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General introduction

Introduction

The goal of pharmacotherapy is, in general, to cure a disease or to eliminate or reduce 

symptoms. In daily practice, predefined goals of pharmacotherapy are often not met for 

various reasons, such as ineffectiveness of the drug or adverse drug reactions. Estimations 

of the proportion of patients without clinically significant efficacy to important classes of 

therapeutic drugs range from 30 to 60 percent.[1] Conversely, around two to four percent 

of all hospital admissions result from adverse drug reactions with a quarter to half of these 

admissions being preventable.[2-4] In the United States, adverse drug reactions are the fourth 

leading cause of hospitalization and result in roughly 100.000 deaths annually.[5,6]

Many factors are involved in the variation in drug response and a better understanding of 

these factors can improve the effectiveness of pharmacotherapy and reduce the incidence 

of adverse drug reactions. Healthcare relies, more often than is desirable, on the ‘one-dose-

fits-all’ approach. The initial starting dose is the same for all patients, irrespective of the 

patient’s individual characteristics. Personalized medicine, or tailoring drug therapy to the 

characteristics of the individual patient, is a useful tool in reducing the number of ineffective 

therapies and adverse drug reactions.[5]

Pharmacokinetics and pharmacodynamics

The process from drug intake to drug response is complicated, and many factors are in-

volved. A distinction can be made between pharmacokinetic and pharmacodynamic factors. 

Pharmacokinetics concerns the fate of a drug when it is administered to the body. The first 

part of the pharmacokinetic process consists of the absorption of the drug into the body, 

distribution throughout the body tissues and fluids and then subsequent elimination. Dur-

ing these stages, some drugs can diffuse through membranes passively, without the help 

of energy consuming enzymes. These drugs are in most cases uncharged, lipophilic and 

unbound. Other drugs cannot cross membranes passively and rely on active carriage by 

transporter proteins. A large number of different transporter proteins are present throughout 

the body and regulate the plasma levels of substances in tissues and fluids.[7-9] Two important 

transporter families are the ATP Binding Cassette (ABC) family and the solute carrier (SLC) 

family. These two families have important roles in the pharmacokinetics of both drugs and 

endogenous compounds.[10-12]

The second part of the pharmacokinetic process is the irreversible transformation of drugs 

into metabolites. Metabolism is divided into two phases. In phase I, drugs are metabolized 

into more water-soluble substances through oxidation and reduction. The main phase I 

metabolizing enzymes are the cytochrome P450 (CYP) enzymes, although other enzymes 

such as xanthine oxidase (metabolizing 6-mercaptopurine) and alcohol dehydrogenase 
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(metabolizing ethanol) are also involved.[13-15] The CYP enzymes are responsible for around 75 

percent of total drug metabolism.[13]

The phase II metabolizing enzymes conjugate polar groups, such as glucuronyl (UDP 

glucoronosyltransferases, UGT) and acetyl (acetyl-CoA) to apolar substances.[15,16] These reac-

tions result in a further increase in hydrophilicity and a more efficient excretion by the kidney 

or on some occasions via bile secretion. Most drugs are inactivated by phase I and phase 

II reactions, although some drugs, such as codeine and tamoxifen, are administered as the 

inactive pro-drug and metabolized to the active compound.[17,18]

Besides pharmacokinetics, pharmacodynamics plays a major role in drug response. Phar-

macodynamics relates to the biochemical or physiological effects of a drug on the body. 

One of the mechanisms of pharmacodynamics is the binding of a drug to a receptor.[15,19] 

Ligand binding may result in activation of the receptor (agonism) or in blocking the effect of 

an agonist (antagonism). This leads to a change in the intracellular transduction pathways, 

which can trigger events such as the release of substances stored in vesicles, a change in 

the gene transcription rate or activation of intracellular messengers. These processes may 

result in the intended effects of drug therapy, although they may also produce adverse drug 

reactions. A drug can exert its effects in a large number of other ways. For example, a drug 

may bind to an ion channel, changing the ion current through the channel, a drug may bind 

to an enzyme protein, altering the functioning of this enzyme or may directly react with a 

substance in the body.

Factors involved in drug response

In all the pharmacokinetic and pharmacodynamic processes described previously, variations 

in drug response do occur. A possible response to a drug may be an adverse drug reaction. 

Adverse drug reactions can be divided into two groups. Type A adverse drug reactions are 

related to the drug, resulting from an unexpectedly strong or unintended pharmacological 

effect. These reactions are dose dependent, as their incidence and severity increases with 

increasing dose. Type B adverse drug reactions are unrelated to the drug’s pharmacological 

effect and include hypersensitivity reactions. Apart from the intended pharmacological activ-

ity, pharmacokinetics and pharmacodynamics are involved in both non-response to drugs 

and type A adverse drug reactions. However, they do not play a major role in type B adverse 

drug reactions.

Factors, which are involved in the variation in drug response, are age, gender, co-morbidity 

(e.g. renal or liver dysfunction), environmental factors, body weight, co-prescribed drugs and 

genetic factors. In table 1, an overview is given as to how these factors affect drug response. 

As mentioned before, many factors are involved in many different ways, making it impossible 

to give a complete overview of the relations applicable to all drugs.
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The impact of age
In the elderly, lowering prescribed doses of drugs with a narrow therapeutic window is often 

indicated. Age is associated with changes in body composition, such as a relative increase 

in body fat, a decrease in drug clearance, combined with a higher sensitivity to pharmaco-

dynamic processes.[20] Renal clearance is decreased due to a reduction in renal functioning. 

The functioning of CYP enzymes tends to be lower with increasing age, although results 

from studies are conflicting.[20-22] However, enzymatic clearance by phase II pathways is not 

affected by age.[20]

The impact of gender
Gender affects drug response in two ways. First of all, differences exist in pharmacokinetic 

properties between men and women. For example, the clearance of drugs metabolized 

by CYP3A4 is higher in women than in men.[21] It has been suggested that this is caused by 

lower P-gp efflux transporter activity in women. P-gp is co-expressed in hepatic cells and in 

the cells in the intestinal wall and a reduction in efflux results in more substrate becoming 

available for CYP3A4 and thus higher CYP3A4 clearance.[23,24] Secondly, there is a difference in 

pharmacodynamic actions of a drug between genders. For example, aspirin has a major role 

in the prevention of myocardial infarction in men, in contrast many women do not respond 

to aspirin therapy and several studies have failed to show a protective effect.[25] 

Table 1 Factors involved in variation of drug response

Processes Examples of proteins Examples of factors involved 
in variation in drug response

Pharmacokinetics
Transportation Absorption SLC, ABC Drugs, genetics

Distribution SLC, ABC Age, body weight, drugs, 
genetics

Excretion SLC, ABC Age, co-morbidity, drugs, 
genetics

Metabolism Oxidation (Phase I) Cytochrome P450 Age, co-morbidity, drugs, 
genetics

Conjugation (Phase II) UGT, acetyl-CoA, SAM Genetics

Pharmacodynamics
Binding to receptors β-receptor Age, drugs, genetics

Interaction with ion channels Calcium channel Drugs, genetics

Interaction with enzyme 
proteins

HMG-CoA reductase Genetics

Chemical reaction - a - 

Type B adverse drug reactions
Hypersensitivity HLA Genetics

a No proteins are involved in these chemical reactions. SLC: solute carrier; ABC: ATB binding cassette; UGT: UDP glucoronosyltransferases; SAM: 
S-adenosyl methionine; HMG-CoA: 3-hydroxy-3-methyl-glutaryl-CoA; HLA: human leukocyte antigen.
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The impact of co-morbidity
Many people suffer, apart from the disease they are treated for, from co-morbidities and 

these can also affect drug response. The kidney and the liver are the major organs involved in 

drug metabolism and excretion, and therefore co-morbidities in these organs may influence 

drug response. For example, the risk of adverse drug reactions is increased in patients with 

reduced kidney function who use drugs with a narrow therapeutic window and which are 

excreted unchanged by the kidney.[26] Much less is known about the effect of liver impair-

ment on the metabolism of drugs undergoing hepatic metabolism.[27,28]

The impact of environmental factors
Countless environmental factors, such as smoking, hygiene, stress and exercise, contribute 

to the variation in drug response. For instance diet can have an important effect on drug 

response. Many patients with Parkinson’s disease are treated with oral levodopa therapy 

to suppress symptoms. Since the amino acids phenylalanine, leucine and isoleucine com-

petitively inhibit the absorption of levodopa into the brain, high-protein meals reduce the 

inhibitory effect of levodopa on symptoms of the disease.[29] Another such example is that 

of grapefruit juice, which contains ingredients that inhibit CYP3A4 enzymes, ATP-binding 

cassette B1 (ABCB1) transporters and transporters in the solute carrier organic anion (SLCO) 

transporter family.[24,30] Therefore, combining grapefruit juice with drugs that are metabolized 

by the CYP3A4 enzyme will result in higher plasma levels and possibly adverse drug reactions.

The impact of body weight
In obese people, the distribution of drugs throughout body tissues differs from lean people. 

This especially applies to drugs that have a high fat-solubility and those which are dosed 

per kilogram body weight.[31,32] Prescribing doses irrespective of body weight may in obese 

people lead to both too low doses, if the same dose is used in lean and obese people, and 

too high doses if drugs are dosed per kilogram body weight. An example of this can be found 

in the predominance of neuropsychiatric adverse reactions to mefloquine, which is used the 

for prevention of malaria, in women with a low body mass index.[33] Racial differences are 

obviously also linked to body weight due to differences in body stature. 

The impact of co-prescribed drugs
Polypharmacy, the use of multiple drugs by one patient, is common. These drugs may influ-

ence each other resulting in drug-drug interactions (DDIs). Apart from the intended effects, 

DDIs may also lead to reduced effectiveness or increased toxicity.[34] Many drugs either induce 

or inhibit CYP enzymes and combining these drugs with ones which are metabolized by that 

CYP enzyme may result in ineffective or toxic plasma levels.[35,36] Whether these effects really 

do occur depends on the degree of CYP induction or inhibition, the therapeutic window of 
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the drug and the availability of alternative metabolizing enzymes. Drugs may also induce or 

inhibit transporters, resulting in DDIs with substrates for these transporters.[37] 

Two drugs may also exert their effects via the same pathway, resulting in a pharmacody-

namic DDI. Drugs may either be both agonists, resulting in additional effects or if the total 

effect is larger than the two separate effects in synergism, or an agonist and an antagonist, 

resulting in a reduction of drug response. One such DDI is the combination of drugs which 

are agonists for the human ether-a-go-go-related gene (hERG) ion channel. Inhibition of the 

hERG ion channel lengthens the QTc-interval duration on the ECG and increases the risk of 

ventricular arrhythmias. A single drug may lead to a minor, but not clinically relevant increase 

in QTc interval, while a combination of these drugs may result in a synergistic effect and a 

much larger life-threatening QTc prolongation than the sum of the separate QTc prolonga-

tions.[38]

The impact of genetic factors
Genetic variation in the DNA encoding proteins can result in a change in amino acid se-

quence in the protein or differences in transcription rates. These deviations may result in the 

increased or reduced effectiveness of drugs. The estimations of variation in drug response 

that can be explained by genetics varies from 12 to 98 percent.[39-42] Genetic variation in 

both CYP enzymes and transporters has been extensively described.[43,44] A single nucleotide 

polymorphism (SNP) is a variation in nucleotide sequence within the DNA. SNPs in coding re-

gions of the DNA (exons) may result in an alternative amino acid incorporated in the protein. 

These amino acid changes may result in decreased or increased activity of the protein. SNPs 

in the non-coding regions (introns) may result in changes in transcription rates and gene 

expression, resulting in higher or lower enzyme concentrations. SNPs affect the activity of 

CYP enzymes, transporters and receptors and explain part of the variation in drug response.
[45] Genetic variation also applies to duplications (copy number variations or multiplicons) or 

deletions of DNA fragments.[46] Duplications result in more genes being expressed and higher 

enzyme expressions, while deletions result in the absence of the enzyme.

The impact of other factors
Innumerable other factors are involved. Biological variation throughout the day is involved 

in many physiological processes and modifies drug response, for example the variation in 

hormone and glucose levels.[47-49] Comparing two glucose levels, measured at different times 

during the day, will result in a variation, which is not attributable to the effect of a drug.

Although obvious, non-adherence is a major contributor to the non-response of a drug and 

may result in hospital admissions and deaths.[50-51] In clinical trials, the adherence is relatively 

high when compared to daily practice due to the attention study patients receive. Yet even 

in clinical trials, the reported average adherence rates vary from 43 to 78 percent in patients 
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receiving chronic medication.[50] In daily practice, there is an inverse relationship between the 

prescribed number of doses per day and compliance rates.[52]

At last, variation in drug response may also result from methodological issues. For example, 

measurement errors do contribute to the variation. Part of the change between two time 

points will be due to measurement errors and are erroneously attributed to drug response. 

Aim and outline of this thesis

The variation in drug reactions, including adverse drug reactions, response and non-response, 

is mostly unpredictable before the start of therapy. Pharmacotherapy would be much more 

efficient and safer if a better prediction of drug response was possible. With this objective in 

mind, the subject of this thesis is the impact of co-prescribed drugs and genetic variation on 

drug response.

In a review, published in 1993, it was estimated that up to three percent of all hospital 

admissions were due to DDIs.[53] It can therefore be assumed, that co-prescribed drugs have 

a substantial impact on the occurrence of adverse drug reactions and possibly on drug re-

sponse in general. Although drug use and most likely the prevalence of DDIs have increased 

in the meantime, no reviews have been published after 1993 on the proportion of hospital 

admissions due to DDIs.

In this thesis, we also studied the effects of genetic variation, although the effects of co-

prescribed drugs and genetic variation seem unrelated. However, both co-prescribed drugs 

and genetic variation can either induce or inhibit metabolizing enzymes and transporters. It 

would be expected that the clinical effects of induction or inhibition either by co-prescribed 

drugs or genetic variation will be similar. Studying the effect of genetic variation on drug 

response has the advantage over the effect of co-prescribed drugs that genetic variation is 

stable over time, while co-prescribed drugs do vary over time. A better knowledge on the 

effect of genetic variation may also be beneficial in predicting the effect of co-prescribed 

drugs.

Studies of twins and comparison of inter- and intra-individual variation have given us some 

insight into the degree to which genetic variation contributes to variation in drug response.
[40-42] In these studies, the contribution of genetic variation varies from 12 to 98 percent, 

although it is questionable whether these studies could really distinguish between genetic 

and other factors and these percentages may be an overestimation. 

Many SNPs have been identified that are associated with variation in plasma level or drug 

response. However, the amount of variation explained by these SNPs is much less than the 

contribution of all genetic factors. This discrepancy suggests that a large number of as yet 

unidentified SNPs and other genetic variations do contribute. Further research in this area 

has the potential to improve the prediction in drug response.
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The following examples illustrate this point. It is estimated that 95 percent of the varia-

tion in renal clearance of metformin is due to genetic variation. A limited number of SNPs 

in the gene coding for the organic cation transporter 2 (OCT2) have been associated with 

renal clearance of metformin, but these associations were too weak to explain the majority 

of variation in renal clearance.[54-57] This suggests that many more SNPs and other genetic 

determinants of variation, still unknown, do contribute. 

The same applies for the glucuronidation of oxazepam. Around 98 percent of glucuroni-

dation is under genetic control [40] and SNPs in the gene coding for the UDP-glucuronosyl-

transferase enzyme, conjugating oxazepam, have been identified.[58] However, the variation 

explained by these SNPs is far less than 98 percent. 

In figure 1, the major compartments in the human body, involved in variation in drug 

response, are presented, as well as the enzymes that were studied in the thesis. The liver and 

intestinal wall have a major impact on pharmacokinetic processes, due to their metabolism 

of a large number of drugs. From the circulation, drugs are often distributed to organs other 

than the target organ. In these organs, the drug may trigger receptors other than those 

Figure 1 Diagram representing the distribution and elimination of drugs in the human body and the role of transporters and enzymes, studied 
in this thesis
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intended, resulting in adverse drug reactions. The pharmacodynamic processes in the target 

organ are too diverse and complicated to represent in a model. Moreover, the target organ 

could be one of the other organs in the model, such the liver, intestinal wall or the circulation 

itself.

The goal of this thesis is to improve the prediction in drug response due to both genetic 

variation and co-prescribed drugs. In chapter two, exposure to and clinical consequences of 

DDIs were assessed. In this chapter, we also studied determinants that are associated with 

high risk DDI dispensings by community pharmacies. In chapter three, the effect of genetic 

variation on the response to antidiabetic drugs was studied. Both the effect genetic variation 

in CYP2C9 and nitric oxide synthase 1 adaptor protein (NOS1AP) has on sulfonylurea response 

was studied, as well as the effect of genetic variation in the genes coding for the OCT1 and 

MATE1 transporter on metformin response.

The studies in chapter four assessed the effect of genetic variation in the ABCB1 and 

CYP3A4 gene on adverse drug reactions and the cholesterol lowering effect of statins, as well 

as the effect of genetic variation in the NOS1AP gene on calcium channel blocker response. 

In chapter five, the effect of genetic variation in the gene encoding OCT1 on anti-Parkinson 

drug response was studied.
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Abstract

Background: Drug-drug interactions (DDIs) are responsible for a variety of adverse reactions, 

particularly in an elderly population. The objective of our study was to identify the frequency 

and potential clinical relevance of DDIs in a population aged 55 years and over.

Methods: Exposure to DDIs was assessed in 7,842 people, participating in the Rotterdam 

Study, a population-based cohort study. These people were followed between January 1st 

1992 and July 1st 2005. The DDI list of the Royal Dutch Association for the Advancement 

of Pharmacy, in which DDIs were categorized by potential clinical relevance and quality of 

evidence, was used. Simultaneous use of interacting drug combinations was calculated on 

the basis of drug dispensing data from community pharmacies.

Results: The incidence of a first dispensing of DDIs in the study period was 10.5 per 100 

person-years and 2.7 per 100 person-years for potentially life-threatening DDIs. The preva-

lence of DDIs in people aged 70 years and older increased from 10.5% in 1992 to 19.2% in 

2005. Ten DDIs comprised two-third of the total exposure time to DDIs. The prevalence of 

potential life-threatening DDIs in people aged 70 years and older increased from 1.5% to 

2.9%. This increase was most likely caused by an increase in use of spironolactone combined 

with renin-angiotensin-aldosteron system inhibitors.

Conclusion: A large number of people in the Netherlands aged 55 years and older are exposed 

to DDIs and this number has increased sharply between 1992 and 2005. Healthcare profes-

sionals should pay special attention to the potential risks of DDIs in these people, particularly 

if spironolactone is involved.
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Introduction

Drug-drug interactions (DDIs) play an important role in current healthcare and are a potential 

cause of adverse reactions. The estimates of hospital admissions caused by DDIs vary from 

0.1 to 2.6%.[1-3] For several DDIs, such as those arising from the combination of erythromycin 

with strong cytochrome P450 3A inhibitors and glibenclamide with co-trimoxazole, higher 

incidences of death or hospital admissions have been reported.[4, 5] In the elderly population 

the risk of adverse reactions caused by DDIs is higher due to polypharmacy and changes 

in pharmacokinetics and pharmacodynamics.[6] The number of hospital admissions in the 

elderly population as a consequence of DDIs is higher than in the general population. The 

estimates vary between 2.9 and 6.2%.[7, 8] Whether DDIs are a potential threat to public health 

depends both on the frequency and the potential clinical relevance of the DDIs.

In the Netherlands, one of the tasks of the pharmacist is to intervene when combinations of 

prescriptions induce a high risk of patient harm, in order to prevent adverse reactions caused 

by DDIs. Each prescription dispensed by a pharmacy is recorded in the medication history. 

Most patients receive their drugs from the same pharmacy, and consequently medication 

histories are usually complete. With each new prescription for the same patient the medica-

tion history is screened for other drugs used at that moment, and checked as to whether 

potential DDIs might occur. The pharmacist evaluates the seriousness of the DDI on the basis 

of the patient’s characteristics and the medication history. Just as the clinical consequences 

of DDIs vary greatly, so too the management of DDIs differs. Where the benefits of both drug 

therapies outweigh the risks of the DDIs, the drug can be dispensed unless there are safer 

alternatives. If not, an intervention is required and appropriate measures, such as changing 

doses or monitoring blood levels, should be taken.

Several studies have been conducted to estimate the incidence and prevalence of DDIs.[8-14] 

Most studies have focused on populations at risk for DDIs and adverse reactions, such as in 

hospital settings. As a result of the large differences in study design, exposure rates to DDIs 

range from 2 to 60%. The aim of this study was to analyze the frequency and potential clinical 

relevance of exposure to DDIs and the change in frequency over time in a population aged 

55 years and older in the Netherlands.

Methods

Setting
Data were obtained from the Rotterdam Study, a prospective population-based closed co-

hort study in Ommoord, a suburb of Rotterdam, the Netherlands. Between 1990 and 1993, all 

inhabitants aged 55 years and older who had lived in the district for more than one year were 

invited to participate in the study. Of the 10,275 eligible persons, 7,983 (78%) participated. 



Chapter 2.1.

28

All participants of the Rotterdam Study gave written informed consent. Ethical approval was 

obtained from the medical ethical committee of the Erasmus MC. 

The rationale and design of the study have been described before.[15] In short, the aim of 

the study was to investigate determinants of chronic and disabling cardiovascular, neurode-

generative, locomotor and ophthalmologic diseases. At baseline, trained interviewers admin-

istered a questionnaire during a home visit. The seven pharmacies in this suburb dispense 

the prescriptions of more then 99% of the participants. The pharmacy dispensing records 

from January 1st 1991 until July 1st 2005 were available and included the product name of 

the drug, the anatomical therapeutical chemical code, the amount dispensed, the prescribed 

dosage regimen and the date of dispensing.

Cohort definition
The study cohort consisted of all subjects in the Rotterdam Study. The dispensing data 

between January 1st 1992 and July 1st 2005 were analyzed to obtain complete medication 

histories of at least 1 year. As 141 participants in the cohort died during 1991, the medication 

histories of 7,842 people were analyzed. The cohort was followed until death, removal or the 

end of the study period.

Procedure
The Royal Dutch Association for the Advancement of Pharmacy publishes a list of DDIs that 

require a potential intervention by healthcare providers to prevent adverse reactions as a 

result of exposure to a combination of drugs.[16] This list is used for computerized drug interac-

tion surveillance systems used in community and hospital pharmacies and updates are sent 

out monthly. For this study, we used this list as updated to March 2006.[17] The Royal Dutch 

Association for the Advancement of Pharmacy categorizes both the quality of evidence and 

the potential clinical relevance of the DDIs. The quality of evidence for the DDI is categorized 

from 0 to 4, with 4 being the highest quality of evidence, and from A to F, reflecting the 

increasing potential clinical relevance of the DDI (table 1).[16] The DDI list included 451 DDIs. 

Of these, 101 DDIs were not subdivided into the categories 0A-4F, since formal classification 

of these interactions was still in progress. This occurred, for example, in the case of DDIs with 

newly marketed drugs such as antiviral drugs, or because of new understandings of DDIs. 

These DDIs occurred infrequently and therefore had little influence on the results.

For all dispensed prescriptions in the database, the duration of use was calculated by 

dividing the number of dispensed drug units by the number of units used per day. When the 

regimen was unknown or no duration could be calculated, the duration was replaced by the 

average valid durations of all dispensing of that drug in the study population. This was done, 

for example, in the use of ‘as needed’ drugs, or if the total prescription length was for more 

then 168 days. This period was chosen because the dispensing of six cycles of 28 days for 

oral contraceptive drugs is the longest period for which drugs are regularly dispensed. For all 
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patients, we recorded the period that they were exposed to simultaneous drug use that was 

listed as causing a DDI. The DDIs were listed by group, such as β-adrenoreceptor antagonists 

or insulin. Therefore, switching from one β-adrenoreceptor antagonists to another while us-

ing drugs that interact with β-adrenoreceptor antagonists was recorded as the same DDI, and 

using two different types of insulin interacting with another drug was counted as one DDI.

Analysis
We used three types of outcome in our study, the incidence rate, the point prevalence and 

the exposure time to the DDIs. For the incidence rate the first dispensing of a DDI or category 

of DDIs after the start of the study period was considered an event. Endpoints were an event, 

death or end of the study period. For people exposed to DDIs on January 1st 1992, no first 

dispensing date could be calculated and therefore these people were not taken into account 

for the calculation of the incidence rate. We also calculated the incidence rate for the first 

dispensing of both drugs on the same day because an overlap of usage periods does not 

guarantee simultaneous use. Prevalences were calculated on January 1st of every year and 

presented per age stratum. As people aged 55 years and older were included in the closed 

cohort, after ten years of follow up the cohort consisted only of people aged 65 and older. 

Therefore trends from 1992 to 2005 could be analyzed only in the population aged 70 years 

and older. Trends were standardized to the composition of the population at January 1st 2005. 

We also analyzed differences in prevalence between socio-economic status groups at Janu-

ary 1st 2005. We divided the population into low-, middle- and high-income groups, which 

were equal in size, based on reported income at the baseline interview. A chi-squared (χ2) 

test was used to test for differences in prevalence between income groups. For each DDI the 

exposure time and the number of exposed people were calculated. Linear regression was 

used to test whether changes over time were significant. These analyses were performed 

with SPSS software (version 11.0.1; SPSS, Chicago, IL).

Table 1 Categories for the quality of evidence and potential clinical relevance of drug-drug interactions published by the Royal Dutch 
Association for the Advancement of Pharmacy[16]

Quality of evidence
0 Pharmacodynamic animal studies, in vitro studies

1 Incomplete published case reports

2 Well documented published case reports

3 Controlled published interaction studies with surrogate endpoints

4 Controlled published interaction studies with clinical relevant endpoints

Potential clinical relevance of adverse reactions
A Clinically irrelevant effect

B Short acting adverse reactions (<24-48 hours) without sequel

C Long lasting adverse reactions (48-168 hours) without sequel

D Very long lasting adverse reactions (>168 hours) or adverse reactions with sequel

E Increased risk of failure of life-saving therapy

F Death
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Results

The average age in the study population on January 1st 1992 was 70.3 years (standard devia-

tion (SD) 9.8 years) and 39% were men. 3,728 people (48%) were over 70 years of age. The 

average follow-up time was 10.4 years (SD 4.2 years) and the total follow-up time of the study 

cohort was 81,310 person-years. In the study cohort 3,732 of the 7,842 people (48%) died 

during follow-up and loss to follow up was minimal. 280 of the 451 listed DDIs were not 

dispensed at all.

The incidence rate of a first dispensing of an interacting drug combination was 10.5 per 100 

person-years and 6.7 per 100 person-years for a first dispensing of both drugs on the same 

day. The prevalence of any DDI at January 1st 2005 was 18.4% (table 2) in a population with 

an average age of 78.2 years. The prevalence in low-, middle- and high-income groups were 

19.6, 16.9 and 19.0%, respectively. These differences were not statistically significant (χ2=2.46, 

p=0.29). The incidence of a first potentially life-threatening (failure of therapy) DDI (category 

E or F) was 2.7 per 100 person-years and the prevalence at January 1st 2005 was 2.8%.

The cumulative exposure time to DDIs was 14,823 person-years or 18.2% of total follow-up. 

The twenty DDIs with the longest duration in the study period are given in table 3. The first 

ten of these DDIs were responsible for 67.0% of the total exposure time to DDIs. Combina-

tions of cardiovascular drugs causing hypotension, NSAIDs counteracting the blood pressure 

lowering effects of antihypertensives and combinations of drugs influencing potassium 

levels were most often involved. Table 4 lists the potentially life-threatening DDIs (category 

F) and DDIs with a potential risk of failure of life-saving therapy (category E). The exposure to 

potentially life-threatening DDIs (category F) was 3.5% and exposure to DDIs with a potential 

risk of failure of life-saving therapy (category E) was 8.8% of the total exposure time to DDIs.

Table 2 Incidence, prevalence and exposure to drug-drug interactions

Level of 
potential 
clinical 
relevance

Incidence rate (95% CI) a Incidence rate, dispensed on 
the same day (95% CI) a

Prevalence (%) (95% CI) b Exposure time 
(% of total 
exposure time)

A 2.22 (2.12, 2.33) 1.51 (1.43, 1.60) 4.61 (3.99, 5.24) 14.26

B 1.64 (1.55, 1.73) 1.16 (1.08, 1.23) 5.70 (5.01, 6.39) 16.52

C 5.38 (5.20, 5.57) 2.59 (2.47, 2.71) 3.11 (2.59, 3.62) 15.49

D 5.49 (5.31, 5.68) 3.48 (3.34, 3.62) 7.39 (6.61, 8.18) 39.84

E 1.77 (1.67, 1.86) 0.73 (0.67, 0.79) 1.51 (1.14, 1.87) 8.83

F 1.16 (1.09, 1.24) 0.48 (0.43, 0.52) 1.32 (0.98, 1.66) 3.45

Any c 10.52 (10.22, 10.82) 6.67 (6.45, 6.88) 18.36 (17.20, 19.51) 100.00

a Per 100 person-years. b At January 1st 2005. c The number of the categories do not add up to the number in the any category because people 
could receive multiple interacting drug combinations and uncategorized DDIs are not represented separately.
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The prevalence of DDIs increases with age (figure 1). In people aged 70 years and older 

the prevalence rose between 1992 and 2005 from 10.5% to 19.2% (p<0.001, figure 2). There 

was no increase of prevalence in people younger then 70 years of age between 1992 and 

2002 (p=0.29). In 2005 the risk of exposure to DDIs was lower in the age category of 84 years 

and older compared with the age categories 70-74 years and 75-79 years. The prevalence of 

potentially life-threatening (failure of therapy) DDIs (category E and F) also increased during 

the study period (figure 3). This increase was present in all age categories, although there 

was a small decrease from 2004 to 2005. The prevalence of these DDIs in people aged 70 

years and older increased from 1.5% in 1992 to 2.9% in 2005 (p<0.001, figure 4). This increase 

was caused by an increase in potentially life-threatening DDIs between spironolactone and 

renin-angiotensin-aldosteron system (RAAS) inhibitors and between spironolactone and 

potassium. The prevalence of these DDIs was below 0.3% between 1992 and 1999 in people 

aged 70 years and older but increased between 1999 and 2004 to 1.2% (p=0.004). A small de-

crease to 1.1% was seen in 2005. The overall prevalence of DDIs with a potential risk of failure 

of life-saving therapy and the other potentially life-threatening DDIs increased between 1992 

and 2005 from 1.5% to 1.9% (p=0.001).

Table 3 Twenty drug-drug interactions with the largest exposure time

Drug-drug interaction Category Users Duration as % of 
exposure time

1. ACE-inhibitors + diuretics 3D 1,587 19.91

2. Digoxin + potassium losing diuretics 3A 785 9.66

3. Diuretics + NSAIDs 3D 2,061 7.44

4. β-adrenoreceptor antagonists + oral blood glucose lowering drugs 3B 354 6.66

5. β-adrenoreceptor antagonists + NSAIDs 3C 1,679 5.24

6. RAAS inhibitors + NSAIDs 3D 1,271 4.28

7. NSAIDs (not COXIBs) + corticosteroids 3C 1,394 3.65

8. β-adrenoreceptor antagonists + verapamil/diltiazem 3E 437 3.59

9. α-adrenoreceptor antagonists + β-adrenoreceptor antagonists or 
calcium channel blockers

3B 307 3.45

10. Angiotensin II antagonists + diuretics 3B 387 3.15

11. Bisphosphonates + antacids/iron/calcium 0A 451 3.01

12. RAAS inhibitors + potassium or potassium sparing drugs 2F 422 3.01

13. Simvastatin/atorvastatin + verapamil/diltiazem 3E 161 2.64

14. Digoxin + verapamil/diltiazem 3D 203 2.09

15. NSAIDs (not COXIBs) + SSRIs/trazodone 4C 403 2.05

16. Thyroid preparations + antacids/calcium 3C 121 1.91

17. Vitamin K antagonists + amiodarone/propafenone 3D 211 1.73

18. QT prolongating drugs + QT prolongating drugs (not erythromycin, 
clarithromycin, voriconazole)

1E 614 1.47

19. Vitamin K antagonists + thyroid preparations 1B 100 1.33

20. Digoxin + amiodarone 3D 144 1.32

COX-2: cyclo-oxygenase-2; ACE: angiotensin converting enzyme; NSAIDs: non-steroid anti-inflammatory drugs; RAAS: renin-angiotensin-
aldosterone system; SSRIs: selective serotonin reuptake inhibitors.
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Table 4 Exposure to potentially life-threatening (failure of therapy) drug-drug interactions

drug-drug interaction category users duration as % of 
exposure time

duration as 
% of e or F

Potentially life-threatening ddis (category F)
1. RAAS Inhibitors + potassium or potassium sparing drugs 2F 422 3.01 87.34

2. Potassium + potassium sparing diuretics 3F 41 0.11 3.11

3. Coumarin + tamoxifen 1F 20 0.10 2.81

4. Ibopamine + amiodarone 3F 13 0.08 2.28

5. SSRIs + tramadol 1F 46 0.05 1.41

Other 492 0.10 3.04

Total 911 a 3.45 100.00

Potential risk of failure of life-saving therapy (category e)
1. Beta-blockers + verapamil/diltiazem 3E 437 3.59 40.68

2. Simva/atorvastatin + verapamil/diltiazem 3E 161 2.64 29.88

3. QT-prolongators + QT-prolongators (excl. ery /
clarithromycin/voriconazole)

1E 614 1.47 16.64

4. Methotrexate + NSAIDs 3E 38 0.52 5.93

5. Statins + gemfi brozil 3E 44 0.28 3.16

6. Ketanserin + potassium losing diuretics 3E 24 0.19 2.19

Other 495 0.14 1.53

Total 1,359 a 8.83 100.00

a As one person can be exposed to more than one DDI, the total is not the sum of the separate DDIs. NSAIDs: non-steroid anti-infl ammatory 
drugs; RAAS: renin-angiotensin-aldosterone system; SSRIs: selective serotonin reuptake inhibitors.

Figure 1 Prevalence of drug-drug interactions over time per age stratum
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Figure 2 Prevalence (95% CI) of drug-drug interactions over time in people aged ≥70 years

Figure 3 Prevalence of potentially life-threatening (failure of therapy) drug-drug interactions (category E and F) over time per age stratum
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discussion

In our study, many people were exposed to DDIs during the study period. Furthermore, in 

the study period, the prevalence of DDIs in people aged 70 years and older doubled. In 1992, 

one in ten people was exposed to DDIs compared with one in fi ve in 2005. The prevalence 

of potentially life-threatening DDIs in people aged 70 years and older also doubled from 

1.5% in 1992 to 2.9% in 2005. The main cause was an increase in the prevalence of DDIs 

between spironolactone and RAAS inhibition therapy. This increased use of spironolactone 

followed the publication of RALES (Randomized Aldactone Evaluation Study), in which the 

benefi cial eff ects of spironolactone in the treatment of heart failure were shown.[18] In 2004, 

an increase in hospitalizations due to hyperkalaemia was associated with more frequent 

use of spironolactone after publication of RALES and this may have caused the observed 

decrease in 2005.[19]

Although the results of this study might suggest that a large part of the population aged 

55 years and older is exposed to a potential threat, dispensing of drugs that result in DDIs is 

often inevitable.[20] Avoiding the drugs causing the DDI is often not possible because alterna-

tive drugs that do not interact are not available and the drugs are clinically necessary. The 

majority of exposure to DDIs was caused by DDIs that were clinically relevant, although not 

life-threatening. With these DDIs serious adverse events may happen, although the risks are 

Figure 4 Prevalence over time of potentially life-threatening drug-drug interactions (category F), drug-drug interactions with a potential risk 
of failure of life-saving therapy (category E), and of potentially life-threatening drug-drug interactions (category F) in which spironolactone was 
involved, in people aged 70 years and older.
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often acceptable. A small number of well known DDIs were responsible for the majority of 

exposure time, such as DDIs between ACE inhibitors and diuretics and between NSAIDs and 

β-adrenoreceptor antagonists. Guidelines to reduce the risks of these inevitable DDIs exist 

and, if followed appropriately, the risk of adverse reactions is acceptable. An example is the 

DDI between NSAIDs and β-adrenoreceptor antagonists. This DDI can be managed by check-

ing blood pressure regularly at start of therapy and adepting therapy if necessary.[21] The 

DDI between RAAS inhibitors and potassium or potassium-sparing drugs is responsible for 

most of the exposure time to life-threatening DDIs. These drug combinations are indicated 

if potassium levels are low, as may happen when patients are concomitantly treated with 

loop diuretics.[22] Again, the risks of adverse events are acceptable, when potassium levels are 

monitored regularly. However, while guidelines exist to reduce the risks associated with the 

use of interacting drug combinations, the absolute risk of adverse reactions caused by DDIs 

remains considerable when the prevalence of DDIs is high. 

Medication surveillance systems alert for all DDIs that do occur, resulting in a high number 

of signals, of which the majority is clinically irrelevant. A large portion of the irrelevant signals 

can be suppressed, if clinical rules for these DDIs are implemented in the system. For ex-

ample, the risk of a sudden strong reduction in blood pressure caused by the frequently used 

combination of ACE-inhibitors and diuretics is high if therapy with ACE-inhibitors is started 

during diuretic therapy.[23] Thus, many signals can be avoided if the system generates an alert 

only when an ACE inhibitor is added to diuretic therapy. The same applies to the DDI between 

RAAS inhibitors or diuretics and NSAIDs. These DDIs are mostly clinically irrelevant in the case 

of normal renal functioning and in the absence of heart failure. However, while a medication 

surveillance system can identify some irrelevant signals, the judgment as to whether a DDI 

can be used safely must be tailored to every individual case. The risk of adverse reactions is 

dependent on many patient characteristics, such as age, co-morbidity and renal function, 

and precise rules for deciding which DDIs can be dispensed safely or should be avoided in all 

cases cannot be given.

This study has some potential limitations. First, we had information only on dispensed 

prescriptions. As we do not have other information, for example, on the counseling of the 

prescriber or patient by the pharmacist, we did not know whether guidelines were followed 

to reduce the risk of adverse reactions. Precautionary measures can be taken, for example by 

measuring potassium levels, stopping one of the drugs and adjusting the dose regimen. As 

it is likely that dispensing two drugs on the same day meant that these drugs are used con-

comitantly, we therefore also determined the incidence rates of simultaneous dispensing. We 

also did not know how often a DDI was cancelled following contact between the pharmacist 

and the prescribing physician. Second, in this study we use the DDI list from 2006. As the dis-

pensings were between 1992 and 2005, it is possible that a combination of prescribed drugs 

was not recognized or categorized as a DDI at that time. However, such misclassification was 

probably modest. Third, in this study we included only prescribed drugs. Some drugs with 
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potential DDIs, such as NSAIDs and hypericum (St. John’s Wort), could be obtained without 

prescriptions. DDIs involving these drugs were not included in the analysis.

To conclude, a large number of people aged 55 years and older in the Netherlands are 

exposed to DDIs and this number has increased sharply between 1992 and 2005. A limited 

number of DDIs are responsible for the majority of the exposure time, and most of these 

drugs are part of normal pharmacotherapy. Because of their high prevalence and the sharp 

increase in this prevalence over the last decade, healthcare professionals should pay special 

attention to the potential risks of DDIs in people aged 70 years and older. This is particularly 

the case for DDIs involving spironolactone, which may cause potentially life-threatening 

elevated potassium levels.
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Abstract

Background: Although the number of clinically relevant drug-drug interactions (DDIs) is prob-

ably low, DDIs may be responsible for a substantial number of hospital admissions. In some 

countries, the pharmacist is responsible for preventing the use of unsafe or non-effective 

drug regimens. Specifically they should avoid the dispensing of combinations of drugs that 

may cause serious DDIs. In order to assess the determinants related to community pharma-

cies and associated with these dispensings, a systematic literature review was conducted. 

Methods: Medline and International Pharmaceutical Abstracts were searched for articles 

published in English between 1993 and 2003. Additional relevant articles were identified by 

screening the reference lists of relevant articles.

Results: Seven papers were located. The determinants described in the literature were divided 

into three groups. The first group focused on the relationship between the pharmacist and 

the prescriber. The number of prescribers is of importance as well as the number of dispens-

ing pharmacies. Both a high number of primary care physicians and multiple dispensing 

pharmacies increased the risk of DDIs. The availability, quality and sensitivity of the medica-

tion surveillance software appeared to be a second important determinant. Both too many 

and too few signals increased the risk of dispensing interacting drugs. The third group of 

determinants was related to the pharmacist and pharmacy organization. Signals from the 

surveillance program are usually judged first by technicians and subsequently managed 

by the pharmacist. Consequently, knowledge, instructions and supervision are important 

determinants. A fourth group of determinants was identified in literature assessing interven-

tions by pharmacists, including interventions for DDIs. A higher workload was associated 

with lower intervention rates, which indicated a higher risk of dispensing interacting drugs.

Conclusion: The determinants identified in this review can be used to develop strategies 

to minimize patient harm resulting from DDIs. Further assessment of the relation between 

these determinants and the dispensing of DDIs and of the relation between DDI-associated 

dispensing and patient harm is recommended.
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Introduction

One of the consequences of multiple drug use is the risk of one drug influencing the effect of 

a second drug. This so called drug-drug interaction (DDI) is defined as a pharmacokinetic or 

pharmacodynamic influence of drugs on each other, which can result, besides desired effects, 

in reduced effectiveness or increased toxicity.[1] The seriousness and clinical relevance of DDIs 

vary considerably. Although DDIs are probably common, only 10-12% of the prescriptions 

involving a DDI have serious clinical consequences.[2-4] The seriousness of the DDI should be 

weighed against the benefit of both drug therapies and the availability of alternatives.

Previously, the tasks of the pharmacist focused on the production and dispensing of 

a limited number of drugs. With the growing number of available drugs and the increas-

ing complexity of drug therapy, such as in the treatment of HIV-related diseases, the role 

of the pharmacist is changing rapidly from product-centered to patient-centered. In some 

countries, including the Netherlands, one of the present responsibilities of the pharmacist 

is to prevent the use of unsafe or non-effective drug regimens. In the Netherlands, every 

pharmacist is obliged to use a medication surveillance program for this task. One of their 

responsibilities is to prevent the dispensing of interacting drugs, which carries too much risk 

for patient harm. Studies assessing intervention by pharmacists show that the percentage 

of prescriptions that are intercepted ranges from 0.75 to 1.9%.[5-10] This variation may partly 

be attributable to variations in the definition of intervention. The percentage of intercepted 

prescriptions that prevent adverse clinical consequences ranges from 0.27% to 0.95%.[5-8] 

Only between 0.011% and 0.078% of the prescriptions are intercepted because of a DDI.[5,6,8] 

Although this low percentage suggests that DDIs are of no clinical significance, the adverse 

consequences may be substantial.[6] Different studies suggest that the number of hospital 

admissions due to DDIs is up to 3% of all admissions.[11-14] This could be an underestimation 

because of the inability of practitioners and pharmacists to identify a DDI as the cause of an 

adverse outcome. It is possible that a drug-related problem is ascribed to the last prescribed 

drug and not to an interaction of this drug with another one.

In this review we searched for process and structure characteristics that have a relationship 

with the dispensing of interacting drugs. Process and structure characteristics determine the 

outcome of care, which can be understood in terms of death, disease, disability, discomfort 

and dissatisfaction.[15] The dispensing of drugs involving a DDI is assessed as a proxy for the 

outcome of healthcare. There are three reasons for focusing on the determinants for DDI 

associated dispensing. First, DDIs are a clearly defined type of error and they have a relation 

with the present task of the pharmacist. Second, DDIs are considered to be an important 

cause of adverse events. Third, the dispensing of drugs that are part of a DDI can be traced in 

databases. In locations where the patient’s medication history is filed, it is relatively easy to 

trace DDIs during observational assessments in the future.
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The objective of the review was to investigate which determinants within community 

pharmacies are associated with a high frequency of DDI associated dispensing.

Literature Search Methodology

Determinants in this literature review were identified by searching Medline and International 

Pharmaceutical Abstracts (IPA) for articles published between January 1993 and December 

2003. This timeframe was chosen because the tasks of the pharmacist have changed consid-

erably in the last decade. Therefore, we assumed that literature written before 1993 would 

not apply to current daily practice.

In the Medline search the results of two search strategies were combined. The first one used 

the medical subject heading (MeSH) descriptors ‘drug-interactions’, ‘drug-antagonism’, ‘drug-

synergism’ and ‘medication-errors’. The second one used the MeSH descriptor ‘community phar-

macy services’ or the keyword ‘dispens*’ for all fields. To exclude studies concerning dispensing 

in hospital pharmacies, papers with the keywords ‘hospital pharmacy services’ were omitted.

In the IPA search the results of a similar strategy were used. The first search used the terms 

‘drug interactions’, ‘medication errors’, ‘medication error?’ and ‘dispensing error?’. The latter 

two were searched for the title only. The second search used the terms ‘community pharmacy 

serviced’ and ‘dispens?’. Studies with the terms ‘hospital pharmacy services’ or ‘institutional 

hospital pharmacy’ were excluded.

Papers from both literature searches were included if they were written in English, were 

applicable to community pharmacy services and to DDI-associated dispensing and described 

determinants involved in the dispensing of DDIs. Articles that matched the inclusion criteria 

were selected and additional relevant articles were identified by screening the reference lists 

of these articles. Papers looking at prescriber or patient characteristics as determinants were 

outside the scope of this review.

The Medline search yielded 134 articles and the IPA search yielded 357 articles. Reference 

tracking and verification as to whether the articles met the inclusion criteria resulted in the 

selection of seven articles on determinants of dispensing interacting drugs.[1,16-21] None of the 

articles discussed the entire range of determinants involved in DDI-associated dispensing.

DDI associated determinants

The determinants for the dispensing of interacting drugs could be divided into three groups 

(table 1). The first group described the ‘relationship with the prescriber’ and the other groups 

(‘medication surveillance program’ and ‘pharmacy organization’) described determinants 

within the pharmacy.
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Relationship with prescriber
Tamblyn et al.[21] assessed whether the risk of a DDI increased with the number of prescribers. 

Patients who had a single primary-care physician or a single dispensing pharmacy were less 

likely to be prescribed concomitant medications causing a DDI.

Medication surveillance program
In the study by Halkin et al.[17], the introduction of medication surveillance software for DDIs 

in the majority of community pharmacies and physician offices reduced the dispensing of 

prescriptions with severe interactions by 67.5%. Tamblyn et al.[20] also found that, although 

it was not significant, the introduction of medication surveillance programs by primary care 

physicians increased the discontinuation rate of prescriptions involving interacting drugs. 

On the other hand, discussion exists as to whether medication surveillance programs can 

prevent the dispensing of all relevant DDIs. In letters to the editor, both Cavuto et al.[22] and 

Kraft and Dore[23] reported that some of the pharmacists using a computer program were 

unable to prevent well documented DDIs. In their reply, Bates and Leape[16] discussed the 

Table 1 Determinants for drug-drug interaction (DDI) associated dispensing

Study Independent variable Effect Dependent 
variable

Size of the effect

Relationship with prescriber
Tamblyn et al.[21] Single primary care physician Lower Receiving DDI Cardiovascular drugs OR = 0.70 (99% 

CI 0.6, 0.8), psychotropic drugs OR = 
0.79 (CI not given), NSAID OR = 0.94 (CI 
not given)

Tamblyn et al.[21] Single dispensing pharmacy Lower Receiving DDI Cardiovascular OR = 0.68 (99% CI 0.6, 
0.8), psychotropic OR = 0.79 (CI not 
given), NSAID OR = 0.75 (CI not given)

Medication surveillance program
Halkin et al.[17] Introduction of medication 

surveillance program
Lower Dispensing severe 

DDIs
OR=0.28 (95% CI 0.26, 0.30)

Tamblyn et al.[20] Introduction of medication 
surveillance program

Higher Discontinuation 
rate of 
prescriptions for 
DDIs

OR = 1.33 (95% CI 0.90, 1.95)

Hazlet et al.[18] Software does not recognize 
interaction

Higher Risk of DDI NA

Schalekamp[1] Software gives too many 
signals

Higher Risk of DDI NA

Bates & Leape[16] Software does not sufficiently 
come up with ‘red flag’

Higher Risk of DDI NA

Pharmacy organization
Schalekamp[1]

Heijboer-Vinks[19]

Management of medication 
surveillance signals

NA NA NA

NA: not available; OR: odds ratio; NSAID: non-steroid anti-inflammatory drug; CI: confidence interval.
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reasons why pharmacists failed to intervene in spite of the use of a medication surveillance 

program. First, the software may not be able to correctly identify clinically important DDIs 

because the software is not up-to-date or well documented DDIs are otherwise absent from 

the database.[18] Second, because of an overload of interaction signals, pharmacists may 

have grown accustomed to skipping through them rapidly. Too many warnings complicate 

medication surveillance because the identification of relevant signals becomes more difficult. 

