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ABSTRACT. SupposeX1, X2, . . . are independent subexponential ran-
dom variables with partial sumsSn. We show that if the pairwise sums
of theXi’s are subexponential, thenSn is subexponential andP (Sn >
x) ∼ ∑n

1 P (Xi > x) (x →∞). The result is applied to give conditions
under whichP (

∑∞
1 ciXi > x) ∼ ∑∞

1 P (ciXi > x) asx → ∞, where
c1, c2, . . . are constants such that

∑∞
1 ciXi is a.s. convergent. Asymp-

totic tail probabilities for bivariate linear combinations of subexponential
random variables are given. These results are applied to explain the joint
movements of the stocks of reinsurers. Portfolio investment and retro-
cession practices in the reinsurance industry, for reasons of diversifica-
tion, exposes different reinsurers to the same risks on both sides of their
balance sheets. Assuming, in line with the industry practice that the risk
drivers follow subexponential distributions, we derive (under mild condi-
tions) when the reinsurer’s equity returns are asymptotically dependent,
exposing the industry to systemic risk.
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1. INTRODUCTION AND MAIN RESULT

The spate of very large insurance claims coupled with the recent creeping
stock market decline has eroded the financial wealth of many reinsurance
companies. In this paper we provide probabilistic arguments as to why
the reinsurance industry as a whole fared so badly. The total returns on
the assets and liabilities, and hence the equity, of reinsurers can be written
as a weighted sum of returns on the individual exposures and investments.
To investigate the interdependencies between different reinsurance compa-
nies we therefore investigate the joint behavior of different weighted sums
of random variables which represent the returns on individual exposures
(positive or negative). This joint behavior determines the exposure of the
reinsurance industry to systemic risk. In line with much of the empirical ev-
idence for the non-life insurance business, we focus on the joint behavior of
the individual risk drivers with heavy tailed (subexponential) tail behavior.

The asymptotic behavior of the tail ofZ =
∑

ciXi for i.i.d. random
variablesXi (i = 1, 2, . . .) with d.f. F has received considerable attention
over time. The case of the normal distribution is well known and has a long
history dating back to the start of the field. Early results for the heavy tailed
situation use regular variation. In caseP (|Xi| > x) is regularly varying
with index−α (α > 0), typical results are given in the form

lim
x→∞

P (|Z| > x)

P (|Xi| > x)
=

∑
|ci|α

under different conditions on the coefficients. The first result in this direc-
tion in caseα ≤ 1 is given by Cline [5]. See also Resnick [35], Lemma
4.24 for a proof which does not use Tauberian results. His result was sub-
sequently extended by Kokoszka and Taqqu ([24], Theorem 2.2) to the case
1 < α < 2. Recently Mikosch and Samorodnitsky [30] used conditions on
the coefficients which are close to best possible

∑
c2
i < ∞ for α > 2,∑|ci|α−ε < ∞, for someε > 0 for α ≤ 2

(1.1)

and assumed that, ifα > 1, EX = 0. In that case under the additional tail
balance condition

(1.2) F (x) ∼ pP (|Xi| > x), F (−x) ∼ qP (|Xi| > x), x →∞,

wherep ∈ (0, 1], q = 1− p, it follows that asx →∞
P (Z > x)

P (|Xi| > x)
→

∑
i

|ci|α[pIci>0 + qIci<0].
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In contrast to the situation with a regularly varying tail, the asymptotic
behaviour of the tail ofZ in the situation where the innovations have a bal-
anced and rapidly varying tail depends only on the coefficientsci for which
|ci| is maximal. In particular, ifF is subexponential and in the domain of at-
traction of the Gumbel distribution, Davis and Resnick [9] show that under
the conditions

(1.3)
∑

|ci|δ < ∞ for someδ ∈ (0, 1) and max
i
|ci| = 1,

and the tail balance condition (1.2), that

P (Z > x) ∼ (pk+ + qk−)P (|X| > x) (x →∞),

wherek+ =card{i : ci = 1}, k− =card{i : ci = −1}.
In this paper we give a general formulation of the above mentioned results

for the class of random variables with a subexponential distribution. Let
X1, X2 be independent and identically distributed random variables with
distribution functionF with F (x) < 1 for all x. The distribution is subex-
ponential (F ∈ S ) if

(1.4) P (X1 + X2 > x) ∼ 2P (X1 > x) asx →∞.

The theory of subexponential distributions is by now well established and
its relevance is obvious from applications in various areas of applied prob-
ability. For a recent review of applications of subexponentiality in different
areas, the reader is referred to the book by Embrechts, Klüppelberg and
Mikosch [13] or, more recently, Asmussen [1].

The classS is related to several other classes of functions. A well known
result is the inclusionS ⊂ L , whereL is the class of long tailed distri-
bution functionsF satisfyingF (x + a)/F (x) → 1 asx →∞ (for a ∈ R),
whereF (x) := P (X > x). In this case convergence is uniform on compact
subsets ofR. We will also use the notationL for functionsφ satisfying
φ(x + a) ∼ φ(x).

