was assessed. Apoptotic cell death represented the major independent form 

of myoc}1e cell death and peaked at 4.5 hours which is rather unexpected and difficult to 

understand because this genome directed progranuned process needs energy-rich phosphates at 

many reaction steps (e.g. transcription and translation). Therefore, programmed cell death 

occurring during reperfusion is more plausible, but even during this period myocardial energy 

charge will remain reduced for a long period. From these studies we conclude that ifapoptosis 

plays a major role in ischemic myocardial death it must be in the ischemia-reperfusion injury. 

The level of energYMrich phosphates is progressively reduced during ischemia. Furthermore, if 

apoptosis is responsible for the major part of the infarction, the infarct size limiting effect of 
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ischemic preconditioning and K+ All' channel activation may interfere with this form of 

myocardial cell death. It is of interest to know whether the infarct size limiting effect of these 

stimuli/strategies has its effect on ischemic injury or ischel11ia~reperfusion iqjury and whether 

apoptosis or necrosis is limited by these interventions. If apoptosis is involved we possibly could 

interfere in this active process of cell death once we know the mechanism of apoptosis. Because 

both apoptosis and preconditioning are biological processes, possibly existing in all tissues these 

two phenomena could be (inter)related. The aim of Ihture studies could be to attempt to 

distinguish reperfusioll iryury from delayed ischemic injury in an in-situ rat or porcine model for 

acute myocardial infarction and try to detect. quantify and localize apoptotic cardiomyocytes at 

the end of the induction of ischemic injury induced by a 1 hour period of ischemia and after a 1 

hour period of ischemia and 10 min or 3 hours of reperfusion. From the results of these 

experiments we hopefully can conclude whether apoptosis is involved in ischemic-reperfusion 

injury or whether this is a modality of its own. Ifapoptosis is involved. and if the extension of 

infarction during the reperfusion period could be ascribed to apoptosis or cell death induced 

during the ischemic period then the extension is delayed ischemic injury. If the extension could 

be ascribed to apoptosis induced during reperfusion the extension is indeed reperfusion injury. 

If the apoptotic cells lie beyond the "necrotic area" it is a modality ofits own. 

In view of the ischemic preconditioning phenomenon one should investigate whether infarct 

size limitation is due to limitation of ischemic injury, limitation of reperfusion injury ot a 

combination of both. In addition. one should also investigate whether the infarct size limiting 

effect of preconditioning could be ascribed to a limitation of cell death due to apoptosis. 

Concluding remarks 

In the effort to search for the ideal therapy to protect ischemic myocardium one should keep 

in mind that finally perfusion must be reinstalled. The current view is that the mechanism of 

myocardial cell death due to ischemia and reperfusion is multih'lctorial. Thus, during reperfush;m 

the myocardium is also injured, which therefore is another point to intervene and to protect t!le 
myocardium at risk. Ifprotection mechanisms in ischemic and ischemic-repcrfused myocardium 

act in a different way on the damaged myocardium, one could theoretically combine these 

protective interventions and create the best approach to save myocardium at risk. However. even 

when we are able to make the ideal anti-ischemic therapy, we should keep in mind that this will 

only be a delay tor myocardial death as long as we arc not able to reperfuse the myocardium at 

risk in time. 
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In ischemische preconditionerings studies word(en) een of meer korte, abruptc, tatale 

coronair artcrie occlusie - reperfusie peri odes gebruikt am het myocard te beschennen tcgen 

io'cversibele schade veroorzaakt door een langdurige coronair al1erie occlusie. Bewijs stapclt zieh 

llU op dat partif!ie coronair artcric occlusies, met ofZOllder cen toename in de zuurstofvraag, oak 

het myocard kan preconditioneren. Bovendien, in tegenstellillg tot wat er eerder werd 

gerapporteerd, blijkt cen particle coronaire arteric occlusie oak het myocard te kunnen 

preconditioneren, wanllcer er geen tussenliggende periode van reperfusie plaatsvilldt (hoofdstuk 

4). Echter de flow reductic moet ernstig genoeg zijn. De ernst van de flow reductie tijdens de 

eerste fase (preconditionerings stimulus) is kritieker voor de cardioprotectie tegen de tweede fase 

(langdurige occlusie) dan de duur van de flow reductie. In hoofdshlk 4 hebben we aangetoond 

dat zowel een 30 minuten als cen 90 minuten durende flow reductie van 30% faaide het myocard 

te prcconditioneren, maar dat zowd een 30 minuten als een 90 minuten durende flow reductie 

van 70% de infarctgrootte, veroorzaakt door een 60 minuten totale coronair arterie afsluiting, wei 

kon beperken. Daarentegen toonden Schulz et at aan dat in£1fcering, veroorzaakt door een 

langdurige periode van lage-flow ischemie, beperkt wordt \Vanneer het onmiddelijk wordt 

voorafgegaan door een korte totale occlusie zonder een tussenliggende peri ode van reperfusie. 