They are most often caused by repeated warnings for the same patient, managed in an earlier 

dispensing.[1] The third reason why pharmacists may be unable to intervene in spite of use of 

medication surveillance programs is that the program does recognize certain drug combina-

tions, but does not sufficiently alert the pharmacist or technician that a DDI is present and 

that the dispensing should be prevented.[16]

Pharmacy organization
The management of the signals generated by the medication surveillance program is impor-

tant.[1,19] In the first place, the sensitivity of the software is an issue. Both ignoring signals that 

need to be managed and an overload of signals should be avoided. A signal must be judged 

on relevance and, if relevant, it must be followed by an appropriate action. In community 

pharmacies most signals will be noticed first by technicians. They should be instructed and 

supervised on how to judge and, if possible, how to manage these signals. The last issue is the 

knowledge of the pharmacist in managing DDIs and the ability of the pharmacist to judge 

the risk of DDIs.

Discussion

The purpose of this literature review was to identify determinants of DDI-associated dispens-

ing in community pharmacies. Determinants concerning the prescriber or the patient, for 

example interactions with over-the-counter drugs, were outside the scope of this review. 

Although the number of interventions related to DDIs is small, DDIs may be a major risk for 

hospital admission. Studies were identified that assessed the interventions by pharmacists 

and the number of hospital admissions caused by DDIs, but no studies were found that 

assessed the relationship between these interventions and hospital admissions. In some 

countries, pharmacists have a task to prevent serious DDIs. Focus on the determinants in 

the pharmacy may reduce the dispensing of drugs involving a DDI and improve patient 

outcome. The determinants of interest for surveillance of DDI-associated dispensing could 

be divided into three groups. These groups are ‘relationship with the prescriber’, ‘medication 

surveillance program’ and ‘pharmacist and pharmacy organization’. Proper attention paid to 

these determinants can contribute to the prevention of the dispensing of interacting drugs.
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In the first group, Tamblyn et al.[21] found that an increasing number of prescribers or 

pharmacists involved in the dispensing of drugs increases the risk of dispensing DDIs. The 

influence of the number and kind of prescribers was also described by studies assessing 

intervention by pharmacists, including interventions for DDIs (table 2). A high number of 

interventions suggest a high risk for DDI-associated dispensing as the risk of a DDI remaining 

unnoticed might increase. Although interventions for DDIs were only a small part of the total 

number of interventions, these studies give insight into what may go wrong during the pro-

cess of drug dispensing. Pharmacists more often modified prescriptions from specialists and 

prescriptions from GPs other than the patient’s own GP than prescriptions from the patient’s 

own general practitioners (GP).[5] Westein et al.[9] also found that prescriptions from specialists 

had higher intervention rates than prescriptions from the patient’s own GP, although this 

Table 2 determinants for interventions including interventions for DDIs 

Study Independent variable Effect Dependent 
variable

Size of the effect

Relationship with prescriber
Buurma et al.[5] Prescriptions from specialists Higher Prescription 

interventions
OR = 1.82 (95% CI 1.57, 2.11)
27.5% in intervention sample versus 
17.6% in control sample

Westein et al.[9] Prescriptions from specialists Higher Prescription 
interventions

OR = 1.21 (95% CI 0.69, 1.72)

Buurma et al.[5] GP not being patient’s own GP Higher Prescription 
interventions

OR = 1.49 (95% CI 1.02, 2.17)
3.1% in intervention sample versus 2.4% 
in control sample

Westein et al.[9] Drugs part of complex drug 
therapy 
>3 prescribers
>15 prescriptions in 3 months
>3 different medications

Higher Prescription 
interventions

OR = 1.75 (95% CI 0.51, 2.99)
OR = 1.60 (95% CI 0.80, 2.40)
OR = 1.48 (95% CI 0.98, 1.99)

Rupp et al.[8] Direct prescription order 
transmission between GP and 
pharmacist

Lower Prescription 
interventions

7.2% in intervention sample versus 
18.9% in control sample

Buurma et al.[5] Hand written prescriptions Higher Modification OR = 3.30 (95% CI 2.90, 3.75)

Buurma et al.[5] Physician has online access 
to actual patients medication 
record

Lower Modification OR = 1.61 (95% CI 1.33, 1.94)

Medication surveillance program
Westein et al.[9] Number of signals No 

relationship
Interventions

Pharmacy and pharmacy organization
Currie et al.[24] Pharmaceutical care training Higher Interventions OR = 8.1 (95% CI 4.7, 14.2)

Westerlund et 
al.[10]

Work satisfaction Higher Drug related 
problem detection 
rate

Rc = 0.020 (95% CI –0.157, 0.197)

Rupp et al.[8] Chain and independent 
pharmacies

No difference Interventions

GP: general practitioner; OR: odds ratio; Rc: slope.
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result was not significant. The higher intervention rates for specialist prescriptions and for 

prescriptions from GPs other than the patient’s own GP, show the importance of a central 

point for the drug therapy to be coordinated. A higher, but not significant, intervention rate 

was also found for drugs taken as part of a complex drug therapy.[9]

A direct prescription order communication between the prescriber and the pharmacist 

gave rise to less interventions than a prescription order communicated by the patient or a 

representative.[8] Intervention rates were higher for handwritten prescriptions and when the 

GP had no online access to the actual patient’s medication record in the pharmacy computer.
[5] Handwritten prescriptions require extra attention by the pharmacy because they can imply 

that no medication surveillance by computer took place during the prescribing process. In 

addition, misreading the prescription can lead to the wrong drug being dispensed.

The second group found that the medication surveillance program and its sensitivity is 

important. Differences exist between the degree of computerization and the availability of 

medication histories in community pharmacies, which are largely influenced by the envi-

ronment. In the Netherlands all pharmacists are obliged to keep records of the drugs that 

are dispensed. In the first place, the availability of medication surveillance programs is of 

interest for reducing the dispensing of DDIs; in the second place, the way these programs 

are used is important. Hazlet et al.[18] assessed the differences between software programs in 

detecting a non-representative, but well documented group of interactions. Although they 

assessed differences between software programs only, they also found differences between 

users of the same software program, which emphasizes the importance of fine-tuning the 

sensitivity of the program. Different studies suggest that only some of the signals produced 

lead to interventions.[9,25,26] Westein et al.[9] did not find any association between the number 

of signals and the number of interventions. Therefore, it is important that the number of 

irrelevant signals is low, but that all relevant DDIs are detected and managed correctly. It is 

recommended that attention is paid to both the quality and sensitivity of the software.

The third group describes the influence of the pharmacist and pharmacy organization. 

These determinants may play an important role in avoiding DDI-associated dispensing. This 

group is influenced to a large extent by the environment, for example the contribution of 

technicians in the community pharmacy and the use of medication surveillance programs. 

Studies assessing interventions by pharmacists, including interventions for DDIs, reported 

that pharmaceutical care training[24] and higher work satisfaction[10] were associated with 

higher intervention rates. No differences in intervention rates was found between chain 

pharmacies and independently owned pharmacies.[8]

This literature review has some limitations. The ultimate purpose was to associate determi-

nants of the dispensing of interacting drugs with the outcome of healthcare. In this review, 

these dispensings were assessed as a proxy for outcome. The relationship between the dis-

pensing of interacting drugs and outcome can be assumed based on studies indicating that 

DDI-associated interventions prevent patient harm[6] and that DDIs are a cause of hospital ad-
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missions.[11-14] The literature search was limited to the Medline and IPA databases and possibly 

caused publication bias and the exclusion of data that is published in journals not selected 

in Medline or IPA. Only a limited number of studies were found to have exclusively assessed 

the dispensing of concomitant medications that do interact. A number of studies assessed 

the interventions by pharmacists, including the interventions for DDIs. It can reasonably be 

expected that determinants described in these studies are also applicable to the dispensing 

of DDIs. An additional determinant was workload, with three of the four studies finding that 

an elevated number of dispensed prescriptions was significantly associated with a lower 

intervention rate and probably indicated a higher patient risk (table 3).[6-8,10]

Most of the studies covered in this article were sensitive to bias, such as selection bias and 

bias because participants were aware that they were being observed. Most likely participat-

ing pharmacists were not afraid to show their shortcomings and probably had an increased 

level of attention during the observation period. Consequently, the number of actions 

taken by pharmacists may be overestimated and, thus, patient risk may be underestimated. 

Finally, none of the studies in the literature assessed the whole range of determinants for 

DDI-associated dispensing. Therefore, it cannot be guaranteed that no determinants were 

missed. Also, the definition of DDI used in the studies varied to a large extent. Because there 

is a wide range in the seriousness of DDIs, a drug combination could be considered as a DDI 

in one study, but not in another. Finally, the determinants identified in the studies for the 

dispensing of DDIs were influenced by the environment, for example legislation, the division 

of tasks between pharmacists and other personnel, and the healthcare system. Because most 

studies were performed in different countries, results may not be comparable to one another.

To conclude, there are three groups of determinants for the dispensing of DDIs in com-

munity pharmacy services. These groups are ‘relationship with the prescriber’, ‘medication 

surveillance program’ and ‘pharmacy organization’. In studies assessing interventions by 

pharmacists, including the interception of prescriptions involving DDIs, determinants such 

Table 3 Influence of workload on community pharmacy services

Study Country, 
year

Method Study 
population

Independent 
variable

Dependent 
variable

Correlation

Caleo, et al.[6] Australia, 
1996

Case 
series

580 pharmacy 
days

Prescriptions 
per pharmacy

Intervention rate No

Hawksworth 
et al.[7]

UK, 1999 Case 
series

840 pharmacy 
days

Prescriptions 
per pharmacy

Intervention rate Yes Correlation coefficient: -0.65

Rupp, et al.[8] USA, 1992 Case-
control

445 pharmacy 
days

Prescriptions 
per pharmacist 
per hour

Intervention rate Yes Regression coefficient: -0.40

Westerlund 
et al.[10]

Sweden, 
1999

Case 
series

144 pharmacy 
professionals a

Weighted 
transactions

Drug-related 
problem 
detection rate

Yes Regression coefficient: 5x10-6

a 34 pharmacists, 71 prescriptionists and 39 pharmacy technicians.
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as workload were found. It can reasonably be expected that these determinants have a 

relationship with the dispensing of DDIs. To validate these results, further assessment of the 

relationship between DDI-associated dispensing and patient harm is necessary. The results of 

this review are used in an observational study on the association between the determinants 

and the dispensing of DDIs in community pharmacies.
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Abstract

Background: There are many drug-drug interactions (DDI) of which some may cause severe 

adverse patient outcomes. Dispensing interacting drug combinations should be avoided 

when the risks are higher than the benefits. The objective of this study was to identify deter-

minants of dispensing undesirable interacting drug combinations by community pharmacies 

in the Netherlands.

Methods: A total of 256 Dutch community pharmacies were selected, based on the dispensing 

of eleven undesirable interacting drug combinations between January 1st 2001 and October 

31st 2002. These pharmacies were sent a questionnaire by the Inspectorate for Health Care 

concerning their process and structure characteristics. We analyzed the association between 

the results from the questionnaire and the number of times the eleven undesirable interact-

ing drug combinations were dispensed.

Results: 246 questionnaires (response rate 96,1%) were completed. Dispensing determinants 

were only found for the DDI between macrolide antibiotics and digoxin but not for the other 

ten DDIs. Pharmacies using different medication surveillance systems differed in the dispens-

ing of this interacting drug combination, and pharmacies, which were part of a health care 

centre dispensed this interacting drug combination more often. 

Conclusion: Medication surveillance in Dutch community pharmacies seems to be effective. 

Although for most DDIs no determinants were found, process and structure characteristics 

may have consequences for the dispensing of undesirable interacting drug combinations.
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Introduction

Drug-drug interactions (DDIs) are responsible for many adverse patient outcomes. Different 

studies suggest that DDIs may cause up to three percent of all hospital admissions.[1-4] A DDI 

is defined as a pharmacokinetic or pharmacodynamic influence of drugs on each other, which 

may result in desired effects, in reduced efficacy and effectiveness or in increased toxicity.[5] 

Although many DDIs exist, only a small part of these DDIs is clinically relevant.[6-8] The potential 

benefits of drug combinations should be weighed against the seriousness of the DDI, taking 

into account the availability of alternatives. Only in cases that the risks associated with the DDI 

are higher than the benefits or if a better alternative is available, the DDI should be avoided.

In the Netherlands, one of the tasks of the pharmacist is to intervene in case of DDIs, which 

involve a high risk for the patient. Hereto, the pharmacist uses patient characteristics and 

the medication history. All prescriptions, which are submitted to the pharmacy, are screened 

on potential interactions with the help of medication surveillance software. These DDIs are 

evaluated by the pharmacist who intervenes if necessary. This task is important but cumber-

some, and requires great attention from the pharmacist. The organizational aspects, such as 

the tuning of the medication surveillance software and instructions of technicians, should be 

managed by the pharmacist in such a way that in case of DDIs with a high risk the pharmacist 

intervenes. This is important for the prevention of adverse patient outcomes.[9]

The objective of this study was to assess process and structure characteristics associated 

with the dispensing of interacting drug combinations, which carry a high risk of adverse 

patient outcomes.

Methods

Setting
The data for this study were retrieved from the Drug Information Project, a division of the 

Health Care Insurance Board. This is a database containing the reimbursement data from 

eight health care insurance companies in the Netherlands. The reimbursement data from 

January 1st 2001 until October 31st 2002 were analyzed. Eleven potential DDIs, that con-

tained a high risk and could be substituted, because a good alternative was available, were 

selected and counted for each pharmacy in the database. These undesirable potential DDIs 

were mostly interactions between chronically used drugs which cannot be interrupted and 

short-term use of antibiotics or antimycotics, and were selected from the Dutch guidelines 

for the management of DDIs (table 1).[10, 11] A DDI was counted as such, when the chronically 

used drug was dispensed both in the period 150 days preceding and in the period 150 days 

after the dispensing of antibiotics or antimycotics for short-term use in the same pharmacy. 

Pharmacies with less than 5,000 dispensings in the database were excluded.
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Procedure
For each pharmacy, we calculated the dispensing-ratios for the eleven potential DDIs with 

formula 1. This formula was used because the risk of dispensing a DDI between drug A and 

drug B is dependent on the number of times each drug is dispensed. The more drug A or drug 

B are dispensed, the higher the risk that these drugs are combined on the basis of chance 

alone. In case the dispensing of drug A is independent from the dispensing of drug B and the 

DDI is never intervened, the ratio will on average be one. The number of times this ratio was 

above one was calculated, because a ratio above one might indicate that medication surveil-

lance fails. In this calculation, there were 342 DDIs between norfloxacin and theophylline, 

which were excluded in the analysis because the guidelines concerning the management 

of this DDI were inconsistent. Two groups of pharmacies were selected, and the pharmacists 

were asked in August 2003 by the Inspectorate for Health Care (IHC) to fill in a questionnaire. 

The first group included pharmacies with a high risk of dispensing these DDIs, while the 

Table 1 Number of dispensings in the database of the individual drugs involved, the eleven potential DDIs and the calculated ratio 

Drug-drug interaction Number of 
dispensings drug A 
x 1,000 (range)

Number of 
dispensings drug B
X 1,000 (range)

Number of 
DDIs counted 
(range)

Average ratio 
(range) a

Drug A Drug B
1 Erythromycin,

clarithromycin,
azithromycin,
roxithromycin

Digoxin 440.8 (0-2754) 487.0 (0-3064) 3993 (0-41) 1.39 (0-18.52)

2 Itraconazole Digoxin 88.7 (0-349) 487.0 (0-3064) 245 (0-7) 0.45 (0-21.69)

3 Ciprofloxacin Theophylline 105.4 (0-769) 100.9 (0-756) 944 (0-14) 6.39 (0-534.38)

4 Miconazole, oral gel Acenocoumarol,
fenprocoumon

44.6 (0-233) 608.2 (5-3156) 154 (0-3) 0.38 (0-21.30)

5 Erythromycin Carbamazepine 49.7 (0-531) 193.6 (0-871) 35 (0-4) 0.24 (0-40.92)

6 Erythromycin,
clarithromycin,
azithromycin

Disopyramide 426.6 (0-2754) 9.4 (0-151) 61 (0-4) -

7 Erythromycin,
clarithromycin

Pimozide 274.4 (0-2004) 57.4 (0-394) 70 (0-15) 0.46 (0-46.12)

8 Propranolol,
oxprenolol,
pindolol

Beta2-mimetics,
inhalation 
corticosteroids

250.6 (1-1075) 2546.9 (27-10504) 5127 (0-94) 0.54 (0-12.98)

9 Erythromycin,
clarithromycin

Cisapride 274.4 (0-2004) 127.5 (0-821) 586 (0-11) 1.16 (0-40.45)

10 Itraconazole,
fluconazole,
ketoconazole

Cisapride 199.9 (0-727) 127.5 (0-821) 347 (0-12) 0.95 (0-57.10)

11 Acenocoumarol,
fenprocoumon

Azapropazon 608.2 (5-3156) 8.4 (0-164) 32 (0-19) -

a Calculated with formula 1.
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second group consisted of a random sample from the remaining pharmacies. These groups 

were equal in size. The selection criteria are described in figure 1. The selection criterion for 

receiving a questionnaire (≥ 4 times a ratio >1) was chosen on pragmatic reasons to have 

enough power for statistical analysis with manageable numbers. A concept questionnaire 

was composed on basis of a literature search and interviews with experts.[9] The questions 

concerned process and structure characteristics of several quality aspects and those ques-

tions were selected that could discriminate between high and low quality pharmacies. Mostly 

questions with objective answers were included, for example about written instructions for 

technicians, filing of data, tuning of the software (which signals were shown and which not) 

and personnel. The concept questionnaire was tested in three pharmacies and some ques-

tions were amended on the basis of their comments. The final questionnaire contained 183 

questions, divided into twelve subjects (table 2). The questionnaire was accessible via the 

Internet. Pharmacies who had no access to the Internet received the questionnaire by post. 

Pharmacies who failed to fill in the questionnaire received reminders at regular intervals. A 

sample from both groups was visited by the IHC (figure 1). Also here, the selection criterion 

(≥ 5 times a ratio >1) was chosen to have enough power with manageable numbers. Thirty-

Formula 1

� 
� 
� 
� 
� 

Formula 2

� 
� 
� 
� 
� 

with
· ki,ab: number of dispensings of interacting drug combination AB in pharmacy i
· ki,a: number of dispensings of drug A in pharmacy i
· ki,b: number of dispensings of drug B in pharmacy i
· Ni: total number of dispensed drugs known in the database in pharmacy i
· Ntot: total number of dispensed drugs known in the database in all pharmacies

Figure 1 The selection of the pharmacies receiving a questionnaire and IHC visit
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seven questions from the questionnaire were selected and during the visits these questions 

were verified. The pharmacies were informed in advance that a selection of the pharmacies 

would be visited. The selected pharmacies were acquainted after completing the question-

naire. The visiting inspectors were blinded to the number of interacting drug combinations.

Statistical analysis
For each pharmacy, dispensing-ratios for the DDIs, comparable to the standardized mortality 

ratio, were calculated using formula 2. With this formula, we standardize for the total number 

of dispensings per pharmacy in the database. In case all pharmacies dispense the DDIs in 

equal numbers, the ratio will be one for all pharmacies, and therefore the ratios have a better 

comparability. Pharmacies, which have only a small number of dispensings in the database, 

will have extremely high numbers in case they dispense one or a small number of DDIs. 

Therefore, the results were equalized with Bayesian statistics to prevent extreme ups and 

downs due to low numbers of dispensings.[12] The pharmacies were divided into two sets. 

One set was used for the analyses and contained two-third of the pharmacies, the other set 

Table 2 The subjects and number of questions in the questionnaire

Chapter Subject (number of questions)
General pharmacy data Ownership of the pharmacy (1), cooperation with other pharmacies (1), cooperation with general 

practitioners (1), electronic submission of prescriptions (4)

Facilities Alterations (2)

Quality policy Setting up and implementing a quality system (4), certification (2), attitude towards quality 
management (12)

Quality measurement Measurement of errors (2), complaints (1), patient satisfaction (2), interventions (3), and 
participation in mystery guest investigations (2)

Receipt procedure Number of personnel involved in dispensing a receipt (2), checks in dispensing a receipt (3)

Medication surveillance – 
tuning software

Medication surveillance system used (1), tuning of the system e.g. which signals are showed and 
which are regarded as irrelevant (55a), surveillance of pharmacy preparations (2)

Medication surveillance – 
organization

The way technicians are instructed to manage medication surveillance signals (5), the way 
this is supervised (2), number of interventions (1), use of resources (2), participation in courses 
(4), management of the DDI between carbamazepine and erythromycin (5) and between 
Sulfamethoxazole/trimethoprim and Acenocoumarol (7)

Medication surveillance – 
recording management

The way the management of signals is recorded (4)

Pharmacy preparations The way instructions for pharmacy preparations are recorded (1), the way pharmacy preparations 
are supervised (3), the number of pharmacy preparations (2), the policy regarding analyzing 
pharmacy preparations (3)

Personnel and workload Subjective workload (3), absence through illness (1), number of receipts dispensed per technician 
(2), personnel and experience of personnel (18)

Patient care Information given to patients (6), information exchange with hospitals (4), participation in health 
care projects (4)

Pharmacotherapeutic 
consultation groups

Participation in pharmacotherapeutic consultation groups (3), agreements made (3)

a As the questions for the four systems (Pharmacom, Aposys, Euroned, others) differed, pharmacists had to fill in only a quarter of these 
questions.
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was used for the validation of the results obtained in the analyses. In the univariate analysis, 

correlations were searched between the answers in the questionnaire and these ratios. Cor-

relations are only given if in both sets a correlation was found (p<0.01). In the multivariate 

analysis, models were composed using the analysis set, predicting the dispensing of the 

interacting drug combinations. The models were validated using the validation set. The 

number of questions was too large for the multivariate analysis, and only a limited number of 

questions were selected. From every chapter, those questions were selected that correlated 

with the other questions and that could discriminate between pharmacies.

Results

The database contained a total of 100,295,311 dispensings in the selected study period. 1,142 

pharmacies were recorded in the database with 5,000 or more dispensings. The number of dis-

pensings per pharmacy varied from 5,019 to 264,631. Because pharmacies receive reimburse-

ments from several health care insurance companies and because not all health care insurance 

companies were included in the database, these numbers do not correspond with the total 

number of dispensings per pharmacy. The eleven potential DDIs were dispensed 11,594 times. 

In five percent more than one pharmacy was involved. As these DDIs could not be assigned to 

a single pharmacy, they were excluded from further analyses. The number of dispensings and 

DDIs are shown in table 1. Disopyramide (DDI number 6) and azapropazon (DDI number 11) 

were not dispensed by 44% and 46% of the pharmacies, respectively. Therefore, a ratio could 

not be calculated for these pharmacies and these DDIs were excluded from the analyses.

The number of times a ratio above one was found was calculated (table 1) and pharmacies 

were selected as shown in figure 1. Two hundred and sixty-eight pharmacies were selected 

to receive a questionnaire and 74 pharmacies were selected for a visit by the IHC. For several 

reasons, such as recent visitations and duplications in the database, twelve pharmacies were 

excluded. Eventually, 256 pharmacies received a questionnaire and 62 pharmacies were 

selected for a visit. Two hundred and forty-six questionnaires were filled in (response rate 

96.1%) and 58 (93.5%) pharmacies were visited after the questionnaire was completed. The 

judgments during the visits by the IHC were compared with the answers by the pharmacists. 

In 33 of the 37 verified questions, the IHCs judgment matched in more than 90% the answer 

of the pharmacist. Except four questions, the judgment by the IHC was equally more positive 

and more negative than the answers by the pharmacist.

In the univariate analysis, all combinations between the questions and DDIs were searched 

for significant correlations. Two correlations were found with DDI number 1 between mac-

rolide antibiotics and digoxin (table 3). Pharmacies, which are part of a health care centre, 

dispensed this interacting drug combination more often than other pharmacies. A correla-

tion with the type of medication surveillance system was also found. Pharmacies using the 
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Euroned system dispensed this interacting drug combination more often, while pharmacies 

using the Pharmacom system dispensed this interacting drug combination less often. 

For the multivariate analysis, 32 variables were selected, representative of the whole range 

of questions. These variables were used in the analysis-set to compose models. The adjusted 

explained variance ranged from 2.6% to 28.9% (table 4). The model explaining the DDI be-

tween macrolide antibiotics and digoxin had by far the highest adjusted explained variance. 

The models were validated in the validation-set, calculating the unexplained variance (table 

4). The six variables in this model explaining the DDI between macrolide antibiotics and 

digoxin are shown in table 5. 

Discussion

In this study, we investigated determinants for the dispensing of eleven undesirable inter-

acting drug combinations. In general, our results are in line with the expectation that the 

medication surveillance system plays an important role in medication surveillance. Although 

the eleven potential DDIs were counted 11,594 times which suggests that a considerable 

number of patients is exposed to potential and avoidable adverse patient outcomes, these 

results should be judged against a background of approximately 100 million dispensings. 

Table 4 Predictability of the models (%) composed in the multivariate analysis

DDI Adjusted explained variance (r2) 
(analysis-set)

Unexplained variance a

(validation-set)
1 28.9 0.61

2 12.8 -0.22

3 17.3 31.5

4 7.0 -0.18

5 14.4 -0.41

7 6.5 6.4

8 16.1 0.68

9 14.0 -0.43

10 2.6 0.90

a An unexplained variance of zero means that the predictability found in the validation set equals the predictability in the analysis-set. The 
higher the unexplained variance, the worse the predictability in the validation-set compared to the analysis-set. 

Table 3 Significant univariate correlations between the questionnaire and the number of dispensings of the DDIs between macrolide antibiotics 
and digoxin (number 1)

Question Correlation p-value
Is the pharmacy part of a health care centre? (1 yes, 2 no)
(yes n=18, no n=228)

-0.165 0.009

Which medication surveillance system is used in the pharmacy?

•	 Pharmacom (1 yes, 0 other) (n=81) -0.261 0.000

•	 Aposys (1 yes, 0 other) (n=62) 0.088 0.170

•	 Euroned (1 yes, 0 other) (n=89) 0.197 0.002
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It is possible that in these cases due to particular circumstances any other option, such as 

substituting or not dispensing one of the drugs, is a less favorable choice than dispensing 

the DDI. In five percent of the total number of DDIs more than one pharmacy was involved, 

indicating the importance of communication. For the DDI between macrolide antibiotics and 

digoxin, two determinants were found. Although the type of medication surveillance system 

was a determinant, this does not mean that the differences are determined by the quality 

of the system itself because they may also correlate with the attitude of the pharmacists 

using the systems. The three medications surveillance systems differ in the extent to which 

communication with other healthcare providers is possible and developments were made 

in recent years. The Pharmacom system has the most advanced communication possibilities 

and compared to the other systems, new developments to the Euroned system were modest. 

Unexpectedly, pharmacies part of a health care centre dispensed this DDI more often than 

other pharmacies. In health care centers the communication lines between pharmacists and 

general practitioners are much shorter, suggesting that intervening undesirable DDIs will be 

easier. Possibly, pharmacies, which are part of a health care centre, oppose the opinions from 

Table 5 The questions in the multivariate model predicting the dispensing of the DDI between macrolide antibiotics and digoxin (number 1)

Variable Answer (coding) Direction 
coefficient

Constant 3.37

Is the pharmacy part of a health care centre?
(yes n=18, no n=228)

yes (0) versus no (1) -2.27

Co-trimoxazole – acenocoumarol: no appointments were 
made with the GPs. The drug will be dispensed. (8 options 
of choice; option 1 ‘with all GPs’, and option 8 ‘with no GPs’)

option 1 ‘with all GPs’ (1) versus other option 
(0) (n=11)

ref.

option 2 (1) versus other option (0) (n=10) 1.03

option 3 (1) versus other option (0) (n=4) 0.379

option 4 (1) versus other option (0) (n=4) -0.454

option 5 (1) versus other option (0) (n=3) 0.903

option 6 (1) versus other option (0) (n=2) -0.510

option 7 (1) versus other option (0) (n=4) -0.191

option 8 ‘with no GPs’ (1) versus other option  
(1) (n=202)

0.0886

Are separate signal texts in the medication surveillance 
program adjusted to the situation in the pharmacy?
(yes n=72, no n=165)

yes (0) versus no (1) 0.179

Is the management of signals traceably recorded on the 
receipt? (yes n=211, no n=35)

yes (0) on the receipt, no not on the receipt (1) 0.269

The supervision on management of signals takes place on 
the basis of signal lists (yes n=158, no n=86)

yes (0) on the basis of signal lists,
no (1) not on the basis of signal lists

0.0723

How many receipts are dispensed per year divided by the 
number of FTE technicians

< 10-4

GP: general practitioner; FTE: full-time equivalent.
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the general practitioners less often, to avoid harming the cooperation within the health care 

centre but, of course, there may be several other reasons.

For the other eight assessed DDIs no determinants were found in the univariate analysis, 

neither did the models in the multivariate analysis have a good predictability. A possible 

explanation is that the quality of medication surveillance in community pharmacies in the 

Netherlands is high. Therefore, the number of pharmacies dispensing high-risk DDIs seems 

to be small. 

Our study has some potential limitations. First, because we used strict inclusion criteria to 

prevent false-positive results, it is likely that the number of dispensings of undesirable inter-

acting drug combinations in this study is an underestimation and it is possible that important 

determinants were not recognized or difficult to assess. In the univariate analyses only those 

questions are given which had a significant (p<0.01) correlation in two independent sets. 

Although we included 183 questions and nine DDIs in the univariate analysis, the possibility 

of including a significant correlation by chance was small (on average 0.16 question). Second, 

the reimbursement data from eight health care insurance companies were used. In the Neth-

erlands, these companies work mostly regionally. It is nevertheless not to be expected that 

the determinants of dispensing interacting drugs differ per region or that pharmacies differ 

in their management of DDIs between patients of different health care insurance companies. 

Third, from all potential DDIs, only eleven (but highly clinically relevant ones) were selected 

for this study. According to the Dutch guidelines, for all eleven combinations the dispensing 

of an alternative was strongly advised as a good alternative was available. Nevertheless, it is 

possible that these dispensings were not an error because any other option was not possible. 

For example, when a patient is hypersensitive to the alternative drug recommended in the 

guidelines or when the alternative drug is not effective. In these cases the benefit of both 

drug therapies should be weighed against the potential risks of the DDI. The potential risks 

can partly be avoided by taking appropriate measures such as monitoring of drug levels. In 

this study, we could not retrieve why the pharmacist had dispensed the interacting drug 

combination, and whether the dispensing was erroneous or not. 

Fourth, the questionnaire was composed on the basis of a literature search and interviews 

with experts. It is possible that not all characteristics correlating with the dispensing of unde-

sirable interacting drug combinations were disclosed, such as differences in population char-

acteristics between pharmacies. For example, pharmacies with an elderly population using 

more drugs simultaneously have a higher risk of dispensing interacting drug combinations 

than pharmacies with a younger population. Also, it is possible that in areas with many gen-

eral practitioners who use a medication surveillance system for prescribing, the background 

chance of a DDI is much smaller. Fifth, it is possible that the differences between pharmacies 

were too small compared with the power of this study to distinguish determinants. 

All associations found in this study were directly related to the management of signals. In 

our questionnaire we also included other topics, such as pharmacy preparations and patient 
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care. Future research should focus on the management of a larger variety of signals than the 

ones in our study and on how DDI associated dispensing could be further reduced.

In conclusion, both medication surveillance systems and being part of a health care centre 

may play an important role in the management of DDIs and the avoidance of adverse patient 

outcomes. Pharmacies in a healthcare centre dispensed DDIs more often. For most DDIs no 

determinants were found possibly indicating that the quality of medication surveillance in 

the Netherlands is high. 
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Abstract

Background: Our objective was to evaluate the incidence of adverse patient outcomes due 

to drug-drug interactions (DDIs), the type of drugs involved and the underlying reason. As a 

proxy for adverse patient outcomes, emergency department (ED) visits, hospital admissions 

and re-hospitalizations were assessed.

Methods: A literature search in the Medline and Embase database (1990-2006) was performed 

and references were tracked. An overall cumulative incidence was estimated by dividing the 

sum of the cases by the sum of the study populations.

Results: Twenty-three studies were found assessing the relationship between DDIs and ED-

visits, hospitalizations or re-hospitalizations. The studies with a large study size showed low 

incidences and vice versa. DDIs were held responsible for 0.054% of the ED-visits, 0.57% of 

the hospital admissions and 0.12% of the re-hospitalizations. In the elderly population, DDIs 

were held responsible for 4.8% of the admissions. Drugs most often involved were NSAIDs 

and cardiovascular drugs. The reasons for admissions or ED-visits, which were most often 

found, were GI-tract bleeding, hyper- or hypotension and cardiac rhythm disturbances.

Conclusion: This review provides information on the overall incidence of DDIs as a cause of 

adverse patient outcomes, although there is still uncertainty about the impact of DDIs on 

adverse patient outcomes. Our results suggest that a limited number of drugs is involved in 

the majority of cases and that the number of reasons for admission as a consequence of DDIs 

seems to be modest.
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Introduction

The use of two or more drugs has the potential risk of a drug-drug interaction (DDI). DDIs 

can contribute to drug induced illnesses that may result in hospitalizations and deaths.[1-3] 

However, few studies have paid attention to the quantitative share of DDIs in adverse patient 

outcomes. Lack of information in this area can easily result in over, as well as underestima-

tion of the clinical consequences of DDIs. Better knowledge of the incidence of DDIs and the 

drugs most frequently involved, can be helpful in a more accurate assessment of their overall 

clinical importance. A DDI is defined as a pharmacokinetic or pharmacodynamic influence of 

drugs on each other, which can result in reduced effectiveness or increased toxicity.[4] DDIs do 

occur frequently in normal drug therapy. The percentage of patients in primary or secondary 

health care that receives interacting drugs ranges from 7 to 22.[5-8] In the elderly, this percent-

age ranges from 22 to 31.[7,9-11] Although these high percentages suggest a serious health 

hazard, the consequences seem to be limited. The seriousness of DDIs varies considerably, 

and only a part of them has potential clinical consequences. One to three percent of these 

patients in primary or secondary health care is at risk for a DDI which might have major clini-

cal significance.[6,8,9,11]

Little is known about the actual contribution that DDIs have on adverse drug reactions. 

Some authors suggest that their contribution is limited,[12,13] while others suggest that DDIs 

are a major cause of adverse drug reactions.[14-16] Whether two interacting drugs can be used 

at the same time without serious consequences depends on the question whether the ben-

efit of both drug therapies outweighs the risk of the DDI, taking into account the availability 

of alternatives. In this review we assessed the risk of adverse patient outcomes as a conse-

quence of DDIs for the total population. As a proxy for adverse patient outcomes, emergency 

department (ED) visits, hospital admissions and re-hospitalizations were assessed. Since 

we were interested in the contribution of all DDIs to adverse patient outcomes, and not in 

the contribution of individual DDIs or of a group of DDIs, we searched for studies assessing 

adverse patient outcomes caused by DDIs in general and not by individual DDIs or a group 

of DDIs. We conducted a literature review concerning the incidence of these adverse patient 

outcomes as a consequence of DDIs, the types of drugs involved and the underlying reason 

for admission or ED-visit.

Methods

Articles describing adverse patient outcomes due to DDIs were searched using Medline and 

Embase (period January 1990 – April 2006) and by reference tracking. This period was cho-

sen, because pharmacy practice before 1990 is not comparable with nowadays practice and 

a review was performed in 1993.[17] In the Medline search, the results of two search strategies 
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were combined. In the first search, all articles with the medical subject heading (MeSH) de-

scriptor “drug interactions” or with the keyword “drug-interaction” or the keyword “drug” near 

the keyword “interaction” were selected. In the second search, articles were selected with the 

MeSH descriptors “hospitals”, “hospitalization”, “emergency service hospital” or “patient ad-

mission”, or with the keyword “adverse” in the title. These search terms were chosen because 

they were closest to the research question of this study and included all articles found in an 

initial screening. Articles that appeared in both literature searches were screened to judge 

whether they met the inclusion criteria. A comparable search was performed in Embase. 

Inclusion criteria were assessments on ED-visits, hospital admissions or re-hospitalizations 

that paid attention to DDIs and that described or quantified the association. Papers not writ-

ten in English, papers that assessed a subgroup of DDIs instead of all DDIs and papers that 

did not assess adverse patient outcomes as a direct consequence of DDIs but for example 

consequences on a theoretical base, were excluded. We searched in the references for ad-

ditional articles meeting the inclusion criteria. 

In each of the articles, the incidence of one or more proxies was reported. The 95% confidence 

intervals, based on a Poisson distribution, were calculated around the incidences, depending 

on the height of the incidence and the study size. For each outcome, the overall cumulative 

incidence was estimated by dividing the sum of the cases by the sum of the study populations.

Results

The Medline search yielded 601, and the Embase search 713 articles of potential use. The 

results of the literature search are summarized in figure 1. After applying the inclusion 

criteria, fifteen articles were left. A major part was excluded because they assessed only a 

limited number of drugs or described case reports. Eight additional articles were found by 

reference tracking. Six articles assessed ED visits, fourteen articles assessed hospitalizations 

and three articles assessed re-hospitalizations. The studies on ED-visits and hospitalizations 

assessed the medication use retrospectively, the studies on re-hospitalization prospectively. 

The study by McDonnell et al.[15] was the only study identifying outcomes by voluntary re-

porting and review of the ICD codes. The other studies identified outcomes by review of 

the medical records. The main differences between the studies are given in table 1. The 23 

studies comprised 148,236 patients. The study sizes ranged from 150 to 62,216 patients and 

the incidence of adverse patient outcome ranged from 0 to 6.2%. In 405 patients the ED-visit, 

hospitalization or re-hospitalization was attributed to a DDI (table 2).

The incidence of adverse patient outcome was plotted against the study size (figure 2). The 

studies with a large study size showed low incidences and studies with a small study size showed 

high incidences, irrespective of the type of adverse patient outcome. The incidences of adverse 

patient outcomes attributed to DDIs are described below and are summarized in table 3.
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Emergency department visits
Five of the six studies focusing on ED-visits assessed all patients visiting the ED.[16,18-21] They 

comprised 83,921 ED-visits, and 45 cases were reported, giving an overall cumulative inci-

dence of 0.054% (95% CI 0.039, 0.072%). The percentages reported ranged considerably, with 

the larger studies finding a lower percentage (figure 3). One study[12] included 282 elderly 

patients, but did not find any case. 

Hospital admission
Fourteen studies assessed 62,487 hospital admissions, 358 (0.57%; 95% CI 0.52, 0.64%) of 

which were attributed to a DDI (figure 4). Ten studies[15,22-30] included all patients admitted to 

a hospital instead of a subpopulation. A total of 49,357 admissions were assessed with 282 

admissions (0.57%; 95% CI 0.51, 0.64%) attributed to a DDI. The percentages ranged from 

0.10 to 2.6. In the elderly population (65 or 70 years and older), 75 of 1,566 admissions were 

attributed to a DDI.[13,14,31] The percentages reported were 0.67, 2.9 and 6.2, with an overall in-

Figure 1 Results of the literature search
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cidence of 4.8% (95% CI 3.8, 6.0%). In a pediatric population (younger than 18 years) one study 

assessed 11,564 admissions, one being attributed to a DDI (0.009%; 95% CI 0.0001, 0.048%).[32]

Three studies reported whether patients who had visited the ED due to DDIs were subse-

quently hospitalized.[16,19,20] Of the nineteen patients, seven patients were hospitalized. Ra-

Table 1 Main differences between the studies

Author Study 
focus

Drug use 
assessment

Identification DDI Assessment of relationship

Dennehy[18] DRA Medical record - Strand (identifiable, probable)

Malhotra[19] ADE Medical record, 
interview

Stockley Naranjo (definite, probable, 
possible, contributing 
factor)

Prince[20] DRA Medical record - - -

Raschetti[16] ADE Medical record Itialian Pharmaceutical 
Repertory, Micromedex

- -

Schneitman-
McIntire[21]

ADE Medical record, 
interview

- - -

Hohl[12] ADE Medical record Computer program Pharm 
Vigilance

Karch and Lasagna (definite, probable, 
possible)

Bhalla[29] DRA Medical record, 
interview

British National Formulary Hallas (definite, probable, 
possible)

Dormann[22] ADR Medical record European Physicians’ Drug 
Index

Naranjo (definite, probable, 
possible)

Hallas[24] ADR and 
TF

Medical record, 
interview

- Karch (modified) (definite, probable, 
possible)

Hallas[23] ADR and 
TF

Medical record, 
interview

- Karch (modified) (definite, probable, 
possible)

Huic[25] ADR Medical record Hansten and Horn Karch and Lasagna (definite, probable, 
possible)

McDonnell[15] ADR Medical record - Naranjo (highly probable, 
probable)

Mok[26] DDI Medical record Stockley - -

Peyriere[27] ADE Medical record - Begaud -

Pirmohamed[30] ADR Medical record, 
interview

British National Formulary Naranjo and Jones (definite/highly probable, 
probable, possible)

Stanton[28] DRA Interview - Hallas (definite, probable)

Easton[32] DRA Medical record, other 
healthcare providers

- Easton (definite, probable, 
possible)

Courtman[31] DRA Medical record - Hallas (major reason, 
contributing, not 
contributing)

Doucet[14] DDI Interview Vidal Dictionary DDI guide Grymonpre and 
Karch

(probable)

Lindley[13] ADR Medical record British National Formulary - -

Herr[36] DDI Interview Hansten computer 
program

- -

Egger[34] DDI Medical record Drug-Reax (Micromedex) - -

Bero[35] DRA Medical record Tatro - -

ADR: adverse drug reaction; ADE: adverse drug event; DRA: drug related admission; TF: therapeutic failure.
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schetti et al.[16] followed 1,833 patients who were hospitalized after ED-visit. The death of one 

patient (0.055%; 95% CI 0.00071, 0.30%) was attributed to a DDI. On the other hand, Juntti 

Patinen et al.[33] studied 1,511 deaths in a hospital with 141,484 admissions in that period, and 

found that five deaths (0.0035%; 95% CI 0.0011, 0.0082%) could be attributed to DDIs.

Table 2 Adverse patient outcome due to DDIs

Author Year Outcome Population Size Cases Incidence 95% CI Country DDI 
described

Dennehy[18] 1996 ED-visit 1,260 0 0 % - USA -

Malhotra[19] 2001 ED-visit 4,764 8 0.17 % 0.072, 0.33 % India N

Prince[20] 1992 ED-visit 10,184 2 0.020 % 0.0022, 0.071 
%

USA Y/N a

Raschetti[16] 1999 ED-visit 5,497 9 0.16 % 0.075, 0.31 % Italy N

Schneitman-
McIntire[21]

1996 ED-visit 62,216 26 0.042 % 0.027, 0.061 % USA Y/N a

Hohl[12] 2001 ED-visit ≥ 65 yr. 282 0 0 % - Canada -

Bhalla[29] 2003 Admission 840 2 0.24 % 0.027, 0.86 % UK N

Dormann[22] 2003 Admission 915 5 0.55 % 0.18, 1.3 % Germany N

Hallas[24] 1992 Admission 1,999 2 0.10 % 0.011, 0.36 % Denmark Y

Hallas[23] 1990 Admission 333 4 1.2 % 0.32, 3.1 % Denmark Y

Huic[25] 1994 Admission 5,237 31 0.59 % 0.40, 0.84 % Croatia Y

McDonnell[15] 2002 Admission 20,166 25 0.12 % 0.080, 0.18 % USA N

Mok[26] 1991 Admission 200 3 1.5 % 0.30, 4.4 % Ireland Y

Peyriere[27] 2003 Admission 156 4 2.6 % 0.69, 6.6 % France N

Pirmohamed[30] 2004 Admission 18,820 203 1.1 % 0.94, 1.2 % UK N

Stanton[28] 1994 Admission 691 3 0.43 % 0.087, 1.3 % Australia Y

Easton[32] 2004 Admission < 18 yr. 11,564 1 0.009 % 0.0001, 0.048 % Australia Y/N a

Courtman[31] 1995 Admission ≥ 65 yr. 150 1 0.67 % 0.0087, 3.7 % Canada N

Doucet[14] 1996 Admission ≥ 70 yr 1,000 62 6.2 % 4.8, 7.9 % France Y/N a

Lindley[13] 1992 Admission ≥ 65 yr 416 12 2.9 % 1.5, 5.0 % UK Y

Herr[36] 1992 Re-hospitalization 
(2 months)b

340 0 0 % - USA -

Egger[34] 2003 Re-hospitalization 
(6 months)

≥2 drugs 500 1 0.20 % 0.0026, 1.1 % Switzerland Y

Bero[35] 1991 Re-hospitalization 
(4 weeks)

≥ 65 yr, ≥3 
drugs

706 1 0.14 % 0.0019, 0.79 % USA N

a Only part of the DDIs described or only one of the two drugs involved described. b Re-hospitalization after ED-treatment.

Table 3 The average percentage of adverse patient outcomes in the included studies

Proxy General Elderly
n N % 95% CI Studies n N % 95% CI Studies

ED-visit 45 83,921 0.054 0.039, 0.072 5 0 282 0 - 1

Admission 282 49,357 0.57 0.51, 0.64 10 75 1,566 4.8 3.8, 6.0 3

Re-hospitalization 1 840 0.12 0.0016, 0.66 2 1 706 0.14 0.0019, 0.79 1

n: sum of the number of adverse patient outcomes caused by DDIs; N: sum of the study populations.
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re-hospitalization
The risk of being re-hospitalized due to a DDI after discharge from a hospital was assessed 

in three studies. Egger et al.[34] followed 500 patients for two months and found one patient 

(0.20%; 95% CI 0.0026, 1.1%) whose re-hospitalization was attributed to a DDI. Bero et 

al.[35] found in a geriatric population of 706 patients one re-hospitalization (0.14%; 95% CI 

Figure 2 Relation between study size and incidence of adverse outcome (the study by Schneitman-McIntire is omitted, because it is out of range)

 

 

Figure 3 Emergency department-visits attributed to DDIs (95% CI)
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0.0019, 0.79%) within six months attributed to a DDI. Herr et al.[36] assessed the incidence of 

re-hospitalization within four weeks after ED-treatment. None of the 340 patients included in 

the study was re-hospitalized.

drugs involved and reason for admission or visit
In 61 of the 405 cases (15.1%) of an adverse patient outcome attributed to DDIs, the two or 

more drugs involved were described as well as the reason for admission or visit. In 57 cases 

the DDI could be assigned to two drugs. Three or more drugs were involved in the remaining 

four DDIs (table 4). NSAIDs were involved in 28 (45.9%) of the 61 cases, in 16 cases (26.2%) 

interacting with another NSAID, followed by diuretics (15 cases, 24.6%), heart glycosides (13 

cases, 21.3%) and Ca-channel blockers (10 cases, 16.4%). The diagnoses or symptoms that 

most often occurred (table 5) were GI-tract bleeding (20 cases, 32.8%), hypertension or hy-

potension (11 cases, 18.0%) and cardiac rhythm disturbances (11 cases, 18.0%). Interactions 

between or with NSAIDs, anticoagulants and corticosteroids were responsible for all cases 

of GI-tract bleeding. All cases of hypertension or hypotension were caused by interactions 

between diuretics or Ca-channel blockers and another drug. Heart glycosides interacting 

with another drug were the cause of all cases of cardiac rhythm disturbances. 

discussion

DDIs are a common event in current pharmacotherapy but the risk involved seems mostly 

acceptable. Usually, DDIs have the attention of health care providers in daily practice. Only a 

Figure 4 Hospital admissions attributed to DDIs (95% CI)
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limited number of DDIs comprises a risk of adverse patient outcomes which is too high. This 

review was performed to assess the population risk of DDIs. We focused on ED-visits, hospi-

talizations and re-hospitalizations. As far as we know, no studies assessed other adverse out-

comes due to DDIs, such as visits to family physicians. DDIs were held responsible for 0.054% 

of the ED-visits, 0.57% of the admissions and 0.12% of the re-hospitalizations. Although the 

percentages are modest, the number of adverse outcomes due to DDIs is substantial because 

of the large numbers of ED-visits and (re-)hospitalizations. Drugs most often involved were 

NSAIDs and cardiovascular drugs, and the reason for admission or ED-visit most often found 

were GI-tract bleeding, hypertension or hypotension and cardiac rhythm disturbances.