There is a connection with functions of dominated variation as well: the
inclusionL ∩D ⊂ S (see [18]) holds. We writeF ∈ D to denote that the
tail functionF is of dominated variation, i.e. iflim supx→∞ F (ax)/F (x) <
∞ for a < 1.

It follows from the above inclusion that the classRV of distributions
with a regularly varying tail functionF is a subset ofS . A different proof
of this inclusion is given in Feller [15]. Apart from distributions with a
regularly varying tail like the Pareto, Student’st, the loggamma and the
F distribution, other examples of subexponential distributions include the
Weibull distributionF (x) = c exp(−xα) with α < 1 and the lognormal
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distribution. Note that it is no restriction to set the scale parameter to be1
(see the beginning of section 2).

It is well-known that the sum of two independent, not identically dis-
tributed subexponential random variables is not necessarily subexponential.
See ([25]) for a counterexample. We prove (see Theorem 3 below) that
if pairwise sums of independent random variables have a subexponential
distribution, then the partial sums have a subexponential distribution. This
result is a tool in proving our main result, Theorem 1 below, which extends
the above mentioned results on weighted sums of regularly varying random
variables. It turns out that neither the regular (rapid) variation nor tail bal-
ance assumption is essential in order to obtain the result. The assumption
of regular variation of the tail function is replaced with subexponentiality
plus a one-sided growth condition. Although the assumption of balanced
tails is weakened significantly, it is nevertheless possible to give an asymp-
totic estimate of the right tailP (Z > x) separately. Because of the weak
assumptions on tail balance, we need to make separate assumptions on the
left-hand tail.

It should be observed that some additional assumptions like (1.5) be-
low andb1-b3are necessary. This follows from Leslie’s result [25]: take
X1, X2 i.i.d. random variables such that the d.f. ofX1 and−X2 are subex-
ponential, butX1−X2 does not have a subexponential distribution function.
Lemma 5 below shows thatX1 is not max-sum equivalent with−X2, hence
limx→∞ P (X1 − X2 > x)/(P (X1 > x) + P (−X2 > x)) 6= 1 and (1.6)
below does not hold.

In order to study the asymptotic behaviour of the tail ofZ under the
assumption of subexponentiality of the underlying random variables, we
need to extend the definition ofS to the real line. The defining relation
is again (1.4). Subexponential distributions on the real line were studied
before by Willekens [40], Omey [31] and Geluk [16].

We use the notationa∨b = max(a, b), a∧b = min(a, b) and in caseX,Y
are independent random variables with d.f.F,G, we writeF ∗G for the d.f.
of the convolutionX + Y andF ∗G(x) = P (X + Y > x). Moreover
we writef(x) ³ g(x) to denotef(x) = O(g(x)) andg(x) = O(f(x)) as
x →∞.

For a random variableX with d.f. F , we use the notationF+ (F−) for
the distribution function of the random variableX+ := X ∨ 0 (X− :=
−(X ∧ 0)). Unless mentioned otherwiseF (G) denotes the d.f. of the
random variableX (Y ).
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Theorem 1. SupposeX, X1, X2, . . . are i.i.d. random variables with d.f.
F ∈ S such that there existα, β with
(1.5)

λ−β ≤ lim inf
x→∞

P (|X| > λx)

P (|X| > x)
≤ lim sup

x→∞

P (|X| > λx)

P (|X| > x)
≤ λ−α for 0 < λ ≤ 1.

Assume that(ci)i≥1 is a sequence such thatci > 0 for somei ≥ 1 and
∑

c2
i < ∞ for β > 2,

∑|ci|β < ∞ for β ≤ 2.

Moreover assume that the left-hand tail d.f.F− satisfies one of the con-
ditions

b1 F− ∈ L and P (X < −cx) = O(P (X > x)) (x → ∞) for all
c > 0.

b2 P (X < −cx) = o(P (X > x)) (x →∞) for all c > 0.
b3 F− ∈ L andP (X > x) ³ P (X < −x) asx →∞.

Then asx →∞

(1.6) P

( ∞∑
i=1

ciXi > x

)
∼

∞∑
i=1

P (ciXi > x).

Note that the assumptions of the theorem imply that not onlyF is subex-
ponential, but the distribution function of|X| is subexponential as well,
being of extended regular variation. See e.g. Cline and Hsing [7] or Rolski
et al. [36].

Observe that ifP (|X| > x) is regularly varying with exponent−α and
the tail balance condition (1.2) holds, the assumptions of the theorem are
satisfied and the above mentioned result by Mikosch and Samorodnitsky
[30] follows from theorem 1.

In order to give the proof of Theorem 1, a closure result on sums of
independent subexponential random variables is used (Theorem 3). The
theorem extends earlier results on the tail probability of sums. In section 3
the proof of theorem 1 is given.