Deze partiele occlusie studies bootst meer de klinische oJUstandigheden na dan zo'n abmpte 

occ1usie-reperfusie prikkel in voorgaande studies. Een aantal observaties tonen aan die 

sllggereren dat myocardiale bescherming getriggerd kan worden door (patho)fysiologische 

stimuli welke zelf geen myocardiale ischemie veroorzaken. 

Przyklenk et at toonden in honden aan dat na een kortdurende coronair arterie occ1usie de 

infarctgrootte niet aIleen was afgellomen in het gepreconditioneerde myocard, maar ook in het 

aangrenzendc "virgin" myocard ("remote intracardiac preconditioning"). Hun sh.ldie was de 

eerste die stlggereerde dat het myocard niet direct aan ischemie bloodgesteld hoefde te worden 

0111 beschennd te raken tegen irreversibele schade veroorzaakt door een langdurige coronair 

arterie occlusie. 

De observaties van Pryklenk et at zijn de aanzet geweest voor verschillende shldies die de 

vraag ofhet myocard niet aIleen beschermd kan worden door remote il1tracardiac ischemische 

preconditionering maar ook door interorgan ischemische preconditionering praberen te 

beantwoorden. In een voorlopige studie toonden we aan in geanesthetiseerde ratten, dat na een 

15 minuten durende nier arterie occlusic en een 10 minuten durende tllssenliggende reperfusie, 

het in£1rct veraorzaakt door een 60 minuten coronair art erie occlusie kleiner is dan het contrale 

infarct. Kort hierna rees het vermocden, dat de resultatcn van onze laatste experimenten 
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waarschijn1ijk be'invloed zijn door de lichaamstemperatuur. Daarom hebben we in hoofdstuk 6 

onze experimenten herhaald onder strengere temperatuur controle. Nu hebben we gevonden dat 

een 15 minuten nier arterie occlusie voorafgaand aan de 60 minuten coronair arterie afsluiting, 

de infarctgrootte tot 30% wordt beperkt onder hypothennische olllstandigheden (30-31'C), maar 

dat het geen effect had op de infarctgrootte onder normothermische omstandigheden (36.5-

37.5'C). Een 15 minuten durende dann arterie afsluiting, had hetzelfde beperkende effect op de 

infarctgrootte als een 15 minuten coronair arterie afsluiting tijdens normothermie. 

In verschillende studies is aangetoond dat andere vonnen van stress het myocard kan 

beschennen tegen infarcering zonder dat ischemie eraan te pas moet komen. Ovize e/ al 

demonstreerde dat stretch en verhoging van de wand stress van de linker ventrikel door acute 

volume belasting ook infarctgrootte kon beperken. Deze observatie suggereert, dat stretch van 

de "remote" myocard veroorzaakt door dyskinesis in het ischemische myocard heeft meegewerkt 

tot het ontstaan van remote intracardiac preconditionering. Het mechanisme van interorgaan 

preconditionering is nag steeds speculatief, want myocard stretch lijkt een onwaarschijnlijke 

factor am bijdrage te geven in interorgan preconditionering. 

Ter ondersteuning van de observaties door Ovize el al dat niet-ischemische stimuli oak het 

myocard kan beschennen, hebben we in hoofdstuk 5 in varkens geobserveerd dat 30 minuten van 

ventrikel pacen op 200 slagen per minuut gevolgd door IS minuten van nonnale sinus ritme, dit 

oak de infarctgrootte, veroorzaakt door 60 minuten coronair arterie occlusie, kan beperken van 

84±7% (mean±SD) van de Area at Risk in de controle dieren naar 71±6%. Er werden zelfs 

kleinere infarctgroottes (63±13%) geobserveerd, wannccr 30 l11inuten van vcntrikel pacen 

omniddellijk wordt voorafgegaan aan de 60 minuten coronair occlusie zonder een tussenliggende 

periode van normale sinus ritme. Het beschennende effect van ventrikel pacen werd opgeheven 

door voorbehandcling met de K+ATP kanaal blokker glibenclamide. K\TP kanaal aktivatie trad niet 

op als gevolg van myocard ischemie welke aangetoond kon worden door metabole en 

contractiliteits (fullctionele) mctingen zoals de afwezigheid van post-systolische segment 