Table 4 DDIs responsible for the adverse patient outcome, divided per drug group

 Num
ber of tim

es involved

 NSAIDs

 ACE-inhibitors

 Beta-blockers

 Ca-channel blockers

Diuretics

 Nitrates

 Heart glycosides

Anti-arrhytm
ics

Anticoagulants

Antibiotics

 Corticosteroids

Im
m

unosuppressives

 Anti-rheum
atics

 Tricyclic antidepressives

 Benzodiazepines

 Parasym
paticolytics

 Lipid m
odifying drugs

 Insulin

 Oncolytics

 Anti-epileptics

NSAIDs 28 16                    

ACE-inhibitors 2                      

Beta-blockers 3                        

Ca-channel blockers 10                        

Diuretics 15 6 2     1                

Nitrates 2       2                  

Heart glycosides 13     1 7 2                  

Anti-arrhytmics 5     1 1     3              

Anticoagulants 3 3                          

Antibiotics 1                   1          

Corticosteroids 2 1       1                      

Immunosuppressives 1                                

Anti-rheumatics 1 1                                

Tricyclic antidepressives 3         2                        

Benzodiazepines 1         1                          

Parasympaticolytics 1                           1        

Lipid modifying drugs 1                                 1    

Insulin 1     1                                

Oncolytics 1                       1                

Anti-epileptics 1 1                                      

DDIs involving three or more drugs, not described in the above mentioned table:

drug A drug B drug C drug D
1. Methyldopa Furosemide Atenolol

2. Glibenclamide Furosemide Prochorperazine

3. Glibenclamide Phenformin Furosemide ACE-inhibitor

4. Glibenclamide Phenformin Aspirin Captopril
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The present review has some limitations. Studies assessing adverse patient outcomes due 

to DDIs were searched using the Medline and Embase database. This possibly causes bias be-

cause unpublished literature and literature published in journals not selected in Medline and 

Embase were missed. The studies used in this review, differed in their methods. Differences 

existed in the way DDIs were searched and study populations were assessed, and there were 

differences in the degree of certainty with which adverse patient outcome were attributed 

to a DDI. Certain articles included an adverse patient outcome if it was possibly caused by 

a DDI, other articles included only cases with probable or definite causal relationships. As a 

consequence of the differences in study methods, there was a substantial variation in results 

between the studies. Due to the limited numbers of articles, other subgroup analysis than 

type of outcome and age were not possible.

The studies with a larger sample size showed low incidences and studies with a smaller 

size showed high incidences. This is remarkable because one might expect that the incidence 

should be independent from the study size. There may be three potential reasons for this 

variation. First, results from studies with a smaller study size will have a larger standard er-

ror, and outliers to higher numbers occur more often, wrongly assuming a higher incidence. 

However, a variation around the average is to be expected while most smaller studies showed 

percentages above the average. Second, the variation in results might be explained by pub-

lication bias because studies with a smaller study size are published only when they report 

a high incidence. However, many studies did not focus on DDIs as a cause for the ED-visit or 

(re-)hospitalization, but on adverse drug reactions or adverse drug events in general. Third, it 

is possible that in the smaller studies medication histories were studied in more detail than in 

the larger ones, and were therefore more readily able to recognize adverse patient outcomes 

Table 5 Diagnosis or symptom of adverse patient outcomes by DDIs

Symptom/diagnosis Frequency Percentage
GI-tract bleeding 20 32.8

Hypertension / hypotension 11 18.0

Cardiac rhythm disturbances 11 18.0

Hyperglycemia / hypoglycemia 4 6.6

Hyperkalemia / hypokalemia 4 6.6

Digitalis intoxication a 2 3.3

Renal dysfunctioning 2 3.3

Arthritis 1 1.6

Bradycardia 1 1.6

Headache 1 1.6

Pneumonitis 1 1.6

Rhabdomyolysis 1 1.6

Raised phenytoin plasma concentration b 1 1.6

Anticholinergic effect 1 1.6

a Most common features of digitalis intoxication are anorexia, nausea and arrhythmia. b Most common features of phenytoin intoxication are 
nystagmus, ataxia and dysarthria
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due to DDIs. If that is the case, this may indicate that the percentages found in the larger 

studies are an underestimation of the true risk. 

On the other hand, the percentages in this review may also be an underestimation, if medi-

cal practitioners or pharmacists did not recognize adverse patient outcomes caused by DDIs 

as such. It is possible that the adverse patient outcome was attributed in many instances 

to the last drug prescribed and not to a potential interaction between two drugs. In this 

respect, the low incidence of DDIs found in some studies might also be an indication of a 

lack of knowledge, understanding and recognition of DDIs in general. It seems plausible 

that complex, rare DDIs could be easily missed as a cause of an adverse patient outcome.
[37] The percentage of ED-visits due to DDIs is lower than the percentage of admissions and 

re-hospitalizations due to DDIs. This may indicate that the adverse patient outcomes due to 

DDIs belong to the more serious cases and lead to hospitalization more frequently.

Two groups of drugs, NSAIDs and cardiovascular drugs, were involved in a majority of the 

adverse patient outcomes attributed to DDIs. These percentages are not adjusted for differ-

ences in the number of users. The group of cardiovascular drugs comprises a large number of 

different drugs, including some drugs that interact frequently with other drugs. An explana-

tion may be that NSAIDs and cardiovascular drugs have a higher risk of an adverse patient 

outcome. Another explanation may be that these DDIs are more well-known and therefore 

more easily recognized as the cause of the adverse patient outcome. The diagnoses or symp-

toms of the adverse patient outcomes caused by DDIs were most often GI-tract bleeding, 

hypertension or hypotension and cardiac rhythm disturbances.

One previous review was found on hospital admissions due to DDIs, published in 1993.[17] 

The reported incidences ranged from 0 to 2.8% and cardiovascular drugs were most often 

involved. These results are largely similar to ours, although the involvement of NSAIDs in 

adverse patient outcomes was not found in the former review. Doucet et al.[14] report that the 

number of adverse effects did not differ significantly between the group of contraindicated 

DDIs and the group of DDIs that require precautionary use.

In conclusion, we can say that there is great uncertainty about the impact of DDIs on ad-

verse patient outcomes. Our results suggest that approximately 0.05% of the ED-visits, 0.6% 

of the hospital admissions and 0.1% of the re-hospitalizations are caused by DDIs, but it is 

possible that these figures are an underestimation. A limited number of drugs are involved in 

a majority of the adverse patient outcomes due to DDIs. These drugs include NSAIDs, diuret-

ics, heart glycosides and Ca-channel blockers. More cautious use of these drugs with interact-

ing drugs may result in a decrease of the number of adverse patient outcomes. This more 

cautious use is particularly favorable for the elderly population. Special attention should 

be paid to patients treated for GI-tract bleeding, hypertension or hypotension and cardiac 

rhythm disturbances, because these events are relatively commonly the consequence of a 

DDI. Further assessment of the association between the use of interacting drugs and clini-

cally relevant adverse patient outcomes is recommended.
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Abstract

Background: Sulfonylurea hypoglycemics are mainly metabolized by the cytochrome P450 

2C9 (CYP2C9) enzyme. The CYP2C9*2 and *3 polymorphisms encode proteins with less enzy-

matic activity and are correlated with elevated serum levels of sulfonylurea, as demonstrated 

in healthy volunteers. In this study, the effect of these variants is described for patients with 

diabetes mellitus treated with sulfonylurea.

Methods: Associations between CYP2C9 polymorphisms, prescribed doses of sulfonylurea, 

and change in glucose levels after start of sulfonylurea therapy were assessed in all patients 

with incident diabetes mellitus starting on sulfonylurea therapy in the Rotterdam Study, a 

population based cohort study of 7,983 elderly people.

Results: In CYP2C9*3 allele carriers using tolbutamide, the prescribed dose was lower com-

pared to patients with the wild-type CYP2C9 genotype. No differences in the prescribed dose 

were found in tolbutamide users with the CYP2C9*1/*2 or CYP2C9*2/*2 genotype compared 

to wild-type patients or in patients using other sulfonylurea. In CYP2C9*3 allele carriers, the 

mean decrease in fasting serum glucose levels after start of tolbutamide therapy was larger 

than in patients with the wild-type genotype, although not statistically significant.

Conclusion: Patients with diabetes mellitus who are carrier of a CYP2C9*3 allele require lower 

doses of tolbutamide to regulate their serum glucose levels compared to patients with the 

wild-type genotype.
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Introduction

Type 2 (‘maturity-onset’) diabetes mellitus affects more than 150 million people worldwide, 

and the prevalence is still increasing.[1] This form of diabetes mellitus is treated with oral hy-

poglycemic drugs or, in a more progressive disease stage, with insulin. Both undertreatment 

and overtreatment are associated with adverse outcomes. Undertreatment will lead to long-

term microvascular and macrovascular complications such as coronary artery disease and ne-

phropathy, whereas overtreatment will lead to hypoglycemia. Sulfonylurea have been used 

in diabetes mellitus since decades and are the most widely used oral hypoglycemic drugs.[2-4] 

Tolbutamide, glibenclamide (glyburide), gliclazide and glimepiride are the main representa-

tives of this group.[5] Sulfonylurea stimulate the secretion of insulin from pancreatic b-cells 

by closing potassium channels.[2] Type 2 diabetes mellitus is a progressive disease in which 

the impairment of insulin secretion worsens. Consequently, dosages need to be increased 

over time.[5] Adding a second oral hypoglycemic agent that targets a different pathophysi-

ological process, such as metformin, rosiglitazone or pioglitazone is often indicated. If all oral 

hypoglycemic drugs fail, adding or switching to insulin therapy is necessary.

Sulfonylurea are mainly metabolized by the cytochrome P450 2C9 (CYP2C9) enzyme. Al-

lelic variants of the CYP2C9 gene, CYP2C9*2 (Arg144Cys, rs1799853) and CYP2C9*3 (Ile359Leu, 

rs1057910), encode proteins with less enzymatic activity for the metabolism of several 

substrates than the wild-type allele CYP2C9*1 (Arg144/Ile359). In Caucasian populations, ap-

proximately 23% carry a CYP2C9*2 allele and 13% a CYP2C9*3 allele.[6,7] Both in vitro and in 

vivo studies showed a modest reduction of the enzyme activity in people with the CYP2C9*2 

polymorphism and a strong reduction in people with the CYP2C9*3 polymorphism. Compared 

with the CYP2C9*1/*1 genotype, the tolbutamide clearance in people with the CYP2C9*2/*2 

genotype was reduced by 25% and in people with the CYP2C9*3/*3 genotype by 84%.[8] 

For glibenclamide, the reductions in clearance were 25% and 57%, respectively.[9] In healthy 

volunteers, using glibenclamide or glimepiride, drug exposure was 1.3- to 2.8-fold increased 

for people with a CYP2C9*3 allele compared to people with the CYP2C9*1/*1 genotype.[10-12]

None of these pharmacokinetic studies assessed the clinical relevance of the differences, 

because all were performed in healthy volunteers. The aim of this population-based cohort 

study was to evaluate the effect of the CYP2C9*2 and CYP2C9*3 polymorphisms on the pre-

scribed sulfonylurea doses and on serum glucose levels in incident type 2 diabetes mellitus 

patients starting with sulfonylurea therapy.
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Methods

Setting
Data for these analyses were obtained from the Rotterdam Study, a prospective population-

based cohort study in 7,983 people aged 55 years and older in the suburb Ommoord in 

Rotterdam. Participants were invited between 1990 and 1993 and have been continuously 

followed since then. All participants of the Rotterdam Study gave written informed consent. 

Ethical approval was obtained from the medical ethical committee of the Erasmus MC. The 

aim of the study was to investigate determinants of chronic and disabling cardiovascular, 

neurodegenerative, locomotor, and ophthalmologic diseases. The rationale, ethical approval 

and design of this study have been described before.[13] The seven pharmacies in Ommoord 

dispense the prescriptions of more than 99% of all participants. Information on all filled 

prescriptions from January 1st 1991 until July 1st 2005 was available and included the product 

name of the drug, the anatomical therapeutical chemical (ATC) code, the amount dispensed, 

the prescribed dosage regimen and the date of dispensing.[14]

For this study, we used the glucose assessments from the stichting trombosedienst en 

artsenlaboratorium rijnmond (STAR), which performs all outpatient laboratory assessments 

for general practitioners in the Rijnmond area of Rotterdam with a potential source popula-

tion of more than 1 million inhabitants. Hereby, we obtained all outpatient glucose assess-

ments from all participants of the Rotterdam area between April 1st 1997, the time at which a 

new computer system was introduced at STAR, and November 30th 2004.

Cohort definition
The study cohort consisted of all subjects in the Rotterdam Study, who received a first 

prescription of sulfonylurea between July 1st 1991 and July 1st 2005, and who had not been 

treated with hypoglycemic drugs in the period of at least six months before. Subjects were 

followed until the first prescription of another oral hypoglycemic drug than the patient 

started on, death, or end of the study period, whichever came first.

A subset of this cohort was used for the analyses of blood glucose levels. All patients with 

glucose measurements between April 1st 1997 and November 30th 2004, who had one or 

more glucose measurements both in the period of 90 days before and 180 days after the start 

of sulfonylurea therapy, were selected for this analysis. 

Outcomes
We used two types of study outcome, the prescribed daily dose of sulfonylurea and the 

change in fasting serum glucose assessments.

First, for every prescription of a sulfonylurea, the change in prescribed daily dose compared 

to the first prescription of the sulfonylurea was calculated. The influence of the CYP2C9*2 
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and CYP2C9*3 polymorphisms on the change in prescribed daily dose, between the first and 

tenth prescription of the sulfonylurea, was analyzed.

Second, the subset of the cohort with blood glucose measurement, both in the period of 

90 days before and 180 days after start of sulfonylurea therapy, was selected to analyze the 

change of fasting serum glucose levels after starting sulfonylurea therapy. The change in fast-

ing glucose levels between the last measurement before start of sulfonylurea therapy and the 

first measurement after start of sulfonylurea therapy was analyzed. Patients who had stopped 

using sulfonylurea the day before the first measurement after the start of sulfonylurea therapy 

were excluded. Differences in the change of fasting glucose levels per genotype were analyzed.

Cofactors
The following patient characteristics were considered as potential determinants for affecting 

the change of daily dose of sulfonylurea after start: age, sex and renal function. Determinants 

potentially affecting change in fasting glucose levels after start of sulfonylurea therapy were 

age, sex, the glucose level before start, and the daily dose of sulfonylurea the day before the 

second measurement. These determinants were entered into the regression model.

Genotyping
Genotyping for the CYP2C9*2 and CYP2C9*3 allele variants was performed by using poly-

merase chain reaction followed by restriction enzyme digestion analysis (PCR-RFLP), as 

described previously.[15] Approximately 5 ng of genomic DNA was amplified in 35 cycles of 

PCR: 1 min 94°C, 1 min 60°C (CYP2C9*2) or 1 min 62°C (CYP2C9*3) and 1 min 72°C, in a 

total volume of 10 ml, using primers P141 (5’-CACTGGCTGAAAGAGCTAACAGAG-3’) and P142 

(5’-GTGATATGGAGTAGGGTCACCCAC-3’) for CYP2C9*2, or P143 (5’-AGGAAGAGATTGAACGT-

GTGA- 3’) and P144 (5’-GGCAGGCTGGTGGGGAGAAGGCCAA-3’) for CYP2C9*3 (the bold and 

underlined nucleotide represents a mismatch to the genomic sequence). The PCR product 

was digested with Sau96 (CYP2C9*2) or Styl (CYP2C9*3), and analyzed on a 3% TBE/agarose 

gel with ethidium bromide staining. A random sample of five percent was re-analyzed, all 

with the same result as the original measurement. All CYP2C9*2 and CYP2C9*3 heterozygote 

and homozygote variants detected were reanalyzed to confirm the genotype. Patients in 

whom neither CYP2C9*2 nor CYP2C9*3 alleles were identified were regarded as wild-type.

Statistical analysis
A c2-test was used to test for deviation from Hardy-Weinberg equilibrium. One-way analysis 

of variance was used to test for differences in starting dose between genotypes. For the tenth 

prescription of sulfonylurea in the cohort, multivariate linear regression was used to analyze 

the difference per genotype in change of prescribed daily dose compared with the pre-

scribed daily dose of the first prescription. Multivariate linear regression was used to assess 

differences per genotype in change of glucose levels after start of sulfonylurea therapy. These 
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analyses were performed with SPSS software (version 11.0.1; SPSS, Chicago, IL). Additionally, 

we used unbalanced repeated measurements analysis to analyze change of prescribed daily 

dose compared with the prescribed daily dose of the first prescription, in series of consecutive 

prescriptions for the same patient with the Proc Mixed module of SAS (version 8.2; SAS, Cary, 

NC). For two reasons, we grouped patients with the CYP2C9*1/*2 and CYP2C9*2/*2 genotype 

and CYP2C9*3 carriers (CYP2C9*1/*3, CYP2C9*2/*3 and CYP2C9*3/*3) in the analysis. First, 

because the number of patients with two variant polymorphisms is too small to analyze them 

separately, and, second, because the effect of the *2 polymorphism on sulfonylurea clearance 

is limited compared to the wild-type genotype. For example, the sulfonylurea clearance in 

patients with the CYP2C9*1/*2 genotype will be similar to the clearance in patients with the 

CYP2C9*1/*1 genotype.

Results

During the study period, 571 patients started on sulfonylurea therapy; 86 patients were ex-

cluded because blood samples were not available, and ten patients were excluded because 

of difficulties in genotyping (due to suboptimal quality of the long-term storage of DNA of 

some samples). Consequently, 475 patients were available for the analysis. Baseline charac-

teristics of these patients are given in table 1. The population was in Hardy-Weinberg equi-

librium (c2 = 2.22, p=0.53), indicating that no selection or errors in genotyping had occurred. 

Most patients started with tolbutamide (62.3%). Other patients started with glibenclamide 

(16.2%), glimepiride (16.0%), or gliclazide (5.5%). The average prescribed starting dose was 

6.1 mg for glibenclamide, 613 mg for tolbutamide and 1.38 mg for glimepiride. No differ-

ences in starting dose were found between genotypes. Patients were followed on average 

2.6 years (median 1.9 years) while on monotherapy and did receive 14 prescriptions (median 

11 prescriptions) of sulfonylurea during that period. The average duration of one prescription 

was 69 days (range 2-180 days). 

Table 1 Baseline characteristics of the study population

CYP2C9*1/*1 CYP2C9*1/*2 or 
CYP2C9*2/*2 a

CYP2C9*1/*3 or 
CYP2C9*2/*3 or 
CYP2C9*3/*3 b

N 321 103 51

Gender (%) Male 152 (47%) 46 (45%) 20 (39%)

Age Average 75.1 years 74.7 years 74.5 years

Caucasian origin 321 (100%) 103 (100%) 51 (100%)

Follow-up time Mean 2.6 years 2.4 years 2.8 years

Body mass index 27.9 kg/m2   (n=307) 28.4 kg/m2   (n=100) 28.4 kg/m2   (n=51)

Serum creatinine 86.8 μmol/l  (n=250) 82.7 μmol/l  (n=74) 86.3 μmol/l  (n=39)

a 11 patients had the CYP2C9*2/*2 genotype. b 6 patients had the CYP2C9*2/*3 genotype and 2 patients had the CYP2C9*3/*3 genotype.
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The changes in prescribed daily doses between the first and tenth prescription are given 

in table 2. Differences in prescribed doses were only found for tolbutamide (figure 1). The 

prescribed daily dose in patients with the wild-type genotype increased with 279 mg from 

the first until the tenth prescription, whereas in patients with a *3 allele the increase was 

only 12 mg. Patients with the *1/*2 or *2*2 genotype had an increase of 265 mg. The differ-

ence between CYP2C9*3 carriers and patients with the wild-type genotype was statistically 

significant (p<0.05) from the sixth until the twentieth prescription. No differences were found 

between patients with the *1/*2 or *2/*2 genotype and patients with the wild-type genotype. 

Twenty patients with a *3 allele received at least ten prescriptions of tolbutamide. In fifteen 

patients (75%) the prescribed dose of the tenth prescription was the same as the dose of the 

first prescription. In two patients (10%), the prescribed dose was lower; in two patients (10%), 

the dose was increased with 500 mg or less, and in one patient (5%), the dose was increased 

with more than 500 mg. One hundred and seventeen patients with the wild-type genotype 

received at least ten prescriptions of tolbutamide. In 62 patients (53%), the prescribed dose was 

not changed; in five patients (4%), the prescribed dose was lower; in 29 patients (25%), the pre-

scribed dose was increased with 500 mg or less; and in 21 patients (18%), the prescribed dose 

was increased with 500 mg or more. Adjusting for renal function did not change the results.

In an additional analysis, the change in doses, from the sixth until the twentieth prescription 

was compared with the first prescription by repeated measurements, in which we adjusted 

for prescriptions in the same patient. In patients with the CYP2C9*3 polymorphism using 

tolbutamide, the difference in prescribed daily dose between prescription six and twenty, 

compared to the first prescription, was 316 mg lower (95% CI -497, -135; p=0.0008) than 

in patients with the wild-type genotype. In patients with the CYP2C9*1/*2 or CYP2C9*2/*2 

Table 2 Difference in change of daily prescribed dose between the first and tenth prescription of sulfonylurea per genotype

Genotype Patients Change a,b Difference in change 
compared to wild-type a,b

95% CI p-value

Glibenclamide
*1/*1 20 2.7 ref.

*1/*2 *2/*2 8 0.5 -2.0 (-6.2, 2.2) 0.35

*1/*3 *2/*3 c 6 0.9 -1.3 (-4.7, 2.1) 0.47

Tolbutamide
*1/*1 117 279 ref.

*1/*2 *2/*2 35 265 -14 (-182, 155) 0.87

*1/*3 *2/*3 c 20 12 -269 (-469, -69) 0.009
Glimepiride
*1/*1 27 0.49 ref.

*1/*2 *2/*2 12 0.40 -0.07 (-0.65, 0.65) 0.84

*1/*3 *2/*3 c 3 1.61 1.1 (-0.43, 2.62) 0.17

a In mg, the defined daily dose is 10 mg for glibenclamide, 1500 mg for tolbutamide and 2 mg for glimepiride. b Adjusted for age and sex. c No 
tenth prescriptions were dispensed in patients with the *3/*3 genotype.



Chapter 3.1. 

86

genotype using tolbutamide, the prescribed daily dose was 27 mg lower (95% CI -175, 121; 

p=0.72) than in patients with the wild-type genotype.

In 79 patients, fasting serum glucose levels were measured both in the period 90 days 

prior to start of sulfonylurea therapy and in the period 180 days after start (table 3). None of 

these patients switched in the period until the fi rst measurement of fasting serum glucose 

levels or received a second hypoglycemic drug. In six patients, the dose of sulfonylurea 

changed between start and the fi rst measurement. In two patients, the dose decreased (both 

CYP2C9*1/*1) and in four patients the dose increased (three patients with CYP2C9*1/*1, one 

patient with CYP2C9*1/*2). Sixty-fi ve patients, in whom fasting serum glucose levels were 

Figure 1 Average change in prescribed doses of tolbutamide compared to the fi rst prescribed dose per genotype for each consecutive prescription

Table 3 Change in glucose level after start of tolbutamide therapy 

Patients average 
before 
start a

average 
after 
start a

change
a,b

average dose 
(range) c

diff erence in 
glucose level 
change d

95% ci p-value

*1/*1 45 11.0 8.9 -2.3 572 (250-1000) ref.

*1/*2 *2/*2 13 11.8 8.9 -3.0 577 (500-1000) -0.28 (-1.25, 0.69) 0.57

*1/*3 *2/*3 e 7 11.8 7.5 -3.7 607 (250-1000) -1.24 (-2.75, 0.27) 0.11

a In mmol/l. b Adjusted for age and sex. c In mg, the day before measurement. d In mmol/l, adjusted for the last measured glucose level before start, 
the dose the day before the measurement after start, age and sex. e No glucose measurements were done in patients with the *3/*3 genotype.
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measured, were using tolbutamide. In these patients, the adjusted decrease in fasting serum 

glucose levels in patients with the CYP2C9*1/*2 or CYP2C9*2/*2 genotype was 0.3 mmol/l 

larger than in patients with the wild-type genotype and 1.2 mmol/l larger in patients with 

the CYP2C9*1/*3 or CYP2C9*2/*3 genotype than in patients with the wild-type genotype, 

although these differences did not reach statistical significance.

Discussion

In this population based cohort study, CYP2C9*3 carriers who started on tolbutamide re-

ceived significantly lower doses of tolbutamide on the tenth prescription than patients with 

the wild-type genotype. The tenth consecutive prescription was chosen for the analyses, 

because the majority of patients did receive at least this number of prescriptions during the 

study period. Differences in daily dose between patients with different genotypes will not 

establish immediately but will become visible only after several prescriptions as a conse-

quence of downwards titration on the basis of serum glucose levels. Therefore, differences in 

metabolism of sulfonylurea were analyzed on the short-term as differences in glucose levels 

and on the long-term as differences in prescribed doses. The differences between CYP2C9*3 

carriers and patients with the wild-type genotype were significantly different from the sixth 

until the twentieth prescription. As sulfonylurea doses are changed according to measured 

glucose levels, it is likely that the differences in doses reflect a difference in glucose levels. 

For the other sulfonylurea, no significant differences were found. Post hoc power analyses 

revealed that the power to detect a difference, the same as in tolbutamide users, was 0.05 for 

glibenclamide users with the CYP2C9*1/*2 or CYP2C9*2/*2 genotype and 0.58 for CYP2C9*3 

carriers. In glimepiride users, these numbers were 0.05 and 0.11. Particularly in glimepiride 

users, the power of our study was too small to detect differences that were the same in size 

as the differences found in tolbutamide users.

Most patients who had fasting serum glucose measurements both before and after start 

of sulfonylurea therapy were using tolbutamide. The decrease in glucose levels was 0.3 

mmol/l larger for patients with the CYP2C9*1/*2 or CYP2C9*2/*2 genotype and 1.2 mmol/l 

for CYP2C9*3 carriers compared to patients with the wild-type genotype. These differences 

did not reach the level of statistical significance but are in line with the aforementioned find-

ings of this study. It is likely that the power of this study was too small to detect significant 

differences in change of glucose levels, because in only seven CYP2C9*3 carriers, glucose 

levels both before and after start of sulfonylurea therapy were available. Analyses were also 

performed comparing patients carrying the wild-type genotype with patients carrying the 

CYP2C9*1/*2 or CYP2C9*1/*3 genotype and patients carrying the wild-type genotype with 

patients carrying the CYP2C9*2/*2 or CYP2C9*3/*3 genotype. These analyses did not add 

much to the analyses described in this article.
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In this study, clinically relevant differences in sulfonylurea response between patients 

with different CYP2C9 polymorphisms were only found for tolbutamide and not for gliben-

clamide, gliclazide, and glimepiride. Tolbutamide is the most regularly used sulfonylurea in 

this study. As the number of users of the non-tolbutamide sulfonylurea is small, it is likely 

that these numbers are too small to detect differences for these drugs in this study. This is 

demonstrated by the post-hoc power analysis. This does not, however, prove that differences 

in prescribed daily doses between the genotypes do not exist, but merely that we cannot 

draw a conclusion on the non-tolbutamide sulfonylurea. There are differences in metabolism 

between tolbutamide and the other sulfonylurea. Although CYP2C9 is the main metaboliz-

ing route for sulfonylurea, other routes are also involved.[5,16,17] It is possible that in patients 

with decreased CYP2C9 enzyme activity, these alternative metabolic routes compensate the 

decreased functioning, making the influence of the polymorphism less clinically relevant. 

For example, up to fifteen percent of gliclazide is excreted unchanged by the kidney.[18-20] In 

patients with decreased CYP2C9 enzyme functioning it is possible that an increased renal 

excretion partly compensates for the decreased CYP2C9 enzyme functioning. However, the 

pharmacokinetic studies in healthy volunteers showed differences in drug exposure related 

to the CYP2C9 polymorphism.

Three studies assessed the differences in glucose tolerance in healthy volunteers using 

tolbutamide or glibenclamide.[8,9,21] Only the study by Shon et al. found lower levels of serum 

glucose in individuals with the CYP2C9*1/*3 genotype after using tolbutamide, whereas the 

studies by Kirchheiner and co-workers found no significant differences after using gliben-

clamide or tolbutamide. In our study, we demonstrated that CYP2C9*3 carriers with diabetes 

mellitus require lower doses of tolbutamide, which strongly suggests an increased response 

and possibly a higher risk of hypoglycemia.

In population-based studies, bias may affect the obtained results. We believe that bias in our 

study is minimal. Selection bias was probably negligible, because we identified all patients 

starting on sulfonylurea in a population based cohort study, and absences of blood samples 

and difficulties with genotyping were probably random. Moreover, the study population was 

in Hardy-Weinberg equilibrium, suggesting that no selection bias among genotypes has oc-

curred, which could have explained the observed association. The prescription and glucose 

measurement data in this study were collected prospectively without prior knowledge of the 

study hypothesis, making information bias unlikely. It is also unlikely that confounding has 

influenced the results of our study, because physician’s decisions about the prescribed drug 

and initial dose are made on the basis of product information and not on the mostly unknown 

presence of CYP2C9 variant allele carriership of a patient. Consequently, differences between 

patients in the different CYP2C9 genotype groups at the start of sulfonylurea therapy, such 

as the fasting serum glucose levels before start and the starting dose, are due to chance and 

therefore random.



89

Cytochrome P450 2C9 *2 and *3 polymorphisms and the dose and effect of sulfonylurea in type 2 diabetes mellitus

In conclusion, this is the first population-based study assessing the clinical relevance of 

CYP2C9 polymorphism in diabetes mellitus patients. It shows that diabetes mellitus patients 

with the CYP2C9*3 polymorphism treated with tolbutamide require lower doses of tolbuta-

mide to regulate serum glucose. This knowledge is clinically important, because it may mean 

that such patients have a higher risk of hypoglycemia after starting treatment according to a 

standard dose scheme.
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Abstract

Background: The organic cation transporter 1, encoded by the SLC22A1 gene, is responsible 

for the uptake of the antihyperglycemic drug metformin in the hepatocyte. We assessed 

whether genetic variation in the SLC22A1 gene is associated with the glucose lowering effect 

of metformin. 

Methods: Incident metformin users in the Rotterdam Study, with HbA1c measurements avail-

able, were identified. Associations between eleven tagging SNPs in the SLC22A1 gene and 

change in HbA1c level were analyzed. 

Results: One hundred and two incident metformin users were included in the study sample. 

Except for the rs622342 A>C polymorphism, no significant differences in metformin response 

were observed. For each minor C allele at rs622342, the reduction in HbA1c levels was 0.28% 

less (95% CI 0.09, 0.47; p=0.005). After Bonferroni correction the p-value was 0.050. 

Conclusion: Genetic variation at rs622342 in the SLC22A1 gene was associated with the glu-

cose lowering effect of metformin in patients with diabetes mellitus.
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Introduction

Metformin is an oral antihyperglycemic drug, widely used in the treatment of type 2 diabetes 

mellitus. The major mode of action is to reduce hepatic glucose production, although the 

exact pharmacological action has not yet been fully determined.[1,2] Besides, metformin 

also increases insulin responsiveness of skeletal muscles.[3] The main route of elimination is 

through tubular renal secretion.

Metformin is actively transported across membranes. The organic cation transporter 1 

(OCT1) is responsible for the uptake in hepatocytes, which is an essential step in reducing he-

patic glucose production.[4] In OCT1 gene knockout mice, the liver concentration of metformin 

was 30 times lower than in mice with normal functioning OCT1 transporters and metformin 

blood concentrations were higher while the glucose lowering effect was decreased.[5-7] 

In humans, OCT1 is encoded by the SLC22A1 gene located at chromosome 6q25.3.[8] Con-

troversy exists as to whether polymorphisms in this gene are associated with the glucose 

lowering effect of metformin.[9] In a study of 20 healthy Caucasian volunteers differences 

in metformin blood concentrations and glucose levels after an oral glucose tolerance test 

were found between individuals with a reduced function allele (coding for the amino acid 

changes R61C, G401S, M420del and G465R) in the SLC22A1 gene and individuals without.[5,10] 

However, in a study with 33 Japanese diabetes mellitus patients comparing responders and 

non-responders to metformin, no differences in allele frequencies were found.[11]

In this prospective population-based cohort study, we studied the association between 

tagging single nucleotide polymorphisms (SNPs) in the SLC22A1 gene and metformin re-

sponse in Caucasian patients with diabetes mellitus.

Methods

Setting
Data for these analyses were obtained from the Rotterdam Study, a prospective population-

based cohort study of 7,983 Caucasians aged 55 years and older in the suburb Ommoord in 

Rotterdam. Participants were invited between 1990 and 1993 and have been continuously 

followed since then. All participants of the Rotterdam Study gave written informed consent. 

Ethical approval was obtained from the medical ethical committee of the Erasmus MC. The 

aim of the study was to investigate determinants of chronic and disabling cardiovascular, 

neurodegenerative, locomotor, endocrine and ophthalmologic diseases. The rationale, ethi-

cal approval and design of this study have been described before.[12,13] The seven pharmacies 

in Ommoord dispense the prescriptions of more than 99% of all participants. Information on 

all filled prescriptions from January 1st 1991 until January 1st 2008 was available and included 
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the product name of the drug, the anatomical therapeutical chemical (ATC) code, the amount 

dispensed, the prescribed dosage regimen and the date of dispensing.[14]

For this study, we used the HbA1c assessments from the Stichting trombosedienst en 

artsenlaboratorium rijnmond – medisch diagnostisch centrum (STAR-MDC), which performs 

all outpatient laboratory assessments for general practitioners in the Rijnmond area of Rot-

terdam with a potential source population of more than 1 million inhabitants. Hereby, we 

obtained all outpatient HbA1c assessments from all participants between April 1st 1997, the 

time at which a new computer system was introduced at STAR-MDC, and January 1st 2008.

Study Sample
All participants in the Rotterdam Study, who were incident metformin users in the period 

between April 1st 1997 and January 1st 2008, were included in this analysis. Incident metfor-

min use was defined as a first dispensed prescription for metformin in the database, which 

included all prescriptions from January 1st 1991 onwards. The study sample consisted of 

all incident metformin users who had both a measurement of HbA1c in the period of 30 

days before the first prescription of metformin and in the period between 14 and 100 days 

following the first prescription of metformin. Patients who discontinued metformin therapy 

before the first measurement after start were excluded. We also excluded patients who were 

co-prescribed acarbose, rosiglitazone, pioglitazone or insulin at the time of one of the two 

HbA1c measurements, because defined daily doses (DDD) for these drugs are not compa-

rable to each other, and these patients most likely differ in their severity of disease. Patients 

using sulfonylurea were not excluded. 

Outcomes
The goal of antihyperglycemic therapy is to reduce plasma glucose levels. The HbA1c level is 

the percentage of hemoglobin in the blood that is glycosylated and represents the average 

glucose level in the preceding period of time. Since the HbA1c level is a more stable measure-

ment of glycemic control than plasma glucose levels, HbA1c levels are used more frequently 

for long-term therapeutic purposes. We analyzed the association between genetic variation 

in the SLC22A1 gene and difference in HbA1c level between the last HbA1c measurement 

before start of metformin therapy and the first HbA1c measurement after start. The target 

level for diabetes mellitus patients is an HbA1c level below 7%.[15]

Cofactors
Characteristics considered as potential determinants affecting the change in HbA1c level 

were age, gender, the HbA1c level at the last measurement before start of metformin, the 

daily prescribed dose of metformin at the time of the first measurement after start and the 

change in daily prescribed dose of sulfonylurea. To make the prescribed doses of different 

sulfonylurea comparable to each other, we divided the prescribed daily dose by the DDD.[14] 
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The DDD is a standardized dosing measure representing the recommended daily dose for the 

main indication in an adult. 

Genotyping
In this study we used a selection of tagging SNPs on the Illumina 550k SNP array (Illumina Inc, 

San Diego, CA) for genotyping according to the manufacturer’s instruction. Quality controls 

and results of the genotyping were previously described.[16] The tagging SNPs on the array 

were selected using an algorithm with which in a Caucasian population ninety percent of all 

Phase I and II Hapmap SNPs are covered by at least one SNP on the array.[8,17,18] This coverage 

arises because genetic variation is transmitted in blocks, in which haplotype alleles exist. 

Within these haplotypes, variant alleles are associated with each other. This more frequent 

occurrence of combinations of variant alleles than would be expected from a random for-

mation is called linkage disequilibrium. For this study we selected the tagging SNPs in the 

SLC22A1 gene that were on the array. SNPs with a minor allele frequency lower than 0.05 were 

excluded, because the power of this study was too low to found significant associations for 

these SNPs. 

Statistical Analysis
Deviations from Hardy-Weinberg equilibrium and differences in genotypes between patients 

who continued and discontinued metformin therapy were analyzed using χ2-tests, and dif-

ferences in baseline HbA1c levels, prescribed doses of metformin and change in prescribed 

doses of sulfonylurea were analyzed using one-way ANOVA. Multivariate linear regression was 

used to analyze differences in HbA1c change between genotypes. For each polymorphism 

we calculated the association between the number of variant alleles and the difference in 

HbA1c change. For polymorphisms significant in this analysis, we calculated the difference in 

HbA1c change between Aa and AA and between aa and AA, in which A represents the more 

common allele and a the minor allele. These analyses were performed with SPSS software 

(version 15.0; SPSS, Chicago, IL).

Results

In the Rotterdam Study, we identified 152 patients with diabetes mellitus who had a first pre-

scription for metformin between April 1st 1997 and January 1st 2008 and for whom an HbA1c 

measurement both in the period of 30 days before and in the period between 14 and 100 

days after start of metformin therapy was available. Eight patients were excluded because 

they were prescribed rosiglitazone (one patient), pioglitazone (one patient) or insulin (six 

patients) at the time of the HbA1c measurement before start. In 24 patients no blood sample 

was available for genotyping. Eighteen patients discontinued metformin therapy before the 
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first HbA1c measurement after start (sixteen patients) or started acarbose (one patient) or 

rosiglitazone (one patient) therapy. Eventually, we could analyze the change in HbA1c level 

in 102 participants starting on metformin therapy (table 1). 

The average HbA1c level decreased from 8.3% (SD 1.2%) before start of metformin therapy 

to 7.9% (SD 1.3%) after start. The average time between the last HbA1c measurement before 

start, and the start of metformin therapy was 8 days (SD 6 days), and 52 days (SD 23 days) 

between start of metformin therapy and the first HbA1c measurement after start. The aver-

age prescribed daily dose of metformin was 677 mg (SD 303 mg) or 0.34 DDD. In 12 of the 102 

patients (11.8%) the prescribed daily dose was changed between the first prescription and 

the first measurement of HbA1c. In 11 patients the prescribed daily dose was increased and 

in one patient it was decreased. Sulfonylurea had been prescribed in 60 participants before 

start of metformin therapy (average 1.29 DDD), and in 49 participants after start of metformin 

therapy (average 1.33 DDD).

Twelve tagging polymorphisms in the SLC22A1 gene were analyzed (table 2). All genotype 

distributions were in Hardy-Weinberg equilibrium. The SNP rs3798168 was excluded from the 

analyses, because the minor allele frequency was 0.02. The SNPs, rs1443844 and rs2297374, 

were in linkage disequilibrium (r2=0.89, D’=1.00), the other SNPs were not in linkage dis-

equilibrium (r2<0.8). A statistically significant association (p=0.005) was found between SNP 

rs622342 and change in HbA1c level, leading to an average of 0.28% less decrease in HbA1c 

levels for each minor C allele (95% CI  0.09, 0.47; p=0.0050) (table 3). After Bonferroni cor-

rection for multiple testing, the p-value for this association was 0.050. For the other tagging 

SNPs, no significant associations with change in HbA1c level were found. Participants with 

Table 1 Baseline characteristics of the study population (n=102)

Characteristic
Gender Male 40 (39 %)

Female 62 (61 %)

Age (SD) 76.5 (6.7) year

HbA1c level (SD) a 8.3 (1.2) %

Body-mass index (SD) b 28.0 (3.4) kg/m2

Creatinine level (SD) b (n=78) 83.7 (15.2) μmol/l

Sulfonylurea use a Glibenclamide 16 (15.7 %)

Tolbutamide 26 (25.5 %)

Gliclazide 6 (5.9 %)

Glimepiride 13 (12.7 %)

a At the time of the last HbA1c measurement before start of metformin therapy. b At the time of entrance in the Rotterdam Study.
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the AA genotype at rs622342 had an average decrease of 0.53% in HbA1c level, while in par-

ticipants with the AC genotype the average decrease was 0.32% and in participants with the 

CC genotype the HbA1c level increased on average with 0.02% (table 4). After adjustment for 

the cofactors, the difference in HbA1c decrease between patients with AC and patients with 

the AA genotype was 0.29% (95% CI 0.002, 0.58; p=0.049). The difference between patients 

with the CC and patients with the AA genotype was 0.58% (95% CI 0.22, 0.93; p=0.002). No 

differences were found between rs622342 genotypes in baseline HbA1c levels (p=0.58), pre-

scribed doses of metformin (p=0.41) or changes in prescribed doses of sulfonylurea (p=0.59). 

The rs622342 genotypes did not differ significantly in frequency between patients who con-

Table 2 Genotyped polymorphisms in the SLC22A1 gene a

Genotype AA Aa aa MAF HWE
(p-value)

rs3798174 C>T 91 11 0 0.05 0.56

rs6937722 G>A 89 13 0 0.06 0.49

rs3798168 C>A 97 5 0 0.02 0.80

rs628031 G>A 35 53 14 0.40 0.39

rs9457843 C>T 71 29 2 0.16 0.63

rs3798167 G>T 66 34 2 0.19 0.31

rs2197296 G>A 52 46 4 0.26 0.11

rs622342 A>C 38 48 13 0.37 0.72

rs1443844 A>G 30 53 19 0.45 0.60

rs2297374 C>T 34 48 17 0.41 0.99

rs1564348 T>C 70 30 2 0.17 0.55

rs622591 C>T 68 31 3 0.18 0.81

a Genotyping failed in some participants. Therefore, not all numbers add up to 102. A: variant allele with the major allele frequency; a: with 
minor allele frequency. MAF: Minor allele frequency; HWE: Hardy-Weinberg equilibrium.

Table 3 Difference in change of HbA1c after start of metformin therapy per genotype

Genotype Difference in HbA1c change 
(%) a

p-value p-value after Bonferroni 
correction b

rs3798174 0.15 0.49 1.00

rs6937722 -0.17 0.40 1.00

rs628031 0.02 0.87 1.00

rs9457843 -0.11 0.40 1.00

rs3798167 0.17 0.20 1.00

rs2197296 0.06 0.61 1.00

rs622342 0.28 0.0050 0.050
rs1443844 -0.13 0.18 1.00

rs2297374 -0.14 0.15 1.00

rs1564348 0.05 0.71 1.00

rs622591 -0.16 0.19 1.00

a Additive model (number of variant allele – dose effect ), adjusted for: age, gender, HbA1c level before start, prescribed dose of metformin, 
change in prescribed doses of sulfonylurea. b We corrected for ten independent tests, because the minor allele frequency of one tagging SNP was 
below 0.05 and two tagging SNPs were in linkage disequilibrium.
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tinued metformin and those who discontinued metformin or started acarbose, rosiglitazone, 

pioglitazone or insulin therapy (χ2=3.51, p=0.17). 

Discussion

In this population-based cohort study, the SNP rs622342 was associated with differences in 

HbA1c reduction in diabetes mellitus patients using metformin. The HbA1c levels represent 

glycemic control in the preceding period of time, and are therefore a stable measurement 

of metformin response and a better outcome measure in a population-based setting than 

serum glucose. The decrease in HbA1c level in patients with the AC genotype starting on 

metformin therapy was 0.29% less than in patients with the AA genotype and in patients 

with the CC genotype the decrease in HbA1c level was 0.58% less than in patients with the 

AA genotype. In patients with the CC genotype the HbA1c levels increased by 0.02% after 

start of metformin therapy. Most likely, patients with the AC or CC genotype have less OCT1 

transporter activity and their capacity to transport metformin into hepatocytes is reduced. As 

a consequence the glucose and HbA1c lowering effect of metformin is impaired.

The HbA1c level is expressed as the proportion of haemoglobin that is glycosylated and is 

a marker for the average glucose levels in the preceding period of time. The average life-span 

of erythrocytes, incorporating haemoglobin, is 90 days and the HbA1c level represents the 

average glucose level in the preceding 90 days, although it mainly reflects the preceding two 

to four weeks before measurement. In this study we choose to include all HbA1c levels from 

14 days after start of metformin therapy. Physicians measured the HbA1c levels between 

14 and 30 days after start of metformin therapy in 21 of the 102 participants in this study. 

Although the effect of metformin therapy is not completely established at that time, the 

HbA1c level gives an indication of the change in glucose level and most likely physicians 

adjust the therapy according to these results. Not including this first measurement will prob-

ably introduce bias, due to the changes in therapy such as discontinuing metformin therapy 

or switching to other antidiabetic drugs. If we selected the first HbA1c measurements in the 

Table 4 Difference in change of HbA1c after start of metformin therapy for polymorphism rs622342

rs622342 N a Average change in 
HbA1c (%)

Difference in 
HbA1c change 
(%) b

95% CI p-value

AA 38 -0.53 ref.

AC 48 -0.32 0.29 (0.002, 0.58) 0.049
CC 13 0.02 0.58 (0.22, 0.93) 0.002

Additive model c 0.28 (0.09, 0.47) 0.0050
a In three participants genotyping for rs622342 failed. b Adjusted for: age, gender, HbA1c level before start, prescribed dose of metformin, 
change in prescribed doses of sulfonylurea. c Number of variant alleles.
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time period between 30 and 120 days after start of metformin therapy, we found a tendency 

towards more discontinuations of metformin and switches to acarbose, pioglitazone, rosigli-

tazone or insulin in users with the A allele. In the group of incident users with the AA geno-

type, 23% (n=14) discontinued metformin therapy or switched to acarbose, pioglitazone, 

rosiglitazone or insulin, versus 15% (n=9) in users with the AC genotype and 0% in users 

with the CC genotype (χ2=4.94, p=0.085). In the patient files of the general practitioners, we 

were able to find back the reason for stopping or switching in seven of the twenty-three 

cases. In five cases the reason for stopping or switching was an adverse drug reaction, in one 

case a sufficient regulation without drug therapy and in one case insufficient regulation with 

oral antidiabetic drugs. The adverse drug reactions identified were malaise, nausea, itching, 

decreased appetite and diarrhoea. These results may suggest that incident metformin users 

with the AA genotype have more problems with adverse effects due to metformin therapy.

The average decrease in HbA1c level (0.4%) is rather lower. A possible explanation is that 

after on average 52 days, the decrease in HbA1c is not completely established. Another 

explanation is that the average prescribed dose of metformin (677 mg) is lower than recom-

mended in guidelines. The guidelines recommend an initial daily dose of 1,500 to 2,000 mg 

and this dose may be increased after 10 to 15 days to at most 3,000 mg a day. The reason for 

the low doses of metformin used in this study may be that the average age of the study popu-

lation is 77 years, and physicians are cautious when they prescribe high doses of metformin 

in this elderly population because of fear of potential adverse effects.

In our study we used twelve tagging SNPs, different from the SNPs used in the study by Shu 

et al.[5,10] As we are not aware of studies genotyping both the coding SNPs and the tagging 

SNPs, we do not know whether these SNPs are in linkage disequilibrium with each other. 

The SNP rs622342, associated in this study with the glucose lowering effect of metformin, is 

located between exon 8 and exon 9 (figure 1). The SNPs studied by Shu et al. were all situated 

in exons resulting in amino acid changes and were identified in in vitro studies. With the use 

of tagging SNPs in this study, we could analyze both SNPs in introns and in exons, not neces-

sarily resulting in amino acid changes. Beside changes in amino acid sequence, SNPs may 

also affect gene expression, resulting in increased or decreased transporter functioning. With 

the use of tagging SNPs we could identify other SNPs associated with metformin response.