In sections 4 and 5 we show how the technique developed in previous
sections can be applied to insurance economics. Reinsurance companies
reinsure parts of the insurance contracts written by insurance companies
and also reinsure other reinsurance contracts, which is the business of retro-
cession. In the proportional treaty reinsurance business, like the popular
quota-share contract, the reinsurer shares proportionally in the premiums
and the claims of the ceding company. It follows that different reinsurance
companies hold different proportions of the same underlying risks. The
motive for spreading the risk over multiple companies is the diversification
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of risk, i.e. the exploitation of the law of large numbers (assuming that
the first moment exists; note that most insurance and reinsurance treaties
are capped). On the asset side of the balance sheet of reinsurance compa-
nies one usually finds large diversified portfolios of bond and equity invest-
ments. Again, the motivation for holding a diversified portfolio is to reduce
the risk. This practice implies that many reinsurance companies hold stakes
in the same companies. Under the proportional treaty business, portfolios of
reinsurance treaties are by nature linear in the underlying risks; investment
portfolios are by nature linear in the invested assets. Thus the asset and
liability sides of the reinsurer’s balance sheet can be represented as linear
combinations of underlying risks.

In the empirical finance literature it is now generally accepted that sharp
asset price fluctuations tend to occur more often than predicted on the basis
of the popular normal distribution. Since the seminal work by Mandelbrot
[29], numerous studies have estimated heavy tailed distribution functions
like the stable, Student-t, and other subexponential distributions. The rel-
ative occurrence of stock market extremes has by far received the most at-
tention, see e.g. Blattberg and Gonedes [3], Jansen and de Vries [21], Lux
[28], Longin [26] or Jondeau and Rockinger [22]; bond market extremes
have been considered in de Haan et al. [19].

Similarly, in the empirical literature on non-life insurance claims, the
heavy tail feature has long been recognized. See for example, Pfeifer [32],
Embrechts et al.[13] and Reiss and Thomas [34]. This empirical fact has
been integrated with ruin theory and has changed the classical Cramer the-
ory for insurance premia. This is well documented in Embrechts et al. [13].

In this paper we consider the class of subexponential distributions to cap-
ture the heavy tail feature. Assuming that the distributions of the underlying
risk drivers are subexponential is common for non-life insurance claims,
and fits nicely to the empirical observation of heavier tails than the normal.
The same observation applies to equity returns. Combine this feature with
the linearity of the portfolios of reinsurers balance sheets. Given that both
investment returns as well as the claims are subexponential distributed, we
investigate when gross returns of the (re)insurance companies are subexpo-
nentially distributed. The additivity property foolows from the linearity of
the portfolios combined with some natural (economic) conditions. Subse-
quently we investigate the implications for the entire industry. It is shown
that the (mis)fortunes of different reinsurance companies become asymptot-
ically dependent. Only if reinsurance companies would hold non-diversified
unique investment portfolios and reinsurance treaties, so that each reinsurer
holds exposures that are not held by others, the asymptotic dependence dis-
appears. The sector is therefore subject to systemic risk. In effect, one might
loosely say that for the extreme risks, the sector acts as a single company.
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The flip side is that for the smaller risks, the diversification is beneficial,
since there the industry will experience less solvency problems due to the
smearing out of these risks across the sector. Together these facts and fea-
tures explain why the reinsurance industry as a whole was badly affected
by the 2001-2003 stock market decline.

The above implies that the equity returns of different reinsurance com-
panies should exhibit dependence even in extreme cases. We provide some
graphical evidence for this reduced form implication.
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FIGURE 1. Daily stock returns of Munich Re and Swiss Re.

The crossplot in Figure 1 contains the daily logarithmic stock return of the
two top reinsurance companies Munich RE and Swiss RE over the period
1990-2002. The returns of the two reinsurers are clearly not independent,
the correlation coefficient isr = 0.371. One notices a number of outliers,
which sometimes appear to occur jointly.

To put this crossplot into perspective, we take the estimated correlation
coefficient together with the means and variances of the two marginal dis-
tributions and generate an equal amount of bivariate normally distributed
pseudo random numbers. The sample is shown in the next figure using the
same scale.
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FIGURE 2. A sample from the bivariate normal distribution.

The plots differ markedly in the extreme North-East and South-West cor-
ners. The true data contain many more outliers, which moreover are repeat-
edly located closer to the diagonal than the axes, and thus appear to occur
jointly. The correlation cum normal assumption does not adequately cap-
ture the dependency in the tail areas (of the distribution) observed in the
first crossplot.

The observed discrepancy between the two figures is not atypical for as-
set markets in general. The empirical literature has concluded the concept
of normal based correlation does not adequately capture the dependency
structure. See e.g. Longin and Solnik [27], Hartmann et al. [20] and Poon
et al. [33].

The fat tail feature reveals that extreme returns are more likely than one
would expect in a normally distributed world. However, in order to assess
the extremal effect on portfolios and global financial stability one also needs
to evaluate the potential for big collapses in nominal asset values to strike
simultaneously. A recent strand in the spillover literature circumvents the
use of correlations and directly focuses on dependence structure of mul-
tivariate distributions in the tails by using multivariate statistical extreme
value analysis.
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Analyses on foreign exchange data have recently been carried out by
Starica [38] and for major stock markets by Straetmans [39], Longin and
Solnik [27], Poon et al. [33] and Hartmann et al. [20]. The latter three
papers find evidence for asset markets to be asymptotically dependent, but
also identify cases where these markets are asymptotically independent.