verkorting, cen norma Ie distributie van dc transl11urale bloeddoorstoming en de onveranderde 

myocardiale ATP-niveaus gedurende het ventrikel pacen en de afwezigheid van reactieve 

hyperemie en de olUlliddellijke hersteI van de systolische segment verkorting na het stoppen van 

het ventrikel pacen. Tocdiening van glibenclamide na de 30 minuten van ventrikel pacen op het 

moment van 15 minuten van normaal sinus ritme, kon niet de bescherming blokkeren, waamit 

we kUlUlen concluderen dat K+ ATP kanalen Iliet zelf een bijdrage leveren aan de beschenning, dat 

nag steeds aanwezig was 15 minuten na het stoppen van de ventrikel pacen. Dezc bevindingell 

wijzen erop dat K\TP kanaai aktivatie nodig was om de bescherming te triggeren, maar dat 

continuering van de activatie niet nodig was op het moment dat het myocard a1 in beschennende 
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staat verkeCli. Dit laatste is in tegenstrijd met wat in ischemische prcconditionering wordt gezicn. 

In tegen stelling tot Chien et al en Dllllcker et at vanden we in hoofdstuk 6 geen verschil in 

infarctgrootte tussen de lage temperatuufS groep (30°C-31°C) en de normale temperatuUfs groep 

(36.so C-37.5°C). \Ve verklaarden dit door het verschil in de duur van de periode Van coronaire 

atierie occlusie. In hoofdstuk 7 tcanden we aan dat het infarctgrootte beperkende effect van lage 

lichaamstemperaturen inderdaad afhangt van de duur van de cOIOnuire artcric occlusic. \Ve 

konden dit beschennende effect aileen maar aantonen walllleer de duur van de corona ire arterie 

occIusie tussen de 20 en de 40 minuten was. 

In hoofdstuk 8 beschrijven we de problematiek rondom de interpretatie van de studies die 

proberen de rol van de signaal transductie eiwit, protein kinase C, in de mechanismen van 

ischemische preconditionering aan te tonen of uit te sluitcn. In een paging am een bijdrage te 

leveren aan het antwoord voor deze vraagstelling hebben we in hoofstllk 9 protein kinase C 

isozymen~u, -0, -E en -C en de totale protein kinase C activiteit bepaald in mtte myocard welke 

onderworpen werden aan een controle stimulus, een peri ode van myocardiale ischemie en 

reperfusie en een peri ode van dUllne darm ischemie en reperfusie. Resultatcn van deze studie 

tonen aan dat er inderdaad een translokatie/activatie van het 0 isozyme van het cytosol 

plaatsvindt, echter deze is niet in de membraan fractic aan te tonen en de activiteits metingen 

kunnen deze bevinding ook niet ondersteunen. 

In conlusie kunnen we zeggen dat de huidige studies sllggereren dat het myocard beschennd 

kan worden door vonnen van stress auders dan myocardiale ischemie. Deze houden onder andere 

stimuli in welke stress van het hart veroorzaken, maar dat niet leidt tot ischemie (stretch, 

ventrikel pacen) en stimuli welke distress (ischemic) veroorzaken in andere organen andel's dat 

het hart. Ischemie in "remote orga1ls" zoals nier, hersens, skeletspier en lever, kunnen ook deze 

organen preconditioneren. Het is dllidelijk dat verschillellde vormen van stress of distress in staat 

zijn processen te triggeren, welke de organen kan beschennell die zowel hebbcn blootgestaan aan 

deze stimulus, maar ook andere organen op afstand. Het zou er dus op. kunnen lijken dat 

ischernische myocardiale preconditionering slechts een van de aspecten van een groter fenomcen 

is dat resulteert in orgaan beschenning. Toekomstigc studies moeten daarom het ontrafelen van 

het mechanisme dat leidt tot orgaan bescherming welke dan fannacologisch nagebootst kan 

worden als doel hebben. Het is ook belangrijk om in gedachte te houdcn, dat niet aile vonnen vall 

(dis)stress (myocardiale hibernation, rokell) resulteren in myocard bescherming. Ten slotte, 

zouden dezc nieuwe gevonden beschermende stimuli, samen met de problemen van 

infarctgrootte determinatie in patienten zoals ergens anders vermeld, verwarrende factoren 
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kunnen zijn in de het vinden van definitieve bewijs voor het voorkomen van ischemische 

myocardiale preconditionering in mensell. Ais laatste wii ik nog vennelden dat de beste 

beschenning van het ischemische myocard nog altijd de beeindiging is van de ischemisch 

toestand door reperfusie van het bedreigde myocard. 
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