In population-based studies, bias may affect results. We believe that bias in our study is 

minimal. The HbA1c measurements in this study were part of regular daily practice. Bias may 

have occurred if discontinuation of metformin therapy was associated with the genotype. 

For the rs622342 polymorphism, no differences in genotype frequency were found between 

patients who continued or discontinued metformin therapy in the time period used in this 

study. Participants in this study were co-prescribed sulfonylurea before and after start of met-

formin therapy. As the polymorphisms in the OCT1 gene do not affect sulfonylurea therapy, 

the changes in prescribed doses are random. Moreover, we adjusted in our analyses for the 

change in prescribed dose of sulfonylurea. If there were differences in prescribed doses, 
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patient with a low response to metformin would receive higher prescribed doses of sulfonyl-

urea and this would underestimate the effects of the OCT1 polymorphism. No differences in 

time to the first HbA1c measurement after start were seen, and therefore it is unlikely that 

there were differences in frequency of HbA1c measurement between genotypes, influencing 

the effect size found in this study. We identified all incident metformin users in the Rotterdam 

Study and information was collected prospectively, without prior knowledge of the study 

hypothesis. The permission of patients to take blood and isolate DNA for scientific research 

was most likely independent from the genotype we studied. In this study we analyzed eleven 

SNPs in the SLC22A1 gene and therefore multiple testing may play a role. To cope with this, 

we adjusted the cut-off for ten independent SNPs using Bonferroni correction, which gave a 

p-value of 0.050. Two SNPs were in strong linkage disequilibrium and therefore counted as 

one independent test. The Bonferroni test assumes independence between the SNPs. In our 

study, there was some linkage disequilibrium between many SNPs and therefore the Bonfer-

roni test is a conservative test, underestimating the significance of the association. Neverthe-

less, replication of our results in a prospective observational study or trial is warranted.

To conclude, in this population-based cohort study we found an association between 

genetic variation in the gene encoding the OCT1 transporter protein and glucose reduction 

by metformin in diabetes mellitus patients. Metformin therapy is less effective in reducing 

glucose and HbA1c levels in diabetes mellitus patients carrying the minor C allele at SNP 

rs622342 compared to wildtype AA patients. This information could be clinically relevant to 

predict the glucose lowering effect of metformin before start of therapy. 

Figure 1 Polymorphisms in the SLC22A1 gene associated with metformin response
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Abstract

Background: Metformin, an oral glucose-lowering drug, is taken up in hepatocytes by the 

organic cation transporter (OCT) 1 and in renal epithelium by OCT2. In these cells, the mul-

tidrug and toxin extrusion (MATE) 1 protein, encoded by the SLC47A1 gene, is responsible 

for the excretion of metformin into the bile and urine, respectively. We studied the effect of 

single nucleotide polymorphisms (SNPs) in the SLC47A1 gene on the HbA1c lowering effect 

of metformin.

Methods: We identified all incident metformin users in the Rotterdam Study, a population-

based cohort study. Associations between twelve tagging SNPs in the SLC47A1 gene and 

change in HbA1c level were analyzed.

Results: One-hundred and sixteen incident metformin users were included in the study 

sample. The rs2289669 G>A SNP was significantly associated with metformin response. For 

the other SNPs, no associations were found. For each minor A allele at rs2289669, the HbA1c 

reduction was 0.30% (95% CI -0.51, -0.10; p=0.005) larger. After Bonferroni correction for 

multiple testing, the p-value was 0.045.

Conclusion: The rs2289669 G>A SNP is associated with a reduction in HbA1c level, consistent 

with a reduction in MATE1 transporter activity. These results suggest that the transporter 

MATE1, encoded by SLC47A1, may have an important role in the pharmacokinetics of metfor-

min, although replication is necessary.
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Introduction

Metformin is an oral glucose-lowering drug, widely used for the treatment of type 2 diabetes 

mellitus.[1] The molecular mechanism of the glucose-lowering effect is not fully understood, 

although it is known that inhibition of the hepatic gluconeogenesis has an important role.
[2] Metformin is mainly eliminated by tubular secretion, and hepatic metabolism has a minor 

role.

Several drug transporters are involved in the distribution and excretion of metformin.[3] 

The role of two organic cation transporters (OCTs), OCT1 and OCT2, is assumed. OCT1 and 

OCT2 are members of the solute carrier (SLC) 22 family and encoded by the SLC22A1 and 

SLC22A2 gene, respectively, with gene-location 6q25.3. OCT1 is expressed in the basolateral 

membrane of hepatocytes and the uptake of metformin in the hepatocytes by OCT1 is an 

essential step for the glucose-lowering effect.[4-6] In OCT1 gene knock out mice, the metfor-

min liver concentrations were lower and the glucose-lowering effect impaired.[4,7] Genetic 

variations in the SLC22A1 gene (R61C, G401S, M420del and G465R) are associated with differ-

ences in metformin plasma levels and glucose concentrations after an oral glucose tolerance 

test in healthy volunteers.[4,7] OCT2 is expressed in the basolateral membrane of the renal 

epithelium, and transportation of metformin over this membrane may be the first step to 

tubular secretion.[8,9] Genetic variations in SLC22A2 (T199I, T201M and A270S) are associated 

with decreased renal excretion and increased plasma concentrations of metformin.[10,11] 

Recently, a multidrug and toxin extrusion (MATE) transporter protein family was identified, 

assigned as the SLC 47 family.[12,13] The SLC47A1 gene with gene location 17p11.2, encodes 

the MATE1 transporter. Metformin is one of the substrates of this transporter.[14] MATE1 is 

located in the bile canalicular membrane in the hepatocyte and in the brush border of the 

renal epithelium and is responsible for the final step of metformin excretion through the bile 

and urine.[12] Another transporter in this family is MATE2-K, encoded by SLC47A2. MATE2-K is 

located in the brush border of the renal epithelium and may also be involved in metformin 

excretion.[14] 

The co-localization of OCT1 and MATE1 in the hepatocyte and OCT2 and MATE1 in the renal 

epithelium suggests that MATE1 may have an important influence on the pharmacokinet-

ics of metformin. The intrahepatic uptake of metformin by OCT1 is an essential step in the 

glucose-lowering effect, while the excretion out of the hepatocyte into the bile by MATE1 

probably averts this. The uptake in the renal epithelium by OCT2 and subsequent excretion 

by MATE1 are two consecutive steps in the tubular secretion of metformin.

Little is known about the effect of genetic variation in the SLC47A1 gene on the glucose-

lowering effect of metformin. In this prospective, population-based cohort study, we assessed 

the association between tagging single nucleotide polymorphisms (SNPs) in the SLC47A1 

gene and metformin response in Caucasian incident metformin users.
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Methods

Setting
Data for these analyses were obtained from the Rotterdam Study, a prospective population-

based cohort study of 7,983 Caucasians aged 55 years and older in the suburb Ommoord in 

Rotterdam. Participants were invited between 1990 and 1993 and have been continuously 

followed since then. All participants of the Rotterdam Study gave written informed consent. 

Ethical approval was obtained from the medical ethical committee of the Erasmus MC. The 

aim of the study was to investigate determinants of chronic and disabling cardiovascular, 

neurodegenerative, locomotor, endocrine and ophthalmologic diseases. The rationale, ethi-

cal approval, and design of this study have been described before.[15,16] The seven pharmacies 

in Ommoord dispense the prescriptions of more than 99% of all participants. Information on 

all filled prescriptions from January 1st 1991 until January 1st 2008 was available and included 

the product name of the drug, the anatomical therapeutical chemical (ATC) code, the amount 

dispensed, the prescribed dosage regimen and the date of dispensing.[17]

For this study, we used the HbA1c assessments from the stichting trombosedienst en 

artsenlaboratorium rijnmond – medisch diagnostisch centrum (STAR-MDC), which performs 

all outpatient laboratory assessments for general practitioners in the Rijnmond area of Rot-

terdam. Hereby, we obtained all outpatient HbA1c assessments from all participants between 

April 1st 1997, the time at which a new computer system was introduced at STAR-MDC, and 

January 1st 2008. The HbA1c levels were measured by high-performance liquid chromatog-

raphy on a BiaRad Variant and from October 2004 onwards on a Menarini HA8160, according 

to professional standards and quality. The STAR-MDC is a CCKL certified laboratory and the 

quality is continuously monitored by internal and external quality-assurance programs.

Study Sample
All participants in the Rotterdam Study, who were incident metformin users in the period 

between April 1st 1997 and January 1st 2008, were included in this analysis. Incident metfor-

min use was defined as a first dispensed prescription for metformin in the database, which 

included all prescriptions from January 1st 1991 onwards. The study sample consisted of 

all incident metformin users who had both a measurement of HbA1c in the period of 30 

days before the first prescription of metformin and in the period between 30 and 120 days 

following the first prescription of metformin. Patients who discontinued metformin therapy 

before the first measurement after 30 days were excluded. We also excluded patients who 

were coprescribed acarbose, rosiglitazone, pioglitazone or insulin at the time of one of the 

two HbA1c measurements, because defined daily doses (DDD) for these drugs are not similar, 

and these patients most likely differ in their severity of disease. Patients using sulfonylurea 

were not excluded. 
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Outcomes
The aim of antihyperglycemic therapy is to reduce plasma glucose levels. The HbA1c level is 

the percentage of hemoglobin in the blood that is glycosylated and represents the average 

glucose level in the preceding period of time. Since the HbA1c level is a more stable measure-

ment of glycemic control than plasma glucose levels, HbA1c levels are used more frequently 

for long-term therapeutic purposes. We analyzed the association between genetic variation 

in the SLC47A1 gene and difference in HbA1c level between the last HbA1c measurement be-

fore start of metformin therapy and the first HbA1c measurement after 30 days of metformin 

therapy. The target level for diabetic patients is an HbA1c level below 7%.[18]

Cofactors
Characteristics considered as potential determinants affecting the change in HbA1c level 

were age, gender, the HbA1c level at the last measurement before start of metformin, the 

daily prescribed dose of metformin at the time of the first measurement after start, the 

change in daily prescribed dose of sulfonylurea, the time from diabetes mellitus diagnosis 

to start of metformin therapy and the estimated glomerular filtration rate (eGFR). To make 

the prescribed doses of different sulfonylurea comparable with each other, we divided the 

prescribed daily dose by the DDD.[17] The DDD is a standardized dosing measure representing 

the recommended daily dose for the main indication in an adult. For the diabetes diagnosis, 

the World Health Organization definition was used.[19] If patients were diagnosed with dia-

betes before entrance in the Rotterdam Study, the date of entrance was used. The eGFR was 

estimated from the serum creatinine level at baseline with the Cockcroft-Gault formula.

Genotyping
Participants were genotyped using the Illumina 550k SNP array according to the manufac-

turer’s instruction. Quality controls and results of the genotyping were previously described.
[20] The tagging SNPs on the array were selected using an algorithm with which, in a Caucasian 

population, ninety percent of all Phase I and II Hapmap SNPs are covered by at least one 

SNP on the array.[21-23] This coverage arises because genetic variation is transmitted in blocks, 

in which haplotype alleles exist. Within these haplotypes, variant alleles are associated with 

each other. This more frequent occurrence of combinations of variant alleles than would be 

expected from a random formation is called linkage disequilibrium. For this study we selected 

the tagging SNPs in the SLC47A1 gene, including the tagging SNPs within ten kilobasepairs 

(kbp) of the gene that were on the array.

Statistical Analysis
Deviations from Hardy-Weinberg equilibrium and differences in genotypes between patients 

who continued and discontinued metformin therapy were analyzed using χ2-tests. We used 

one-way ANOVA to test for differences in average time between the last HbA1c measurement 
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and start of metformin therapy, and in the average time between metformin start and the 

first HbA1c measurement after start. Linear regression was used to analyze differences in 

HbA1c change between genotypes. For each polymorphism we calculated the association 

between the number of variant alleles and the difference in HbA1c change. We adjusted for 

multiple testing with the Bonferroni correction, multiplying the p-value with the number of 

independent tests. Two or more SNPs that were in strong linkage disequilibrium (r2>0.80) 

were counted as one independent test. For the associations that were statistically signifi-

cant after Bonferroni correction, we calculated separately the difference between patients 

with one variant allele and those with the wild type genotype, and the difference between 

patients with two variant alleles and those with the wild type genotype. The analyses were 

performed with SPSS software (version 11.0.1; SPSS, Chicago, IL).

Results

One hundred and eighty-one participants of the Rotterdam Study were incident metformin 

users between April 1st 1997 and January 1st 2008 and had an HbA1c measurement both in 

the period of 30 days before start and in the period between 30 and 120 days after start of 

metformin therapy. Seven patients were excluded because they were prescribed insulin at 

the time of one of the HbA1c measurements, and six patients were excluded because they 

were prescribed acarbose (n=1), rosiglitazone (n=3) or pioglitazone (n=2). Blood samples 

for genotyping were not available for 34 patients and 18 patients discontinued metformin 

therapy before the first HbA1c measurement in the period between 30 and 120 days after 

start. Eventually, we included 116 incident metformin users in the analysis, for whom the 

change in HbA1c levels was available (table 1). The average initial starting dose was 648 mg 

metformin (SD 310 mg). At the time of the first HbA1c measurement after start, the partici-

pants were prescribed on average 741 mg metformin (SD 358 mg) 

The average time from the last HbA1c measurement before start and start of metformin 

therapy was 12 days (SD 16 days) and the average time from start of metformin therapy to the 

first measurement after start was 66 days (SD 25 days). These times did not differ significantly 

between genotypes. The average HbA1c level before start of metformin therapy was 8.3% 

(SD 1.2 %) and decreased to 7.7% (SD 1.1 %) after start of metformin therapy.

We identified nine tagging SNPs in the SLC47A1 gene and three tagging SNPs (rs2453594, 

rs2453589, rs2165894) in the ten kbp downstream region (table 2). There were no tagging 

SNPs in the ten kbp upstream region. For the SNP rs16960201, no genetic variation was 

found in the study population. The SNPs rs2441054 and rs2453568 (r2=0.84, D’=0.97), and the 

SNPs rs2441055 and 1961669 (r2=0.85, D’=0.96) were in linkage disequilibrium. For the other 

SNPs, no linkage disequilibrium was found (r2<0.8). The genotype distributions of the eleven 

tagging SNPs were in Hardy-Weinberg equilibrium. In the Caucasian sample of Hapmap, the 
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eleven tagging SNPs cover 25 of the 32 (78%) Hapmap SNPs (r2>0.80) in the selected gene 

region.[22]

The SNP rs2289669 G>A, with a minor allele frequency of 0.43, was significantly associated 

with a decrease in HbA1c level after start of metformin therapy (table 3). For each minor A 

allele the decrease in HbA1c level was 0.30 % (95% CI -0.51, -0.10; p=0.005) more (table 4). For 

the other tagging SNPs, no significant associations were found. After Bonferroni correction 

for multiple testing, this association remained significant (p=0.045).

The rs2289669 genotype distributions did not differ significantly between patients 

who continued metformin therapy and those who discontinued at the time of the HbA1c 

Table 1 Baseline characteristics of the study population (n=116)

Characteristic
Gender Male 47 (41 %)

Female 69 (59 %)

Age (SD) 76.8 (6.7) year

HbA1c level (SD) a 8.3 (1.2) %

Body-mass index (SD) b (n=114) 28.3 (3.7) kg/m2

Creatinine level (SD) b (n=88) 82.5 (14.4) μmol/l

Sulfonylurea use a Glibenclamide 17 (14.7 %)

Tolbutamide 31 (26.7 %)

Gliclazide 7 (6.0 %)

Glimepiride 17 (14.7 %)

a At the time of the last HbA1c measurement before start of metformin therapy. b At the time of entrance in the Rotterdam Study.

Table 2 Genotyped polymorphisms in the SLC47A1 gene a

SNP AA Aa aa MAF HWE (p-value)
rs894680 G>A 43 58 15 0.38 0.51

rs2018675 C>T 43 57 16 0.38 0.67

rs2440154 G>A 50 52 14 0.34 0.93

rs2440155 T>C 77 35 4 0.19 0.99

rs16960201 - 116 0 0 0 -

rs2453568 C>T 58 45 13 0.31 0.35

rs2244280 G>A 73 36 7 0.22 0.38

rs2289669 G>A 36 58 21 0.43 0.78

rs1961669 A>G 79 32 4 0.17 0.73

rs2453594 T>C 73 36 7 0.22 0.38

rs2453589 A>G 41 56 19 0.38 0.91

rs2165894 A>G 68 39 9 0.25 0.32

a Genotyping failed in some participants. Therefore, not all numbers add up to 116. A: variant allele with the major allele frequency; a: with 
minor allele frequency; MAF: Minor allele frequency; HWE: Hardy-Weinberg equilibrium.
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measurement after start (χ2=1.61, p=0.45). There was a trend that in patients with the AA 

genotype the decrease in dose of co-prescribed sulfonylurea was larger than in patients with 

the GG genotype (table 5), although this association was not significant (p=0.08).

Table 3 Difference in change of HbA1c after start of metformin therapy per genotype

SNP Adjusted difference in HbA1c 
change (%) a

p-value p-value after Bonferroni 
correction b

rs894680 -0.15 0.19 1.00

rs2018675 0.029 0.80 1.00

rs2440154 0.11 0.35 1.00

rs2440155 0.23 0.10 0.90

rs16960201 -

rs2453568 0.09 0.42 1.00

rs2244280 0.23 0.062 0.56

rs2289669 -0.30 0.005 0.045
rs1961669 0.16 0.27 1.00

rs2453594 0.26 0.036 0.32

rs2453589 0.12 0.28 1.00

rs2165894 0.28 0.019 0.17

a Additive model (number of variant allele – dose effect ), adjusted for: age, gender, HbA1c level before start, prescribed dose of metformin, 
change in prescribed doses of sulfonylurea, time from diagnosis of diabetes mellitus to start of metformin therapy and eGFR. b We corrected for 
nine independent tests, because one tagging SNP had no genetic variation and two times two tagging SNPs were in linkage disequilibrium.

Table 4 Difference in change of HbA1c after start of metformin therapy for polymorphism rs2289669

rs2289669 N a Unadjusted average 
change in HbA1c (%)

Adjusted difference 
in HbA1c change (%) b

95% CI p-value

GG 36 -0.28 ref.

GA 58 -0.59 -0.32 (-0.65, 0.01) 0.055

AA 21 -0.87 -0.66 (-1.19, -0.14) 0.015

Additive model c -0.30 (-0.51, -0.10) 0.005
a In one participant genotyping for rs2289669 failed. b Adjusted for: age, gender, HbA1c level before start, prescribed dose of metformin, change 
in prescribed doses of sulfonylurea, time from diagnosis of diabetes mellitus to start of metformin therapy and eGFR. c Number of variant alleles.

Table 5 Cofactors by the rs2289669 polymorphism

rs2289669 genotype GG GA AA
Gender (male) 18 (50%) 22 (38%) 7 (33%)

Age (SD) 75.3 (7.0) year 77.9 (6.5) year 75.6 (6.1) year

HbA1c level before start (SD) 8.3 (0.9) % 8.3 (1.4) % 8.4 (1.1) %

Prescribed metformin dose (SD) 853 (476) mg 662 (262) mg 757 (320) mg

Sulfonylurea use 22 (61%) 33 (57%) 13 (62%)

Change in sulfonylurea dose a -0.01 (0.53) DDD -0.17 (0.61) DDD -0.27 (0.52) DDD

Time from diabetes mellitus diagnosis (SD) 5.5 (4.4) year 5.6 (4.8) year 4.7 (3.7) year

eGFR (SD) 74 (19) ml/min 68 (17) ml/min 68 (14) ml/min

BMI (SD) 28.9 (3.9) kg/m2 28.1 (3.8) kg/m2 27.6 (3.2) kg/m2

a p=0.08 for trend.
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Discussion

This population-based cohort study in diabetic patients is the first one in which the role of 

MATE1 in the glucose-lowering effect of metformin was assessed. We identified that the SNP 

rs2289669 was associated with the HbA1c lowering effect of metformin. The decrease in 

HbA1c level was 0.3% larger per copy of the A allele. These results suggest that polymor-

phisms in MATE1 may have a role in the pharmacokinetics of metformin and accordingly with 

the glucose-lowering effect. As metformin is recommended as first line treatment for type 2 

diabetes mellitus, these results may be valuable for daily clinical practice.[18]

The average prescribed daily dose of metformin at the time of the first HbA1c measure-

ment after start was 741 mg. The guidelines recommend an initial daily dose of 1,500 to 2,000 

mg and this dose may be increased after 10 to 15 days to at most 3,000 mg a day. The reason 

for the low doses of metformin used in this study may be that the average age of the study 

population is 77 years, and physicians are prudent to prescribe high doses of metformin in 

this elderly population because of potential adverse effects. The average decrease in HbA1c 

level (0.6%) is less than what would be expected when recommended doses are prescribed, 

and this may explain why the decrease in HbA1c level in patients with the GG genotype was 

near zero and did not differ significantly from zero.

A reduced efflux of metformin in the renal brush border due to an impaired MATE1 trans-

porter will lead to an increase in metformin plasma levels and possibly to a larger decrease in 

glucose levels. Similarly, a reduced efflux from the hepatocyte will lead to higher metformin 

levels in the hepatocyte and a stronger inhibition of the gluconeogenesis, resulting in lower 

glucose levels. The rs2289669 G>A polymorphism was associated with an increased glucose-

lowering effect, implying that the gene with the A allele encodes a MATE1 efflux transporter 

less effective in transporting metformin. This SNP is located in an intron, not coding for an 

amino acid change. Most likely, the SNP rs2289669 is in linkage disequilibrium with a SNP 

causing the reduced MATE1 functioning, although we cannot exclude that it has a direct 

effect, for example, by affecting gene expression.

One previous study assessed the effect of a SNP in the SLC47A1 gene on MATE1 expression.
[24] The authors identified a SNP in the promoter region (G-32A) that downregulates the basal 

promoter activity. Whether this SNP affects metformin efflux is unknown. Four glutamate 

amino acids in MATE1 were found to have an important role in substrate recognition, although 

genetic variation in the nucleotides encoding these amino acids has not been described.[25] 

In population-based studies, bias may affect the obtained results. At the time of the first 

HbA1c measurement after start, there was a trend towards lower doses of co-prescribed 

sulfonylurea in patients with the AA genotype. This is in line with the results of our study. The 

glucose-lowering effect of metformin was stronger in patients with the AA genotype, and 

these patients require less antidiabetic drugs to reach their target levels. In our analyses, we 

adjusted for these changes in prescribed doses of sulfonylurea. The HbA1c measurements 
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in this study were done in regular clinical practice. If discontinuation of metformin therapy 

and measurement of HbA1c levels were dependent on the genotype, bias might have oc-

curred. However, no differences in genotype frequency were found for rs2289669 between 

patients who continued metformin until the first HbA1c measurement and patients who 

discontinued. Bias may also have occurred if there were differences in frequency of HbA1c 

level measurements. However, the time from start of metformin therapy until the first HbA1c 

measurement did not differ between genotypes and both the prescribing physician and the 

patient were not aware of the genetic variation in the SLC47A1 gene. Selection bias is unlikely, 

because we identified all incident metformin users in the Rotterdam study and we collected 

information prospectively, without prior knowledge of the study hypothesis. The permission 

of patients to take blood and isolate DNA for scientific research was most likely independent 

from the genetic variation in the SLC47A1 gene. 

The Rotterdam Study is a population-based cohort study on chronic diseases and not 

primarily designed to assess the effects of metformin therapy. We identified 116 patients 

who started metformin treatment during follow-up. This limited sample size may result in 

both false negative results and chance findings. The SNP rs2289669 was the SNP with the 

highest minor allele frequency. Post-hoc power analyses with α=0.00556 (0.05 divided by 

nine independent tests) and β=0.8 revealed that this sample size could identify changes in 

HbA1c levels for the other SNPs ranging from 0.44 to 0.56%, dependent on the minor allele 

frequency. Therefore, it is possible that we had false negative results. We avoided chance 

findings by adjusting for multiple testing with the Bonferroni correction. Replication of these 

results in a prospective observational study or trial is necessary.

To conclude, we found an association between the SNP rs2289669 in the SLC47A1 gene, 

encoding the MATE1 transporter, and the glucose-lowering effect of metformin. In incident 

metformin users the decrease in HbA1c level was 0.30% larger per copy of the A allele. These 

results suggest that MATE1 may have an important role in the pharmacokinetics and pharma-

codynamics of metformin. This is the first epidemiological study assessing the role of MATE1 

in metformin response and replication of these results is necessary.
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Abstract

Background: Metformin is transported into the hepatocyte by OCT1, and out of the hepa-

tocyte by MATE1. Recently, we discovered that the polymorphisms rs622342 A>C in the 

SLC22A1 gene, coding for OCT1, and rs2289669 G>A in the SLC47A1 gene, coding for MATE1, 

were associated with the glucose lowering effect of metformin. In this study, we assessed 

whether there is interaction between these two polymorphisms.

Methods: We identified all incident metformin users in the Rotterdam Study, a population-

based cohort study of 7,983 elderly people. Multiplicative interaction between the two 

polymorphisms and the change in HbA1c levels was analyzed.

Results: In incident metformin users with the rs622342 AA genotype, genetic variation in the 

rs2289669 polymorphism was not associated with change in HbA1c levels (–0.10%; 95% CI 

–0.35, 0.14; p=0.39). In users with the rs622342 AC genotype, there was a tendency between 

rs2289669 polymorphisms and change in HbA1c (–0.31 %; 95% CI –0.65, 0.03; p=0.070) and 

in users with the rs622342 CC genotype there was a significant association (–0.68 %; 95% 

CI –1.06, –0.30; p=0.005). The multiplicative interaction between these two genotypes was 

statistically significant (–0.52%; 95% CI –0.94, –0.11; p=0.015).

Conclusion: The glucose lowering effect of metformin is impaired in patients with both a 

reduced functioning OCT1 influx transporter, encoded by the rs622342 C allele, and a normal 

functioning MATE1 efflux transporter, encoded by the rs2289669 G allele. In patients with a 

normal functioning OCT1 influx transporter, the rs2289669 polymorphism does not affect 

the glucose lowering effect of metformin.
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Introduction

Metformin is a drug widely used for the treatment of type 2 diabetes mellitus.[1] The phar-

macologic basis for the glucose lowering effect of metformin is not completely clarified, al-

though inhibition of hepatic gluconeogenesis has a key role.[2] Drug transporters play a major 

role in the distribution of metformin over tissues and elimination of metformin through renal 

excretion. Metformin is not metabolized by hepatic enzymes but excreted unchanged by the 

kidneys.

There are three transporters known to be involved in metformin transport in humans. The 

organic cation transporter 1 (OCT1) and organic cation transporter 2 (OCT2) are expressed 

in the basolateral membrane of hepatocytes and renal epithelium, respectively.[3-6] These 

transporters are members of the solute carrier (SLC) 22 family and encoded by the SLC22A1 

and SLC22A2 gene with gene location 6q25.3. They are involved in the intracellular uptake 

of metformin. The uptake of metformin in the hepatocytes by OCT1 is an essential step for 

the inhibition of hepatic gluconeogenesis and the glucose lowering effect of metformin.[3] 

Genetic variation in the SLC22A1 gene (R61C, G401S, M420del, G465R), coding for the OCT1 

transporter enzyme, is associated with differences in metformin blood levels and glucose 

levels after an oral glucose tolerance test in health volunteers.[3,7] Genetic variation in SLC22A2 

(T199I, T201M and A270S), coding for OCT2, is associated with differences in metformin 

blood levels and renal excretion.[8]

The third transporter involved in the distribution of metformin is the multidrug and toxin 

extrusion 1 (MATE1), encoded by the SLC47A1 gene with gene location 17p11.2.[9,10] MATE1 is 

co-located with OCT1 and OCT2 in the hepatocytes and renal epithelium. MATE1 is involved 

in transportation of metformin out of the cell into the bile and urine.[11]

Recently, we identified a polymorphism in the SLC22A1 gene, rs622342 A>C, and a poly-

morphism in the SLC47A1 gene, rs2289669 G>A, which were associated with the glucose 

lowering effect of metformin.[12,13] In incident metformin users, the number of rs622342 

minor C alleles was associated with a reduced glucose lowering effect, suggesting that this 

gene encodes an OCT1 less effective in transporting metformin into the hepatocytes, or in 

reduced transcription rates and less OCT1 expression resulting in a decreased transport of 

metformin into the hepatocytes. The number of rs2289669 minor A alleles was associated 

with an increased glucose lowering effect. Possibly, the gene with a minor A allele encodes a 

less effective MATE1 enzyme or lower numbers of MATE1, resulting in a reduced efflux out of 

the hepatocytes and higher intracellular metformin levels.

Although non-significant, the rs622342 C variant allele was associated with less metfor-

min discontinuations. After tracking the general practitioner patient files, the most likely 

explanation was a lower incidence of adverse drug reactions. The rs2289669 A variant allele 

was associated with lower doses of co-prescribed sulfonylurea. Since both transporters 

are located in the hepatocyte, transporting metformin into and out of the hepatocyte, we 
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assessed whether there is interaction between the polymorphism rs622342 in the SLC22A1 

gene and rs2289669 in the SLC47A1 gene and the response to metformin therapy in incident 

metformin users.

Methods

Setting
Data for these analyses were obtained from the Rotterdam Study, a prospective population-

based cohort study of 7,983 Caucasians aged 55 years and older in the suburb Ommoord in 

Rotterdam. Participants were invited between 1990 and 1993 and have been continuously 

followed since then. All participants of the Rotterdam Study gave written informed consent. 

Ethical approval was obtained from the medical ethical committee of the Erasmus MC. The 

aim of the study was to investigate determinants of chronic and disabling cardiovascular, 

neurodegenerative, locomotor, endocrine and ophthalmologic diseases. The rationale, ethi-

cal approval and design of this study have been described before.[14,15] The seven pharmacies 

in Ommoord dispense the prescriptions of more than 99 % of all participants. Information on 

all filled prescriptions from January 1st 1991 until January 1st 2008 was available and included 

the product name of the drug, the anatomical therapeutical chemical (ATC) code, the amount 

dispensed, the prescribed dosage regimen and the date of dispensing.[16]

For this study, we used the HbA1c assessments from the stichting trombosedienst en 

artsenlaboratorium rijnmond – medisch diagnostisch centrum (STAR-MDC), which performs 

all outpatient laboratory assessments for general practitioners in the Rijnmond area of Rot-

terdam with a potential source population of more than 1 million inhabitants. Hereby, we 

obtained all outpatient HbA1c assessments from the participants between April 1st 1997, the 

time at which a new computer system was introduced at STAR-MDC, and January 1st 2008.

Study Sample
All participants in the Rotterdam Study, who were incident metformin users in the period be-

tween April 1st 1997 and January 1st 2008, were included in this analysis. Incident metformin 

use was defined as a first dispensed prescription for metformin in the database. The study 

sample consisted of all incident metformin users who had both a measurement of HbA1c in 

the period of 30 days before the first prescription of metformin and in the period between 

14 and 100 days following the first prescription of metformin. Patients who discontinued 

metformin therapy before the first measurement after start were excluded. We also excluded 

patients who were co-prescribed acarbose, rosiglitazone, pioglitazone or insulin at the time 

of one of the two HbA1c measurements, because defined daily doses (DDD) for these drugs 

are not comparable to each other, and these patients most likely differ in their severity of 

disease. Patients using sulfonylurea were not excluded. 
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Outcomes
The goal of antihyperglycemic therapy is to reduce plasma glucose levels. The HbA1c level is 

the percentage of hemoglobin in the blood that is glycosylated and represents the average 

glucose level in the preceding period of time. Since the HbA1c level is a more stable measure-

ment of glycemic control than plasma glucose levels, HbA1c levels are used more frequently 

for long-term therapeutic purposes. We analyzed the interaction between the polymorphism 

rs622342 and rs2289669 and difference in HbA1c level between the last HbA1c measurement 

before start of metformin therapy and the first HbA1c measurement after start. The goal of 

antidiabetic therapy is an HbA1c level below seven percent.[17]

Cofactors
Characteristics considered as potential determinants affecting the change in HbA1c level 

were age, gender, the HbA1c level at the last measurement before start of metformin, the 

daily prescribed dose of metformin at the time of the first measurement after start and the 

change in daily prescribed dose of sulfonylurea. To make the prescribed doses of different 

sulfonylurea comparable to each other, we divided the prescribed daily dose by the DDD. 

The DDD is a standardized dosing measure representing the recommended daily dose for the 

main indication in an adult.[16] 

Genotyping
All participants were genotyped using the tagging single nucleotide polymorphisms (SNP) 

on the Illumina 550k SNP array for genotyping according to the manufacturer’s instruction. 

The tagging SNPs on the array were selected using an algorithm with which in a Caucasian 

population ninety percent of the Hapmap SNPs are covered by at least one SNP on the array.
[18-20] This coverage arises because genetic variation is transmitted in blocks, in which haplo-

type alleles exist. Within these haplotypes, variant alleles are associated with each other. This 

more frequent occurrence of combinations of variant alleles than would be expected from a 

random formation is called linkage disequilibrium. For this study we used the tagging SNPs 

rs622342 in the SLC22A1 gene and rs2289669 in the SLC47A1 gene, as previously described.
[12,13]

Statistical Analysis
Deviations from Hardy-Weinberg equilibrium and differences in genotypes between patients 

who continued and discontinued metformin therapy were analyzed using χ2-tests. Differ-

ences between genotypes in average time between the last HbA1c measurement before 

start and start of metformin therapy, and the average time between metformin start and 

the first HbA1c measurement between 14 and 100 days after start was tested using one-

way ANOVA. Multivariate linear regression was used to analyze differences in HbA1c change 

between genotypes. We calculated the association between the number of variant alleles 
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and the difference in HbA1c change. The analysis for the rs622342 genotype was stratified 

for the rs2289669 genotype and vice versa. We tested for multiplicative interaction between 

the rs622342 and rs2289669 genotype in the multivariate linear regression model. These 

analyses were performed with SPSS software (version 15.0; SPSS, Chicago, IL).

Results

In the Rotterdam Study, we identified 152 incident metformin users between April 1st 1997 

and January 1st 2008, who had an HbA1c measurement available both in the period of 30 

days before and in the period between 14 and 100 days after start of metformin therapy. 

We excluded 10 patients, because they were using acarbose (n=1) rosiglitazone (n=2), 

pioglitazone (n=1) or insulin (n=6) at the time of the HbA1c measurements. Twenty patients 

discontinued metformin therapy before the first HbA1c measurement after start of met-

formin therapy. Blood samples for genotyping were not available for twenty patients and 

genotyping for the SNP rs622342 or rs2289669 failed in four patients. Eventually, we included 

98 incident metformin users in the analyses (table 1). The minor allele frequency was 0.37 

Table 1 Baseline characteristics of the study population (n=98)

Characteristic
Gender Male 38 (39 %)

Female 60 (61 %)

Age (SD) 76.3 (6.7) year

HbA1c level (SD) a 8.2 (1.2) %

Body-mass index (SD) b 28.1 (3.4) kg/m2

Serum creatinine level (SD) b (n=74) 83.0 (14.9) μmol/l

Sulfonylurea use a Glibenclamide 14 (14 %)

Tolbutamide 25 (26 %)

Gliclazide 5 (5 %)

Glimepiride 12 (12 %)

rs622342 genotype (OCT1) AA 38 (39 %)

AC 47 (48 %)

CC 13 (13 %)

rs2289669 genotype (MATE1) GG 31 (32 %)

GA 48 (49 %)

AA 19 (19 %)

a At the time of the last HbA1c measurement before start of metformin therapy. b At the time of entrance in the Rotterdam Study.
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for the SNP rs622342 and 0.44 for the SNP rs2289669. Both genotype distributions were in 

Hardy-Weinberg equilibrium (rs622342 p=0.40; rs2289669 p=0.48). Genotype distributions 

did not differ between patients who continued metformin use until the first HbA1c measure-

ment after start and those who discontinued (rs622342 p=0.34; rs2289669 p=0.36).

The average HbA1c level before start of metformin therapy was 8.2% (SD 1.2%). At the time 

of the first HbA1c measurement in the period between 14 and 100 days after start, the HbA1c 

level on average decreased by 0.36% (SD 0.70%) to 7.9% (SD 1.3%). The average time from 

the last HbA1c measurement before start and start of metformin therapy was 8 days (SD 5.8 

days) and the average time from start of metformin therapy and the first measurement in the 

period between 14 and 100 days after start was 52 days (SD 23 days). These times did not 

differ significantly between genotypes.

In table 2, the average change in HbA1c level is given per genotype. The decrease in HbA1c 

levels was larger for each rs622342 A allele and rs2289669 A allele. In incident metformin 

users with the rs622342 AA and rs2289669 AA genotype the average decrease in HbA1c 

level was largest (-0.91 %; SD 0.78 %), while in users with the rs622342 CC and rs2289669 

GG genotype the HbA1c levels increased (0.48%; SD 0.30 %). The change in HbA1c levels is 

visually presented in figure 1. In users with the rs622342 AA and AC genotype, the effect of 

the rs2289669 genotype is smaller than in users with the rs622342 CC genotype.

The association between the number of variant alleles in the rs2289669 and the change 

in HbA1c level, stratified for the rs622342 genotypes, is given in table 3. In patients with the 

rs622342 AA genotype, the HbA1c level was on average 0.10 % lower (95% CI –0.35 , 0.14; 

p=0.39) with each rs2289669 minor A allele, while in patients with the rs622342 CC genotype 

the HbA1c level was on average 0.68% lower (95% CI –1.06 , –0.30; p=0.005). Testing for inter-

action between the rs622342 and rs2289669 genotype, revealed that the change in HbA1c 

level for the number of rs2289669 minor A alleles, differed significantly between patients 

Table 2 The number of participants and the average change in HbA1c level (in %) per genotype

rs2289669 (MATE1) Overall
GG GA AA

rs622342 AA n 11 19 8 38

(OCT1) Delta HbA1c
(SD)

-0.46 
(0.48)

-0.42 
(0.58)

-0.91 
(0.78)

-0.53 
(0.62)

AC N 15 25 7 47

Delta HbA1c
(SD)

-0.11 
(0.94)

-0.38 
(0.68)

-0.60 
(0.53)

-0.33 
(0.76)

CC N 5 4 4 13

Delta HbA1c
(SD)

0.48
(0.30)

0.03 
(0.28)

-0.58 
(0.51)

0.02 
(0.57)

Overall n 31 48 19 98

Delta HbA1c
(SD)

-0.14 
(0.78)

-0.36 
(0.62)

-0.73 
(0.64)

-0.36 
(0.70)
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with the rs622342 AA and rs622342 CC genotype (–0.52 %; 95% CI –0.94 , –0.11; p=0.015). 

Analyzing the eff ect of the rs622342 genotype stratifi ed for the rs2289669 genotype, did not 

add much to the presented analyses.

discussion

In two previous publications, we identifi ed an association between polymorphisms in the 

gene coding for OCT1 (rs622342 A>C)[12] and MATE1 (rs2289669 G>A)[13], and response to 

metformin treatment. Most likely, the rs622342 C allele was associated with a crippled OCT1 

Figure 1 The average change in HbA1c level per genotype

Table 3 The average change in HbA1c level (in %) for the rs2289669 genotype (MATE1) stratifi ed for the rs622342 genotype (OCT1)

oct1 genotype change in 
hba1c

95% ci p-value inter-
action a

95% ci p-value

rs622342 AA -0.10 (-0.35, 0.14) 0.39 ref.

rs622342 AC -0.31 (-0.65, 0.03) 0.070 -0.11 (-0.53, 0.31) 0.60

rs622342 CC -0.68 (-1.06, -0.30) 0.005 -0.52 (-0.94, -0.11) 0.015
a Multiplicative interaction; diff erence in slope, with the slope of the rs622342 AA genotype as the reference.
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influx transporter, either quantitative or qualitative, in the hepatocyte, and the rs2289669 

A allele was associated with a crippled MATE1 efflux transporter. In the present study, we 

describe an interaction between these two SNPs. In patients homozygous for a normal func-

tioning OCT1 influx transporter, genetic variation in the gene coding for the MATE1 efflux 

transporter did not affect the glucose lowering effect of metformin. On the other hand, in 

patients homozygous for a crippled functioning OCT1 influx transporter, genetic variation 

in the gene coding for the MATE1 efflux transporter has a substantial impact on the glucose 

lowering effect of metformin.

MATE1 is found both in the hepatocytes and in the renal epithelium. Probably, the he-

patocytes are the major site of action of genetic variation in the gene coding for MATE1, 

because they interact with genetic variation in the gene coding for OCT1 that is particularly 

found in the hepatocytes. In incident metformin users homozygous for a normal functioning 

OCT1 influx transporter, the effect of genetic variation in the gene coding for the MATE1 

efflux transporter is minimal. The normal functioning OCT1 influx transporter probably 

outperforms the MATE1 efflux transporter, irrespective of the functioning of the MATE1 efflux 

transporter, and the intracellular metformin levels in the hepatocyte will be high enough to 

reduce gluconeogenesis and to lower blood glucose levels. In patients homozygous for a 

crippled OCT1 influx transporter, two genes coding for a normal MATE1 efflux transporter 

outperform the influx of metformin, resulting in lower intracellular metformin levels and an 

impaired glucose lowering effect. However, if the patient is homozygous for both a crippled 

OCT1 influx transporter and a crippled MATE1 efflux transporter, the OCT1 influx transporter 

still outperforms the MATE1 efflux transporter, and the intracellular metformin levels in the 

hepatocyte are high enough to lower glucose levels. Therefore, the glucose lowering effect 

of metformin will be most impaired in patients with the rs622342 CC genotype, encoding a 

crippled OCT1 influx transporter and with the rs2289669 GG genotype, encoding a normal 

functioning MATE1 efflux transporter. Patients heterozygous for one of these genes will have 

a glucose lowering effects somewhere in between.

In this study we included all incident metformin users with an HbA1c measurement in the 

period of 30 days before start and between 14 and 100 days after start. The HbA1c level rep-

resents the glucose level in the preceding 90 days, although it mainly reflects the preceding 

two to four weeks before measurement. In the selected time period after start of metformin 

therapy the effect on HbA1c levels will not be completely established. However, the longer 

the time period the more changes in therapy will be made, possibly introducing bias. This is 

especially the case for the rs622342 polymorphism. The rs622342 A allele was associated with 

more metformin discontinuations and switches to acarbose, thiazolidinediones and insulin, 

although the differences did not reach statistical significance. Probably, this is due to a higher 

incidence of adverse drug reactions in patients with the rs622342 A allele. The results from the 

analyses of the first HbA1c measurement between 30 and 120 days after start of metformin 

did not differ much from the results presented in this article. However, the average reduction 
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in HbA1c in incident users with the rs622342 CC genotype was stronger than in the analyses 

presented here, while in incident users with the rs622342 AA or AC genotype the average 

decrease was similar. A possible explanation is the lower percentage of discontinuations due 

to adverse drug reactions in the users with the rs622342 CC genotype.

In population-based cohort studies, bias may affect the results. The HbA1c measurements 

were done in routine clinical practice. The time from start of metformin therapy until the 

HbA1c measurement did not differ between genotypes and therefore it is unlikely that there 

were differences in frequency of HbA1c measurements. In the selected time periods, no dif-

ferences were found in genotype frequencies between patients who continued metformin 

therapy until the HbA1c measurement after start and those who discontinued metformin 

therapy. We identified all incident metformin users in the Rotterdam Study and information 

was collected prospectively without prior knowledge of the study hypothesis. The absence 

of blood samples for genotyping was most likely independent from the genetic variation 

analyzed in this study. 

To conclude, the effect of the polymorphism rs2289669 in the gene coding for the MATE1 

efflux transporter on the glucose lowering effect in incident metformin users is larger in 

patients with the rs622342 CC polymorphism in the gene coding for the OCT influx trans-

porter, than in patients with the AA genotype. In patients with the AC genotype the effect of 

the rs2289669 polymorphism is in between. This interaction is most likely due to the OCT1 

transporter transporting metformin into the hepatocyte and MATE1 transporting metformin 

out of the hepatocyte into the bile. The intracellular metformin concentrations will be suffi-

ciently high to lower glucose levels in most individuals, except in those who have an impaired 

influx due to reduced functioning OCT1 influx transporter and a normal efflux with a normal 

functioning MATE1 efflux transporter.
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Abstract

Background: The single nucleotide polymorphism rs10494366 in the nitric oxide synthase 1 

adaptor protein (NOS1AP) gene is associated with QTc prolongation, through an effect on the 

intracellular Ca2+ levels. As sulfonylurea stimulate insulin secretion by an increased influx of 

Ca2+, we hypothesized that this polymorphism is associated with the glucose lowering effect 

and mortality risk in sulfonylurea users. 

Methods: Associations between the NOS1AP polymorphism, prescribed doses and mortality 

rates in sulfonylurea, metformin and insulin users were assessed in the Rotterdam Study, a 

population based cohort study of 7,983 elderly people.

Results: We identified 619 participants who were prescribed oral antidiabetic drugs during 

follow-up. In glibenclamide users carrying the TG genotype, the prescribed doses were 

higher compared with the glibenclamide users carrying the TT genotype (0.38 DDD units; 

95% CI 0.14, 0.63). Glibenclamide users with the TG or GG genotype had an increased mortal-

ity risk compared with glibenclamide users with the TT genotype (HR 2.80; 95% CI 1.09, 7.22). 

Tolbutamide users with the TG or GG genotype (HR 0.30; 95% CI 0.14, 0.63) and glimepiride 

users with the TG or GG genotype (HR 0.18; 95% CI 0.04, 0.74) had a decreased mortality risk 

compared with tolbutamide and glimepiride users with the TT genotype. 

Conclusion: In participants with the TG or GG genotype at rs10494366 in the NOS1AP gene, 

glibenclamide is less effective in reducing glucose levels and mortality rates were higher 

compared with glibenclamide users with the TT genotype. In tolbutamide and glimepiride 

users the TG and GG genotype were associated with a reduced mortality rate.
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Introduction

Sulfonylurea have been used extensively for decades in the treatment of type 2 diabetes mel-

litus. Since the publication of the University Group Diabetes Program trial in 1970, in which 

tolbutamide treatment was compared with other treatments and placebo, sulfonylurea have 

been associated with an increased risk of cardiovascular mortality.[1] However, there was 

criticism on this study in subsequent publications.[2-4] In 1998 the results of another trial with 

sulfonylurea were published. In this UK Prospective Diabetes Study trial, in which treatment 

with sulfonylurea (chlorpropamide, glibenclamide or glipizide) was compared with insulin 

treatment and conventional policy with diet, no detrimental effects of sulfonylurea were 

seen.[5] Ever since, controversy remains as to whether sulfonylurea may increase the risk of 

cardiovascular death.

Sulfonylurea stimulate insulin secretion by the pancreatic β cells.[6-8] The sulfonylurea 

receptor (SUR) is part of the ATP-sensitive K+ (KATP) channel. Binding of the sulfonylurea to 

SUR causes inhibition of the KATP-channel, decreasing the K+ efflux and depolarization of the 

cell membrane. This triggers the opening of voltage dependent Ca2+ channels, eliciting Ca2+ 

influx and a rise in intracellular Ca2+. In the pancreatic β cell, this rise stimulates the exocytosis 

of insulin-containing secretory granules.