Thus, fat tails and tail dependence for asset returns have by now been
documented in the empirical finance and insurance literature. To the best of
our knowledge, however, how the marginal tail thickness of the asset returns
relates theoretically to the multivariate tail dependence between reinsurance
asset return series has not been dealt with before.

2. TAIL PROBABILITIES FOR WEIGHTED SUMS OF NON-NEGATIVE

RANDOM VARIABLES

Unless mentioned otherwise, the random variables in this section are a.s.
non-negative.

A fundamental role in the proofs of our results is played by the notion
of max-sum equivalence, which was introduced in Embrechts and Goldie
([11]).

Definition 1. F1 andF2 are said to be max-sum equivalent, writtenF1 ∼M

F2 if

(2.1) F1 ∗ F2(x) ∼ F 1(x) + F 2(x), x →∞.

Note thatF 1(x) + F 2(x) ∼ F 1(x) + F 2(x) − F 1(x)F 2(x), so we may
rewrite (2.1) as

(2.2) P (X1 + X2 > x) ∼ P (X1 ∨X2 > x) (x →∞),

which explains the terminology. Subexponentiality can be expressed in
terms of the relation∼M as well:F ∈ S if and only if F ∼M F . Observe
that relation (2.2) implies that for a r.v.X with d.f. F ∈ S andc > 0, the
r.v. cX has d.f. inS .

The following result ([11], theorem 2) is fundamental:

Theorem 2. Let X, Y be independent with d.f.F andG, F ∈ S , G ∈ S
andH = F ∗G. Then the following are equivalent:

(1) H ∈ S ,
(2) F ∼M G,
(3) pF + (1− p)G ∈ S for some (all)p satisfying0 < p < 1.

It is well known that forXi (1 ≤ i ≤ n) i.i.d. with d.f. F ∈ S , relation
(1.4) implies

(2.3) P (X1 + X2 + . . . + Xn > x) ∼ nP (X1 > x) (x →∞).
9



See Chistyakov [4]. Conversely the classS is closed under convolution
roots: if (2.3) holds, thenF ∈ S . See Embrechts et al. ([10], thm. 2).

Our first result is an extension of (2.3) above to the case of independent
variables.

Extending earlier results in Cline [6] and Embrechts and Goldie [12], the
following result is given in [13]. IfX1, X2, . . . , Xn are independent r.v.’s,
F is a d.f. inS and

(2.4) lim
x→∞

P (Xi > x)

F (x)
= ai ∈ [0,∞], i = 1, . . . , n,

then

lim
x→∞

P (
∑n

i=1 Xi > x)

F (x)
=

n∑
i=1

ai.

In the next theorem the assumption (2.4) of tails which have a (possibly
infinite) limit as compared to the tail functionF is replaced with the as-
sumption (2.5) below. This assumption is more general in the sense that the
limits in (2.4) are not supposed to exist.

Theorem 3. LetX1, X2, . . . be independent non-negative random variables
with d.f ’sFi (i = 1, 2, . . .). Suppose

(2.5) Fi ∗ Fj ∈ S for i, j ≥ 1.

Then

(2.6) Fi ∈ S (i ≥ 1), F1 ∗ F2 . . . ∗ Fn ∈ S

and

(2.7) P (
n∑

i=1

Xi > x) ∼
n∑

i=1

P (Xi > x), x →∞.

The next result is a consequence in the i.i.d. situation.

Corollary 1. Suppose the random variablesXk (k = 1, 2, . . . , n) are i.i.d.
distributed with d.f.F ∈ S . SupposeSn defined by

Sn :=
n∑

i=1

ciXi,

has d.f.Kn. If ci > 0 (1 ≤ i ≤ n), thenKn ∈ S and

(2.8) P (
n∑

i=1

ciXi > x) ∼
n∑

i=1

P (ciXi > x), x →∞.
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Proof of Corollary 1.According to Theorem 3, it is sufficient to show that
ciXi + cjXj has a subexponential d.f. fori, j ≥ 1. In caseci ≤ cj, this
follows from thm. 1 in [11] sincecjXj has a subexponential distribution
function andsupx P (ciXi > x)/P (cjXj > x) ≤ 1 < ∞. In casecj ≤ ci a
similar argument completes the proof. ¤

For the proof of theorem 3 we need two lemmas.

Lemma 1. SupposeZ1, Z2 are independent non-negative r.v.’s with distri-
bution functionsH1, H2, satisfyingH1 ∼M H2, whereH1 ∈ L .

If φ(x) = o(H2(x)) (x →∞) andφ is locally bounded, then
∫ x

0

φ(x− u)dH1(u) = o(H1(x) + H2(x)) (x →∞).

Proof of Lemma 1.Take ε > 0 arbitrary. There existsa > 0 such that
φ(x) ≤ εH2(x) for x > a. Hence
(2.9)

|
∫ x

0

φ(x−u)dH1(u)| ≤ ε

∫ x−a

0

H2(x−u)dH1(u)+M(H1(x−a)−H1(x)),

whereM > 0 is a constant. Note that, sinceH1 ∈ L , it follows that forx
sufficiently large

(2.10) H1(x− a)−H1(x) ≤ εH1(x).

SinceH1 ∼M H2, we have

P (Z1 + Z2 > x)− P (Z1 ∨ Z2 > x) =

∫ x

0

(H2(x− u)−H2(x))dH1(u)

= o(H1(x) + H2(x)),

hence

(2.11)
∫ x

0

H2(x− u)dH1(u) = H2(x) + o(H1(x) + H2(x)).

Sinceε > 0 is arbitrary, the statement of the lemma follows from (2.9)-
(2.11). ¤

We use the notationSk := X1 + . . . + Xk, Mk := X1 ∨ . . . ∨ Xk and
Gk := P (Mk ≤ x) (1 ≤ k ≤ n).

Lemma 2. Under the assumptions of theorem 3, we haveGn−1 ∼M Fn (n ≥
2).

Proof of Lemma 2.Note that for constantsai, bi satisfying0 < bi < ai <
1, i = 1, 2, . . . n, we have

(2.12)
∏n−1

i=1 ai −
∏n−1

i=1 bi ≤
∑n−1

i=1 (ai − bi).
11



By theorem 2 we haveFi ∼M Fj, whence

0 ≤
∫ x

0

(Fi(x)− Fi(x− u))dFj(u) = P (Xi + Xj > x)− P (Xi ∨Xj > x)

= o(F i(x) + F j(x)).

Now takeai = Fi(x) andbi = Fi(x− u) in (2.12) and integrate in order
to obtain
(2.13)∫ x

0

∏n−1
i=1 Fi(x− u)dFn(u) =

∏n
i=1 Fi(x) + o(

∑n
i=1 F i(x)), (x →∞).

In order to prove the Lemma, we have to show thatGn−1 ∼M Fn, that is

P (Mn−1 + Xn > x) ∼ P (Mn−1 ∨Xn > x) = P (Mn > x).

This follows from (2.13) since

(2.14) P (Mn−1 + Xn > x) = 1−
∫ x

0

∏n−1
i=1 Fi(x− u)dFn(u).

and

(2.15) P (Mn > x) = 1− Πn
i=1(1− F i(x)) ∼ ∑n

i=1F i(x) (x →∞).

¤
Proof of Theorem 3.Note thatFi ∈ S (1 ≤ i ≤ n) follows from (2.5)
(with i = j), since the classS is closed under convolution roots by theorem
2 in Embrechts et al. [10].

We now prove (2.7). Observe that in view of (2.15) and

P (Sn > x) = P (Mn > x) + P (Sn > x, Mn ≤ x),

it is sufficient to prove that

(2.16) P (Sn > x,Mn ≤ x) = o(P (Mn > x)), x →∞.

The proof of (2.16) is by induction. Write

P (Sn > x, Mn ≤ x) =: I + J,

where

I =

∫ x

0

P (Sn−1 > x− u,Mn−1 ≤ x− u)dFn(u)

and

J =

∫ x

0

P (Sn−1 > x− u, x− u < Mn−1 ≤ x)dFn(u).

By Lemma 2 we haveGn−1 ∼M Fn, so we may apply Lemma 1 (take
φ(x) = P (Sn−1 > x,Mn−1 ≤ x), H1 = Fn, H2 = Gn−1). SinceFn ∈
S ⊂ L the induction hypothesis and Lemma 1 implyI = o(F n(x) +
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Gn−1(x)). In view of (2.15) this meansI = o(P (Mn > x)), x →∞. Note
that

J ≤
∫ x

0

P (x− u < Mn−1 ≤ x)dFn(u)

=

∫ x

0

[P (Mn−1 ≤ x)− P (Mn−1 ≤ x− u)]dFn(u).

Application of (2.13) completes the proof of (2.7).
In order to prove the second statement in (2.6), we use an induction ar-

gument: by assumptionF1 ∗ F2 ∈ S . SupposeF1 ∗ F2 . . . ∗ Fk ∈ S for
somek ∈ {2, 3, . . . , n− 1}.

Note thatP (Sk ∨ Xk+1 > x) ∼ P (Sk > x) + P (Xk+1 > x). Apply-
ing (2.7), it follows thatP (Sk+1 > x) ∼ P (Sk > x) + P (Xk+1 > x).
Combination givesP (Sk + Xk+1 > x) ∼ P (Sk ∨ Xk+1 > x). Using
Fk+1 ∈ S and the induction hypothesis, application of Theorem 2 gives
F1 ∗ F2 ∗ . . . ∗ Fk+1 ∈ S .

¤
In the sequel we need some convolution closure properties for linear com-

binations with positive coefficients of random variables with a subexponen-
tial distribution.

In the results below we will use the notationHa,b for the d.f. of the
random variableaX + bY andH = H1,1 = F ∗G.

Theorem 4. SupposeX,Y are independent random variables with d.f.F ∈
S , G ∈ L , a, b > 0 and one of the following holds

a G(cx) = O(F (x)) for all c > 0.
b F,G ∈ D
c F (or G) ∈ D andsupx G(x)/F (x) < ∞.
d F (x) ³ G(x) (x →∞)

ThenHa,b ∈ S and

(2.17) Ha,b(x) ∼ F (x/a) + G(x/b) (x →∞).