Nitric oxide synthases (NOS) are the enzymes responsible for nitric oxide generation. Nitric 

oxide regulates cardiovascular homeostasis.[9] Recently, two nearby single nucleotide poly-

morphisms (SNP) rs10494366 and rs10918594 in the gene encoding nitric oxide synthase 

1 adaptor protein (NOS1AP) have been found to be associated with QTc-interval prolonga-

tion in electrocardiograms.[10-12] NOS1AP is a regulator of neuronal NOS (nNOS encoded by 

NOS1), one of the isoforms of NOS. The nNOS enzyme is believed to regulate intracellular 

calcium levels.[9,13] It is thought that nNOS inhibits the inward Ca2+ current through voltage 

dependent calcium channels, reducing the intracellular calcium concentrations. Thereby it 

suppresses β-adrenoreceptor stimulation of the heart. nNOS has also been associated with 

insulin release.[14,15] 

Similarities exist between the effects of nNOS and sulfonylurea. Both nNOS and sulfonyl-

urea influence the calcium influx through voltage dependent calcium channels. Moreover 

nNOS and sulfonylurea modulate the release of insulin by pancreatic β cells. Both might be 

associated with cardiovascular mortality. In view of these similarities we hypothesized that 

genetic variation in the NOS1AP gene influences the glucose-lowering effect of sulfonylurea 

and mortality risk in patients using sulfonylurea.
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Methods

Setting
The data were obtained from the Rotterdam Study, a prospective population-based, closed 

cohort study in the suburb Ommoord in Rotterdam. All inhabitants who were 55 years of 

age or older and had lived in the district for at least one year were invited between 1990 and 

1993 to participate in the study. Of the 10,275 eligible persons, 7,983 participated and were 

followed since then. At baseline, trained interviewers administered a questionnaire during a 

home interview covering socioeconomic background and medical history, among other top-

ics. During subsequent visits to the study center, laboratory assessments and clinical exami-

nations were performed, including recording of electrocardiograms. Follow-up examinations 

were carried out periodically (every four to five years). All participants of the Rotterdam Study 

gave written informed consent. Ethical approval was obtained from the medical ethical com-

mittee of the Erasmus MC. The aim of the study was to investigate determinants of chronic 

and disabling cardiovascular, neurodegenerative, locomotor and ophthalmologic diseases. 

The design of the Rotterdam Study has been described before.[16,17] All mortality cases were 

identified by obtaining the vital status of the participants from the municipal population reg-

istry at regular intervals. After notification of death, cause and circumstances were established 

by information from the general practitioner, letters, and in case of hospitalization, discharge 

reports from medical specialists were obtained. Two research physicians coded all events 

independently according to the international classification of diseases-tenth edition.[18] In 

case of disagreement, consensus was sought. The seven pharmacies in Ommoord dispense 

the prescriptions of more than 99% of all participants. Information on all filled prescriptions 

from January 1st 1991 until January 1st 2005 was available and included the product name of 

the drug, the anatomical therapeutical chemical code, the amount dispensed, the prescribed 

dosage regimen and the date of dispensing.[19]

Cohort Definition
All participants of the Rotterdam Study, who received a prescription for an oral antidiabetic 

drug in the period between January 1st 1991 and January 1st 2005, were included in the study 

population at the time of the first prescription. These subjects were followed until death or 

end of the study period whichever came first. 

Outcomes
Associations between the SNPs rs10494366 and rs10918594 in the NOS1AP gene, and pre-

scribed doses of sulfonylurea, all-cause and cardiovascular mortality and first myocardial 

infarction were assessed. We used two types of study outcome, the change in prescribed 

dose of oral antidiabetic drugs compared with the first prescription and mortality while using 

antidiabetic drugs.
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First, we analyzed differences between genotypes in prescribed doses in incident oral 

antidiabetic drug users. All subjects who received a first prescription for a sulfonylureum after 

July 1st 1991 were included in this analysis and followed until the last prescription of that 

particular antidiabetic drug. July 1st 1991 was chosen to ensure that we would have complete 

medication histories for at least half a year from January 1st 1991. For every prescription of 

the oral antidiabetic drug the participant started on, the change in prescribed daily dose 

compared with the first prescription was calculated. As doses are titrated to avoid hypoglyce-

mia and diabetes mellitus is a progressive disease, the prescribed doses of oral antidiabetic 

drugs usually increase over time. The prescribed daily dose is given as the number of defined 

daily dose (DDD) units, established by the World Health Organization, to make prescribed 

doses comparable between different drugs.[19] If participants received more than one oral 

antidiabetic drug, the number of DDD units of the other drugs was added to the drug that 

was prescribed first. 

Second, we analyzed differences in all-cause mortality between genotypes within users 

of the same antidiabetic drug. We also analyzed differences in mortality in patients using 

metformin and insulin. Subsequent analysis was restricted to events that were coded as 

cardiovascular mortality. Similarly, we analyzed differences in the risk for a first (fatal and 

nonfatal) myocardial infarction.

Cofactors
The following characteristics were considered as potential determinants for affecting the 

change in prescribed daily dose of sulfonylurea after start: age, sex and calendar time. Deter-

minants potentially affecting the mortality rates were age, sex, QTc interval at baseline, the 

cumulative prescribed dose of all oral antidiabetic drugs at the index date, the number of 

days the sulfonylureum of interest was prescribed until the index date, and whether the par-

ticipant used insulin at the index date. We also adjusted for current dihydropyridine calcium 

channel blocker use, because we recently found an association between genetic variation in 

NOS1AP and mortality in dihydropyridine calcium channel blocker users. The time of entrance 

in the Rotterdam Study was regarded as baseline and the results of physical examinations at 

the first visit were used in the analysis.

Genotyping
All participants were genotyped for the NOS1AP SNP rs10494366 T>G previously shown to be 

associated with QTc interval in five independent samples.[10-12] The correlated SNP rs10918594 

C>G, was also genotyped. These two SNPs are in linkage disequilibrium (r2=0.63, D’=0.89). 

Both were genotyped using Taqman assays C_1777074_10 and C1777009_10 (Applied 

Biosystems, Foster City, Ca., USA) in 1 ng of genomic DNA extracted from leukocytes, as 

previously reported.[10,20]
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Statistical analysis
A χ2 test was used to test for deviation from Hardy-Weinberg equilibrium. We used unbal-

anced repeated measurements analysis to analyze the difference per genotype in the change 

in prescribed daily dose (in DDD units) in series of all consecutive prescriptions of oral anti-

diabetic drugs for the same participant compared with the prescribed daily dose of the first 

prescription. For these analyses, we used the PROC Mixed module of SAS (version 8.2; SAS, 

Cary, NC). Cox proportional hazards analysis was used to analyze the difference in mortality 

between genotypes in users of the same antidiabetic drug. For each antidiabetic drug, all 

subjects in the study population who died between July 1st 1991 and January 1st 2005, while 

using that antidiabetic drug were identified as cases. The mortality date was taken as the 

index date. To each case we matched all persons in the cohort using that antidiabetic drug 

on the index date of the corresponding case. Participants with missing values were excluded 

from the analyses. Cox proportional hazards analysis was also used for analyzing differences 

in first myocardial infarction between genotypes. These analyses were performed using SPSS 

software (version 11.0.1; SPSS, Chicago IL).

Results

In the Rotterdam Study, we identified 784 subjects who were prescribed oral antidiabetic 

drugs. One hundred thirty-four participants were excluded because a blood sample was 

not available and 31 participants were excluded because of failure to genotype successfully. 

Consequently, 619 participants were available for the analysis (table 1). We analyzed the 

associations between both SNPs rs10494366 and rs10918594 and the study outcomes. As 

the associations with the SNP rs10494366 were stronger, only these results are presented. 

The minor allele frequency was 0.38 (G allele) and genotype distribution was in the Hardy-

Weinberg equilibrium (χ2=1.94; p=0.16). 

Four hundred fifty-two participants received a first prescription for sulfonylurea between 

July 1st 1991 and January 1st 2005, and these patients were considered as incident users. No 

significant differences were observed in starting dose among the genotypes. The average 

increase in prescribed daily dose for all consecutive prescriptions compared with the first 

prescriptions is given in table 2. Among 74 patients using glibenclamide, patients with the 

TG genotype received on average a prescribed daily dose that was 0.38 DDD higher (95% CI 

0.14, 0.63) than patients with the TT genotype. The difference between patients with the GG 

genotype and the TT genotype was not significantly different (0.11 DDD; 95% CI –0.32, 0.55). 

The change in prescribed daily dose for consecutive prescriptions of glibenclamide is given 

in figure 1. Patients with the GG genotype starting on glibenclamide were on average given 

fewer prescriptions for glibenclamide than patients with the TG genotype (20.4 versus 27.4; 

p=0.04). For the other sulfonylurea, no differences in prescribed doses were found.
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Table 1 Characteristics of the study population by NOS1AP rs10494366 genotype

rs10494366 genotype tt tG GG
Number 247 275 97

Gender, male 103 (41.7%) 118 (42.9%) 44 (45.4%)

Age (SD) 69.7 (8.3) years 69.1 (7.9) years 69.8 (8.5) years

Follow-up time (SD) 11.1 (3.3) years 11.0 (3.7) years 10.5 (4.0) years

Body mass index (SD) 28.0 (3.6) kg/m2 28.2 (3.8) kg/m2 28.6 (4.5) kg/m2

Serum creatinine (SD) 85.0 (16.1) μmol/l
(n=198)

84.9 (17.0) μmol/l
(n=213)

84.3 (17.9) μmol/l
(n=70)

Drug use during follow up

Glibenclamide 87 (35.2%) 109 (39.6%) 37 (38.1%)

Tolbutamide 137 (55.5%) 155 (56.4%) 55 (56.7%)

Gliclazide 43 (17.4%) 41 (14.9%) 10 (10.3%)

Glimepiride 56 (22.7%) 77 (28.0%) 23 (23.7%)

Metformin 141 (57.1%) 165 (60.0%) 55 (56.7%)

Insulin 49 (19.8%) 62 (22.5%) 19 (19.6%)

Figure 1 Change in prescribed daily dose (in DDD units) of glibenclamide plus co-prescribed oral antidiabetic drugs in patients starting with 
glibenclamide compared to the fi rst prescription



Chapter 3.5. 

136

In the cohort of 619 subjects, 156 subjects died during follow-up while using antidiabetic 

drugs. In 142 of the 156 cases we had complete follow-up information, including QTc interval, 

and these subjects were used for the mortality analyses. In the group of glibenclamide users, 

both users with the TG genotype (Hazard Ratio (HR) 2.95; 95% CI 1.02, 8.52) and users with the 

GG genotype (HR 4.42; 95% CI 1.23, 15.9) had a higher mortality rate than users with the TT 

genotype (table 3). For tolbutamide (TG genotype HR 0.26; 95% CI 0.11, 0.59 and GG genotype 

HR 0.27; 95% CI 0.09, 0.27) and glimepiride (TG genotype HR 0.15; 95% CI 0.05, 0.75) the ef-

Table 2 Average change in prescribed dose of oral antidiabetic drugs (in DDD units) in incident sulfonylurea users by rs10494366 genotype

Drug TT TG GG
N N Change a 95% CI p-value N Change a 95% CI p-value

Glibenclamide 32 ref. 28 0.38 (0.14, 0.63) 0.003 14 0.11 (-0.32, 0.55) 0.60

Tolbutamide 115 ref. 116 -0.02 (-0.12, 0.08) 0.66 50 -0.05 (-0.19, 0.08) 0.43

Gliclazide 12 ref. 11 0.05 (-0.45, 0.55) 0.84 2 0.37 (-0.65, 1.39) 0.44

Glimepiride 24 ref. 41 0.16 (-0.22, 0.53) 0.40 7 0.26 (-0.43, 0.95) 0.44

a Adjusted for: age, sex and calendar time.

Table 3 Association between the polymorphism rs10494366 in the NOS1AP gene and all-cause mortality in sulfonylurea users

Cases a Unadjusted Adjusted b

 HR HR 95% CI p-value
Glibenclamide

TT 6 ref. ref.

TG 15 2.30 2.95 (1.02, 8.52) 0.046
GG 8 2.97 4.42 (1.23, 15.9) 0.022

Tolbutamide
TT 21 ref. ref.

TG 13 0.34 0.26 (0.11, 0.59) 0.001
GG 6 0.48 0.27 (0.09, 0.87) 0.028

Gliclazide
TT 9 ref. ref.

TG 3 0.41 0.32 (0.03, 3.27) 0.33

GG 0 - c - c

Glimepiride
TT 9 ref. ref.

TG 7 0.50 0.15 (0.05, 0.75) 0.021
GG 2 - c - c

Metformin
TT 10 ref. ref.

TG 12 0.86 0.82 (0.33, 2.06) 0.68

GG 7 1.45 1.65 (0.59, 4.55) 0.34

Insulin
TT 16 ref. ref.

TG 22 1.03 1.00 (0.48, 2.06) 1.00

GG 8 0.90 1.23 (0.41, 3.68) 0.71

a As patients can use more than one antidiabetic drug, these numbers do not add up to 142. b Adjusted for: age, sex, QTc time, prescribed doses oral 
antidiabetic drugs, duration of use, insulin use and dihydropyridine calcium channel blocker use. c Too few cases were available to calculate HR’s.
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fects were the opposite. Participants on these drugs with the TG and GG genotype had lower 

mortality rates, although the number of participants with the GG genotype using glimepiride 

was too small to calculate hazard rates. In gliclazide users, a nonsignificant protective effect 

for the TG genotype was found (TG genotype HR 0.32; 95% CI 0.03, 3.27). No associations were 

found between all-cause mortality and NOS1AP genotype in metformin or insulin users.

In 63 of the 142 participants who died during follow-up, the cause of death was categorized 

as cardiovascular. In table 4 the associations between NOS1AP genotype and cardiovascular 

mortality are given. Since the hazard estimates for the all-cause mortality are suggestive of 

a dominant effect of the G allele and the power is too low for separate analyses, we grouped 

patients with the TG and GG genotypes. In glibenclamide users, no differences were found in 

cardiovascular mortality between genotypes (HR 1.45; 95% CI 0.34, 6.19). With tolbutamide, 

the decreased mortality in users with the TG or GG genotype seemed to be caused by a 

decrease in cardiovascular mortality (HR 0.09; 95% CI 0.02, 0.40). For metformin and insulin, 

no differences in cardiovascular mortality were found. 

Forty-nine cases of myocardial infarction were identified in participants using antidiabetic 

drugs. The number of first myocardial infarctions in participants using glibenclamide was too 

low to examine. In the group of participants using tolbutamide, gliclazide or glimepiride, the 

Table 4 Association between the polymorphism rs10494366 in the NOS1AP gene and cardiovascular mortality in sulfonylurea users

All-cause mortality Cardiovascular mortality
N HR a 95% CI p-value N b HR a 95% CI p-value

Glibenclamide
TT 6 ref. 4 ref.

TG or GG 23 2.80 (1.09, 7.22) 0.033 8 1.45 (0.34, 6.19) 0.61

Tolbutamide
TT 21 ref. 11 ref.

TG or GG 19 0.30 (0.14, 0.63) 0.001 6 0.09 (0.02, 0.40) 0.002
Gliclazide

TT 9 ref. 5 ref.

TG or GG 3 0.23 (0.02, 2.34) 0.21 0 - c

Glimepiride
TT 9 ref. 3 ref.

TG or GG 9 0.18 (0.04, 0.74) 0.018 3 - c

Metformin
TT 10 ref. 5 ref.

TG or GG 19 1.12 (0.50, 2.51) 0.79 7 1.10 (0.29, 4.23) 0.89

Insulin
TT 16 ref. 7 ref.

TG or GG 30 1.03 (0.52, 2.01) 0.94 14 1.23 (0.43, 3.50) 0.70

a Adjusted for: age, sex, QTc time, prescribed doses oral antidiabetic drugs, duration of use, insulin use and dihydropyridine calcium channel 
blocker use. b As patients can use more than one antidiabetic drug, these numbers do not add up to 63. c Too few cases were available to 
calculate HR’s.
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hazard ratio for a myocardial infarction was 0.89 (95% CI 0.27, 2.97) for users with the TG or GG 

genotype compared with users with the TT genotype, albeit only 12 cases were identified. For 

participants using insulin, the hazard ratio was 1.34 (95% CI 0.48, 3.73). 

Discussion

In this population-based cohort study, the glucose-lowering response of glibenclamide 

seems to be less effective in users with the TG or GG genotype, because over time their daily 

dose is significantly higher than in users with the TT genotype. Moreover, for all sulfonylurea 

differences were found in mortality between patients with the TG or GG genotype and 

patients with the TT genotype. The effects of glibenclamide on mortality were opposite to 

the other sulfonylurea. In participants using glibenclamide, the TG and GG genotype were 

associated with an increased risk of mortality, whereas in participants using tolbutamide and 

glimepiride, these genotypes were associated with a reduced risk of mortality. No differences 

were found in subjects using metformin or insulin.

Participants with the TG genotype using glibenclamide were prescribed higher doses than 

subjects with the TT genotype. As prescribed doses are titrated according to glucose levels, 

it is likely that this is caused by a difference in glucose-lowering effect. Participants with the 

GG genotype starting on glibenclamide stopped using glibenclamide sooner than subjects 

with the TG genotype. This may explain why no difference in the average prescribed dose 

was found for users with the GG genotype, although the changes in prescribed dose for users 

with the TG and GG genotype are similar in figure 1.

As the hazard rates for the TG and GG genotypes are similar, we suggested a dominant 

effect of the G allele. If the underlying genetic effect operated through a recessive or addi-

tive effect, larger differences between the TG and GG would be expected. In the analyses of 

cardiovascular mortality we analyzed participants with the TG or GG genotype as one group, 

because numbers were too low to analyze them separately. Only in participants with the TG 

or GG genotype using tolbutamide, a decreased hazard rate for cardiovascular mortality was 

found. 

The reduced all-cause mortality observed in subjects with the TG or GG genotype using 

tolbutamide and glimepiride may be caused by NOS1AP influencing the pharmacologic path-

way of sulfonylurea. In metformin and insulin users no differences were found, indicating 

that the differences are related to sulfonylurea use and not to the underlying disease. Also 

in gliclazide users a reduced mortality was observed, although not significant. Although the 

wide confidence intervals preclude a precise estimation, a two to three times larger sample 

size would be needed for the HR in this study to become significantly different. Both NOS1AP 

and sulfonylurea regulate the Ca2+ influx by voltage dependent calcium channels. Sulfonyl-

urea stimulate Ca2+ influx by blocking the KATP-channels, whereas the exact mechanism of 
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nNOS is not known. In subjects with the TG or GG genotype using tolbutamide a reduced 

risk of cardiovascular mortality was seen. In participants with the TG or GG genotype using 

gliclazide and glimepiride, a reduction in cardiovascular mortality was the most likely ex-

planation for the reduced all-cause mortality, although the differences were not significant. 

These effects on cardiovascular mortality in participants using tolbutamide, gliclazide and 

glimepiride may be caused by the effect sulfonylurea have on the heart. More than one 

isoform of the SUR exist.[8,21-23] The SUR1 isoform is found in the pancreas, the SUR2A isoform 

in the heart and skeletal muscle and the SUR2B isoform in vascular smooth muscles. The 

glucose-lowering effect of sulfonylurea is accomplished by binding to the SUR1 receptor on 

the β cell. Sulfonylurea also bind to other SUR isoforms. It is suggested that the affinity to 

the SUR2A isoform could be responsible for the effects on cardiovascular mortality.[21,24-26] 

Under normal conditions the KATP channels in the heart are closed. They open in response to 

metabolic stress such as ischemia, and the increasing total outward K+ current shortens the 

action potential duration, decreases Ca2+ influx and contraction, and conserves ATP. These 

channels are involved in a phenomenon called ischemic preconditioning. This refers to the 

observation that a brief period of ischemia may render a less severe, subsequent, and more 

prolonged episode.[26,27] Binding to the SUR2A isoform by sulfonylurea may block this ATP 

conserving pathway and possibly influences survival of ischemic events. Mutations in the 

gene encoding the SUR2A gene have been associated with heart failure and rhythm distur-

bances, confirming the importance of KATP channels and SUR2A.[28] In a study of 185 patients 

undergoing direct coronary angioplasty for acute myocardial infarction, sulfonylurea use was 

associated with an increased mortality.[29]

The effects observed in participants using glibenclamide were different from that observed 

in participants using other sulfonylurea. Glibenclamide has a higher affinity for the SUR2A 

receptor than the other sulfonylurea.[8,22,24,30-32] This difference in affinity by glibenclamide for 

the SUR2A receptor cannot explain all the results. Since SUR2A is only found on cardiac tissue, 

no differences would be expected in prescribed doses. 

Glibenclamide is also an inhibitor of other channels than the KATP channel.[33,34] Studies 

have shown that beside the KATP channel, other potassium channels are present in the β cell, 

such as the Ca2+-dependent K+ channel.[35,36] Blocking one or more of these channels by glib-

enclamide may be an alternative explanation for the results found in this study. A possible 

explanation for our results may be that there is a difference in effect on the Ca2+-dependent 

K+ channel between glibenclamide and other sulfonylurea. This explanation is supported by 

two observations. First, Ca2+-dependent K+ channel are also found in the pancreatic β cell, 

influencing the firing of action potentials and possibly insulin release. Second, nitric oxide 

directly activates these Ca2+-dependent K+ channels, which could explain the role of NOS1AP.
[37] As we are not aware of studies assessing the influence of other sulfonylurea than gliben-

clamide on Ca2+-dependent K+ channels, we do not know whether differences in blocking 
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these channels do attribute to the differences between glibenclamide and other sulfonylurea 

found in this study.

Although nNOS has previously been associated with insulin release, we do not think that 

this association can explain the differences in prescribed doses and mortality risk in sulfonyl-

urea users. The association with insulin release was too weak to explain the results and the 

associations were not found for metformin and insulin, suggesting that the association is 

related to sulfonylurea. As we adjusted for the QTc interval, also the QTc prolongating effect 

of NOS1AP is less likely to explain the observed results.

In population-based studies, bias may affect the obtained results. We believe that bias in 

our study is minimal. As diabetes mellitus is a progressive disease, co-prescription of other 

antidiabetic drugs and switching is common. Confounding by indication may have occurred 

if the risks at the start of a drug were different between genotypes, owing to differences in 

the effect of previously prescribed drugs. This is, for example, the case if the genotype influ-

ences the rate of switching or co-prescription during previously prescribed drugs. However, 

if we adjusted for previously prescribed sulfonylurea, the results did not change. Therefore 

we do not think that confounding by indication did influence our results. Information bias is 

unlikely, since information was collected prospectively without prior knowledge of the study 

hypothesis. It is also unlikely that selection bias has occurred since we identified all patients 

with diabetes mellitus in a population based cohort study, and the absence of a blood sample 

and difficulties with genotyping were probably independent of the genotype.

Although there is always the possibility that the results are a chance finding, we think 

that this is probably not the case in our study. First, the analyses were not part of a genome 

wide association study. The SNP rs10494366 was associated with QTc prolongation in five 

independent populations before and we were testing whether this SNP affected prescribed 

doses and all-cause mortality in sulfonylurea users. Therefore, multiple testing did not bias 

our results. Second, significant associations with all-cause mortality were found for tolbu-

tamide and glimepiride, whereas no significant associations were found for metformin and 

insulin. The point estimate for gliclazide was similar to the point estimate for tolbutamide 

and glimepiride, although not significant. Probably, this was because of lack of power in this 

group. For glibenclamide, we also found an association with all-cause mortality, although 

opposite to the effects of the other sulfonylurea. Differences in effect between glibenclamide 

and other sulfonylurea were observed before, although the differences were ascribed to dif-

ferences in the affinity to the SUR2A receptor.

To conclude, the glucose-lowering effect of glibenclamide in patients with the TG or GG 

genotype seems to be less effective. Moreover, genetic variation in the NOS1AP gene seems 

to predict the risk of mortality in patients using sulfonylurea. Although the exact mechanism 

has not been revealed, our results give a new insight into the pharmacologic association 

between sulfonylurea use and cardiovascular mortality.



141

Common variation in the NOS1AP gene is associated with glucose-lowering effect and mortality in users of sulfonylurea

References

	 1.	 Klimt CR, Knatterud GL, Meinert CL, Prout TE. A study of the effects of hypoglycemic agents on 
vascular complications in patients with adult-onset diabetes. Diabetes 1970;19:Suppl:747-830.

	 2.	 Schor S. The University Group Diabetes Program. A statistician looks at the mortality results. JAMA 
1971;217(12):1671-5.

	 3.	 Seltzer HS. A summary of criticisms of the findings and conclusions of the University Group 
Diabetes Program (UGDP). Diabetes 1972;21(9):976-9.

	 4.	 Cornfield J. The University Group Diabetes Program. A further statistical analysis of the mortality 
findings. JAMA 1971;217(12):1676-87.

	 5.	 Intensive blood-glucose control with sulphonylureas or insulin compared with conventional 
treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective 
Diabetes Study (UKPDS) Group. Lancet 1998;352(9131):837-53.

	 6.	 Ashcroft FM, Rorsman P. Electrophysiology of the pancreatic beta-cell. Prog Biophys Mol Biol 
1989;54(2):87-143.

	 7.	 Boyd AE, Aguilar-Bryan L, Nelson DA. Molecular mechanisms of action of glyburide on the beta 
cell. Am J Med 1990;89(2A):3S-10S

	 8.	 Proks P, Reimann F, Green N, Gribble F, Ashcroft F. Sulfonylurea stimulation of insulin secretion. 
Diabetes 2002;51 Suppl 3:S368-76.

	 9.	 Schulz R, Rassaf T, Massion PB, Kelm M, Balligand JL. Recent advances in the understanding of the 
role of nitric oxide in cardiovascular homeostasis. Pharmacol Ther 2005;108(3):225-56.

	 10.	 Arking DE, Pfeufer A, Post W, et al. A common genetic variant in the NOS1 regulator NOS1AP 
modulates cardiac repolarization. Nat Genet 2006;38(6):644-51.

	 11.	 Aarnoudse AJ, Newton-Cheh C, de Bakker PI, et al. Common NOS1AP variants are associated with 
a prolonged QTc interval in the Rotterdam Study. Circulation 2007;116(1):10-6.

	 12.	 Post W, Shen H, Damcott C, et al. Associations between genetic variants in the NOS1AP (CAPON) 
gene and cardiac repolarization in the old order Amish. Hum Hered 2007;64(4):214-9.

	 13.	 Massion PB, Pelat M, Belge C, Balligand JL. Regulation of the mammalian heart function by nitric 
oxide. Comp Biochem Physiol A Mol Integr Physiol 2005;142(2):144-50.

	 14.	 Lajoix AD, Reggio H, Chardes T, et al. A neuronal isoform of nitric oxide synthase expressed in 
pancreatic beta-cells controls insulin secretion. Diabetes 2001;50(6):1311-23.

	 15.	 Gunawardana SC, Rocheleau JV, Head WS, Piston DW. Mechanisms of time-dependent potentia-
tion of insulin release: involvement of nitric oxide synthase. Diabetes 2006;55(4):1029-33.

	 16.	 Hofman A, Breteler MMB, van Duijn CM, et al. The Rotterdam Study: objectives and design update. 
Eur J Epidemiol 2007;22(11):819-29.

	 17.	 Hofman A, Grobbee DE, de Jong PT, van den Ouweland FA. Determinants of disease and disability 
in the elderly: the Rotterdam Elderly Study. Eur J Epidemiol 1991;7(4):403-22.

	 18.	 World Health Organization. International statistical classification of diseases and related health 
problems. Tenth revision. Geneva: World Health Organization; 1992.

	 19.	 Complete ATC index 2007. WHO. Collaborating Centre for Drug Statistics Methodology Web site. 
Available from http://www.whocc.no/atcddd. Accessed 30 October 2007.

	 20.	 Fang Y, van Meurs JB, d’Alesio A, et al. Promoter and 3’-untranslated-region haplotypes in the 
vitamin d receptor gene predispose to osteoporotic fracture: the rotterdam study. Am J Hum 
Genet 2005;77(5):807-23.

	 21.	 Yokoshiki H, Sunagawa M, Seki T, Sperelakis N. ATP-sensitive K+ channels in pancreatic, cardiac, 
and vascular smooth muscle cells. Am J Physiol 1998;274(1 Pt 1):C25-37.



Chapter 3.5. 

142

	 22.	 Song DK, Ashcroft FM. Glimepiride block of cloned beta-cell, cardiac and smooth muscle K(ATP) 
channels. Br J Pharmacol 2001;133(1):193-9.

	 23.	 Dorschner H, Brekardin E, Uhde I, Schwanstecher C, Schwanstecher M. Stoichiometry of sulfonyl-
urea-induced ATP-sensitive potassium channel closure. Mol Pharmacol 1999;55(6):1060-6.

	 24.	 Ashcroft FM, Gribble FM. Tissue-specific effects of sulfonylureas: lessons from studies of cloned 
K(ATP) channels. J Diabetes Complications 2000;14(4):192-6.

	 25.	 Venkatesh N, Lamp ST, Weiss JN. Sulfonylureas, ATP-sensitive K+ channels, and cellular K+ loss dur-
ing hypoxia, ischemia, and metabolic inhibition in mammalian ventricle. Circ Res 1991;69(3):623-
37.

	 26.	 Engler RL, Yellon DM. Sulfonylurea KATP blockade in type II diabetes and preconditioning in 
cardiovascular disease. Time for reconsideration. Circulation 1996;94(9):2297-301.

	 27.	 Brady PA, Terzic A. The sulfonylurea controversy: more questions from the heart. J Am Coll Cardiol 
1998;31(5):950-6.

	 28.	 Sattiraju S, Reyes S, Kane GC, Terzic A. K(ATP) channel pharmacogenomics: from bench to bedside. 
Clin Pharmacol Ther 2008;83(2):354-7.

	 29.	 Garratt KN, Brady PA, Hassinger NL, Grill DE, Terzic A, Holmes DR, Jr. Sulfonylurea drugs increase 
early mortality in patients with diabetes mellitus after direct angioplasty for acute myocardial 
infarction. J Am Coll Cardiol 1999;33(1):119-24.

	 30.	 Lee TM, Chou TF. Impairment of myocardial protection in type 2 diabetic patients. J Clin Endocrinol 
Metab 2003;88(2):531-7.

	 31.	 Legtenberg RJ, Houston RJ, Oeseburg B, Smits P. Effects of sulfonylurea derivatives on ischemia-
induced loss of function in the isolated rat heart. Eur J Pharmacol 2001;419(1):85-92.

	 32.	 Mocanu MM, Maddock HL, Baxter GF, Lawrence CL, Standen NB, Yellon DM. Glimepiride, a novel 
sulfonylurea, does not abolish myocardial protection afforded by either ischemic precondition-
ing or diazoxide. Circulation 2001;103(25):3111-6.

	 33.	 Rosati B, Rocchetti M, Zaza A, Wanke E. Sulfonylureas blockade of neural and cardiac HERG chan-
nels. FEBS Lett 1998;440(1-2):125-30.

	 34.	 Schaffer P, Pelzmann B, Bernhart E, et al. The sulphonylurea glibenclamide inhibits voltage 
dependent potassium currents in human atrial and ventricular myocytes. Br J Pharmacol 
1999;128(6):1175-80.

	 35.	 Kanno T, Rorsman P, Gopel SO. Glucose-dependent regulation of rhythmic action potential firing 
in pancreatic beta-cells by K(ATP)-channel modulation. J Physiol 2002;545(Pt 2):501-7.

	 36.	 Gopel SO, Kanno T, Barg S, et al. Activation of Ca(2+)-dependent K(+) channels contributes to 
rhythmic firing of action potentials in mouse pancreatic beta cells. J Gen Physiol 1999;114(6):759-
70.

	 37.	 Bolotina VM, Najibi S, Palacino JJ, Pagano PJ, Cohen RA. Nitric oxide directly activates calcium-
dependent potassium channels in vascular smooth muscle. Nature 1994;368(6474):850-3.



Chapter 4.
Genetic factors affecting 

cardiovascular pharmacotherapy





Chapter 4.1. 
Common genetic variation in the ABCB1 

gene is associated with the cholesterol 
lowering effect of simvastatin in males



Chapter 4.1. 

146

Abstract

Background: The cholesterol lowering drug simvastatin is a substrate for P-glycoprotein (P-

gp). P-gp, encoded by ABCB1, is an efflux transporter and genetic variation in ABCB1 is associ-

ated with drug levels and response. We studied in the Rotterdam Study, a population-based 

cohort study, whether the C1236T, G2677TA and C3435T polymorphisms and haplotypes in 

the ABCB1 gene are associated with the total cholesterol and LDL cholesterol lowering effect 

of simvastatin.

Methods: We identified 85 incident simvastatin users, for whom a cholesterol measurement 

both before and after start of simvastatin therapy was available. Associations between ABCB1 

gene variants and reductions in cholesterol levels were analyzed. We stratified in our analysis 

for gender, because the level of P-gp expression in the liver is higher in men than in women.

Results: The three ABCB1 polymorphisms were associated with total cholesterol reduction 

in the whole population. In men, both the 1236/2677/3435 TTT haplotype and the CGT 

haplotype were associated with larger reductions in total cholesterol (TTT -0.40 mmol/l 95% 

CI -0.63, -0.17; CGT -0.44 mmol/l 95% CI -0.77, -0.11) and LDL cholesterol levels (TTT -0.51 

mmol/l 95% CI -0.81, -0.22; CGT -0.53 mmol/l 95% CI -0.92, -0.15) than the reference CGC 

haplotype. In women, genetic variation in the ABCB1 gene was not associated with total and 

LDL cholesterol levels.

Conclusion: Male simvastatin users with the ABCB1 1236/2677/3435 TTT and CGT haplotype 

have larger reductions in total cholesterol and LDL cholesterol compared to the wildtype 

CGC haplotype. For women, no associations were found.
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Introduction

Statins are widely used in the treatment of hypercholesterolemia. They inhibit the enzyme 

HMG-CoA reductase, which is involved in the synthesis of cholesterol. Inhibition results in 

a decrease in total cholesterol and LDL cholesterol levels and a reduction in morbidity and 

mortality.[1] The reduction in triglyceride levels is small. In general, statins are safe and effec-

tive in lowering total and LDL cholesterol levels, although they have the potential to cause 

myopathy and rhabdomyolysis.[2]

Transporters are involved in the carriage of drugs and other substances over membranes. 

One of these transporters is P-glycoprotein (P-gp), which is involved in the efflux of drugs 

such as digoxin and ciclosporin.[3,4] P-gp is mainly found in the liver, small intestine and 

blood-brain barrier.[5,6] The hepatic expression of P-gp is stronger in males than in females.[7] 

Simvastatin, a commonly used statin, is a substrate for P-gp.[8-10] Reduced P-gp activity may 

result in increased plasma levels due to a decrease in simvastatin efflux out of the body in the 

small intestine and liver.

The P-gp transporter is encoded by the ATP-binding cassette B1 (ABCB1) gene with gene 

location 7q21.12, previously known as multidrug resistance 1 (MDR1) gene. Many single 

nucleotide polymorphisms (SNP) have been identified in the ABCB1 gene.[11] It is established 

that three SNPs (C1236T, G2677TA and C3435T) affect the drug transporter function of P-gp, 

although less is known about the effect on the cholesterol lowering effect of simvastatin.
[5,12-14] 

In this population-based cohort study, we analyzed the association between these three 

SNPs and haplotypes in the ABCB1 gene and reduction in total cholesterol and LDL choles-

terol levels after start of simvastatin therapy.

Methods

Setting
Data for these analyses were obtained from the Rotterdam Study, a prospective population-

based cohort study of 7,983 Caucasians aged 55 years and older in the suburb Ommoord in 

Rotterdam. Participants were invited between 1990 and 1993 and have been continuously 

followed since then. All participants of the Rotterdam Study gave written informed consent. 

Ethical approval was obtained from the medical ethical committee of the Erasmus MC. The 

aim of the study was to investigate determinants of chronic and disabling cardiovascular, 

neurodegenerative, locomotor, endocrine and ophthalmologic diseases. The rationale, ethi-

cal approval and design of this study have been described before.[15,16] The seven pharmacies 

in Ommoord dispense the prescriptions of more than 99% of all participants. Information on 

all filled prescriptions from January 1st 1991 until January 1st 2008 was available and included 
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the product name of the drug, the anatomical therapeutical chemical (ATC) code, the amount 

dispensed, the prescribed dosage regimen and the date of dispensing.[17]

For this study, we used the total cholesterol and LDL cholesterol assessments from the 

stichting trombosedienst en artsenlaboratorium rijnmond – medisch diagnostisch centrum 

(STAR-MDC), which performs all outpatient laboratory assessments for general practitioners 

in the Rijnmond area of Rotterdam with a potential source population of more than 1 million 

inhabitants. Hereby, we obtained all outpatient total cholesterol and LDL cholesterol assess-

ments from all participants between April 1st 1997, the time at which a new computer system 

was introduced at STAR-MDC, and June 1st 2008.

Study Sample
All participants in the Rotterdam Study, who were incident simvastatin users in the period 

between April 1st 1997 and June 1st 2008, were included in this analysis. Incident simvastatin 

use was defined as a first dispensed prescription for simvastatin in the database, without 

prior prescriptions for other statins. The study sample consisted of all incident simvastatin 

users who had a measurement of total cholesterol and/or LDL cholesterol level in the period 

of 180 days before the first prescription of simvastatin and in the period between 7 and 180 

days following the first prescription of simvastatin. Patients who discontinued simvastatin 

therapy before the first measurement after start were excluded. We also excluded patients 

who were co-prescribed fibrates, bile acid sequestrants, nicotinic acids or ezetimibe at the 

time of one of the measurements.

Outcomes
Simvastatin reduces the total and LDL cholesterol levels. The goal of simvastatin therapy is 

a LDL cholesterol level below 2.6 mmol/l in patients with coronary heart disease and below 

3.4 mmol/l in high risk patients.[18,19] We analyzed the association between the SNPs C1236T, 

G2677TA and C3435T in the ABCB1 gene and derived haplotypes, and reductions in total cho-

lesterol and LDL cholesterol level between the last measurement before start of simvastatin 

therapy and the first measurement after start.

Cofactors
Characteristics considered as potential determinants affecting the change in total cholesterol 

and LDL cholesterol level were age, gender, the level at the last measurement before start 

of simvastatin therapy and the daily prescribed dose of simvastatin at the time of the first 

measurement after start.

Genotyping
All participants of the Rotterdam Study for whom a blood sample was available were geno-

typed for the SNPs C1236T, G2677TA and C3435T in the ABCB1 gene. Genotyping was done 
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using Taqman allelic discrimination assays on the ABI Prism 7900 HT Sequence detection 

system (Applied Biosystems, Foster City, Ca.,USA) on 1 ng of genomic DNA extracted from 

leukocytes, as previously reported.[13,20] For the tri-allelic variant G2677TA, two separate as-

says were designed, one detecting G2677T and one detecting G2677A. Haplotypes were 

estimated using the estimation maximization algorithm and software as described in the 

statistical analysis section.

Statistical analysis
Potential deviations from Hardy-Weinberg equilibrium and differences in genotypes between 

patients who continued and discontinued simvastatin therapy were analyzed using χ2-tests. 

Expectation maximization for the haplotypes were performed with HaploStats 1.3. package 

for R, using haplo.em and haplo.glm respectively.[21,22] Inferred haplotypes with a frequency 

below 5% were pooled into one ‘other haplotype’ group, since estimates become unreliable 

for rare haplotypes in HaploStats. 

Multivariate linear regression was used to analyze differences between ABCB1 genotypes in 

time from start of simvastatin therapy and the first total cholesterol measurement after start 

and differences in baseline total cholesterol and LDL cholesterol level. Multivariate linear re-

gression was also used to analyze differences between ABCB1 genotypes in total cholesterol 

and LDL cholesterol level change after start of simvastatin therapy. For each polymorphism 

we calculated the association between the number of variant alleles and the difference in 

change in total cholesterol or LDL cholesterol levels. Also the association between the num-

ber of haplotypes and the difference in change was calculated. In the haplotype analyses, the 

haplotype with CGC at positions 1236-2677-3435, respectively, was considered the reference, 

to which the other haplotypes were compared. These analyses were performed with SPSS 

software (version 15.0; SPSS, Chicago, IL).

Results

In 108 incident simvastatin users, cholesterol measurements were done both in the period 

of 180 days before and in the period between 7 and 180 days after start. Three participants 

were excluded because no blood sample was available for genotyping, and genotyping 

failed for C1226T in zero participants, for G2677TA in three participants and for C3435T in 

three participants. Nineteen participants discontinued simvastatin therapy before the first 

measurement after start, and one patient was co-prescribed ezetimibe at the time of the first 

cholesterol measurement after start. Eventually, we included 85 incident simvastatin users in 

our study (table 1). In all these patients, total cholesterol levels were measured both before 

and after start of simvastatin therapy. In 76 patients, LDL-cholesterol levels were measured 

both before and after start of simvastatin therapy. 
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The average time from the last cholesterol measurement and start of simvastatin therapy 

was 26 (SD 38) days and the average time from start of simvastatin therapy until the first 

measurement after start was 51 (SD 35) days. No differences between genotypes were found 

in baseline total cholesterol or LDL cholesterol levels, in genotype distributions between 

participants who continued simvastatin therapy and participants who discontinued, or in 

time from start of simvastatin therapy and the first cholesterol measurement after start. 

The average decrease in total cholesterol and LDL cholesterol level after start of simvastatin 

therapy was 2.1 (SD 0.7) mmol/l and 2.0 (SD 0.7) mmol/l, respectively. The average prescribed 

simvastatin dose was 15.1 mg.

The variant allele frequency for C1236T, G2677T, G2677A and C3435T were 0.44, 0.45, 0.06 

and 0.54, respectively. The genotype distribution for all genotypes was in Hardy-Weinberg 

equilibrium and no differences were seen in genotype frequency between patients who 

discontinued simvastatin therapy before the first measurement and patients who continued 

Table 1 Baseline Characteristics of the study population

Characteristic Study population Males Females
Number 85 38 47

Age (SD) 71.5 (5.1) yr 71.1 (5.5) yr 71.8 (4.8) yr

BMI (SD) 26.5 (3.6) kg/m2 26.1 (3.4) kg/m2 26.9 (3.7) kg/m2

Baseline level Total cholesterol 6.86 (1.10) mmol/l 6.61 (1.12) mmol/l 7.06 (1.05) mmol/l

LDL cholesterol 4.64 (1.01) mmol/l 4.37 (1.05) mmol/l 4.85 (0.94) mmol/l

Simvastatin dose 10 mg 46 (54%) 25 (66%) 21 (45%)

20 mg 37 (44%) 13 (34%) 24 (51%)

40 mg 2 (2%) 0 (0%) 2 (4%)

ABCB1 genotype

C1236T CC 28 (33%) 12 (32%) 16 (34%)

CT 40 (47%) 15 (39%) 25 (53%)

TT 17 (20%) 11 (29%) 6 (13%)

G2677TA GG 24 (29%) 9 (26%) 15 (32%)

GT 39 (48%) 14 (40%) 25 (53%)

TT 16 (20%) 10 (29%) 6 (13%)

GA 3 (4%) 2 (6%) 1 (2%)

C3435T CC 17 (21%) 6 (17%) 11 (23%)

CT 42 (51%) 15 (43%) 27 (57%)

TT 23 (28%) 14 (40%) 9 (19%)

Haplotype CGC 42% 30% 50%

(allele frequency) TTT 42% 48% 38%

CGT 11% 14% 10%

other 4% 8% 2%
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simvastatin therapy. The SNP C1236T was in strong linkage disequilibrium with G2677T 

(r2=0.95, D’=0.97), the linkage disequilibria between C1236T and C3435T (r2=0.49, D’=0.85), 

and between G2677T and C3435T (r2=0.49, D’=0.89) were smaller.

The reduction in total cholesterol level after start of simvastatin therapy was associated 

with the three SNPs in the ABCB1 gene (table 2). For each minor 1236T allele, the reduction in 

total cholesterol was 0.19 mmol/l (95% CI 0.04, 0.33) larger. The reduction in total cholesterol 

was 0.17 mmol/l (95% CI 0.01, 0.32) larger for each minor 2677T allele and 0.18 mmol/l (95% 

CI 0.02, 0.33) for each variant 3435T allele. No associations were found for the reduction in 

LDL cholesterol levels.

Haplotype analyses revealed that the TTT haplotype was associated with a statistically 

significant reduction in total cholesterol (table 3). For each TTT haplotype the reduction in 

total cholesterol level was 0.26 mmol/l (95% CI 0.08, 0.43) larger. Both the TTT and the CGT 

haplotype were associated with a reduction in LDL cholesterol level. For each TTT and CGT 

haplotype the reduction was 0.25 mmol/l (95% CI 0.06, 0.45) and 0.30 mmol/l (95% CI 0.04, 

0.57) larger, respectively.

The effect of the SNPs in the ABCB1 gene was stronger in males than in females (table 4). 

Both the TTT and the CGT haplotype were associated with more total cholesterol reduction 

(TTT 0.40 mmol/l 95% CI 0.17, 0.63; CGT 0.44 mmol/l 95% CI 0.11, 0.77) and LDL cholesterol 

reduction (TTT 0.51 mmol/l 95% CI 0.22, 0.81; CGT 0.53 mmol/l 95% CI 0.15, 0.92) in males. 

Table 2 The total cholesterol and LDL cholesterol lowering effect of simvastatin by ABCB1 genotype a

Allele Total cholesterol LDL cholesterol
Difference 95% CI p-value Difference 95% CI p-value

T1236 -0.19 (-0.33, -0.041) 0.012 -0.14 (-0.31, 0.031) 0.11

T2677 b -0.17 (-0.32, -0.011) 0.036 -0.14 (-0.31, 0.042) 0.13

T3435 -0.18 (-0.33, -0.021) 0.027 -0.17 (-0.35, 0.002) 0.053

a Difference in change in cholesterol level between the last measurement before start and the first measurement after start per copy of the 
minor allele in mmol/l. Adjusted for age, gender, cholesterol level at the last measurement before start and the daily prescribed dose of 
simvastatin. b 3 participants with GA genotype were excluded.

Table 3 The total cholesterol and LDL cholesterol lowering effect of simvastatin by ABCB1 haplotype a

Haplotype 
allele

Total cholesterol LDL cholesterol
Difference 95% CI p-value Difference 95% CI p-value

CGC ref. ref.

TTT -0.26 (-0.43, -0.083) 0.004 -0.25 (-0.45, -0.061) 0.011
CGT -0.22 (-0.47, 0.029) 0.082 -0.30 (-0.57, -0.038) 0.026
other -0.27 (-0.67, 0.13) 0.19 -0.34 (-0.75, 0.065) 0.098

a Difference in change in cholesterol level between the last measurement before start and the first measurement after start per copy of the 
minor allele in mmol/l. Adjusted for age, gender, cholesterol level at the last measurement before start and the daily prescribed dose of 
simvastatin.
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The amount of variability in total cholesterol and LDL cholesterol reduction in men explained 

by the haplotypes (r2) was 27.9 and 35.2, respectively. No significant associations with total 

cholesterol or LDL cholesterol reduction were found in females. 

Discussion

In this population-based cohort study, SNPs in the ABCB1 gene were associated with the total 

cholesterol and LDL cholesterol lowering effect in incident male simvastatin users. In males, 

each TTT haplotype was associated with a 0.40 mmol/l larger reduction in total cholesterol 

and a 0.51 mmol/l larger reduction in LDL cholesterol. Each CGT haplotype was associated 

with a 0.44 mmol/l larger reduction in total cholesterol and a 0.53 mmol/l larger reduction 

in LDL cholesterol. For females no associations were found with the total cholesterol or LDL 

cholesterol reduction. In this study we could include only 85 incident simvastatin users, of 

whom 38 were men. In spite of the small sample size, significant associations between the 

ABCB1 haplotypes and total cholesterol and LDL cholesterol reduction in men were found, 

with p-values below 0.01. The ABCB1 haplotypes explain around one-third of the total varia-

tion in cholesterol reduction in men, which indicates that the association between the ABCB1 

haplotypes and cholesterol reduction is a strong one.

Most likely, the TTT and CGT haplotypes are associated with a reduced efflux functioning 

of the P-gp transporter, resulting in increased simvastatin levels and a stronger reduction in 

total cholesterol and LDL cholesterol levels. The hepatic expression of P-gp is approximately 

2.4 times higher in men than in women.[7] Consequently, the pharmacokinetics of simvastatin 

is much more dependent on P-gp functioning in men than in women and the polymorphisms 

in the ABCB1 gene will have more effect in men than in women.[6] However, ABCB1 is also 

Table 4 Gender differences in the effect of ABCB1 haplotypes on the total cholesterol and LDL cholesterol lowering effect of simvastatin a

Gender Haplotype allele Total cholesterol LDL cholesterol
Difference 95% CI p-value Difference 95% CI p-value

Males
CGC ref. ref.

TTT -0.40 (-0.63, -0.17) 0.001 -0.51 (-0.81, -0.22) 0.002
CGT -0.44 (-0.77, -0.11) 0.010 -0.53 (-0.92, -0.15) 0.009
other -0.12 (-0.54, 0.31) 0.58 -0.27 (-0.78, 0.23) 0.27

Females
CGC ref. ref.