Moreover, ifF ∈ S , a, b > 0 andG(cx) = o(F (x)) for all c > 0, then
Ha,b ∈ S andHa,b(x) ∼ F (x/a).

Proof of Theorem 4.Since a r.v.X has d.f.F ∈ S if and only if the r.v.
cX has d.f. inS for some (all)c > 0, it is sufficient to showHa,b ∈ S in
casea = 1.

a In order to prove the first statement, note that as in the proof of
Prop. 1 in Embrechts et al. [10], we findH1,b(x) = O(F (x)) as
x →∞ for b > 0, which impliesH1,b(x) ³ F (x) (sinceH1,b(x) ≥
F (x)). SinceL is closed under convolution (see [11], thm. 3) and
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F ∈ S ⊂ L , we haveH1,b ∈ L . SinceF,H1,b ∈ L , F ∈ S
andH1,b(x) ³ F (x), application of Kl̈uppelberg [23], Thm. 2.1
shows thatH1,b ∈ S , henceHa,b ∈ S for a, b > 0. Observe that
(sinceF,G ∈ L ) the d.f. ofaX ∨ bY is in L , being asymptotic to
F (x/a) + G(x/b). BecauseHa,b ∈ S , application of Lemma 1 in
[11] implies (2.17).

b SinceF (./a), G(./b) ∈ L∩D ⊂ S , it follows thatF (./a), G(./b) ∈
D ∩ S . Now [11], prop. 2 implies thatHa,b ∈ S . Observe that
onceHa,b ∈ S is proved, relation (2.17) follows by application of
theorem 2, sinceF (./a), G(./b) ∈ S .

c Note that the assumption ina. is satisfied.
d Since fora ≤ 1 supx F (x/a) = O(G(x)) we can proceed as in1.

to find Ha,1 ∈ S for a ≤ 1. The proof ofH1,b ∈ S for b < 1
is similar. Combination of these results then givesHa,b ∈ S for
a, b > 0.

The final statement follows similarly using Proposition 1 in [10].
¤

Corollary 2. (see Geluk[16], thm. 2) SupposeX,Y are independent ran-
dom variables with d.f.F ∈ S , G ∈ L and G(x) = O(F (x)), then
H ∈ S andH(x) ∼ F (x) + G(x), henceF ∼M G.

3. WEIGHTED SUMS OF I.I .D. RANDOM VARIABLES IN S

In order to prove theorem 1 we need some auxiliary results. The first
Lemma (see [16]) shows that it is sufficient to study the behaviour of non-
negative random variables under maxima and convolutions. The next Lemma
is well known (see e.g. Willekens [40], Omey [31]). Observe that in this
section we use the assumption thatX, Y be independent with d.f.F, G.

Lemma 3. ([16]) LetF, G ∈ L . Then asx →∞
(3.1) P (X+ ∨ Y > x) ∼ P (X ∨ Y > x).

and

(3.2) P (X+ + Y > x) ∼ P (X + Y > x).

Lemma 4. ([40],[31]), F ∈ S if and only ifF+ ∈ S . Moreover ifX and
Y are r.v.’s satisfyingP (X > x) ∼ P (Y > x) (x → ∞), thenF ∈ S if
and only ifG ∈ S .

Lemma 5. SupposeF ∈ S , G ∈ L and

(3.3) G ∈ S .

Then the following statements are equivalent.
14



a F ∼M G+

b F ∗G+ ∈ S
c F ∼M G
d F ∗G ∈ S

If (3.3) is replaced withG(x) = O(F (x)) (x →∞), then a-d hold.
Moreover in one (or more) of the above statementsF (G,G+) may be

replaced withF+ (G+, G).

Proof of Lemma 5.Note thatF ∈ S ⊂ L .
a ⇔ b In view of Lemmas 3 and 4 the proof is complete by showing that
F+ ∼M G+ andF+ ∗ G+ ∈ S are equivalent. In caseG ∈ S , Theorem
2 establishes this equivalence. Moreovera ⇔ c andb ⇔ d follow from
Lemmas 3 and 4.

Under the assumptionG(x) = O(F (x)) bothF+ ∼M G+ andF+∗G+ ∈
S follow from Corollary 2.

The final statement follows from Lemmas 3 and 4. ¤
Lemma 6. Let X, Y be independent,F ∈ S , G− ∈ L and P (Y <
−cx) = O(F (x)) for c > 0 asx →∞.

ThenHa,−b ∈ S for a, b > 0 and
(3.4)
Ha,−b(x) = P (aX− bY > x) ∼ P (X > x/a)+P (Y < −x/b) (x →∞).

In particular, under the assumptions of Theorem 1, if∨m
1 ci > 0, it follows

that

(3.5) P (
m∑

i=1

ciXi > x) ∼
m∑

i=1

P (ciXi > x) (x →∞).

Proof of Lemma 6.Under conditionb1(b3) in Theorem 1, the Lemma fol-
lows immediately from Theorem 4a (4d) and Lemma 5. If conditionb2 is
satisfied, the final statement in Theorem 4 completes the proof. ¤
Lemma 7. Let Xn, Yn (n = 1, 2, . . .) be independent with d.f.’sFn, Gn

respectively,Fn ∈ S (n = 1, 2, . . .) and for δ > 0, there existx′n =
x′n(δ), n = 1, 2, . . . such that forx > x′n, P (Yn > x) ≤ δP (Xn > x), n =
1, 2, . . .. Then forε > 0 there existxn = xn(ε) such that forx > xn, n ≥ 1

(3.6) (1− ε)P (Xn > x) ≤ P (Xn + Yn > x) ≤ (1 + ε)P (Xn > x).

Proof of Lemma 7.Take ε ∈ (0, 1). Note that forx > x∗(n) and n =
1, 2, . . .

P (Xn + Yn > x) ≤ P (X+
n + Y +

n > x) ≤ (1 + ε)P (Xn > x),

the proof of the last inequality being similar to that of Proposition 1 in [10].
Takean such thatP (Yn > an) < ε for all n ≥ 1. SinceFn ∈ S ⊂ L ,
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application of Fatou’s lemma gives

lim inf
x→∞

P (Xn + Yn > x)

P (Xn > x)
≥ lim inf

x→∞
P (Xn + Yn > x, Yn ≤ an)

P (Xn > x)
≥

∫ an

−∞
lim inf

x→∞
F n(x− y)

F n(x)
dGn(y) = P (Yn ≤ an) > 1− ε.

Now (3.6) follows by lettingε ↓ 0. ¤
Lemma 8. Under the conditions of theorem 1, forε > 0 there existsm0

such that

P (
∑
j>m

|cjXj| > x) ≤ (1 + ε)
∑
j>m

P (|cjXj| > x) for m > m0, x > x0(ε).

Proof of Lemma 8.First assume0 < β < 1 in (1.5). As in the proof on p.
228 of Resnick [35], it is sufficient to show that

P (
∑
j>m

|cjXj|1|cjXj |≤x > x) = O(P (|X| > x)) (x →∞).

Writing K for the distribution function of|X| andK = 1 −K, for ε > 0
arbitrary we have

(3.7) (1− ε)s−β ≤ K(xs)/K(x) ≤ (1 + ε)s−α for s ≥ 1, x > x0

(see Bingham et al. [2], Ch. 2 on extended regular variation). Since
β < 1, we havexK(x) →∞ asx →∞ and it follows that forx sufficiently
large

E(|Xj|1|Xj |≤x)

xK(x)
=

∫ x

0
sdK(s)

xK(x)
=

∫ x0/x

0

+

∫ 1

x0/x

K(xs)

K(x)
ds− 1

≤ ε +
1

1− ε

∫ 1

0

s−βds− 1

≤ 2ε + β

(1− ε)(1− β)
.

As a consequence, it follows that form such that∨j≥mcj < 1 andx suffi-
ciently large

P (
∑

j>m |cjXj|1|cjXj |≤x > x)

P (|X| > x)
≤

∑
j>m |cj|E|Xj|1|Xj |≤x|c−1

j |
xP (|X| > x)

=
∑
j>m

|cj|
∫ x/|cj |
0

sdK(s)

xK(x/|cj|)
.

x
|cj |K( x

|cj |)

xK(x)

≤ (1 + ε)
2ε + β

(1− ε)(1− β)

∑
j>m

|cj|α < ∞.

16



In caseβ ≥ 1 in (1.5), an inductive procedure as in Resnick [35] or Mikosch
and Samorodnitsky [30] completes the proof. ¤
Proof of Theorem 1.Note that without loss of generality we may assume
thatc1 = 1. By assumption there existsd such that

(3.8) P (X < −x) ≤ dP (X > x) for x > 0.

Takeε > 0. Write Z =
∑

ciXi =
∑

i≤m +
∑

i>m =: Zm + Z ′
m, where

m is such that|ci| < 1 for i > m.
Now condition (3.7) ensures that forx sufficiently large

(3.9)
∑

i>mP (|ciXi| > x) ≤ (1 + ε)
∑

i>m|ci|αP (|X| > x).

Hence in view of Lemma 8, (3.7) and (3.8), we have

P (Z ′
m > x) ≤ P (|Z ′

m| > x)

≤ P (
∑

i>m|ciXi| > x)

≤ (1 + ε)
∑

i>mP (|ciXi| > x)

≤ (1 + ε)2(1 + d)
∑

i>m|ci|αP (X > x).

(3.10)

From (3.5) it follows that forx sufficiently large

(3.11) P (Zm > x) ≥ (1− ε)
m∑
1

P (ciXi > x) ≥ (1− ε)P (X > x).

Combination with (3.10) then gives

(3.12)
P (Z ′

m > x) ≤ (1−ε)−1(1+ε)2(1+d)
∑

i>m|ci|αP (Zm > x) for x > x(ε).