TTT -0.20 (-0.45, 0.054) 0.12 -0.13 (-0.40, 0.14) 0.34

CGT -0.072 (-0.43, 0.29) 0.69 -0.14 (-0.52, 0.23) 0.44

other -0.57 (-1.37, 0.22) 0.15 -0.52 (-1.32, 0.28) 0.19

a Difference in change in cholesterol level between the last measurement before start and the first measurement after start per copy of the 
minor allele in mmol/l. Adjusted for age, gender, cholesterol level at the last measurement before start and the daily prescribed dose of 
simvastatin.
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expressed in the small intestine and less is known about gender differences in ABCB1 expres-

sion in the small intestine.

In hepatocytes, ABCB1 is co-expressed with CYP3A4 [6] and simvastatin is a substrate for 

both P-gp and CYP3A4.[8-10] A reduction in efflux out of the hepatocyte by P-gp will result in 

higher intracellular simvastatin levels and an increase in simvastatin available for CYP3A4 

metabolism. This increase in availability may result in increased metabolism, reduced simvas-

tatin plasma levels and less LDL and total cholesterol reduction. Apparently, the effect of the 

ABCB1 polymorphisms on efflux out of the body is stronger than on CYP3A4 metabolism due 

to reduced efflux out of the hepatocyte.

In the study by Fiegenbaum et al., the TTT haplotype was associated with a larger reduc-

tion in total cholesterol and LDL cholesterol levels with simvastatin therapy.[23] No stratifica-

tion on gender was presented in this study. Kajinami et al. studied the effect of the G2677TA 

and C3435T polymorphism in atorvastatin users.[24] The C3435T SNP was associated with a 

larger reduction in total cholesterol and LDL cholesterol levels and a larger increase in HDL 

cholesterol level, whereas the G2677TA SNP was not. Strikingly, for atorvastatin the effects 

were stronger in women than in men. 

The Rotterdam Study is a population-based cohort study, not primarily designed to assess 

the effect of simvastatin therapy. Although many participants were incident simvastatin us-

ers, only for 85 participants cholesterol levels were available both in the period of 180 days 

before and 180 days after start of simvastatin therapy. In this study, we used the cholesterol 

measurements done by general practicioners. Cholesterol levels measured, for example, in 

hospitals could not be included. In spite of the limited number of users, we found significant 

associations between ABCB1 haplotypes and total cholesterol and LDL cholesterol reductions 

in men. The absence of significant associations in women does not preclude that genetic 

variation in ABCB1 does affect the cholesterol lowering effect of simvastatin in women, but 

most likely the effect is weaker in women than in men.

In population-based studies bias may occur. We identified all incident simvastatin users in 

the Rotterdam Study. The ABCB1 polymorphisms apparently affect simvastatin therapy, but 

it is unlikely that differences in cholesterol levels are present before start of therapy. ABCB1 

polymorphisms were in Hardy-Weinberg equilibrium, suggesting that Mendelian randomiza-

tion was present. Also permission of patients to take blood and isolate DNA for scientific re-

search was most likely independent from the genetic variation. Therefore, selection bias was 

unlikely. The information in the Rotterdam Study was collected prospectively without prior 

knowledge of the study hypothesis. Cholesterol measurements were done in daily practice 

and both the prescribing physician and the patient were not aware of genetic variation in the 

ABCB1 gene. No differences between genotypes were seen in discontinuation of simvastatin 

therapy or in time from start of simvastatin therapy to the first cholesterol measurement after 

start, making information bias unlikely. 
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To conclude, both the TTT and CGT haplotype are associated with a stronger reduction 

in total cholesterol and LDL cholesterol levels in men compared to the CGC haplotype. In 

women, no significant associations between genetic variation in the ABCB1 gene and total 

cholesterol or LDL cholesterol was found. These results suggest that polymorphisms in the 

ABCB1 gene do affect simvastatin pharmacokinetics in men, but to a lesser extent in women. 

These differences may be attributable to a higher ABCB1 expression in men than in women.
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Abstract

Background: Simvastatin and atorvastatin are metabolized by the CYP3A4 enzyme and 

transported by the ABCB1 transporter. We studied whether the polymorphism CYP3A4*1B 

and the polymorphisms C1236T, G2677A/T and C3435T in the ABCB1 gene were associated 

with a decrease of the prescribed dose or a switch to another cholesterol lowering drug 

during simvastatin and atorvastatin therapy. These events may indicate that statin plasma 

levels were too high and resulted in an adverse drug reaction or a too strong reduction in 

cholesterol level.

Methods: We identified 1,239 incident simvastatin and atorvastatin users in the Rotterdam 

Study, a population-based cohort study. Associations between the polymorphisms in the 

CYP3A4 and ABCB1 gene and the time to a decrease in dose or a switch to another cholesterol 

lowering drug were studied using Cox proportional hazards.

Results: Simvastatin and atorvastatin users with the CYP3A4*1B variant G allele had a lower 

risk (HR 0.46; 95% CI 0.24, 0.90) for these events than users with the wild-type AA genotype. 

No significant associations were found for the ABCB1 polymorphisms. The association with 

the CYP3A4*1B polymorphism was found in women (HR 0.33; 95% CI 0.12, 0.89) and was 

absent in men (HR 0.69; 95% CI 0.28, 1.70). This association was stronger in patients with the 

ABCB1 3435T variant allele versus the C allele.

Conclusion: In simvastatin and atorvastatin users, the low expression CYP3A4*1B G allele is 

associated with a lower risk of elevated statin plasma levels, particularly in women and in 

users with the ABCB1 3435T variant allele.
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Introduction

HMG-CoA reductase inhibitors or statins are widely prescribed for the treatment of hyper-

cholesterolemia. Statins reduce morbidity and mortality by lowering LDL cholesterol levels.
[1] In general, statins are well tolerated and safe, although myopathy and rhabdomyolysis are 

well-known serious adverse reactions associated with statin therapy.[2]

Two regularly used statins, simvastatin and atorvastatin, are mainly metabolized by the 

Cytochrome P450 (CYP) 3A4 enzyme.[3-6] The area under curve (AUC) of simvastatin increases 

five- to twenty fold if itraconazol, a potent CYP3A4 inhibitor, is co-prescribed, and the AUC of 

atorvastatin increases two to fourfold.[7] The risk of myopathy with these statins is markedly 

increased if combined with drugs inhibiting CYP3A4 enzymes.[7,8] Genetic variation in the 

CYP3A4 gene affects the metabolism of simvastatin and atorvastatin.[9] The polymorphism 

CYP3A4*1B (-392A>G) is located in the promotor region of the CYP3A4 gene, and the G allele 

is associated with enhanced CYP3A4 expression due to reduced binding of a transcriptional 

repressor. [10] This will lead to a decrease in simvastatin and atorvastatin levels and eventually 

their cholesterol lowering effect.

The CYP3A4 enzymes are mainly located in the cells in the intestinal wall and hepatocytes. 

The ATP-binding cassette B1 (ABCB1) protein, also known as P-glycoprotein, is an efflux 

transporter that is co-located in the cells expressing CYP3A4.[11,12] This transporter does pump 

statins out of the cells in the intestinal wall back into the lumen and out of the hepatocytes 

into the bile.[7]

Three polymorphisms in the ABCB1 gene, previously identified as multidrug resistance 1 

(MDR1), (C1236T, G2677A/T and C3435T) are associated with an impaired efflux pump of 

the ABCB1 transporter, resulting in increased drug levels.[13] Since CYP3A4 and ABCB1 are 

co-located in the same cells, a reduced efflux by the ABCB1 transporter results in increased 

intracellular plasma levels and increased substrate availability for the CYP3A4 enzymes and 

vice versa. In women, the expression of ABCB1 is lower than in men, and therefore a change 

in CYP3A4 activity will have more impact in women than in men. In our study, we assessed 

whether the CYP3A4*1B polymorphism and the polymorphisms in the ABCB1 gene are associ-

ated with the occurrence of a dose decrease or a switch to another cholesterol lowering drug. 

These events may be the consequence of an elevated statin plasma level, resulting in either 

an adverse drug reaction or a too strong reduction in cholesterol level. We also assessed 

whether these effects are different for men and women, and whether there is interaction 

between the CYP3A4 and ABCB1 polymorphisms.
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Methods

Setting
Data for these analyses were obtained from the Rotterdam Study, a prospective population-

based cohort study of 7,983 Caucasians aged 55 years and older in the suburb Ommoord in 

Rotterdam. Participants were invited between 1990 and 1993 and have been continuously 

followed since then. All participants of the Rotterdam Study gave written informed consent. 

Ethical approval was obtained from the medical ethical committee of the Erasmus MC. The 

aim of the study was to investigate determinants of chronic and disabling cardiovascular, 

neurodegenerative, locomotor, and ophthalmologic diseases. The rationale, ethical approval 

and design of this study have been described before.[14,15] The seven pharmacies in Ommoord 

dispense the prescriptions of more than 99% of all participants. Information on all filled 

prescriptions from January 1st 1991 until January 1st 2008 was available and included the 

product name of the drug, the anatomical therapeutical chemical (ATC) code, the amount 

dispensed, the prescribed dosage regimen and the date of dispensing.[16] General practitio-

ners introduced electronic patient records from 1997 onwards, although complete patient 

files including, for example, the reason for the visit and laboratory assessments, were only 

available for the most recent years. These electronic patient records were available for most 

of the participants in the Rotterdam Study.

Study Sample
All participants with at least one filled prescription for simvastatin or atorvastatin were 

included in the study sample. Follow-up started at the date of the first prescription for sim

vastatin or atorvastatin. Participants were followed until January 1st 2008, the end of the last 

prescription for simvastatin or atorvastatin, an increase in prescribed dose or the occurrence 

of an event, whichever came first. In an additional analysis we excluded all simvastatin and 

atorvastatin users with a first prescription before July 1st 1991, to ensure that all participants 

were incident users and did not use these drugs before January 1st 1991 for which we did 

not have the prescription data. In another additional analysis we excluded all participants 

with a prescription for any of the other statins, not metabolised by CYP3A4 before start of 

simvastatin or atorvastatin therapy to exclude a possible effect of the CYP3A4 enzyme on 

the other statins. We stratified the analysis on gender, because women have a lower ABCB1 

expression resulting in higher statin levels available for the CYP3A4 enzyme.

Outcome
As adverse reactions due to statin use were not registered as such in our database, we ana-

lyzed the occurrence of either a dose decrease or a switch to another statin as an indicator 

of an adverse drug reaction or a too strong reduction in cholesterol level. The first time after 

start of simvastatin or atorvastatin use that a patient had a dose decrease or switched to 
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another cholesterol lowering drug (statins, fibrates, bile acid sequestrants, nicotinic acid, 

acipimox or ezetimibe) was regarded as an event. After identification of these events in the 

dispensing data, we searched in the patient records that were available for the reason of the 

dose decrease or switch to another cholesterol lowering drug. These outcomes were chosen, 

because a physician facing an adverse drug reaction or a too strong reduction in cholesterol 

level has two possible options. First, the physician can lower the dose if he or she suspects a 

dose-effect relationship. Second, switching to another cholesterol lowering drug is an option. 

In case of ineffective therapy the most likely decision is to increase the dose before switching 

to another drug and therefore follow-up ended at the time of the first dose increase. 

Cofactors
Age, gender and the prescribed dose of the first prescription for simvastatin or atorvastatin 

were considered as potential confounders of the association between the CYP3A4 and ABCB1 

polymorphisms and the occurrence of the events.

Genotyping
Genotyping CYP3A4*1B, ABCB1 C1236T, ABCB1 G2677T/A and ABCB1 C3435T was done using 

Taqman allelic discrimination assays on the ABI Prism 7900 HT Sequence Detection System 

(Applied Biosystems, Foster City, CA) on 1 ng of genomic DNA extracted from leukocytes, 

as previously reported.[17] The primer and probe sequences were designed by Applied Bio-

systems. For the triallelic variant ABCB1 G2677T/A, two separate assays were designed, one 

detecting G2677T and one detecting G2677A. Haplotypes were estimated using the estima-

tion maximization algorithm with Haplostats 1.3.0 package for R (http://mayoresearch.mayo.

edu/mayo/research/schaid_lab/software.cfm).

Statistical analysis
A χ2-test was used to test for deviations from Hardy-Weinberg equilibrium. Cox proportional 

hazard models were constructed to test for differences in the incidence of medication change 

events between genotypes. Additive models were used, in which we analyzed the associa-

tion between the number of minor (variant) alleles and the occurrence of events. We tested 

for multiplicative interaction between the CYP3A4 and ABCB1 polymorphisms in the Cox 

models. Kaplan-Meier curves were constructed to present the results visually. Analyses were 

performed with SPSS software (version 11.0.1; SPSS Chicago IL) and SAS software (version 

8.02; SAS Institute Cary NC).
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Results

In the Rotterdam Study, we identified 1,380 participants who were prescribed simvastatin 

or atorvastatin during follow-up. 1,058 participants had a first prescription for simvastatin 

in the database and 322 participants for atorvastatin. For the CYP3A4 genotyping 1,239 of 

the 1,380 blood samples were available and genotyping failed in 41 participants (table 1). 

For the ABCB1 genotyping 1,255 blood samples were available and genotyping failed in 

23 (C1236T), 46 (G2677TA) and 50 (C3435T) participants. The allele frequencies were 0.04 

(CYP3A4*1B A>G), 0.44 (C1236T), 0.42 (G2677T), 0.03 (G2677A) and 0.53 (C3435T). Only one 

patient had the CYP3A4*1B GG genotype. All genotype frequencies were in Hardy-Weinberg 

equilibrium (p>0.01). The ABCB1 polymorphisms were in strong linkage disequilibrium with 

each other (r2>0.8). Simvastatin and atorvastatin users were followed on average 5.3 year (SD 

4.8 year). In 250 patients, the prescribed dose of simvastatin or atorvastatin was increased. 

Events occurred in 271 patients, in 163 patients the prescribed dose was decreased and 108 

patients switched to another cholesterol lowering drug.

Table 1 Baseline characteristics of 1,198 incident atorvastatin and simvastatin users by CYP3A4*1B genotype

CYP3A4 *1b genotype AA AG or GG a

Number 1,102 96

Gender, male 474 (43 %) 40 (42%)

Age (SD) 71.3 (7.0) year 71.9 (6.9) year

Body mass index (SD) b 26.6 (3.4) kg/m2 26.8 (3.8) kg/m2

Simvastatin start 851 (77 %) 74 (77 %)

Atorvastatin start 251 (23 %) 22 (23 %)

ACBC1 genotypes

1236CC 343 (31 %) 22 (23 %)

1236CT 548 (50 %) 57 (60 %)

1236TT 201 (18 %) 16 (17 %)

2677GG 324 (30%) 21 (23 %)

2677GT 515 (48 %) 50 (54 %)

2677GA 27 (3 %) 3 (3 %)

2677TT 185 (17 %) 16 (17 %)

2677TA 21 (2 %) 2 (2 %)

2677AA 3 (0 %) 0

3435CC 242 (23 %) 12 (13 %)

3435CT 547 (51 %) 55 (58 %)

3435TT 286 (27 %) 28 (29 %)

a Number of participants with the AG genotype is 95 and with the GG genotype is 1. b At the time of entrance in the Rotterdam Study.
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One hundred and fifty-two events occurred after January 1st 1997, the date that electronic 

patient records were introduced (table 2). Forty-two patient records were not available. For 

78 cases, the reason of change in the cholesterol lowering medication could not be recov-

ered, for example because a medical specialist had changed the medication or because the 

general practitioner used paper files at the time of the event to record this. The reason was 

given in the electronic patient records in 32 cases. In 17 cases (53%), an adverse drug reaction 

was the reason for the decrease in dose or switch to another cholesterol lowering drugs, and 

in 13 cases (41%) the reason was a too strong reduction in cholesterol level. Two patients 

(6%) switched to another cholesterol lowering drug after a cholesterol measurement and 

ineffective drug therapy was the most likely reason for these switches.

The risk of a dose decrease or switch to another drug was smaller in patients with the G 

allele at CYP3A4*1B than in patients with the wild-type AA genotype (HR 0.46; 95% CI 0.24, 

0.90) (table 3, figure 1). The hazard ratios for participants using simvastatin (HR 0.47; 95% CI 

0.23, 0.96) and atorvastatin (HR 0.44; 95% CI 0.06, 3.22) were similar, although for atorvastatin 

it was not statistically significant. Excluding patients with a first prescription before July 1st 

1991 (HR 0.45; 95% CI 0.21, 0.95) or excluding patients with prescriptions for other statins 

before start of simvastatin or atorvastatin therapy (HR 0.48; 95% CI 0.25, 0.93) did not change 

the results substantially. No differences in hazard ratio were found for the C3435T polymor-

phism in the ABCB1 gene (HR 1.14; 95% CI 0.94, 1.38). The results for the other polymorphisms 

in the ABCB1 gene were comparable to the C3435T polymorphism. The hazard rates for the 

Table 2 Reason for the dose decrease or switch to another cholesterol lowering drug for all events after January 1st 1997

Data retrieval N
Patient file not available 42 (28 %)

By specialist, reason unknown 14 (9 %)

Unknown 64 (42 %)

Reason given (see below) 32 (21 %)

152

Reason N
Adverse drug reaction 17 (53 %)

Muscle pain 4

Malaise 2

Allergy or itching 2

Pain or neuropathy 2

Other a 3

Not specified 4

Too strong cholesterol reduction (certain) 8 (25 %)

Too strong cholesterol reduction (possible) 5 (16 %)

Statin not effective (possible) 2 (6 %)

32

a Other: hair loss (n=1), diarrhea (n=1), hepatic failure (n=1).
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haplotype analysis gave similar results with wider confidence intervals due to lower numbers 

of patients in each of the subgroups.

The differences in hazard ratio for the CYP3A4*1B polymorphism were caused by the 

women in the group. The hazard ratio was 0.33 (95% CI 0.12, 0.89) for women, while the 

hazard ratio was not significant for men (HR 0.69; 95% CI 0.28, 1.70). In table 4 the associa-

Table 3 The association between the CYP3A4*1B A>G and ACBC1 C3435T polymorphisms a, and dose decreases or switching to another 
cholesterol lowering drug in simvastatin and atorvastatin users

Unadjusted Adjusted b

HR HR 95% CI p-value
CYP3A4*1B A>G
Simvastatin 0.47 0.47 (0.23, 0.96) 0.039
Atorvastatin 0.30 0.44 (0.06, 3.23) 0.42

Simvastatin and atorvastatin 0.44 0.46 (0.24, 0.90) 0.023
ABCB1 C3435T
Simvastatin 1.16 1.15 (0.93, 1.42) 0.20

Atorvastatin 1.12 1.07 (0.69, 1.67) 0.76

Simvastatin and atorvastatin 1.14 1.14 (0.94, 1.38) 0.18

a Additive model with the AA (for CYP3A4*1B) and CC (for ABCB1 C3435T) genotype as reference. b Adjusted for age, gender and starting dose.
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Figure 1 Kaplan-Meier curve for the association between the CYP3A4*1B A>G polymorphism and dose decreases or switching to another 
cholesterol lowering drug during the first two years of simvastatin and atorvastatin therapy
Black line: CYP3A4*1B AA genotype
Grey line: CYP3A4*1B AG or GG genotype
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tion between CYP3A4*1B genotype and the occurrence of events is stratified for the ABCB1 

C3435T genotype to analyze possible interaction. In patients with the 3435CC genotype, the 

differences in hazard ratios between the CYP3A4*1B genotypes were smaller (HR 0.89; 95% 

CI 0.21, 3.69) than in patients with the 3435CT genotype (HR 0.55; 95% CI 0.24, 1.24) and 

patients with the 3435TT genotype (HR 0.15; 95% CI 0.021, 1.09). Combining the 3435CT and 

TT genotypes, gave a significant difference between the CYP3A4*1B genotypes (HR 0.39; 95% 

CI 0.19, 0.84), that was smaller than the overall hazard ratio. Testing for multiplicative interac-

tion between the CYP3A4*1B polymorphism and the ABCB1 C3435T polymorphism revealed 

no significance for patients with the 3435CT genotype (HR 0.53; 95% CI 0.10, 2.76) and a 

trend towards an effect for the 3435TT genotype (HR 0.15; 95% CI 0.013, 1.75), although not 

significant (p=0.13). The results were similar for the C1236T and G2677T/A polymorphisms in 

the ABCB1 gene or for testing additive interaction.

Discussion

In this population based closed cohort study, we found a two times lower risk for a dose 

decrease or a switch to another cholesterol lowering drug, in simvastatin and atorvastatin us-

ers with the CYP3A4*1B variant allele. In the majority of cases, the reason for these medication 

changes was an adverse drug reaction or a too strong reduction in cholesterol level. Both are 

most likely caused by elevated statin plasma levels, due to reduced metabolism of simva

statin and atorvastatin. The association was only significant in women, and not in men. No 

associations were found with polymorphisms in the ABCB1 gene. Although not statistically 

significant, the results suggest that in patients with the ABCB1 C3435T wild-type genotype 

the occurrence of these events is not associated with the CYP3A4*1B polymorphism, while in 

patients with one or two variant alleles at ABCB1 C3435T the risk is more than two times lower 

in simvastatin and atorvastatin users with the CYP3A4*1B variant allele.

The results of our study are in line with previous publications. Patients with the CYP3A4*1B 

G variant allele have an enhanced CYP3A4 expression[10] and less reduction in LDL cholesterol.
[18] This indicates most likely lower simvastatin and atorvastatin levels in patients with the 

Table 4 Association between the CYP3A4*1B A>G polymorphism a and dose decreases or switching to another cholesterol lowering drug in 
simvastatin and atorvastatin users, stratified for the ABCB1 C3435T genotype

CYP3A4*1B A>G Unadjusted Adjusted b

HR HR 95% CI p-value
ABCB1 3435CC 1.15 0.89 (0.21, 3.69) 0.87

ABCB1 3435CT 0.53 0.55 (0.24, 1.24) 0.15

ABCB1 3435TT 0.13 0.15 (0.021, 1.09) 0.061

ABCB1 3435CT or TT 0.37 0.39 (0.19, 0.84) 0.016
a Additive model with the AA genotype as reference. b Adjusted for age, gender and starting dose.
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CYP3A4*1B AG or GG genotype. Fiegenbaum et al., however, found no association between 

the CYP3A4*1B polymorphism and adverse drug reactions in simvastatin users.[19] For the 

ABCB1 C3435T polymorphism we found a non-significant increase in risk for the variant T 

allele, suggesting a decreased functioning of the efflux pump. Previous studies on simva

statin[19,20] and other substrates[21,22] indicate higher plasma levels and reduced functioning of 

the C3435T variant alleles, although Fiegenbaum et al.[19] found, contradictorily, a decreased 

risk of adverse drug reactions with the C3435T variant allele. 

Beside simvastatin and atorvastatin, the CYP3A4 enzyme metabolizes also lovastatin and 

cerivastatin, but these statins were not analyzed in this study. Lovastatin was not marketed 

in the Netherlands and therefore not dispensed to the study participants. Cerivastatin is also 

metabolised by other cytochrome P450 enzymes, such as CYP2C8, and therefore the effect 

of CYP3A4 inhibition on cerivastatin levels is limited because other routes of metabolism 

compensate this inhibition.[7] Moreover, the number of participants who were prescribed 

cerivastatin was small, due to its withdrawal from the market in 2001.

The CYP3A4 gene is expressed both in the liver and the wall of the intestine. Simvastatin 

and atorvastatin are lipophilic drugs and oxidized to inactive or modestly active metabolites 

by CYP3A4. Before entering the circulation, the majority of simvastatin and atorvastatin is 

metabolized, resulting in a bioavailability of five and twelve percent, respectively. This low 

bioavailability is an explanation why inhibition of CYP3A4 and genetic variation in the CYP3A4 

gene has a substantial impact on the pharmacokinetics of these drugs. 

ABCB1 is expressed in the wall of the intestine, kidney, liver and brain and protects against 

xenobiotics by transporting these out of the body. For simvastatin and atorvastatin, the 

effects of ABCB1 in the wall of the intestine and in the liver are most relevant. ABCB1 trans-

ports simvastatin and atorvastatin out of the intestinal wall into the lumen, and out of the 

hepatocytes into the bile. After transportation into the lumen or into the bile, the simvastatin 

and atorvastatin is still available for reabsorption and uptake in the circulation. This may 

explain why the effect of polymorphisms in the ABCB1 gene was smaller than the effect of the 

polymorphism in the CYP3A4 gene. In patients with the ABCB1 3435TT genotype, the intracel-

lular simvastatin and atorvastatin concentrations in the intestinal wall and hepatocyte are 

probably higher due to the impaired efflux functioning of the ABCB1 transporter. Therefore, 

more simvastatin and atorvastatin is available for metabolism by CYP3A4 and, consequently, 

the effects of the CYP3A4*1B polymorphism is stronger in patients with the ABCB1 3435TT 

genotype than in patients with the CC genotype.

In our study we found an association between the CYP3A4*1B polymorphism and a dose 

decrease or switch to another cholesterol lowering drug in women using simvastatin or ator-

vastatin. It has been reported that CYP3A4 activity is higher in women compared to men,[23,24] 

and therefore polymorphisms in the CYP3A4 gene may have a larger effect in women. How-

ever, differences may also be attributable to differences in ABCB1 expression between men 

and women.[12] Indeed, ABCB1 expression was reported to be lower in women than in men, 
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leading to increased intracellular drug concentrations and thereby potentially have a higher 

susceptibility for changes in CYP3A4 activity.

In population-based studies, bias may affect the obtained results. In the patient records, we 

could not retrieve the reasons for all dose decreases or switches to other cholesterol lowering 

drugs. We assumed that these events were associated with elevated statin plasma levels, re-

sulting in adverse drug reactions or too strong reductions in cholesterol levels. However, part 

of the events will be caused by other reasons, such as ineffective cholesterol lowering due to 

too low statin plasma levels. For those events that we could retrieve the reason of the change 

in medication in the patient files, only a minority of the events was due to ineffectiveness. 

This may have given an underestimation of the true effect. On the other hand, we probably 

will have missed events of adverse drug reactions or too strong reduction in cholesterol 

levels, because, for example, people stopped using statins at all. Both the patient and the 

prescriber were blinded to the genotype and misclassifications were therefore random. Ran-

dom misclassification gives a dilution of the true effect, and the effect sizes in our study were 

most likely an underestimation. Our results are consistent with what would be expected on 

theoretical grounds and previous reports. We identified all simvastatin and atorvastatin users 

in the Rotterdam Study and information was collected prospectively without knowledge of 

the study hypothesis. The permission of patients to take blood and isolate DNA for scientific 

research was probably random. Therefore, selection bias and information bias were minimal. 

Although we included a large number of simvastatin and atorvastatin users, our study was 

complicated by the low minor allele frequency of the CYP3A4*1B polymorphism, making 

further stratification of the results not possible. It is likely that this was also the cause for 

not finding a statistically significant interaction between the CYP3A4*1B and ABCB1 C3435T 

polymorphism, although an interaction is suggested based on the stratified data.

To conclude, simvastatin and atorvastatin users with the CYP3A4*1B variant G allele have 

a two times lower risk for a dose decrease or switch to another cholesterol lowering drug. 

The ABCB1 C1236T, G2677A/T and C3435T polymorphisms did not affect the risk. In women 

and in patients with the ABCB1 3435CT or 3435TT genotype the effects of the CYP3A4*1B 

polymorphism on the risk of these events were stronger, although the interaction term did 

not reach statistical significance.
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Abstract

Background: Insulin release from the pancreatic beta cell is triggered by an influx of calcium 

through the voltage dependent calcium channel. It is suggested that nitric oxide, produced 

by neuronal nitric oxide synthase (nNOS) is essential for normal beta cell functioning. Both 

nitric oxide and calcium channel blockers (CCBs) have an effect on voltage dependent cal-

cium channels. Recently, the single nucleotide polymorphism rs10494366 T>G in the NOS1AP 

gene, a regulator of nNOS was associated with QTc prolongation. Because both NOS1AP and 

CCBs have an effect on calcium channels, we hypothesized that variant alleles in the NOS1AP 

gene are associated with the incidence of diabetes mellitus in CCB users.

Methods: We identified all incident CCB users between 1991 and 2008 in the Rotterdam Study, 

a population based cohort study of 7,983 participants of 55 years and older. Differences in 

incidence of diabetes mellitus between NOS1AP genotypes in CCB users were assessed using 

Cox proportional hazard models. We adjusted for age, gender and body-mass index.

Results: We identified 816 incident CCB users, of whom 55 developed diabetes mellitus during 

CCB therapy. The risk of incident diabetes mellitus was lowest in CCB users with the TG or GG 

genotype (HR 0.56; 95% CI 0.33, 0.97). Differences in risk were small at start of CCB therapy 

and increased over time. 

Conclusion: The polymorphism rs10494366 T>G in the NOS1AP gene is associated with the 

development of diabetes mellitus in CCB users.
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Introduction

Nitric oxide (NO) is an important regulator of a number of intracellular processes, including 

the secretion of insulin by the pancreatic beta cell. NO, produced by neuronal nitric oxide 

synthases (nNOS) is essential for normal beta cell functioning, and it has also been suggested 

that nNOS might have a role in the pathogenesis of diabetes mellitus.[1-3]

Recently, the single nucleotide polymorphism (SNP) rs10494366 in the nitric oxide 

synthase 1 adaptor protein gene (NOS1AP), a regulator of nNOS, has been associated with 

QTc prolongation.[4,5] nNOS regulates calcium handling in the heart through the voltage-

dependent calcium channels.[6] In the beta cell, exocytosis of insulin granules is triggered 

by an influx of calcium through these calcium channels.[7] Calcium channel blockers (CCBs) 

bind to a receptor on the voltage-dependent calcium channels and they regulate calcium 

handling by reducing the influx of calcium into the cell. As calcium channels are also situated 

in the pancreatic beta cell, CCBs could affect insulin secretion. 

In view of these similarities in calcium handling between the myocyte and the pancreatic 

beta cell, we hypothesized that the SNP rs10494366 in the NOS1AP gene is associated with 

the incidence of diabetes mellitus in patients using CCBs. We studied this in the Rotterdam 

Study, a prospective population-based closed cohort study in the suburb Ommoord in Rot-

terdam, in which 7,983 inhabitants participated.[8] Patients were followed from 1991 onwards. 

Clinical examinations were carried out every 4 to 5 years and participants were monitored 

through linkage with files from general practitioners and pharmacies. Diabetes mellitus was 

diagnosed according to the World Health Organization criteria. All participants in the Rotter-

dam Study gave written informed consent. Ethical approval was obtained from the medical 

ethical committee of the Erasmus MC.

Methods

All participants of the Rotterdam Study who received a first prescription for a CCB between 

July 1st 1991 and January 1st 2008 were included in the study cohort at the time of the first 

prescription. We excluded participants with a prescription for a CCB between January 1st 

1991 and July 1st 1991 in order to have a complete medication history at the time of the first 

prescription and to ascertain that use of CCB after July 1st 1991 was really incident. We also 

excluded all participants who stopped using CCBs within one year, because diabetes mellitus 

is a disease that often has a long latent period and we assumed that a duration of exposure 

of less than one year would be too short to show actual effect modification. Participants with 

diabetes mellitus at the first prescription for a CCB were excluded from the study cohort. 

Participants were followed until 90 days after the end of the last prescription for a CCB, death 

or end of the study period, whichever came first.
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Associations between the SNP rs10494366 in the NOS1AP gene, associated with QTc 

prolongation, and incidence of diabetes mellitus in current users of CCB were assessed. We 

adjusted for age, sex and body mass index. We developed Cox-proportional hazard models 

and Kaplan–Meier curves with SPSS software (version 11.0.1; SPSS Chicago, IL, USA).

Results

In the Rotterdam Study, we identified 816 incident CCB users who were genotyped for 

rs10494366. The average age was 68.3 years and 342 participants were men (41.9%). Five-

hundred and forty-six participants (67%) started with dihydropyiridine CCBs, 77 participants 

(9%) with verapamil and 193 participants (24%) with diltiazem. The minor allele frequency for 

rs10494366 was 0.35 (G allele). 

In the study cohort, 55 participants developed diabetes mellitus while using CCBs. CCB us-

ers with the TG or GG genotype had a lower risk of incident diabetes mellitus than CCB users 

with the TT genotype (HR 0.56; 95% CI 0.33, 0.97). The HR in CCB users with the TG genotype 

(HR 0.59; 95% CI 0.33, 1.04) was similar to the HR of CCB users with the GG genotype (HR 0.49; 

95% CI 0.19, 1.26), suggesting a dominant effect of the G allele.

In the whole Rotterdam Study of 6,292 genotyped participants, irrespective of CCB use, no 

associations were found between the SNP rs10494366 and the incidence of diabetes mellitus 

(TG or GG genotype versus TT HR 0.97; 95% CI 0.83, 1.14), nor was there an association in 

participants who were not prescribed CCBs during follow-up (HR 1.07; 95% CI 0.86, 1.32).

The difference in prevalence of diabetes mellitus over time between CCB users with the TT 

genotype and CCB users with the TG or GG genotype is presented in figure 1. During the first 

years of CCB therapy, the HRs of incident diabetes mellitus were similar between the geno-

types. Over time the curves diverged and differences between the genotypes became larger. 

After 6 years of CCB therapy, the HR for CCB users with the TG or GG genotype compared with 

CCB users with the TT genotype was 0.42 (95% CI 0.15, 1.21). Diabetes mellitus is a progres-

sive disease with deteriorating beta cell functioning. CCB seems to affect the progression of 

this deterioration differently between the rs10494366 genotype.

Discussion

In the Rotterdam Study, the total follow-up time of the participants genotyped for rs10494366 

during the study period was 79,000 person-years and the total time of CCB use was 5,000 

person-years. In spite of these large numbers, we only identified 55 incident diabetes mellitus 

patients while they were using CCBs. Our results could be a false positive result given the 

small number of incident cases. Therefore, to confirm this association, a large cohort in which 



175

Genetic variation in the NOS1AP gene is associated with the incidence of diabetes mellitus in CCB users 

both genotype data and drug dispensing data are available is necessary. Nevertheless, it has 

been demonstrated that the SNP rs10494366 is probably functional and affects calcium han-

dling in the myocyte. Calcium handling plays a major role in insulin secretion. If replicated, 

our results may give a new perspective on the pathogenesis of diabetes mellitus and on the 

relationship between CCB use and the risk of developing diabetes mellitus.

Fig. 1 Kaplan–Meier curve of differences in diabetes mellitus-free CCB users between NOS1AP genotypes.
Continuous line, TT genotype; dashed line, TG or GG genotype. Logrank test, p=0.024. Number of participants at risk (n): TT 337, 194, 92 and 26 
at 0, 4, 8 and 12 years of follow-up, respectively; TG/GG 479, 269, 130 and 32 at 0, 4, 8 and 12 years of follow-up, respectively.
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Abstract

Background: Recently, a polymorphism in the NOS1AP gene (rs10494366), a regulator of neu-

ronal Nitric Oxide Synthase (nNOS), was associated with QTc prolongation. Both nNOS and 

Calcium Channel Blockers (CCBs) regulate intracellular calcium levels and have an important 

role in cardiovascular homeostasis. The aim was to investigate whether this polymorphism is 

associated with cardiovascular mortality in users of CCBs.

Methods: The data from the Rotterdam study, a population-based closed cohort study of 

Caucasian individuals of 55 years of age or over, were used. We identified 1,113 participants 

in the Rotterdam Study who were prescribed CCBs for the first time between 1991 and 2005. 

All-cause and cardiovascular mortality were assessed in participants who were prescribed 

CCBs with different NOS1AP rs10494366 genotypes using Cox proportional hazard models. 

Results: In participants starting on dihydropyridine CCBs (amlodipine, nifedipine and others) 

all-cause mortality (n=79) risks were higher in participants with the TG (hazard ratio (HR) 

2.57; 95% CI 1.24, 5.34) or the GG genotype (hazard ratio 3.18; 95% CI 1.18, 8.58) than in 

participants with the referent TT genotype. Cardiovascular mortality (n=54) risks were 3.51 

(95% CI 1.41, 8.78) for the TG genotype and 6.00 (95% CI 1.80, 20.0) for the GG genotype. 

No differences in all-cause mortality or cardiovascular mortality were seen in participants 

starting with the non-dihydropyridine CCBs verapamil or diltiazem.

Conclusion: The minor G-allele of rs10494366 in the NOS1AP gene is associated with increased 

all-cause and cardiovascular mortality in Caucasian users of dihydropyridine CCBs. The 

mechanism underlying the observed association is unknown.
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Introduction

Nitric Oxide (NO) is an important regulator of intracellular calcium handling, and controls 

many processes in cardiovascular homeostasis, such as myocardial contraction.[1,2] Nitric 

Oxide Synthase (NOS) produces endogenous NO from the amino acid L-arginine. Recently, 

the single nucleotide polymorphism (SNP) rs10494366 in the NOS1 Adaptor Protein (NOS1AP) 

gene was associated with a prolonged QTc interval in five independent populations.[3-5] 

NOS1AP is a regulator of neuronal NOS (nNOS, encoded by NOS1), one of the isoforms of 

NOS. Contraction of the cardiomyocyte is triggered by a short calcium influx through the 

voltage gated L-type calcium channels on the cell membrane.[6] Intracellular calcium is stored 

in the sarcoplasmic reticulum (SR) and two calcium channels control the release of calcium 

to and reuptake from the cytosol.[1] First, the ryanodine receptor releases calcium from the SR 

into the cytosol, which causes contraction of the cardiomyocyte. Second, the sarcoplasmic 

reticulum Ca2+-ATPase regulates reuptake of calcium in the SR and stops the contraction of 

the cardiomyocyte. In the cardiomyocyte nNOS is localized on the SR, and it is hypothesized 

that nNOS has an effect on one or more of these calcium channels and transporter.[7-11]

Calcium channel blockers (CCB) bind to a receptor on the voltage gated L-type calcium 

channel, promoting the closed position of the calcium channel and reducing calcium influx 

into the cell. Dihydropyridine CCBs, such as amlodipine and nifedipine preferentially affect 

the blood vessels, causing vasodilatation, whereas the non-dihydropyridine CCBs verapamil 

and diltiazem have a higher affinity for the heart and have a negative chronotropic and 

inotropic effect.[12]

Since nNOS affects the intracellular calcium levels and either directly or indirectly the cal-

cium currents through the L-type calcium channel, the target of the CCBs, we hypothesized 

that the NOS1AP polymorphism rs10494366 might be associated with mortality in users of 

CCBs.

Methods

Setting
Data were obtained from the Rotterdam Study, a population-based prospective cohort study 

of cardiovascular, neurodegenerative, locomotor and ophthalmologic diseases. All inhabit-

ants of the suburb Ommoord in Rotterdam, who were over 55 years of age and had lived in 

the suburb for more than one year, were invited to participate in the study between 1990 and 

1993. Of the 10,275 eligible persons, 7,983 participated (78%) and have been followed since 

then.[13,14] All participants were of Caucasian origin. The study was approved by the medical 

ethical committee of the Erasmus MC and all participants gave written informed consent.
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At baseline, trained interviewers administered a questionnaire during a home interview, 

covering socioeconomic background and medical history, among other topics. During subse-

quent visits to the study center, additional interviewing, laboratory assessments and clinical 

examinations were performed, including recording of electrocardiograms (ECGs). Follow-up 

examinations were carried out periodically (every 4-5 years). The seven pharmacies in Om-

moord dispense the prescriptions of more than 99% of all participants. Information on all 

filled prescriptions from January 1st 1991 until January 1st 2005 was available and included 

the product name of the drug, the amount dispensed, the prescribed dosage regimen and 

the date of dispensing. The duration of each prescription was calculated by dividing the total 

number of tablets or capsules dispensed by the daily prescribed number of tablets or capsules.

Cohort Definition
We identified all participants in the Rotterdam Study, who received a first prescription for a 

CCB between the baseline interview and January 1st 2005. Participants who were prescribed 

CCBs between January 1st 1991 and July 1st 1991 were excluded from the analysis, because 

they might have been using CCBs before January 1st 1991 in a period for which we had no 

pharmacy data. Participants who did not receive CCBs in the period of at least six months be-

fore the first prescription in the database were regarded as incident users. The time of the first 

prescription for a CCB was regarded as the date of entry into the study cohort. Participants 

were followed until one of the following events led to censoring: the end of the last prescrip-

tion for a CCB, a period of no CCB use of more than 90 days calculated from the prescription 

data, switch to another CCB than the one on which the participant started, the occurrence of 

one of the study outcomes, or the end of the study period whichever came first.

Outcomes
All mortality cases in the study cohort were identified, by obtaining at regular intervals the 

vital status of the participants from the municipal population registry. After notification of 

death, cause and circumstances were established by information from the general practi-

tioner, letters, and in case of hospitalization, discharge reports from medical specialists. Two 

research physicians coded all mortality independently according to the international clas-

sification of diseases (ICD), tenth edition.[15] In case of disagreement, consensus was sought. 

Participants who died within fourteen days after the end of the last prescription for a CCB 

were included in the analysis as current users. 

In a subsequent analysis, cases of mortality that were coded as cardiovascular (ICD codes 

I00 through I99) were selected and cardiovascular mortality risks analyzed. In these analyses, 

we also included the ICD codes R96 (other sudden death, cause unknown), R98 (unattended 

death) and R99 (other ill-defined and unspecified causes of mortality). We also analyzed dif-

ferences in the risk of a first myocardial infarction and fatal myocardial infarction as second-

ary outcomes.
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Cofactors
Information was gathered at baseline on several potential covariates such as age and gender. 

All Cox proportional hazard models were adjusted for age and gender. To test whether the 

association between NOS1AP genotype and mortality or cardiovascular mortality was caused 

via an effect on the QTc interval, diabetes mellitus or hypertension, we also adjusted for these 

covariates. Diabetes mellitus was defined as any participant who had been diagnosed with 

diabetes mellitus at baseline. Diastolic and systolic blood pressures from the right upper arm 

were measured twice with a random-zero sphygmomanometer with the participant in sitting 

condition. The mean of the two readings was used to determine blood pressure levels. Hyper-

tension was defined as use of antihypertensive drugs for the indication of high blood pressure, 

or a diastolic blood pressure of ≥90 mm Hg, or a systolic blood pressure of ≥140 mm Hg. The 

heart rate corrected QT interval (QTc) was calculated from the ECG readings, using the Bazett’s 

formula (QTc=QT/√RR). Since this CCB subcohort was nested in the Rotterdam Study, baseline 

characteristics were assessed before the time of the first prescription for a CCB. Because there 

was little reason to assume that this biased our results, these baseline characteristics are used 

in the analyses. In additional analyses we adjusted for the time-varying determinants heart fail-

ure, diabetes mellitus, sulfonylurea co-medication (glibenclamide, tolbutamide, gliclazide and 

glimepiride) and cardiovascular co-medication (loop diuretics, other diuretics, β-blockers and 

angiotensin converting enzyme-inhibitors / angiotensin II antagonists) at the time of event.

Genotyping
All participants were genotyped for the NOS1AP SNP rs10494366 T>G which has previously 

been shown to be associated with a prolonged QTc interval.[3-5] This SNP was genotyped using 

Taqman assay C_1777074_10 (Applied Biosystems, Foster City, Ca., USA) in 1 ng of genomic 

DNA extracted from leukocytes, as previously reported.[16]

Statistical analysis
Deviation from Hardy-Weinberg equilibrium was tested using a χ2-test. To test whether dif-

ferences between genotypes were present at start of CCB therapy, we analyzed differences in 

time from baseline to start of CCB therapy with Cox proportional hazard models and differ-

ences in starting dose with one-way Anova. 

Multivariate Cox proportional hazard models were constructed for the outcomes occurring 

during follow-up. First, all-cause and cardiovascular mortality in the whole Rotterdam Study 

were analyzed. Participants were followed from entrance in the Rotterdam Study, until death 

or end of the study period. Second, all-cause mortality, cardiovascular mortality, incident 

myocardial infarction and fatal myocardial infarction were analyzed in participants who were 

prescribed CCBs. The date of the first prescription was regarded as start of follow-up. We 

analyzed participants starting on dihydropyridine CCBs, non-dihydropyridine CCBs, and the 

individual drugs amlodipine, nifedipine, verapamil and diltiazem separately. 
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Results

In the whole Rotterdam Study, 6,571 blood samples from participants were available for 

analysis; 6,292 people were successfully genotyped for the SNP rs10494366 and in 279 par-

ticipants genotyping failed. The minor allele frequency was 0.36 (G allele). The genotype dis-

tribution of rs10494366 was in Hardy-Weinberg equilibrium in the Rotterdam Study (χ2=1.04; 

p=0.59). No associations were found between NOS1AP genotype and all-cause mortality or 

cardiovascular mortality risks in the total group of participants, independent of whether they 

were prescribed CCBs or not. People with the TG or GG genotype had similar all-cause mortal-

ity risks (TG genotype hazard ratio (HR) 1.05; 95% CI 0.96, 1.14; GG genotype HR 1.08; 95% 

CI 0.96, 1.22) and cardiovascular mortality risks (TG genotype HR 1.01; 95% CI 0.90, 1.14; GG 

genotype HR 1.04; 95% CI 0.88, 1.23) as people in the reference group with the TT genotype.

1,113 of the 6,292 genotyped people (17.7%) were prescribed a first CCB during the 

study period and were included in the study cohort (table 1). The genotype distribution of 

rs10494366 was in Hardy-Weinberg equilibrium in the study cohort (χ2=0.45; p=0.80). No 

differences among genotypes were seen in time from enrolment in the Rotterdam Study to a 

first prescription for a CCB, or in prescribed daily dose of the first prescription for a CCB.

During follow-up, 79 of the 1,113 participants (7.1%) who were prescribed CCBs for the first 

time during follow-up died while they were prescribed the CCB they started on. In participants 

with a first prescription for a dihydropyridine CCB, all-cause mortality risk was significantly 

higher in participants with the TG (HR 2.57; 95% CI 1.24, 5.34) or GG (HR 3.18; 95% CI 1.18, 

8.58) genotype than in participants with the TT genotype (table 2). No associations were 

found between NOS1AP and all-cause mortality for participants with a first prescription for 

the non-dihydropyridine CCBs as a class or on verapamil or diltiazem individually.

In 54 of the 79 mortality cases, the cause of death was categorized as cardiovascular. In 

table 3 the associations between NOS1AP genotypes and cardiovascular mortality are given. 

Here as well, the cardiovascular mortality risk was significantly higher in participants with 

the TG (HR 3.51; 95% CI 1.41, 8.78) or GG (HR 6.00; 95% CI 1.80, 20.0) genotype with a first 

prescription for a dihydropyridine CCB, than in participants with the TT genotype. No differ-

ences were found in participants starting on verapamil or diltiazem. 

The HRs for both all-cause mortality and cardiovascular mortality after adjustment for QTc 

interval, hypertension or diabetes mellitus are given in table 2 and 3. Adjusting for these 

covariates or for heart failure, diabetes mellitus, sulfonylurea co-medication and cardiovas-

cular co-medication at the time of the event (data not shown) did not change the results 

essentially.

We also analyzed 34 cases of nonfatal and fatal myocardial infarction in the study popula-

tion. Since numbers were too small to analyze the TG and GG genotype separately, these 

genotypes were grouped. In the participants who were prescribed dihydropyridine CCB the 

HR of any myocardial infarction (n=23) for participants with the TG or GG genotype was 1.31 
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(95% CI 0.52, 3.31) compared with participants with the TT genotype. The risk of dying from 

a myocardial infarction (n=11) was higher in patients with the TG or GG genotype (HR 6.69; 

95% CI 0.83, 53.8), although not statistically significant.

Table 1 Characteristics of the study population of incident CCB users (n=1,113)

rs10494366 genotype TT TG GG
Number 467 500 146

Gender, male (%) 44.8 % 40.2 % 43.8 %

Age (SD) 68.9 (7.9) years 68.0 (7.3) years 69.1 (7.5) years

Follow-up time (SD) a 11.4 (2.9) years 11.5 (2.9) years 10.7 (3.8) years

QTc (SD) 430.2 (27.8) msec 431.3 (28.8) msec 434.9 (25.1) msec

Hypertension (%) 69.1 % 68.6 % 74.4 %

Diabetes mellitus (%) 7.6 % 6.9 % 5.6 %

Body mass index (SD) 26.6 (3.6) kg/m2 26.8 (3.5) kg/m2 26.9 (4.1) kg/m2

Serum creatinine (SD) 85.0 (25.1) μmol/l
(n=367)

83.4 (16.5) μmol/l
(n=392)

82.6 (15.5) μmol/l
(n=99)

Start drug

Dihydropyridine calcium channel 
blockers

283 (60.6%) 332 (66.4%) 86 (58.9%)

Non-dihydropyridine calcium 
channel blockers

184 (39.4%) 168 (33.6%) 60 (41.1%)

Dihydropyridine calcium channel blockers

Amlodipine 22.9% 28.2% 29.5%

Nifedipine 26.6% 27.4% 21.2%

Felodipine 1.3% 0.4% 1.4%

Isradipine 2.6% 5.0% 2.7%

Nicardipine 2.4% 3.0% 1.4%

Nisoldipine 0.9% 0.4% 0%

Nitrendipine 0.2% 0% 0%

Lacidipine 0.6% 0.2% 0.7%

Barnidipine 2.6% 1.4% 2.1%

Lercanidipine 0.4% 0.4% 0%

Mibefradil 0.2% 0% 0%

Non-dihydropyridine calcium channel blockers

Verapamil 11.6% 11.2% 13.0%

Diltiazem 27.8.% 22.4% 28.1%

a Follow-up time in the Rotterdam Study.
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Discussion

In our study of 1,113 participants, we found a statistically significant three- to six fold increased 

cardiovascular mortality risk for participants with a G-allele at SNP rs10494366 while they 

were prescribed dihydropyridine CCBs. In the whole Rotterdam Study no differences were 

seen in cardiovascular mortality, indicating that the association between NOS1AP genetic 

variation and cardiovascular mortality is present only in participants who were prescribed 

dihydropyridine CCBs. 

The precise mechanisms by which the common variation in the NOS1AP gene causes dif-

ferences in mortality in participants who were prescribed dihydropyridine CCB is not known. 

Both nNOS, regulated by NOS1AP, and CCBs have an effect on intracellular calcium homeo-

stasis. nNOS has negative feedback regulation of calcium release in the cytosol, because 

increases in calcium levels stimulate nNOS synthesis of NO, which in turn inhibits calcium 

Table 2 Association between NOS1AP genotype and all-cause mortality (n=79) in 1,113 incident CCB users

Model 1 a Model 2 b Model 3 c

Cases HR 95% CI HR 95% CI HR 95% CI
Dihydropyridine calcium channel blockers (n=52)

TT 12 ref. ref. ref.

TG 30 2.57 (1.24, 5.34) 2.50 (1.20, 5.19) 2.50 (1.19, 5.22)
GG 10 3.18 (1.18, 8.58) 3.18 (1.18, 8.61) 3.25 (1.19, 8.85)

Amlodipine

TT 4 ref. ref. ref.

TG 9 1.47 (0.45, 4.84) 1.48 (0.45, 4.86) 1.25 (0.38, 4.18)

GG 4 2.65 (0.63, 11.1) 2.39 (0.58, 9.89) 2.56 (0.61, 10.8)

Nifedipine

TT 7 ref. ref. ref.

TG 16 3.48 (1.19, 10.2) 3.68 (1.22, 11.1) 3.95 (1.28, 12.2)
GG 5 2.65 (0.53, 13.3) 2.54 (0.50, 12.8) 2.27 (0.42, 12.1)

Non-dihydropyridine calcium channel blockers (n=27)
TT 13 ref. ref. ref.

TG 9 0.83 (0.35, 2.01) 0.81 (0.34, 1.98) 0.80 (0.33, 1.96)

GG 5 0.94 (0.30, 2.97) 0.95 (0.30, 3.01) 1.02 (0.29, 3.54)

Verapamil

TT 5 ref. ref. ref.

TG 4 0.65 (0.15, 2.86) 0.56 (0.12, 2.57) 0.46 (0.09, 2.35)

GG 3 0.33 (0.03, 3.15) 0.50 (0.04, 6.22) 0.38 (0.02, 5.67)

Diltiazem

TT 8 ref. ref. ref.

TG 5 0.76 (0.24, 2.41) 0.76 (0.24, 2.41) 0.73 (0.22, 2.37)

GG 2 0.73 (0.15, 3.53) 0.75 (0.15, 3.63) 0.73 (0.12, 4.22)

a Model 1: adjusted for age and gender. b Model 2: adjusted for age, gender and QTc interval. c Model 3: adjusted for age, gender, QTc interval, 
hypertension and diabetes mellitus.
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release[7-11,17,18] Although the effects of nNOS have been mostly assessed in the cardiomyo-

cyte, calcium plays a vital role in many other cells. 

Differences in all-cause and cardiovascular mortality were only found for the dihydro-

pyridine CCBs and not for verapamil and diltiazem, although modest sample sizes preclude 

definitive conclusions. The clinical relevance of our findings could be high because 16.5% of 

our population used a dihydropyridine CCB at any time during follow-up. Dihydropyridine 

CCBs have a higher affinity for vascular calcium channels, while verapamil and diltiazem have 

a higher affinity for the cardiac calcium channels. Verapamil and diltiazem are also used for 

the treatment of heart rhythm disturbances, such as atrial fibrillation, and angina pectoris, 

but adjusting for cardiovascular drugs co-prescribed with these indications did not change 

the results. It is suggested that dihydropyridine CCB relax coronary arteries by a NO medi-

ated mechanism.[19,20] Although this has been attributed to the role of endothelial NOS, it 

is also possible that nNOS is involved.  This may explain why differences were found for the 

dihydropyridine CCBs and not for verapamil and diltiazem.

Table 3 Association between NOS1AP genotype and cardiovascular mortality (n=54) in 1,113 incident CCB users

Model 1 a Model 2 b Model 3 c

Cases HR 95% CI HR 95% CI HR 95% CI
Dihydropyridine calcium channel blockers (n=38)

TT 7 ref. ref. ref.

TG 22 3.51 (1.41, 8.78) 3.40 (1.36, 8.51) 3.33 (1.32, 8.39)
GG 9 6.00 (1.80, 20.0) 5.91 (1.77, 19.7) 6.38 (1.38, 22.2)

Amlodipine

TT 2 ref. ref. ref.

TG 6 2.39 (0.47, 12.1) 2.41 (0.47, 12.3) 2.23 (0.44, 11.3)

GG 3 4.49 (0.73, 27.8) 2.99 (0.47, 19.3) 3.23 (0.48, 21.7)

Nifedipine

TT 4 ref. ref. ref.

TG 12 4.98 (1.32, 18.9) 5.22 (1.34, 20.3) 5.90 (1.49, 23.4)
GG 5 11.0 (1.13, 107) 8.80 (0.84, 92.0) 14.7 (1.17, 184)

Non-dihydropyridine calcium channel blockers (n=16)
TT 8 ref. ref. ref.

TG 5 0.85 (0.26, 2.80) 0.83 (0.25, 2.75) 0.77 (0.23, 2.63)

GG 3 1.10 (0.21, 5.77) 1.10 (0.21, 5.83) 1.12 (0.18, 6.85)

Verapamil

TT 3 ref. ref. ref.

TG 1 0.49 (0.04, 6.09) 0.43 (0.03, 5.29) 0.56 (0.03, 8.92)

GG 1 - d - d - d

Diltiazem

TT 5 ref. ref. ref.

TG 4 1.01 (0.25, 4.08) 1.02 (0.25, 4.10) 0.96 (0.21, 4.26)

GG 2 1.57 (0.27, 9.18) 1.48 (0.26, 8.45) 1.41 (0.19, 10.7)

a Model 1: adjusted for age and gender. b Model 2: adjusted for age, gender and QTc interval. c Model 3: adjusted for age, gender, QTc interval, 
hypertension and diabetes mellitus. d Numbers were too low to calculate hazard ratios.
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Participants carrying a TG or GG genotype have a prolonged QTc interval, and therefore they 

might have an increased risk of arrhythmias and sudden cardiac death.[21] However, we do not 

think that this can explain our results. First, no associations between rs10494366 genotypes 

and all-cause mortality were seen in the whole Rotterdam Study. Second, adjusting for the 

QTc-interval at baseline did not change the results materially. It is suggested that the CCBs 

isradipine, nicardipine, verapamil and diltiazem can cause QTc prolongation, although the 

evidence is weak.[22, 23] The number of participants in the study cohort starting on isradipine 

or nicardipine therapy was small, so any QTc prolonging effect of these drugs could not have 

changed the results much. Recently, we identified an association between genetic variation 

in the NOS1AP gene and mortality in users of sulfonylurea.[24] Adjusting for diabetes mellitus, 

both at baseline and at the time of the event, and sulfonylurea use at the time of the event 

did not change the results either.  Therefore, the effect of dihydropyridine CCBs on all-cause 

or cardiovascular mortality is not mediated by an effect on diabetes mellitus or prescribed 

sulfonylurea.

The risk of acute myocardial infarction was not increased but the risk of dying from a 

myocardial infarction was increased, albeit non-significantly. Increased mortality in users of 

nifedipine with myocardial infarction has also been observed in two double-blind random-

ized clinical trials, but no genetic determinants were assessed.[25,26] Although the number of 

cases was low and the results non significant, this may be an interesting issue for further 

research.

In population-based studies, bias might affect the obtained results. We believe that bias in 

our study is minimal. Information in the Rotterdam Study is collected prospectively, without 

prior knowledge of the study hypothesis. Therefore information bias is unlikely. We identified 

all participants who started on CCB therapy during follow-up. Selection bias may have oc-

curred if there were differences in severity of disease or in allocation to CCB therapy among 

genotypes at entry in the study cohort caused by the NOS1AP polymorphism. However, the 

genotypes in this population were in Hardy-Weinberg equilibrium and no differences were 

found in time to start of CCB therapy or starting dose. The absence of blood samples and diffi-

culties with genotyping were most likely independent of the genotype. It is also unlikely that 

confounding has influenced the results of our study, because all participants were incident 

users, and because physicians were unaware of the participant’s genotype and could not 

base their drug choice on this information. In this study, drug use was calculated from filled 

prescriptions. In an earlier study published in this journal, we demonstrated that there was 

a high agreement in the Rotterdam Study for filled cardiovascular chronic medication and 

actual drug use as stated by the patient during interview.[27] There is always the possibility 

that the results are a chance finding. However, we think that this is probably not the case 

in our study. These analyses are not part of a genome wide association study, but we were 

testing an a priori hypothesis. Given the small number of cases in our study, it is necessary 

that the results will be replicated in further studies. 
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In the Caucasian population around 40 percent of the population has the TT genotype, 

while in Yoruba in Ibadan (Nigeria), Japanese in Tokyo and Han Chinese in Beijing only 10-

15% of the population have the TT genotype.[28] As a consequence of this, the results of trials 

with dihydropyridine CCBs performed in a Caucasian population cannot be extrapolated 

unconditionally to other populations and vice versa. Regarding the polymorphism in the 

NOS1AP gene, it could be hypothesized that the risk of cardiovascular mortality in users of 

dihydropyridine CCB in Yoruba, Japanese and Chinese populations in general will be higher 

than in Caucasian populations.

To conclude, our results show that the genetic variation in the NOS1AP gene is associated 

with mortality risk in participants using dihydropyridine CCB. Participants with a TG or GG 

genotype at SNP rs10494366 have a higher all-cause and cardiovascular mortality risk than 

participants with the TT genotype. Because both the use of dihydropyridine CCBs and the 

allele frequencies of both alleles of the NOS1AP SNP rs10494366 are high, our results seem to 

be of substantial clinical impact, if replicated in further studies.
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Abstract

Background: The transporter OCT1, encoded by the SLC22A1 gene, is responsible for the trans-

portation of a wide variety of compounds including the anti-Parkinson drugs amantadine, 

pramipexole and, possibly, levodopa. Recently, we identified that the rs622342 A>C polymor-

phism in the SLC22A1 gene is associated with the glucose lowering effect of metformin. We 

tested whether this polymorphism is also associated with response to anti-Parkinson drugs.

Methods: We identified all incident levodopa users in the Rotterdam Study, a population 

based cohort study. First, associations between the rs622342 polymorphism and the change 

in prescribed doses of levodopa and co-prescribed anti-Parkinson drugs in incident levodopa 

users was analyzed. Second, the association between the polymorphism and time from start 

of levodopa therapy to death was analyzed.

Results: We identified 99 incident levodopa users. Between the first and fifth prescription 

for levodopa, for each minor rs622342 C allele the prescribed doses of anti-Parkinson drugs 

increased with 0.35 defined daily dose (95% CI 0.073, 0.64; p=0.014). The differences were 

mainly caused by higher prescribed doses for amantadine and selegiline. With each minor C 

allele the mortality ratio after start of levodopa therapy was 1.47 times higher (95% CI 1.01, 

2.13; p=0.045).

Conclusion: The rs622342 minor C allele is associated with higher prescribed doses of 

anti-Parkinson drugs and a shorter survival time after start of levodopa therapy. Most likely, 

transporters encoded by this variant allele transport anti-Parkinson drugs less efficient to the 

brain, resulting in more severe symptoms.



195

The OCT1 polymorphism rs622342 A>C, drug response and survival time in Parkinson’s disease

Introduction

Transporter proteins have a major role in the absorption, distribution and elimination of a 

wide variety of drugs and endogenous compounds. The family of organic cation transporters 

(OCT) is involved in the carriage of organic cations with at least one positively charged amine 

moiety at physiological pH. Substrates for OCT are the endogenous compounds epinephrine, 

histamine, serotonin and dopamine.[1,2] The three most important members of the OCT family 

are OCT1, OCT2 and OCT3, encoded by the SLC22A1, SLC22A2 and SLC22A3 gene respectively. 

These transporters differ in their substrate specificity and location in the body.[3] Besides 

endogenous compounds, several drugs are substrates for OCT. The hepatic uptake of the 

antidiabetic drug metformin by OCT1 is essential for its glucose lowering effect.[4,5] Several 

drugs, used in the treatment of Parkinson’s disease are also substrates for OCT. Pramipexole, a 

selective dopamine receptor agonist, and amantadine, which has dopaminergic and anticho-

linergic properties, are substrates for the OCT1 and OCT2 subtypes.[2,6,7] Levodopa, a precur-

sor of dopamine which crosses the blood-brain barrier, is also a substrate for OCT, although 

the subtype has not yet been identified.[8,9] Levodopa and dopamine agonists are indicated 

for the initial treatment of Parkinson’s disease, and levodopa seems to be more effective than 

the dopamine receptor agonists.[10] Other drugs that can be used for the initial treatment 

are anticholinergic drugs, especially in cases where tremor is predominant, amantadine and 

selegiline.

The uptake of levodopa in the brain through transporters has an important role in sup-

pressing symptoms of Parkinson’s disease. The amino acids phenylalanine, leucine and iso-

leucine, structurally related to levodopa, competitively inhibit the transportation of levodopa 

to the brain and combining levodopa with these amino acids results in a reduced efficacy of 

levodopa.[11]

Single nucleotide polymorphisms (SNP) in the genes encoding transport proteins may 

result in transporters with reduced efficacy. Recently, we identified that the rs622342 A>C 

SNP in the SLC22A1 gene, coding for OCT1, was associated with the glucose lowering effect 

in incident metformin users.[12] As this SNP might also be involved in the transportation ef-

ficacy of drugs used in the treatment of Parkinson’s disease, it may affect the response to 

these drugs. In this population based cohort study, we studied whether prescribed doses 

for levodopa and co-prescribed anti-Parkinson drugs differed between rs622342 genotypes 

in incident levodopa users. We also studied the difference in survival time after start of le-

vodopa therapy.
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Methods

Setting
Data for these analyses were obtained from the Rotterdam Study, a prospective population-

based cohort study of 7,983 Caucasians aged 55 years and older in the suburb Ommoord in 

Rotterdam. Participants were invited between 1990 and 1993 and have been continuously 

followed since then. All participants of the Rotterdam Study gave written informed consent. 

Ethical approval was obtained from the medical ethical committee of the Erasmus MC. The 

aim of the study was to investigate determinants of chronic and disabling cardiovascular, 

neurodegenerative, locomotor, endocrine and ophthalmologic diseases. The rationale, ethi-

cal approval and design of this study have been described before.[13,14] All cases of mortality 

were identified, by obtaining at regular intervals the vital status of the participants from the 

municipal population registry. The seven pharmacies in Ommoord dispense the prescrip-

tions of more than 99% of all participants. Information on all filled prescriptions from January 

1st 1991 until January 1st 2008 was available and included the product name of the drug, the 

anatomical therapeutical chemical (ATC) code, the amount dispensed, the prescribed dosage 

regimen and the date of dispensing.[15]

Study Sample
The study sample consisted of all subjects in the Rotterdam Study who had a first prescription 

for levodopa between July 1st 1991 and January 1st 2008. Participants who had prescriptions 

for levodopa between January 1st 1991 and July 1st 1991 were excluded to ensure that only in-

cident levodopa users were included. We also excluded all participants who were prescribed 

less than three prescriptions for levodopa, because, most likely, levodopa treatment was 

used as a diagnostic tool instead of treating Parkinson’s disease. Participants were followed 

until death or end of the study period whichever came first.

Outcomes
We used two types of study outcome, the change in prescribed daily dose of levodopa and 

co-prescribed drugs to treat Parkinson’s disease, and the difference in all-cause mortality.

First, for every prescription of levodopa, the change in prescribed daily dose for levodopa 

plus the dose of co-prescribed other anti-Parkinson drugs compared to the first prescription 

of levodopa was calculated. The influence of the rs622342 genotype on the change in pre-

scribed daily doses was analyzed. To make the prescribed doses of different anti-Parkinson 

drugs comparable to each other, we divided the prescribed daily dose by the defined daily 

dose (DDD).[15] The DDD is a standardized dosing measure representing the recommended 

daily dose for the main indication in an adult. Second, we analyzed the difference between 

rs622342 genotypes in time from the first prescription for levodopa until death due to any 

cause.



197

The OCT1 polymorphism rs622342 A>C, drug response and survival time in Parkinson’s disease

Cofactors
Age at the time of the first levodopa prescription and gender were considered as potential 

determinants affecting the change in prescribed dose of anti-Parkinson drugs and the differ-

ence in all-cause mortality.

Genotyping
In this study we used the tagging SNPs on the Illumina 550k SNP array for genotyping accord-

ing to the manufacturer’s instruction. The tagging SNPs on the array were selected using an 

algorithm with which in a Caucasian population ninety percent of all phase I and II Hapmap 

SNPs are covered by at least one SNP on the array.[16-18] This coverage arises because genetic 

variation is transmitted in blocks, in which haplotype alleles exist. Within these haplotypes, 

variant alleles are associated with each other. This more frequent occurrence of combina-

tions of variant alleles than would be expected from a random formation is called linkage 

disequilibrium. For this study we selected the tagging SNP rs622342 in the SLC22A1 gene that 

was previously associated with metformin response.[12]

Statistical Analysis
Deviation from Hardy-Weinberg equilibrium was tested using a c2-test. To ensure that the 

rs622342 SNP did not affect the occurrence of Parkinson’s disease, we analyzed the difference 

in time from July 1st 1991 to the first levodopa prescription between rs622342 genotypes in 

the whole Rotterdam Study using Cox proportional hazard models, and in incident levodopa 

users we analyzed the difference in prescribed daily dose of anti-Parkinson drugs at the time 

of the first levodopa prescription using multivariate linear regression and differences in prior 

use of other anti-Parkinson medication using a c2-test. For each prescription of levodopa, we 

calculated the change in prescribed daily doses of levodopa and co-prescribed anti-Parkinson 

drugs compared with the prescribed daily doses at the first prescription of levodopa. We 

analyzed the association between the number of rs622342 variant C alleles and change in 

prescribed daily doses of levodopa and co-prescribed anti-Parkinson drugs. As we analyzed 

the sequence of levodopa prescriptions, we tested whether there was a difference between 

genotypes in the average duration of levodopa prescriptions using unbalanced repeated 

measurements. Cox proportional hazard models were used to analyze the association be-

tween the number of rs622342 C variant alleles and time from the first levodopa prescription 

until death. Analyses were performed with SPSS software (version 11.0.1; SPSS, Chicago, IL), 

except for the unbalanced repeated measurements, which were performed with SAS (version 

8.2; SAS, Cary, NC).



Chapter 5.1. 

198

Results

In the Rotterdam Study 186 participants were identified who were incident levodopa users. 

Forty-six levodopa users were excluded because a blood sample for genotyping was not 

available and one user was excluded because genotyping failed. Twenty-three levodopa us-

ers were prescribed levodopa before July 1st 1991 and 17 users were prescribed only one or 

two prescriptions for levodopa, and these participants were excluded. Eventually, 99 incident 

levodopa users were included (table 1). 

The minor allele frequency (C allele) was 0.36 and the genotype distribution was in Hardy-

Weinberg equilibrium (χ2=0.57; p=0.45). The SNP rs622342 did not affect the time from July 

1st 1991 until the first prescription for levodopa in all participants in the Rotterdam Study, 

genotyped for rs622342 (HR 0.96; 95% CI 0.72, 1.28). The drugs used to treat Parkinson’s 

disease during the total follow-up time and the DDD of these drugs are given in table 2. 

No associations were found between the genotype and prescribed doses of anti-Parkinson 

drugs at start of levodopa therapy (-0.049 DDD; 95% CI –0.36, 0.26). Fifty-seven participants 

(58%) were prescribed other anti-Parkinson drugs before start of levodopa therapy and this 

percentage did not differ between genotypes (χ2=0.32; p=0.85). The average time that drugs 

were dispensed for per levodopa prescription was 52.5 days and the rs622342 genotype was 

not associated with this duration (-1.8 days; 95% CI –7.5, 3.8).

The average prescribed dose of levodopa and co-prescribed drugs increased after start of 

levodopa therapy. The increase in prescribed dose was higher in patients with the rs622342 

Table 1 Baseline characteristics

rs622342 genotype AA AC CC
N 39 49 11

Gender Male (%) 17 (43%) 22 (45%) 3 (27%)

Age (SD) 77.7 (7.1) yr 78.0 (7.4) yr 78.8 (7.5) yr

Follow-up (SD) In Rotterdam Study 11.8 (4.5) yr 10.0 (4.1) yr 9.4 (5.0) yr

After start levodopa 5.0 (3.8) yr 4.6 (3.6) yr 3.5 (2.6) yr

Body-mass index  (SD) a 28.2 (6.3) kg/m2 26.2 (3.9) kg/m2 27.6 (4.8) kg/m2

Creatinine level (SD) a 85.9 (16.5) μmol/l 79.9 (14.2) μmol/l 79.8 (9.7) μmol/l

Prior use before start levodopa therapy

Anticholinergic drugs 5 (13%) 7 (14%) 1 (9%)

Dopamine agonists 3 (8%) 4 (8%) 1 (9%)

Amantadine 12 (31%) 11 (22%) 5 (45%)

Selegiline 13 (33%) 15 (31%) 4 (36%)

Average prescribed dose of non levodopa anti-Parkinson drugs 
at start levodopa therapy

0.84 DDD 0.80 DDD 0.68 DDD

a At time of entrance in the Rotterdam Study.
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CC genotype than in patients with the AA genotype, while patients with the AC genotype 

were in between (figure 1). The changes in prescribed daily doses of all anti-Parkinson drugs 

were significantly different from the third until the eighth prescription. With each minor C 

allele, the change in prescribed daily dose of all anti-Parkinson drugs between the first and 

fifth prescription for levodopa was 0.35 DDD higher (95% CI 0.073, 0.64). The prescribed daily 

dose of levodopa was 0.02 DDD higher (95% CI -0.037, 0.084) and the prescribed daily dose of 

other anti-Parkinson drugs was 0.33 DDD higher (95% CI 0.049, 0.61). Five patients (6%) were 

Table 2 Drugs used for the treatment of Parkinson’s disease during total follow-up time

Drug class Drug Number of users Number of 
prescriptions

Daily defined dose

Anticholinergics Trihexyphenidyl 11 51 10 mg

Biperiden 6 59 10 mg

Metixene 1 2 40 mg

Dexetimide 2 5 0.5 mg

Orphenadrine 7 63 0.2 g

Levodopa Levodopa 99 2,735 0.6 g

Amantadine Amantadine 37 634 0.2 g

Dopamine Bromocriptine 3 37 40 mg

   agonists Pergolide 13 593 3 mg

Ropinirole 8 116 6 mg

Pramipexole 3 11 2.5 mg

Selegiline Selegiline 47 1,172 5 mg

Entacapone Entacapone 11 273 1 g

Figure 1 rs622342 genotype and change in prescribed daily doses of anti-Parkinson drugs (levodopa, dopamine agonists, selegiline, 
amantadine, anticholinergics, entacapone)



Chapter 5.1. 

200

co-prescribed anticholinergic drugs, nineteen patients (22%) amantadine, twenty-nine pa-

tients (33%) selegiline and none entacapone. The change in prescribed daily dose was 0.038 

DDD (95% CI -0.007, 0.083) for the anticholinergic drugs, 0.11 DDD (95% CI 0.01, 0.20) for 

amantadine and 0.19 DDD (95% CI -0.07, 0.45) for selegiline. Only six patients were prescribed 

dopamine agonists at the fifth prescription and in none of these patients the prescribed daily 

dose had changed between the first and fifth levodopa prescription and therefore changes 

in dopamine agonist doses did not contribute to the change in total prescribed daily dose of 

anti-Parkinson drugs.

During follow-up, 77 of the 99 participants (78%) died. The average survival time after start 

of levodopa therapy differed between rs622342 genotypes. The average survival time was 6.9 

year for patients with the AA genotype, 5.2 year for patients with the AC genotype and 4.4 

year for patients with the CC genotype (table 3). The mortality ratio was significantly raised 

with the number of minor C alleles (HR 1.47; 95% CI 1.01, 2.13).

Discussion

In this population-based cohort study, the minor C allele of rs622342 in the SLC22A1 gene, 

encoding the transporter OCT1, was associated with higher prescribed doses of anti-Parkin-

son drugs and a shorter survival after start of levodopa therapy. This SNP was previously 

associated with metformin response and the rs622342 minor C allele encodes most likely a 

less functioning OCT1 transporter. In this study, we could not exactly identify which drug or 

drugs contributed to the difference in prescribed daily dose of anti-Parkinson drugs. The only 

individual drug for which the prescribed daily doses were significantly associated with the 

rs622342 genotype was amantadine, and amantadine has previously been identified as sub-

strate for OCT1.[19] The difference in prescribed daily doses of selegiline was not statistically 

significant, although the difference was larger for selegiline than for amantadine. Forty-six of 

the 88 patients were co-prescribed either amantadine or selegiline at the fifth prescription 

for levodopa. We cannot exclude that the rs622342 C variant allele is associated with a lower 

response to levodopa therapy and that this effect is compensated with higher prescribed 

doses of amantadine, selegiline and possibly other anti-Parkinson drugs. The shorter survival 

Table 3 rs622342 and survival after start of levodopa therapy

rs622342 N Mortality Mean survival Mortality ratio a

cases time (year) 95% CI HR 95% CI p-value
AA 39 24 6.9 (5.2, 8.6) ref.

AC 49 41 5.2 (4.0, 6.3) 1.50 (0.70, 2.49) 0.12

CC 11 8 4.4 (2.6, 6.2) 2.04 (0.87, 4.77) 0.10

Additive b 1.47 (1.01, 2.13) 0.045
a Adjusted for age and gender. b Number of variant C alleles.
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period associated with the C allele of rs622342 suggests that multiple anti-Parkinson drugs 

are involved and that the lower response to one or more anti-Parkinson drugs is not compen-

sated by higher prescribed doses of other drugs.

More transporters than OCT1 are involved in the transportation of anti-Parkinson drugs. 

Most research has focused on the transporters involved in levodopa carriage. Other trans-

porters are involved, such as the other members of the OCT family, OCT2 and OCT3 encoded 

by the SLC22A2 and SLC22A3 genes and the L-type amino acid transporter1 and 2, encoded 

by SLC7A5 and SLC7A8. The three OCTs are all involved in dopamine transport, although with 

varying affinity.[20-25] They differ in their expression throughout the body, distinguishing dif-

ferent roles in absorption, distribution and elimination of levodopa. OCT2 is predominantly 

expressed in the small intestine, kidney and brain and OCT3 in the heart and placenta.[2,22,24] 

LAT1 is located in the brain and LAT2 in the kidney and intestine.[26] Most likely, each trans-

porter has its own role in the absorption, distribution and elimination process of drugs and 

other compounds. 

OCT1 is expressed mainly in the liver and small intestine.[1,24] With metformin, the C allele 

is associated with a decreased transporter functioning in the liver. In this study the C allele 

was associated with reduced anti-Parkinson drug response, suggesting that OCT1 is not in-

volved in the excretion of anti-Parkinson drugs. It is possible that the rs622342 C allele results 

in a reduced anti-Parkinson drug uptake from the small intestine resulting in a decreased 

biological availability.[24] However, OCT1 is also located in small amounts in the brains and 

we cannot exclude that these transporters are for example the rate-limiting step for uptake 

of anti-Parkinson drugs in the brain and responsible for the difference in anti-Parkinson drug 

response between rs622342 genotypes.[1]

In this study, we analyzed the consecutive prescriptions of levodopa and the anti-Parkinson 

drugs co-prescribed with levodopa. Both levodopa and dopamine agonists are the main 

drugs for the initial treatment of Parkinson’s disease. In the Rotterdam Study, levodopa was 

used more frequently for this indication than dopamine agonists. Ninety-one participants 

were incident levodopa users without prior prescriptions for dopamine agonists, of whom 

eight participants started dopamine agonist therapy and later started levodopa therapy. 

Only nine participants were prescribed dopamine agonists and received no prescriptions for 

levodopa during follow-up, and these participants were not included in this study. In this 

group, we cannot exclude that the dopamine agonists were prescribed for other indications, 

such as restless-legs. 

In population-based studies, bias may affect the obtained results. We believe that bias in 

our study is minimal. We identified all incident levodopa users in the Rotterdam Study and 

information was collected prospectively, without prior knowledge of the study hypothesis, 

making selection and information bias unlikely. The permission of patients to take blood and 

isolate DNA for scientific research was most likely independent from the genotype we studied. 

We did not find any difference in time to levodopa therapy, prior use of other anti-Parkinson 
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medication or prescribed doses of anti-Parkinson drugs at start of levodopa therapy, making 

it unlikely that the rs622342 polymorphism affects the progression to Parkinson’s disease. 

The number of Parkinson’s disease patients who were prescribed levodopa was limited. 

Therefore we cannot exclude that our results were a false-positive finding and replication of 

these results in another cohort is indicated.

To conclude, in this population-based cohort study, the rs622342 minor C variant allele 

in the SLC22A1 gene, encoding OCT1, was associated with higher prescribed doses of drugs 

used to treat Parkinson’s disease and had a shorter survival time after start of levodopa ther-

apy. Most likely, this variant allele reduces the efficacy of the transportation of anti-Parkinson 

drugs by OCT1 to the brain. The results suggest that patients with the AC or CC genotype 

have less response to these drugs and more severe symptoms, resulting in a shorter survival 

period.
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Introduction

Drug response varies widely between individuals. Thirty to sixty percent of patients do not 

show an efficacious response to important classes of therapeutic drugs.[1] Drug therapy 

is, conversely, regularly the cause of adverse reactions. Two to four percent of all hospital 

admissions are due to adverse reactions to drugs with a quarter to a half of these admissions 

being preventable.[2,3] A better understanding of why people do not respond to drug therapy 

or have adverse drug reactions can avoid part of these events and lead to more safe and 

effective drug use.

In this thesis, we studied the effects of both co-prescribed drugs and genetic variation 

on the response to drug therapy. We studied both because the effects are interlinked. For 

example, both genetic variation in the genes encoding the CYP enzymes and drug use may 

result in decreased or increased activity in metabolizing enzymes and transporters.

Main results

Co-prescribed drugs
Drug-drug interactions (DDIs) are common in healthcare and contribute substantially to the 

total number of adverse drug reactions. We calculated that in the elderly (≥70 years), one in 

five elderly people has been exposed to a DDI, with one in thirty four exposed to a DDI that 

was categorized as potentially life-threatening. In a literature review, analyzing the number 

of hospital admissions caused by DDIs, we calculated that one in every two hundred hospital 

admissions was due to DDIs, but in the elderly this increased to one in every twenty hospital 

admissions.

The impact drug-drug interactions have on the total number of hospital admissions, sug-

gest that co-prescribed drugs have the potential to alter pharmacokinetic and pharmacody-

namic parameters substantially. Community pharmacists in the Netherlands are obliged to 

intervene if a prescription implies too high a risk of patient harm, for example, due to DDIs. In 

chapter 2.2 and 2.3 we studied the dispensing of high-risk DDIs by community pharmacies. 

The results suggest a high level of medication surveillance in the Netherlands.

Genetic variation
The prescribed dose of a drug is a balance between the anticipated effectiveness of a drug 

at a certain dose and the anticipated risk of adverse reactions. A too low initial dose implies 

that there is a long titration period before therapeutic goals are accomplished, while too 

high a dose has a higher risk of adverse reactions. Genetic variation alters pharmacokinetic 

and pharmacodynamic parameters and explains part of the variation in drug response. A 

difference in the effect of co-prescribed drugs and genetic variation is that the effect of co-
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prescribed drugs varies over time, while the effect of genetic variation is stable over time. The 

effect of genetic variation will be noticeable at the start of therapy, during the titration phase.

In this thesis, we assessed the effect of genetic variation in the CYP2C9 gene [4-8] and nitric 

oxide synthase 1 adaptor protein (NOS1AP) gene on sulfonylureum response.[9-12] Tolbutamide 

users with a CYP2C9*3 polymorphism, resulting in decreased CYP2C9 enzyme activity, were 

prescribed lower doses than users with the wildtype genotype or CYP2C9*2 polymorphisms 

(chapter 3.1). Recently, the rs10494366 SNP in the NOS1AP gene was associated with an 

increase in QTc interval time on the ECG.[13-15] NOS1AP is a regulator of neuronal NOS (nNOS) 

and regulates intracellular calcium levels.[16,17] In glibenclamide users, the rs10494366 TG and 

GG genotype are associated with less glucose reducing effect and higher mortality rates than 

in glibenclamide users with the TT genotype (chapter 3.5). In tolbutamide and glimepiride 

users these genotypes were associated with lower mortality rates.

Metformin is not metabolized, but mainly excreted unchanged by the kidneys.[18] The car-

riage of metformin over membranes depends on transporters. The organic cation transporter 

1 (OCT1) transporter, encoded by the SLC22A1 gene, pumps metformin into the hepatocytes.
[19-21] The multidrug and toxin extrusion 1 (MATE1) transporter, encoded by the SLC47A1 gene, 

is also situated in the hepatocyte and is an efflux pump, which opposes the effect of OCT1.
[20,22,23] The role of the OCT1 and MATE1 transporter in the distribution and elimination of 

metformin is presented in figure 1.

The rs622342 A>C SNP in the SLC22A1 gene resulted in a 0.28% smaller decrease in 

HbA1c levels after start with metformin therapy. Most likely, the C polymorphism results in 

a reduced influx function, lower intracellular metformin levels in the hepatocyte and higher 

plasma glucose levels (chapter 3.2). The rs2289669 G>A SNP in the SLC47A1 gene was associ-

ated with a 0.30 % larger decrease in HbA1c level and the A polymorphism may code for a 

reduced MATE1 efflux functioning (chapter 3.3). In chapter 3.4 we describe an interaction 

between the SNPs rs622342 and rs2289669. In metformin users with a normal OCT1 influx 

pump (rs622342 AA genotype), the effect of polymorphisms in the MATE1 efflux pump was 

limited. In metformin users with a crippled OCT1 influx pump and a normal functioning 

MATE1 efflux pump (rs2289669 GG genotype), the response to metformin was limited. Most 

likely, the efflux pump outperforms the crippled influx pump, resulting in low intracellular 

levels of metformin in the hepatocyte.

Another class of drugs studied was that of the cardiovascular drugs (chapter four). Two 

cholesterol lowering drugs (statins), simvastatin and atorvastatin, are transported by P-gly-

coprotein (P-gp), encoded by the ABCB1 gene, and metabolized by the CYP3A4 enzyme.[24-29] 

Three common SNPs in the ABCB1 gene (C1236T, G2677TA and C3435T) have been associated 

with digoxin, ciclosporin, mefloquine and antiretroviral drug response in previous studies.
[30-34] We studied whether these polymorphisms, and the haplotypes that were derived from it, 

were associated with the cholesterol lowering effect of simvastatin (chapter 4.1). In men, the 
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haplotypes were associated with total and LDL cholesterol reduction. The reductions were 

larger in men with the TTT and CGT haplotype versus the CGC haplotype. 

In chapter 4.2, we studied whether genetic variation in the CYP3A4 or ABCB1 genes is as-

sociated with a decrease of the prescribed dose or a switch to another cholesterol lowering 

drug during simvastatin and atorvastatin therapy. These events were used as a proxy and 

may indicate that statin plasma levels were too high and resulted in an adverse drug reac-

tion or too large a reduction in cholesterol level. The CYP3A4*1B A>G SNP was associated 

with a decreased incidence of these events, while no associations were found for the ABCB1 

SNPs. The CYP3A4*1B A>G SNP results in higher CYP3A4 enzyme activity and decreased 

simvastatin and atorvastatin plasma levels.[35] The associations were stronger in women and 

in users with the ABCB1 3435 CT or TT genotype, although the interaction terms did not reach 

statistical significance.

The CYP3A4 enzymes and P-gp transporters are expressed both in the cells in the intestinal 

wall and hepatocytes (figure 2). In these cells, the ABCB1 3435 C>T SNP results in decreased 

P-gp efflux pump functioning, higher intracellular levels and more substrate availability for 

the CYP3A4 enzyme.[36-38] This may explain why the effect of the CYP3A4*1B polymorphism is 

stronger in users with the ABCB1 3435 CT or TT genotype. The gender differences in the effect 

Figure 1 Diagram representing the distribution and elimination of metformin and the role of the transporters OCT1 and MATE1
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of polymorphisms in both the ABCB1 and CYP3A4 gene may be explained by differences in 

ABCB1 expression. The expression of ABCB1 is higher in men than in women.[39] Whether the 

CYP3A4 enzymes in the cells in the intestinal wall or the hepatocytes or both are involved 

cannot be concluded from the results in this thesis.

Calcium channel blockers (CCBs), a group of cardiovascular drugs, directly inhibit calcium 

currents through voltage dependent calcium channels. As both nNOS, regulated by NOS1AP, 

and CCBs regulate intracellular calcium levels, we studied the effect of the rs10494366 SNP in 

the NOS1AP gene on the incidence of diabetes mellitus (chapter 4.3) and on cardiovascular 

mortality (chapter 4.4) in CCB users. In CCB users with the TG or GG genotype at rs10494366, 

Figure 2 Diagram representing the distribution and elimination of simvastatin and atorvastatin and the role of the transporter ABCB1 and the 
enzyme CYP3A4
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the incidence of diabetes mellitus was two times lower than in users with the TT genotype. In 

the users of dihydropyridine CCB (e.g. amlodipine and nifedipine), the TG and GG genotype 

were associated with higher cardiovascular mortality rates than in users with the TT geno-

type. No associations were found in users of the non-dihydropyridine CCB (e.g. verapamil and 

diltiazem). The influx of calcium through voltage dependent calcium channels is a trigger in 

many physiological processes, such as contraction of the cardiomyocyte and insulin release 

by the pancreatic beta cells. This may be the explanation why this polymorphism in the 

NOS1AP gene is associated with the response to various classes of drugs.

Besides metformin, many drugs and other substances are substrates for the OCT1 trans-

porter. OCT1 has a high affinity for substances with at least one positively charged amino 

moiety at physiological pH.[40] Drugs that are substrates for OCT1 are pramipexole, aman-

tadine and, possibly, levodopa.[41-43] In chapter 5.1, we studied whether the SNP rs622342, 

which was associated with metformin response in chapter 3.2, was also associated with the 

response to anti-Parkinson drugs. In patients with one or more C alleles, the prescribed doses 

of anti-Parkinson drugs were 0.35 defined daily dose (DDD) higher per copy of the C allele. We 

also found that Parkinson patients with the CC genotype survived on average 4.4 years after 

the start of levodopa therapy versus 5.2 years for patients with the AC genotype and 6.9 years 

for patients with the AA genotype.

Genetic variation and co-prescribed drugs
The results on the effect of genetic variation on drug response give new insights into drug-

drug interactions. For example, the OCT1 transporter is inhibited by several drugs, such as 

midazolam, quinidine, ritonavir and verapamil.[44] The results in chapter 3.2 suggest that 

combining these drugs with metformin therapy might result in less of a reduction in glucose 

levels, and the results of chapter 5.1 suggest a reduced effectiveness of anti-Parkinson drugs. 

However, these effects have not yet been proven in clinical practice. Inhibitors for the MATE1 

transporter have not yet been described. Interestingly, the effect of selective MATE1 inhibi-

tors, if they exist, may be stronger in metformin users with the rs622342 CC genotype on the 

OCT1 gene, as described in chapter 3.4.

The effect of CYP3A4*1B polymorphism and CYP3A4 inducers, such as carbamazepine and 

rifampicin, are similar. The effect of the CYP3A4*1B polymorphism suggest that the effects of 

CYP3A4 inducers on simvastatin and atorvastatin will be more pronounced in women and in 

patients with the ABCB1 3435 CT or TT genotype. Similarly, it may be hypothesized that the 

effects of CYP3A4 inhibitors, such as erythromycin, clarithromycin, itraconazol and voricon-

azol, on simvastatin and atorvastatin therapy will be stronger in women and in patients with 

the ABCB1 3435 CT or TT genotype. However, these drugs also inhibit the P-gp transporter, 

making it difficult to distinguish the individual effects.
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Clinical perspective

Whether DDIs and genetic variation are clinically relevant to predict the response to a drug 

and are useful for individualizing pharmacotherapy, is not only dependent on the question of 

whether associations are statistically significant, but also depends on the strength of the as-

sociation. Statistical significance depends on the effect size and the number of participants. 

For example, small differences may be clinically irrelevant but statistically significant in stud-

ies with large numbers of participants. 

It is estimated that genetic variation has a major impact on drug response, although the 

majority have not yet been identified. Estimations vary from 12 to 98 percent.[45-48] These 

studies often assessed inter-individual and intra-individual differences in pharmacokinetic 

parameters such as metabolic ratios or clearance, and deduce from this information the es-

timated heritability. 

In some analyses in this thesis, multivariate linear regression was used. In these analyses the 

coefficient of determination, r2, is the proportion of variability in a data set that is accounted 

for by the statistical model (explained variance), or how well the predictors approximate the 

real values. These values give an indication of the practical usefulness of genetic testing. The 

r2 values are given in table 1, for the non-genetic predictors, the genetic predictors and the 

total model. These values are adjusted for the number of predictors in the model.

The explained variance of the SNPs CYP2C9*3, rs622342 (OCT1), rs2289669 (MATE1) and 

ABCB1 haplotypes on drug response in the total population of users varies from 0.0% to 7.0%. 

Although the associations are significant and may give new insights into the pharmacokinet-

ics of these drugs, the effects of these genes on their own are too low to be clinically relevant. 

The explained variances of other predictors such as age, gender, drug doses and baseline 

values, which are easily available for the physician at the time of drug prescription, are similar 

to or larger than the explained variance of the SNPs. 

Interestingly, the explained variance of genetic predictors increases considerably if the in-

teraction between genes or the interaction with other predictors is taken into consideration. 

The glucose lowering effect of metformin is affected by the SNP rs622342 in the SLC22A1 

gene, coding for OCT1 and by the SNP rs2289669 in the SLC47A1 gene, coding for MATE1. The 

explained variance of these SNPs individually is 5.3 percent and 7.0 percent, respectively. In 

a model in which both SNPs and the interaction term between these two SNPs are included, 

the explained variance increases to 25.1 percent. This is much higher than the explained vari-

ance of the two separate SNPs.

The effect of genetic variation in the ABCB1 gene on the total and LDL cholesterol lowering 

effect of simvastatin is an example of drug-gender interaction. In the haplotype analyses for 

all simvastatin users, we found statistically significant differences between the TTT haplotype 

and the reference CGC haplotype in total cholesterol reduction, and differences between the 

TTT and CGT haplotype versus the reference CGC haplotype in LDL cholesterol reduction. 
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In contradiction to these statistically significant associations is the minimal explained vari-

ance of these haplotypes. However, after stratification for gender, the amount of explained 

variance changes substantially. In men both the TTT and CGT haplotype are significantly 

associated with a stronger reduction in total cholesterol and LDL cholesterol than the CGC 

haplotype. The explained variance of the haplotypes in men is 27.9 percent for the reduction 

in total cholesterol and 35.2 percent for the reduction in LDL cholesterol. 

We also found that the association between the CYP3A4*1B polymorphism and the 

incidence of adverse drug reactions in simvastatin and atorvastatin users was stronger in 

patients with the ABCB1 3435 CT or TT genotype than in patients with the CC genotype. This 

association was also stronger in men than in women. The interaction terms did not reach sta-

tistical significance. These associations were time-to-event associations and were analyzed 

with Cox proportional hazard analyses, and, therefore, the explained variance could not be 

calculated. These are other examples of gene-gene and gene-gender interactions.

Table 1 Explained variance in drug response by genetic variation a

Drug Genetic 
variation

Outcome Covariates Adjusted explained variance, r2 b

Covariates, 
non-genetic

Genetic 
variation

Total 
model

Tolbutamide CYP2C9*3 vs 
wildtype

Prescribed dose at tenth 
prescription

Age, sex 0.2 % 4.1 % 3.8 %

Metformin c SLC22A1 
rs622342 (OCT1)

Delta HbA1c Age, sex, HbA1c level before 
start, metformin dose, dose 
co-prescribed drugs

7.2 % 5.3 % 13.9 %

Metformin c SLC47A1 
rs2289669 
(MATE1)

Delta HbA1c Age, sex, HbA1c level before 
start, metformin dose, dose 
co-prescribed drugs

8.5 % 7.0 % 16.4 %

Metformin c,d rs622342 x 
rs2289669 
(OCT1xMATE1)

Delta HbA1c Age, sex, HbA1c level before 
start, metformin dose, dose 
co-prescribed drugs

8.0 % 25.1 % 46.5 %

Simvastatin ABCB1 
haplotype

Delta total cholesterol Age, sex, cholesterol level 
before start, simvastatin dose

47.6 % 0.0 % 52.8 %

Simvastatin ABCB1 
haplotype

Delta LDL cholesterol Age, sex, cholesterol level 
before start, simvastatin dose

48.8 % 0.0 % 57.5 %

Simvastatin ABCB1 
haplotype

Delta total cholesterol 
in men

Age, sex, cholesterol level 
before start, simvastatin dose

23.3 % 27.9 % 43.1 %

Simvastatin ABCB1 
haplotype

Delta LDL cholesterol 
in men

Age, sex, cholesterol level 
before start, simvastatin dose

33.4 % 35.2 % 62.3 %

Levodopa SLC22A1 
rs622342 (OCT1)

Prescribed dose at fifth 
prescription for all anti-
Parkinson drugs

Age, sex 3.7 % 6.1 % 8.1 %

a In this table, all studies are included in which linear regression was used. b As a percentage; zero (minimum) means model does not explain any 
variance at all, 100 (maximum) means model does explain all variance. c HbA1c level measurement in the period of 30 days before start and 15 
to 100 days after start. d Genes plus interaction term.
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Other genetic predictors

The genetic variation in genes coding for cytochrome P450 enzymes or transporters such as 

P-gp, OCT1 and MATE1 is responsible to an important extent for the phenotypic variation in 

pharmacokinetic parameters. Relatively little is known about genetic variation in pharmaco-

dynamic parameters. For instance, several SNPs in the ADRB1 and ADRB2 gene, coding for the 

β1 and β2 receptor, have been identified. These SNPs have been associated with response to 

β blocker therapy and β agonist therapy in hypertension, heart failure and asthma.[49,50] The 

same applies for SNPs in genes coding for dopamine receptors and anti-Parkinson therapy.
[51] Variation in drug response may also result from genetic variation in intracellular processes, 

such as intracellular messengers. In this thesis, we studied the effect of a common polymor-

phism in the NOS1AP gene. This polymorphism probably affects intracellular calcium levels, 

and with that the response to a wide variety of drugs. A previous study found associations 

with the SNP rs10494366 in the NOS1AP gene and response to digoxin.[52] In this thesis, we 

found associations with drug response to sulfonylurea users and CCBs.

As mentioned before, SNPs may affect the structure or amount of the protein they encode 

with consequences for biological function. A change in functioning in one protein may have 

consequences for the functioning or the expression of another protein. As presented in 

chapter 4.2, a reduced P-gp efflux functioning due to genetic variation in the ABCB1 gene 

may result in an increase in substrate availability for the CYP3A4 enzyme and a larger effect 

of genetic variation in the CYP3A4 gene.[36] It is also suggested that low ABCB1 expression is 

compensated by overexpression of other transporters resulting, contradictorily, in low levels 

of HIV antiviral drugs.[34] High ABCB1 expression has been associated with a reduction in HIV 

infectiveness.[34,53] These mechanisms compensate for the effects of genetic variation and 

result in a reduction of the phenotypic consequences of genetic variation, called phenotypic 

adaptation. Genetic variation in one gene may also directly affect the expression of another 

gene. For example, Hepatocyte Nuclear Factor-4α (HNF4A) is known to be involved in the 

expression of CYP enzymes.[54] The G60D SNP in this gene results in lower CYP2D6 metabolic 

activity, as measured by dextromethorphan metabolism.[55] 

Copy number variations (CNV) are duplications of DNA fragments at least one kb in size 

and attribute to genetic variation in drug response.[56] In some people, the gene coding for 

the CYP2D6 enzyme is duplicated, resulting in higher expression of this gene (CYP2D6*xN).[57] 

Similarly, DNA fragments may be deleted, resulting in the absence of enzymes. For example 

the CYP2D6 gene may be deleted (CYP2D6*5) resulting in the absence of CYP2D6 enzyme in 

homozygous persons. Drugs metabolized by CYP2D6 will reach high, probably toxic, plasma 

levels in patients without CYP2D6 expression and low, probably ineffective, plasma levels in 

patients with duplicated CYP2D6 expression.

Beside genetic variation, genes may also be switched on or off by the binding of methyl 

groups or other groups to the DNA, called epigenetics.[58,59] Methylation has traditionally been 



215

General discussion

associated with silenced genes. This information, although reversible, is contained during 

cell division and transferred from parents to children. These effects on gene expression may 

affect drug response, although little is yet known about the effects. The focus of research has 

partly shifted from genes to proteins. The latter area, proteomics, studies the structures and 

functions of proteins.[60] Proteomics may give us new insights into the function of proteins in 

drug response. In the treatment of leukemia, proteomics is used in an increasing extent to 

characterize the subtype, and individualize the pharmacotherapy.[61,62]

As genetic variation is much more than the effect of SNPs in metabolizing enzymes and 

transporters, the explained variance in drug response of up to 35 percent by the SNPs and 

interaction between them, as described in this thesis (table 1), is relatively high. However, 

for many drugs the percentage of explained variance that we can predict is much lower. As 

genetic variation is a major contributor to the variation in drug response [45-47], the remain-

ing genetic variation may be explained by gene-gene interactions, SNPs in receptors and 

intracellular proteins, CNVs, deletions and epigenetics.

Methodological considerations

The studies in chapter two, concerning the effect of co-prescribed drugs, differed in their 

study design. Two studies were literature reviews, one study was performed in a group of 

community pharmacies and one study was performed in the Rotterdam Study. The studies 

in chapter three, four and five were all performed in the Rotterdam Study and were similar 

in design.

Co-prescribed drugs
The main weakness in the studies on co-prescribed drugs or DDIs in chapter two, is the dif-

ference in definitions of a DDI. In chapter 2.1 we used the list of DDIs used by the Royal 

Dutch Association for the Advancement of Pharmacy (KNMP). The variation in prevalence of 

adverse drug reactions due to DDIs in chapter 2.4 may partly be explained by the variation 

in definitions used by the studies. Another drawback of chapter 2.4 is the difference in thor-

oughness of medication review, resulting in a varying number of missed cases. In chapter 2.3 

we analyzed the dispensing of a limited number of DDIs, with a high risk of adverse patient 

outcomes. This definition may limit the generalisability of the study results, because the 

frequency of intermediate risk DDIs may be associated with other determinants. It is possible 

that more determinants would be identified if a broader range of DDIs was included.

Genetic variation
The studies on the effect of genetic variation in drug response were all performed in the 

Rotterdam Study.[63,64] The Rotterdam Study is a prospective population-based cohort study 
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of 7,983 Caucasians aged 55 years and older in the suburb Ommoord in Rotterdam, which 

was later extended with another cohort of approximately 3,000 people. All participants of the 

Rotterdam Study gave written informed consent and ethical approval was obtained from the 

medical ethical committee of the Erasmus MC. The aim of the study was to investigate deter-

minants of chronic and disabling cardiovascular, neurodegenerative, locomotor, endocrine 

and ophthalmologic diseases. Observational studies may be hampered by selection bias, 

information bias and confounding. In the Rotterdam Study, only elderly Caucasian people 

were included, limiting the external validity. Moreover, observational studies and especially 

genetic studies are liable to false positive results.

In chapters three, four and five, we selected all (incident) users of sulfonylurea, metformin, 

simvastatin, atorvastatin, CCBs or levodopa. Selection bias may have occurred if the genetic 

variation under study was associated with the drug exposure itself. In the studies we did 

not find associations between the genetic variation and the baseline characteristics, making 

selection bias unlikely.

The study outcomes varied from prescribed doses, change in laboratory values, incident 

diabetes mellitus and mortality. The Rotterdam Study is a cohort study and data on incident 

diseases such as diabetes mellitus, and mortality was collected prospectively and indepen-

dent of the study hypothesis, making information bias unlikely. In the studies evaluating 

prescribed doses or laboratory values, bias may have occurred if there were differences in 

duration of the prescriptions between genotypes or in the time from start of therapy until the 

laboratory measurement. No differences were found between genotypes, making informa-

tion bias in these studies unlikely either.

The effect of genetic variation in genes coding for metabolizing enzymes or transporters 

will show itself only after the start of the drug, which is a substrate for these enzymes or 

transporters. Moreover, the patient and physician are both unaware of the patient’s geno-

type. Therefore, genetic variation at baseline will be random, a phenomenon which is called 

Mendelian randomization. This random variation reduces the chance of confounding in our 

studies.

The Rotterdam Study only includes Caucasian people of at least 55 years of age. This age 

restriction limits the generalisability of our results because it has been suggested that the 

effect of genetic variation diminishes in older patients.[65] If true, this implies that the effect 

of genetic variation may be stronger in younger patients. Genetic variation differs between 

Caucasians and other races. As mentioned before, many other factors do affect drug response. 

These factors may vary between races, limiting the extrapolation of our results.

The primary aim of the Rotterdam Study was to study chronic diseases. The number of 

incident drug users represents drug use in the general population. Although almost 8,000 

participants were included in the Rotterdam Study, the number of actual incident users was 

limited. For the change in glucose, HbA1c and cholesterol levels, we were dependent on 

laboratory measurements ordered by the general practitioners. These measurements were 
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not available for all incident users both before and after start. Therefore, the number of inci-

dent users for whom we had measurements both before and after start of drug therapy was 

further diminished. Limited sample sizes might have resulted in both false positive and false 

negative results. We identified associations not previously described in studies with limited 

sample size. This may result in false positive results and replication of these results is neces-

sary. This is especially the case for the studies in which we used tagging SNPs in candidate 

genes to identify associations, although we adjusted for multiple testing using a Bonferroni 

correction.

Future research

Pharmacogenetic research used to focus on individual SNPs, which result in a change in 

amino acid sequence in the protein, and by that alter the function of the protein. Much ef-

fort was put into analyzing SNPs in the genes coding for CYP enzymes and more recently in 

analyzing SNPs in genes coding for transporters. Although many associations were found, 

the number of pharmacogenetic tests that have been incorporated into clinical practice is 

still limited. An exception is the test on genetic variation in the thiopurine methyltransferase 

(TPMT) enzyme which is now common practice before the start of therapy with azathioprine 

and mercaptopurine. This test being a predictor for the occurrence of bone marrow toxicity.
[66] Testing on genetic variation in the CYP2D6 enzyme may also be useful in explaining why 

some people do not respond to antidepressant or antipsychotic therapy or develop adverse 

effects.

This genotype to phenotype approach, first determining the genetic variation and con-

sequently determine the effect on drug response is now being increasingly replaced by a 

phenotype to genotype approach.[67] These phenotype to genotype studies may give us new 

insights into the question of how genetics affect drug response. Instead of studying SNPs 

that are well known for their effects on pharmacokinetics, other approaches like candidate-

gene analyses and genome wide association (GWA) studies may increase the identification 

of new associations. 

In candidate gene analyses, one gene or a limited number of genes that were previously 

associated with drug response, are selected. In each gene tagging SNPs are selected which 

represent variation in SNPs in the rest of the gene. This representation arises because genetic 

variation is transmitted in so-called haplotype blocks. Within these haplotypes, variant alleles 

are associated with each other. This more frequent occurrence of combinations of variant 

alleles than would be expected from a random formation is called linkage disequilibrium. 

The tagging SNP can be selected with the information on HapMap.[68] The major advantage 

of this method is that with a small number of genetic tests, a large degree of genetic variation 

can be analyzed. Until recently, the research focused on gene regions coding for amino acids, 
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called exons. The SNPs situated in the gene regions not coding for amino acids, called introns, 

were largely neglected. However, these SNPs in introns do affect transcription rates and have 

an impact on drug response. In this thesis we used candidate gene analysis to identify SNPs, 

not previously described, in the SLC22A1 and SLC47A1 gene coding for OCT1 and MATE1 

and their association with metformin response. The rs622342 SNP in the SLC22A1 gene and 

the rs2289669 SNP in the SLC47A1 gene, associated in this thesis with metformin response, 

are situated in intron regions. These SNPs can be in linkage disequilibrium with other SNPs, 

making it difficult to identify the true SNP that affects drug response. With the use of tagging 

SNPs, new clinically relevant SNPs in introns may be identified in well studied genes such as 

the genes coding for CYP enzymes. A limitation of candidate gene analyses is that associa-

tions will not be found in genes which were not selected based on prior knowledge.

An example of the usefulness of this method is the study on hypersensitivity reactions 

with abacavir. Hypersensitivity reactions occurred relatively frequently in abacavir users, 

limiting the clinical applicability of this drug in the treatment of HIV infection. An association 

between hypersensitivity reaction in abacavir users and carriage of the major histocompat-

ibility complex class I allele HLA-B*5701 was described.[69,70] A subsequent trial confirmed that 

genetic testing before the start of abacavir therapy could prevent this toxic adverse effect.[71] 

This test is now indicated before therapy.

A more advanced method is the genome wide association (GWA) study. In these studies 

the tagging SNPs are not limited to previously selected genes but cover the whole genome. 

The advantage being that because the whole genome is studied, genes are discovered which 

were not previously associated with drug response. The large number of tested SNPs, how-

ever, increases the risk of false positive results. To avoid this, only associations with very low 

p-values (<10-6 - 10-8) are regarded as significant. These low p-values can be attained either by 

very large study populations or by studying very strong associations. Including large num-

bers of participants in studies on drug use is difficult. However, some associations between 

SNPs and drug response are very strong. An example is a study on the risk of myopathy in 

statin users. A genome wide association (GWA) study tested whether genetic variation was 

associated with the incidence of myopathy in simvastatin users.[72] A SNP in the gene coding 

for the SLCO1B1 transporter revealed to be a strong predictor of myopathy in high-dose 

simvastatin users with a p-value of 4x10-9 and an attributable risk of more than 60 percent.

In this thesis GWA analyses were not performed, although we used the results of previous 

GWA studies. The SNP rs10494366 in the NOS1AP gene was identified to be associated with 

QTc prolongation in a GWA study and was later replicated in the Rotterdam Study.[13-15] These 

GWA studies gave us better insight into how intracellular calcium levels are handled. In this 

thesis, we assessed the effects of the SNP rs10494366 on drug response in sulfonylurea and 

calcium channel blocker users.

With these approaches, new SNPs can be identified that are associated with drug response. 

However, the prediction of drug response will be much better if interaction between SNPs 
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is taken into account. Testing of these interactions in studies without a priori knowledge re-

quires very large populations, which is difficult to accomplish in pharmacogenetic research. 

The sample size which is required to test these interactions will increase by the square. A 

two-step approach is indicated. First, studies are needed that identify SNPs associated with 

drug response, irrespective of whether they are clinically relevant. Secondly, interaction with 

previously identified SNPs and interaction between other factors, such as gender and co-

prescribed drugs, should be tested.

Individualizing pharmacotherapy

With the use of the genotype to phenotype approach, candidate gene analyses and GWA 

studies, new polymorphisms will be identified that are associated with drug response. One 

of the results of this thesis is that gene-gene interactions and gene-gender interactions can 

predict drug response much better than single SNPs. With the incorporation of gene-gene or 

gene-gender interactions the explained variance increases considerably, such as the interac-

tion between OCT1 and MATE1 in metformin response and the effect of the CYP3A4*1B SNP 

in male statin users. 

Two aspects of drug response are the (absence of ) pharmacologic action, such as, in the 

case of antidiabetic drugs, the glucose lowering effect, and the occurrence of adverse reac-

tions to a drug, such as myopathy in statin users. Studies on the genotyping may help in 

reaching targets sooner. In patients treated with the oral glucose lowering drug tolbutamide 

genotyping for the CYP2C9 genotype may help to shorten the time to reach the target dose. 

Similarly, genotyping for rs622342 and rs2289669 may help in the treatment with metformin. 

This may reduce costs due to fewer visits to the physician. In patients with the rs622342 CC 

genotype and rs2289669 AA genotype, with a low initial response to metformin, alternative 

treatments such as sulfonylurea and insulin could be used instead of metformin therapy.

In chapter five, the rs622342 SNP was associated with levodopa response and survival time. 

This may indicate that a reduced response to one or more anti-Parkinson drugs could not be 

compensated for by higher prescribed doses of other drugs. If true, genotyping will not be 

helpful in the identification of the right drug, although genotyping may be useful in predict-

ing the progression of symptoms.

Chapter 4.2 focused primarily on the occurrence of adverse reactions. Adverse reactions 

during simvastatin and atorvastatin therapy were identified by using dose decreases or 

switches to other statins as a proxy. Around eight percent of the population is a carrier of the 

CYP3A4*1B variant G allele and this allele is associated with a lower incidence of adverse drug 

reactions. To be applicable in clinical practice, a polymorphism present in a small subgroup 

of the population and associated with a substantially increased risk would be more helpful. 
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In these people, the drug could be used more cautiously, for example, with lower doses, to 

avoid adverse drug reactions.

As described in chapter 3.5, 4.3 and 4.4, the rs10494366 SNP in the NOS1AP gene was 

associated with the response to sulfonylurea and calcium channel blockers (CCB). In dihy-

dropyridine CCB users and in glibenclamide users, the G allele was associated with a higher 

mortality risk, while in tolbutamide and glimepiride users the G allele was associated with a 

lower mortality risk. The use of alternative drugs in patients with the genotype associated 

with a higher mortality risk might reduce mortality rates. However, replication of the results 

and clinical testing is necessary.

To give a definitive statement as to whether genetic testing is beneficial, a prospective trial 

with an alternative treatment in those with a lower response is mandatory. For example, in 

the treatment of metformin, all incident users should be randomized to two treatment arms. 

The first group receives conventional treatment with metformin, irrespective of their geno-

type. In the second group, patients with the genotype that corresponds to a poor response to 

metformin should be treated, for example, with sulfonylurea. Differences between these two 

groups in time to achieve treatment goals could be taken as an end-point.

The potential benefits of genetic testing must be weighted against the costs, and practical 

considerations must be taken into account. The costs of genetic testing are expressed both 

as the financial costs and the efforts for the patient, physician and others involved. Current 

knowledge on the effect of genetic variation on drug response is limited to a small number 

of SNPs per drug. For example, we identified two SNPs affecting the response to metformin 

treatment. In general, metformin treatment will be preceded by glucose or HbA1c measure-

ments and blood will be available for genetic testing. With this information, a prediction can 

be made as to whether the starting dose should be lower or higher than normal and a small 

group of patients can be identified with a low response to metformin therapy. These patients 

could be treated preferentially with other oral glucose lowering drugs. 

Pharmacists in the Netherlands are obliged to intervene if they suspect prescriptions with 

too high a risk of patient harm. Better knowledge on the effect of genetic variation on drug 

response will result in a better prediction of which patients have a higher risk of harm. If a 

patient is genotyped, this information should be made available for pharmacists. Pharmacists 

should incorporate this information into the medication surveillance program, and the phar-

macist will be warned in case the patient is prescribed a high risk drug. 

In the long term, the number of SNPs that are identified and associated with drug response 

will increase. With this information, a better prediction of drug response can be made. The 

costs of genotyping will decrease in the long term, making genotyping of a large number of 

SNPs or all SNPs on the whole genome available for daily practice. In the future, information 

on relevant SNPs will be available for all the patients before start of therapy. With a logarithm, 

the recommended dose and the chance of adverse drug reactions can be calculated, thereby 

individualizing pharmacotherapy.
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The information on the effect of genetic variation should preferably be available at the time 

of prescribing. Nowadays medication surveillance is carried out at the time of dispensing. If 

the logarithm can calculate the dose and the risk of adverse drug reactions automatically 

and unambiguously, the prescribing physician can use this information instantaneously. The 

experience with medication surveillance software indicates that interpretation of the results 

is necessary and knowledge on the pharmacokinetic and pharmacodynamic properties of a 

drug essential. To make this information and knowledge available at the time of prescribing, 

a better cooperation between physician and pharmacist is required.

Conclusions

A better prediction of drug response will result in both the prevention of non-response and 

adverse reactions. In this thesis we studied the effect of both co-prescribed drugs and genetic 

variation on drug response.

DDIs are a major contributor to adverse reactions, which result in hospitalization. The ex-

posure to DDIs has doubled between 1992 and 2005 in the elderly. There is a large similarity 

between DDIs and drug-gene interactions, for example in the case of inhibition or induction 

of the CYP enzymes, suggesting that drug-gene interactions are also a major contributor to 

adverse drug reactions.

In this thesis, the CYP2C9*3 SNP (tolbutamide), the rs622342 SNP in the SLC22A1 gene 

(metformin, anti-Parkinson drugs), the rs2289669 SNP in the SLC47A1 gene (metformin), the 

rs10494366 SNP in the NOS1AP gene (sulfonylurea, CCBs), ABCB1 haplotypes (simvastatin) 

and the CYP3A4*1B SNP (simvastatin and atorvastatin) were associated with drug response. 

New approaches for the identification of SNPs were successfully used, such as the candidate 

gene analysis with tagging SNPs. These approaches may be useful in identifying new SNPs 

that are associated with drug response.

The prediction of drug response increased if the effect of interaction between two genes 

was analyzed or the effect of a single gene was analyzed in males or females separately. We 

identified a gene-gene interaction between OCT1 and MATE1. These two SNPs combined 

explain 25 percent of the variance in drug response versus five and seven percent for the 

individual SNPs, respectively. The prediction of ABCB1 haplotypes on simvastatin response 

was stronger in men than in women, indicating a gene-gender interaction. Similar interac-

tions were also suggested for ABCB1 and CYP3A4, and CYP3A4 and gender.

The results of our study may be helpful in identifying new DDIs or in identifying patients 

who are more susceptible to adverse reactions from DDIs. The results suggest that the com-

bination of OCT1 inhibitors, such as midazolam and verapamil, with anti-Parkinson drugs 

may be detrimental in the suppression of symptoms. The effects of the DDI between CYP3A4 
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inducers and simvastatin or atorvastatin may be stronger in women and in users with the 

ABCB1 3435 CT or TT genotype. 

Confirmation in other studies and randomized clinical trials is necessary before introducing 

these predictors in clinical practice. Further improvement beyond SNPs and interactions may 

be achieved by analyzing other genetic variation such as CNVs, deletions and epigenetics.

In the near future, medication surveillance will incorporate information on genetic varia-

tion, making it easier to identify prescriptions which involve too high a risk of patient harm 

and require intervention. In the long term, algorithms will be available which will calculate 

the recommended dose and risk of adverse drug reactions based on information on co-

prescribed drugs and genetic variation among other variables. These algorithms will guide 

individualized pharmacotherapy.
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Summary

The aim of drug therapy is in general to cure diseases or reduce symptoms. However, drug 

therapy is ineffective in 30 to 60 percent of the patients and, on the other hand, two to four 

percent of all hospital admissions result from adverse drug reactions. A better prediction 

which patients will not respond to drug therapy or will develop adverse drug reactions may 

avoid these events (chapter 1). In this thesis, we analyzed both the effect of co-prescribed 

drugs and genetic variation on drug response.

In chapter two, we studied the exposure to and clinical consequences of drug-drug inter-

actions (DDI). The exposure to DDIs in the elderly general population (≥70 years of age) has 

almost doubled between 1992 and 2005 from ten to nineteen percent (chapter 2.1). Also 

the exposure to potentially life threatening DDIs almost doubled from 1.5 percent in 1992 to 

2.9 percent in 2005. In the Netherlands, pharmacists are obliged to intervene prescriptions 

that imply a high risk for the patient. In chapter 2.2 and 2.3 we studied which factors were 

involved in the dispensing of prescriptions which involved a DDI with a high risk for patient 

harm. In the literature, the relationship with the prescriber, the medication surveillance 

software and pharmacy organization were described as factors associated with these dis-

pensings. In a subsequent study, we analyzed whether these factors were associated with the 

dispensing of high-risk DDIs in community pharmacies in the Netherlands. Pharmacies using 

the Euroned medication surveillance program and pharmacies that were part of a health 

care centre dispensed one high risk DDI more often. The clinical consequences of DDIs were 

studied in a literature review (chapter 2.4). About half a percent of all hospital admissions 

were due to DDIs. In the elderly this proportion was about five percent.

In chapter three we studied the effect of genetic variation on the response to drugs used 

in the treatment of type 2 diabetes mellitus. The antidiabetic drug tolbutamide, one of the 

drugs in the sulfonylurea group, is metabolized by CYP2C9. Incident tolbutamide users with a 

CYP2C9*3 variant allele were prescribed lower doses than users with the wildtype genotype, 

most likely due to a decrease in tolbutamide metabolism (chapter 3.1). In chapter 3.2 and 

3.3 the antidiabetic drug metformin was studied. Metformin is not metabolized, but genetic 

variation in transporters involved in the carriage of metformin may affect the glucose lower-

ing effect. Metformin is a substrate for the organic cation transporter 1 (OCT1), encoded by 

the SLC22A1 gene, and the multidrug and toxin extrusion 1 (MATE1) transporter, encoded 

by the SLC47A1 gene. Both OCT1 and MATE1 are located in the hepatocyte, OCT1 transports 

metformin into the hepatocyte and MATE1 transports metformin out of the hepatocyte into 

the bile. We studied whether genetic variation in these genes is associated with the change 

in HbA1c level in incident metformin users. The rs622342 minor C allele in the SLC22A1 gene 

was associated with a 0.3 % smaller reduction in HbA1c level and the rs2289669 minor A 

allele in the SLC47A1 gene with a 0.3 % larger reduction. Most likely, the rs622342 C allele 

codes for a crippled OCT1 transporter, and the rs2289669 A allele for a crippled MATE1 trans-

porter. In chapter 3.4 we describe an interaction between these polymorphisms. The effect 

of the rs2289669 polymorphism is stronger in patients with the rs622342 CC genotype than 
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in patients with the AA or AC genotype. In patients with a crippled OCT1 influx transporter 

(rs622342 CC genotype) and a normal functioning MATE1 efflux transporter (rs2289669 GG 

genotype), the MATE1 efflux transporter will outperform the OCT1 influx transporter, result-

ing in low intracellular metformin levels and a hampered glucose lowering effect. In other 

patients, OCT1 will outperform MATE1, and the glucose lowering effect will be normal.

Recently, the rs10494366 SNP in the NOS1AP gene was associated with an increased QTc 

interval. Most likely, this SNP regulates intracellular calcium levels through an effect on the in-

ward calcium channel currents. Sulfonylurea, a group of antidiabetic drugs, indirectly trigger 

the opening of voltage dependent calcium channels. In view of these similarities, we studied 

in chapter 3.5 whether this SNP is associated with response to sulfonylurea. In glibenclamide 

users, the rs10494366 TG and GG genotype are associated with a reduced response and 

higher mortality rates than in glibenclamide users with the TT genotype. In tolbutamide and 

glimepiride users these genotypes were associated with lower mortality rates.

The effects of genetic variation on two groups of cardiovascular drugs, the statins and 

calcium channel blockers (CCB), were studied in chapter four. The statins simvastatin and 

atorvastatin are substrates for the P-glycoprotein (P-gp) transporter, encoded by the ABCB1 

gene, and the CYP3A4 metabolizing enzyme. In chapter 4.1, the association between the 

1236/2677/3435 haplotypes in the ABCB1 gene and the cholesterol lowering effect of simv-

astatin was studied. In men, the TTT and CGT haplotype were associated with a 0.40 to 0.53 

mmol/l larger reduction in total and LDL cholesterol levels than the reference CGC haplotype. 

In women, no significant associations were found. In chapter 4.2 we studied whether the 

polymorphisms C1236T, G2677AT and C3435T in the ABCB1 gene and the polymorphism 

CYP3A4*1B were associated with a decrease of the prescribed dose or a switch to another 

cholesterol lowering drug during simvastatin and atorvastatin therapy, possibly indicating 

adverse drug reactions or a too strong reduction in cholesterol level. Simvastatin and ator-

vastatin users with the variant CYP3A4*1B variant G allele had a two times lower risk for a 

dose decrease or switch to another cholesterol lowering drug. No associations were found 

for the ABCB1 polymorphisms or haplotypes. Women with the CYP3A4*1B variant G allele 

had a three times lower risk than women with the CYP3A4*1B reference A allele and in the 

group of ABCB1 CT or TT genotype carriers the CYP3A4*1B variant G was associated with 2.5 

times lower risk.

As mentioned before, the rs10494366 SNP in the NOS1AP gene was associated with an 

increased QTc interval, most likely due to an effect on the inward calcium channel currents. 

CCB affect the voltage dependent calcium channels. We studied in chapter 4.3 the effect of 

this polymorphism on the incidence of diabetes mellitus in calcium channel blocker users, 

because insulin release is triggered by an influx of calcium in the pancreatic beta-cells. CCB 

users with the rs10494366 TG or GG genotype had a two times lower risk of diabetes mellitus 

than users with the TT genotype, although small numbers preclude definitive statements and 

replication of these results is indicated. In chapter 4.4 we studied the effect of the rs10494366 
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SNP on cardiovascular mortality in calcium channel blocker users. Dihydropyridine CCB users 

with the TG genotype had a 3.5 times higher cardiovascular mortality risk and users with the 

GG genotype a 6 times higher cardiovascular mortality risk than users with the TT genotype. 

In the non-dihydropyridine CCB users, no associations with cardiovascular mortality were 

found. Also in this study, replication of the results is indicated.

In chapter 3.2 we found that the rs622342 polymorphism in the SLC22A1 gene, coding for 

the OCT1 transporter is associated with metformin response. Also the anti-Parkinson drugs 

pramipexole, amantadine and, possibly, levodopa are substrates for OCT1. The rs622342 vari-

ant C allele was associated with higher prescribed doses of anti-Parkinson drugs, especially 

amantadine and selegiline, and a shorter survival time (chapter 5.1). After start of levodopa 

therapy, patients with the CC genotype had a two times higher mortality risk and had lived 

on average 2.5 years shorter than patients with the AA genotype.

In the general discussion (chapter 6), the results are summarized and discussed. Apart 

from the identification of polymorphisms not previously associated with drug response, the 

most important result is that the interaction between individual polymorphisms, between 

polymorphisms and gender and, possibly, between polymorphism and co-prescribed drugs, 

do add substantially to the prediction in drug response. Whether genotyping is useful in indi-

vidualizing pharmacotherapy depends on the possibility to prevent either adverse drug reac-

tions or increased costs due to ineffective therapy, weighed against the costs of genotyping.





Chapter 7.2. 
Samenvatting voor niet ingewijden





237

Samenvatting voor niet ingewijden

Een behandeling met geneesmiddelen heeft vaak als doel om een ziekte te genezen of om 

symptomen te onderdrukken. In veel gevallen zullen deze doelen niet gehaald worden. Ener-

zijds is dertig tot zestig procent van de behandelingen niet effectief, en anderzijds worden 

veel behandelingen gestopt in verband met bijwerkingen. Een groot aantal factoren bepaalt 

bij wie een behandeling effectief is, en bij wie bijwerkingen zullen optreden (hoofdstuk 1). 

Hoe meer men weet over deze factoren, des te beter men dit kan voorspellen. Deze kennis 

kan in de praktijk gebruikt worden om geneesmiddelen efficiënter en veiliger in te zetten. In 

dit proefschrift kijken we naar twee factoren, namelijk de invloed van geneesmiddelen die 

gelijktijdig worden gebruikt en de invloed van erfelijke factoren.

Geneesmiddelen kunnen de werking van andere geneesmiddelen beïnvloeden, zoge-

naamde geneesmiddel-geneesmiddel interacties. Dit kan bijvoorbeeld gebeuren als genees-

middel A de afbraak van geneesmiddel B remt of juist versnelt, waardoor de concentraties 

in het bloed van geneesmiddel B respectievelijk hoger en lager zullen zijn indien beide 

geneesmiddelen tegelijkertijd worden gebruikt. Hogere concentraties kunnen leiden tot 

bijwerkingen, en lagere concentraties tot een verminderde effectiviteit.

Ook erfelijke factoren kunnen van invloed zijn op de werking van geneesmiddelen. De 

erfelijke informatie is opgeslagen in het DNA. Het DNA codeert voor de opbouw van eiwitten, 

waaronder de eiwitten die betrokken zijn bij de afbraak van geneesmiddelen (enzymen), en 

de eiwitten die een pompfunctie hebben en geneesmiddelen in en uit cellen transporteren. 

Kleine veranderingen in het DNA, zogenaamde polymorfismen, kunnen leiden tot eiwitten 

die minder goed of juist beter werken. In het geval van enzymen die geneesmiddelen afbre-

ken, kunnen polymorfismen leiden tot een versnelde of vertraagde afbraak van geneesmid-

delen, soortgelijk als met de bovengenoemde geneesmiddel-geneesmiddel interacties. Het 

gevolg van veranderingen in de werking van pompen is een verhoging of een verlaging van 

de geneesmiddelconcentratie in de cellen van het betrokken orgaan, en dit kan leiden tot 

een veranderde effectiviteit of tot het ontstaan van bijwerkingen.

In hoofdstuk 2 hebben we onderzoek gedaan naar de blootstelling aan en de gevolgen 

van geneesmiddel-geneesmiddel interacties, combinaties van geneesmiddelen die elkaars 

werking beïnvloeden. De blootstelling aan geneesmiddel-geneesmiddel interacties, of 

kortweg interacties, in de bevolking van 70 jaar en ouder is bijna verdubbeld tussen 1992 

en 2005. In 1992 was tien procent van deze groep blootgesteld aan een interactie tegen 

negentien procent in 2005. Hierbij zijn ook alle interacties inbegrepen die maar een kleine 

invloed en daardoor weinig klinische relevantie hebben. In dezelfde periode steeg de bloot-

stelling aan potentieel levensbedreigende interacties van 1,5 naar 2,9 procent. Hoewel deze 

percentages een groot gevaar suggereren, zijn de meeste risico’s beperkt als de richtlijnen 

worden gevolgd. Aan de hand van eerder verschenen studies onderzochten we welk deel 

van de ziekenhuisopnamen wordt veroorzaakt door interacties. Bij naar schatting een half 

procent van alle ziekenhuisopnamen was een interactie de oorzaak of medeoorzaak van de 
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opname. Bij ouderen van boven de 65 jaar, werd vijf procent van de ziekenhuisopnamen 

(mede) veroorzaakt door interacties.

In Nederland hebben apothekers de taak om het afleveren van interacties, die een hoog 

risico met zich meebrengen, te voorkomen. In dit hoofdstuk hebben we onderzocht welke 

factoren invloed hebben op het goed uitvoeren van deze taak. Apotheken die gebruik ma-

ken van het computersysteem Euroned, leveren interacties met een hoog risico vaker af dan 

apotheken die één van de andere systemen gebruiken. Ook apotheken die onderdeel zijn 

van een gezondheidscentrum leveren deze interacties vaker af.

In hoofdstuk 3 hebben we gekeken welke invloed erfelijke factoren hebben op de werking 

van geneesmiddelen voor de behandeling van type II suikerziekte (diabetes mellitus type II, 

voorheen ook bekend als ouderdomsdiabetes). Tolbutamide behoort tot de groep van sul-

fonylureum derivaten en is een geneesmiddel dat wordt gebruikt voor de behandeling van 

type II suikerziekte. Tolbutamide wordt in het lichaam afgebroken door het enzym CYP2C9. 

Sommige mensen hebben door een verandering in het DNA een minder goed functionerend 

CYP2C9 enzym, en de lever van deze mensen breekt tolbutamide minder goed af. We vonden 

dat deze mensen inderdaad lagere doseringen tolbutamide kregen voorgeschreven dan 

mensen met een normaal werkend CYP2C9 enzym.

We hebben ook het geneesmiddel metformine onderzocht. Metformine is het meest 

gebruikte geneesmiddel voor de behandeling van type II suikerziekte, en zorgt ervoor dat 

de aanmaak van glucose in de levercellen wordt geremd zodat de glucose spiegels in het 

bloed dalen. Voor een goede werking zijn voldoende hoge concentraties van metformine 

in de levercel nodig. Metformine wordt door de pomp OCT1 van het bloed naar de levercel 

getransporteerd, en door de pomp MATE1 de levercel uit naar de gal. Al eerder was beschre-

ven, dat veranderingen in het voor OCT1 coderende DNA, zorgen voor een minder goed 

functionerende OCT1 pomp. Wij vonden een andere, niet eerder beschreven verandering in 

het DNA die leidt tot het minder goed functioneren van de OCT1 pomp. In personen met een 

slecht functionerende OCT1 pomp, die met metformine startten, daalde de glucose spiegel 

nauwelijks, terwijl in patiënten met een goed functionerende OCT1 pomp de glucose spiegel 

wel duidelijk daalde.

We waren de eersten die beschreven dat ook veranderingen in het voor MATE1 coderende 

DNA invloed hebben op het glucose verlagend effect van metformine. MATE1 is de pomp 

die metformine uit de levercel naar de gal transporteert. Bij patiënten die startten met met-

formine, leidde een slecht functionerende MATE1 pomp tot een sterker glucose verlagend 

effect dan een goed functionerende MATE1 pomp. De verschillen tussen metformine gebrui-

kers in het glucose verlagend effect werd nog beter verklaard als naar beide pompen samen 

werd gekeken. Op basis van het functioneren van beide pompen kunnen we de bevolking 

indelen in negen groepen met een aflopende respons op metformine. Bij acht procent van 

de mensen, met een goed functionerende OCT1 pomp en een slecht functionerende MATE1 

pomp is metformine erg effectief in het verlagen van de glucose spiegels. Daar staat tegen-
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over dat ongeveer vijf procent van de bevolking een slecht functionerende OCT1 pomp 

en een goed functionerende MATE1 pomp heeft, waardoor metformine slecht de levercel 

wordt ingepompt en goed de levercel uit. Bij deze mensen geeft metformine een minimale 

verlaging van de glucose spiegels. Het is de vraag of het zinvol is om deze groep mensen met 

metformine te behandelen.

Het DNA dat codeert voor het eiwit NOS1AP speelt een belangrijke rol in de calciumhuis-

houding van cellen. Calcium zorgt voor een groot aantal celfuncties, zoals het samentrekken 

van de cellen in de hartspier, en het afgeven van insuline door alvleeskliercellen. Eerder 

was aangetoond dat een verandering in het DNA, dat codeert voor NOS1AP, kan leiden tot 

hartritmestoornissen. We onderzochten of dezelfde verandering ook invloed heeft op de 

effectiviteit van sulfonylureum derivaten, die worden gebruikt voor de behandeling van type 

II suikerziekte. Sulfonylureum derivaten zorgen voor extra afgifte van insuline door een effect 

op de calciumhuishouding in de alvleeskliercellen. Voor gebruikers van glibenclamide, één 

van de sulfonylureum derivaten, vonden we dat mensen met de verandering in het DNA 

dat codeert voor NOS1AP, minder respons hebben op glibenclamide en een hogere kans 

om te overlijden. Voor twee andere sulfonylureum derivaten, glimepiride en het al eerder 

beschreven tolbutamide, vonden we dat deze verandering leidt tot een lagere kans om te 

overlijden, omgekeerd aan het effect van glibenclamide. Sulfonylureum derivaten verschillen 

in de invloed die ze hebben op het hart, en deze verschillen kunnen mogelijk het omge-

keerde effect op sterfte verklaren.

In hoofdstuk 4 van dit proefschrift hebben we gekeken naar de invloed van erfelijke fac-

toren op de werking van geneesmiddelen, die voor de behandeling van hart- en vaatziekten 

worden gebruikt. De calciumkanaal blokkers worden onder andere gebruikt voor de behan-

deling van hoge bloeddruk en pijn op de borst. De geneesmiddelen in deze groep remmen 

de instroom van calcium in de cellen van het hart en de bloedvaten en hebben dus invloed 

op de calciumhuishouding. We onderzochten of de hierboven genoemde verandering in het 

DNA, dat codeert voor NOS1AP, ook invloed heeft op het effect van calciumkanaal blokkers. 

We vonden dat gebruikers van calciumkanaal blokkers met deze verandering in het DNA 

een kleinere kans hebben op het ontwikkelen van suikerziekte en een grotere kans om te 

overlijden.

Statinen zijn geneesmiddelen, die de cholesterol spiegels verlagen en daarmee het risico 

op hart- en vaatziekten verkleinen. We onderzochten de effecten van twee statinen, namelijk 

simvastatine en atorvastatine. Deze statinen worden in de levercellen afgebroken door het 

CYP3A4 enzym. In onder andere de levercellen, bevindt zich ook de P-gp pomp, die deze 

statinen de cel uitpompt. Er zijn veranderingen in het voor de P-gp pomp coderende DNA 

bekend, die invloed hebben op de effectiviteit van deze pomp. We vonden dat deze ver-

anderingen ook invloed hebben op het cholesterolverlagend effect van simvastatine. Het 

is bekend dat in mannelijke levercellen de P-gp pomp meer voorkomt dan in vrouwelijke 

levercellen. In ons onderzoek was het effect inderdaad sterker in mannen dan in vrouwen.
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We hebben ook de invloed van een verandering in het DNA dat codeert voor CYP3A4 on-

derzocht op het optreden van bijwerkingen tijdens het gebruik van simvastatine en atorva-

statine. Deze verandering zorgt ervoor dat het CYP3A4 enzym sterker gaat werken, waardoor 

de concentraties van deze statinen in het bloed lager worden. We vonden dat mensen met 

deze verandering in het DNA, een twee keer kleinere kans hebben op bijwerkingen. Dit ef-

fect werd sterker als we ook keken naar de P-gp pomp. Mensen met een sterker werkend 

CYP3A4 enzym en een slechter werkende P-gp pomp, hadden een zeven keer kleinere kans 

op bijwerkingen dan mensen met een normaal werkend CYP3A4 enzym. Omdat de P-gp 

pomp in deze mensen slechter werkt en dus minder statine uit de levercel pompt, zal er 

meer statine beschikbaar zijn voor het CYP3A4 enzym om af te breken. Daarnaast werkt het 

CYP3A4 enzym in deze mensen beter, waardoor simvastatine en atorvastatine zeer snel wor-

den afgebroken en weinig bijwerkingen zullen veroorzaken. Onduidelijk is of in deze groep 

mensen het cholesterolverlagend effect ook verminderd is.

Behalve metformine, worden ook andere geneesmiddelen door de OCT1 pomp getranspor-

teerd, waaronder geneesmiddelen die gebruikt worden voor de behandeling van de ziekte 

van Parkinson. In hoofdstuk 5 hebben we de invloed onderzocht van de eerder beschreven 

verandering in het DNA dat codeert voor de OCT1 pomp, op de geneesmiddelen die worden 

gebruikt voor de behandeling van de ziekte van Parkinson. We vonden dat mensen met deze 

verandering in het DNA een minder goede respons hebben op deze geneesmiddelen. We 

onderzochten daarnaast de tijd tussen starten met geneesmiddelbehandeling en het tijdstip 

van overlijden. Parkinson patiënten met deze verandering in het DNA leefden gemiddeld 2,5 

jaar korter dan patiënten zonder deze verandering.

In dit proefschrift hebben we de invloed van geneesmiddel-geneesmiddel interacties 

en de invloed van erfelijke factoren op geneesmiddel respons onderzocht. Het blijkt dat 

geneesmiddel-geneesmiddel interacties met name bij ouderen een belangrijke oorzaak 

zijn van ziekenhuisopnamen. We hebben een aantal nieuwe en niet eerder beschreven as-

sociaties gevonden, zoals de associaties tussen het DNA dat codeert voor NOS1AP en het 

effect van calciumkanaal blokkers, MATE1 en het glucose verlagend effect van metformine en 

OCT1 en de werking van geneesmiddelen voor de behandeling van de ziekte van Parkinson. 

Daarnaast hebben we een aantal associaties bevestigd, namelijk die tussen veranderingen 

in het voor CYP2C9 en P-gp coderende DNA, en het effect van respectievelijk tolbutamide 

en statinen. Deze associaties kunnen helpen bij het individualiseren van farmacotherapie, 

omdat mogelijk bijwerkingen en ineffectief gebruik van geneesmiddelen voorspeld en 

daarmee voorkomen kunnen worden (hoofdstuk 6). Daarnaast is een belangrijke uitkomst 

dat niet alleen factoren op zich een belangrijke rol spelen, maar dat effectiviteit van genees-

middelen en het ontstaan van bijwerkingen veel beter voorspeld kunnen worden als naar de 

samenhang tussen factoren wordt gekeken. Zo hangt de effectiviteit van metformine samen 

met zowel veranderingen in het DNA dat codeert voor de OCT1 pomp als veranderingen in 

het DNA dat codeert voor de MATE1 pomp. De werking van simvastatine hangt samen met 
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geslacht en veranderingen in het DNA dat codeert voor de P-gp pomp en het enzym CYP3A4. 

Het is te verwachten dat ook de samenhang met gelijktijdig gebruikte geneesmiddelen een 

belangrijke rol speelt.
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ABC	 ATP binding cassette

ACE	 angiotensin converting enzyme

ADE	 adverse drug event

ADR	 adverse drug reaction

ANOVA	 analysis of variance

ATC	 anatomical therapeutical chemical

ATP	 adenosine-5’-triphosphate

AUC	 area under curve

BMI	 body-mass index

Ca	 calcium

CCB	 calcium channel blocker

CCKL	 coördinatie commissie ter bevordering van de kwaliteitsbeheersing op het 

gebied van laboratoriumonderzoek in de gezondheidszorg

CI	 confidence interval

CNV	 copy number variation

COX	 cyclo-oxygenase

COXIB	 cyclo-oxygenase 2 selective inhibitor

CYP	 cytochrome P450

DDD	 defined daily doses

DDI	 drug-drug interaction

DNA	 deoxyribonucleic acid

DRA	 drug related admission

ECG	 electrocardiogram

ED	 emergency department

eGFR	 estimated glomerular filtration rate

FTE	 full-time equivalent

GI	 gastro-intestinal

GP	 general practitioner

GWA	 genome wide association

HbA1c	 glycosylated hemoglobin

HERG	 human ether-a-go-go related gene

HIV	 human immunodeficiency virus

HLA	 human leukocyte antigen

HPLC	 high-performance / pressure liquid chromatography

HR	 hazard ratio

HWE	 hardy-weinberg equilibrium

ICD	 international classification of diseases
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IHC	 inspectorate for health care

IPA	 international pharmaceutical abstracts

kbp	 kilobasepairs

LDL	 low-density lipoprotein

MAF	 minor allele frequency

MATE	 multidrug and toxin extrusion

MDC	 medisch diagnostisch centrum

MDR	 multidrug resistance

MeSH	 medical subject heading

NA	 not available

nNOS	 neuronal nitric oxide synthase

NO	 nitric oxide

NOS	 nitric oxide synthase

NOS1AP	 nitric oxide synthase 1 adaptor protein

NSAID	 non-steroid anti-inflammatory drug

OCT	 organic cation transporter

OR	 odds ratio

PCR	 polymerase chain reaction

P-gp	 P-glycoprotein

RAAS	 renin-angiotensin-aldosterone system

RALES	 randomized aldactone evaluation study

Rc	 slope

SAM	 S-adenosyl methionine

SD	 standard deviation

SLC	 solute carrier

SNP	 single nucleotide polymorphism

SR	 sarcoplasmic reticulum

SSRI	 selective serotonin reuptake inhibitor

STAR	 stichting trombosedienst en artsenlaboratorium rijnmond

SUR	 sulfonylurea receptor

TF	 therapeutic failure

UGDP	 university group diabetes program

TPMT	 thiopurine methyltransferase

UGT	 UDP glucoronosyltransferases

UKPDS	 united kingdom prospective diabetes study

WHO	 world health organization
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Drie jaar werk zit er tussen de kaften van dit boekje, waarbij de eerste stappen al zeven jaar 

geleden gezet zijn. Veel mensen hebben mij terzijde gestaan tijdens mijn promotieonder-

zoek, en deze mensen ben ik veel dank verschuldigd.

Veel dank gaat uit naar mijn promotoren, Prof. dr. Bruno Stricker en Prof. dr. Arnold Vulto. 

Bruno, je hebt me begeleid vanaf mijn afstudeeronderzoek bij het RIVM. Ik waardeer je grote 

mate van betrokkenheid, en de vrijheid die je me hebt gegeven om mijn eigen weg te gaan. 

De frequente besprekingen die we hadden waren een stimulans om verder te gaan. Je hebt 

me altijd goed geholpen op de momenten dat het nodig was, en je adviezen waren vaak 

even simpel als doeltreffend. Daarnaast kon ik alle mogelijke ideeën inbrengen en heb ik ook 

altijd de mogelijkheden gekregen om mijn eigen ideeën uit te voeren.

Arnold, je hebt mijn onderzoek in een klinisch perspectief kunnen zetten. Wetenschappelijk 

onderzoek focust soms op p-waarden en betrouwbaarheidsintervallen maar negeert daar-

mee vaak de betekenis voor de individuele patiënt. De combinatie van enerzijds onderzoek 

en anderzijds klinisch werk is in mijn ogen een vruchtbare tijd geweest.

Veel dank ben ik ook verschuldigd aan mijn copromotor, Dr. Loes Visser. Loes, je kon altijd 

goed tegenwicht bieden aan ‘de hoge heren’ door op de rem trappen als ze met onmogelijke 

ideeën kwamen of anderszins tot last waren. Dank ook voor het nauwkeurig lezen van de 

manuscripten en je gedetailleerde commentaar.

Prof. dr. André Uitterlinden, Prof. dr. Ton de Boer en Prof. dr. Paul Smits wil ik bedanken voor 

hun bereidheid om zitting te nemen in de kleine commissie en voor de inhoudelijke beoor-

deling van dit proefschrift. 

In een groot aantal hoofdstukken heb ik gebruik mogen maken van de gegevens van de ERGO 

studie (‘Rotterdam Study’). De ERGO studie en daarmee de hoofdstukken in dit proefschrift 

waren niet mogelijk zonder de deelnemers die in de wijk Ommoord in Rotterdam wonen. 

De deelnemers van de ERGO studie, medewerkers, huisartsen, openbaar apothekers en de 

Stichting Trombosedienst en Artsenlaboratorium Rijnmond ben ik zeer erkentelijk voor hun 

bijdrage.

Prof. dr. Bert Hofman, bedankt dat ik, samen met veel andere promovendi, gebruik heb mogen 

maken van de data van de ERGO studie. Hoewel farmacogenetica niet tot de primaire onder-

zoeksgebieden van de ERGO studie behoorde, zijn de data uiterst bruikbaar voor dit onderzoek.
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Prof. dr. André Uitterlinden, dank voor de genome-wide genotyperingen van de ERGO 

deelnemers, die ik heb mogen gebruiken. Deze data waren voor mij de slagroom op de 

taart en hebben veel nieuw onderzoek in dit proefschrift mogelijk gemaakt. Het eind van de 

mogelijkheden op farmacogenetisch gebied is nog lang niet in zicht.
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