Application of Lemma 7 (note that the d.f. ofZm is subexponential by
Cor. 1) and (3.5) shows that forε > 0 there existsm = m(ε) such that for
x > x1(m, ε)

P (Z > x) < (1 + ε)P (Zm > x)

≤ (1 + ε)2
∑

i≤mP (ciXi > x)

≤ (1 + ε)2
∑

iP (ciXi > x).

(3.13)

A lower inequality is obtained as follows. Sincec1 = 1, using (3.8) and
(3.9) it follows that

∑
i>mP (ciXi > x)∑
i≤mP (ciXi > x)

≤
∑

i>mP (|ciXi| > x)

P (X > x)
≤ (1 + ε)(1 + d)

∑
i>m|ci|α.

Similar to (3.13) we then find that forx > x(ε)
17



P (Z > x) > (1− ε)P (Zm > x) ≥ (1− ε)2
∑

i≤mP (ciXi > x)

≥ (1− ε)3
∑

iP (ciXi > x).
(3.14)

Sinceε > 0 is arbitrary, the statement of the theorem now follows from
(3.13) and (3.14).

¤

4. EQUITY RETURNS OF REINSURERS

In the introduction we argued that both sides of the balance sheets of
insurance companies consist in linear combinations of risk factors also held
by other reinsurers. We now express the two asset sides of the balance sheet
into a mathematical format and analyze what this implies for the distribution
of a reinsurer’s equity.

4.1. asset side; the investment portfolio.Suppose there are two reinsur-
ers who allocate their capital and invest premium income in just two in-
dependent assets. For simplicity, let the first asset be a zero coupon bond
with returnX, while the second asset is a non-dividend paying share with
returnY . Let reinsurer one hold the portfolioQ = (1− γ)X + γY , while
the investment portfolio of reinsurer two isW = γX + (1 − γ)Y where
γ is restricted to be in the interval between zero and one, i.e. there are no
short sales. We assume thatX andY are independent with subexponential
distributions and that (one of) the assumptions of Theorem 4 is satisfied. It
follows that the portfoliosQ andW each have a subexponential distribu-
tion.

4.2. affine claim models; liability side. To model the returns on the li-
ability side we consider treaties under the quota-share contract, which are
written on two underlying risks which are assumed to be independent. Each
company writes reinsurance treaties on both risks. Notice that since this is
in the proportional business, both reinsurers share proportionally in the risks
they reinsure. Suppose these proportions are indicated byλ. Let a andb be
the premium incomes per unit investment. The premium incomes are as-
sumed to be non-random. In line with the empirical evidence we assume
that claim sizes per unit investment follow subexponential distributions. Let
the respective claim sizes beA andB respectively. Whether a claim mate-
rializes is modelled using a simple Bernoulli distribution. It is common to
model the claim arrival process as a compound Poisson process. Since we
work in a atemporal setting, a simple Bernoulli distribution can capture this
feature. Let the two i.i.d. Bernoulli random variables beN andM respec-
tively whereπ = P (N = 1) = 1 − P (N = 0) and a similar expression
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for M . The liability sides (including positive premium income) of the two
reinsurers now looks as follows

K = (1− λ)a + λb−N(1− λ)A−MλB

and

L = λa + (1− λ)b−NλA−M(1− λ)B.

Assuming thatA and B have independent subexponential distribution
functions and satisfy one of the assumptions of Theorem 4, it follows im-
mediately thatK andL are subexponentially distributed (in the left tail).
Thus in case both sides of the balance sheet have independent subexponen-
tial distributions, the results in section 3 provide us with a tool to analyze
this situation.

Many reinsurance contracts do not have unlimited claim sizes, but are
capped. Suppose we capture this by assuming that the distribution of a
capped claim is light tailed. We consider the mixed case where some claims
are capped and others are not. Specifically assume thatA is subexponential,
while B is light tailed. In that case, the next Lemma shows that the sum of
the light and the heavy tail leads naturally to subexponentiality.

Lemma 9. SupposeA,B are independent random variables with d.f.F,G
andH is the d.f. of the convolutionA + B. If F ∈ S andG(x) = o(F (x))
asx →∞, thenH ∈ S andH(x) ∼ F (x).

Proof of Lemma 9.The statement of the Lemma is the same as in Prop. 1a
of [10], without the assumption that the random variables are a.s. non-
negative. Application of this result shows that

P (A+B > x) ≤ P (A++B+ > x) ∼ P (A+ > x) = P (A > x) (x →∞).

Conversely, forε ∈ (0, 1) arbitrary, choosea such thatG(a) = P (B >
a) > 1− ε. Then forx sufficiently large

H(x)

F (x)
=

∫ ∞

−∞

G(x− y)

F (x)
dF (y) ≥

∫ ∞

x−a

G(x− y)

F (x)
dF (y)

≥ (1− ε)
F (x− a)

F (x)
≥ 1− 2ε,

sinceF ∈ S ⊂ L . Combination of the estimates shows thatH(x) ∼
F (x), whenceH ∈ S , which completes the proof. ¤

In the next section we investigate the joint behavior of the total net re-
turns.
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5. CO-CRASH PROBABILITIES

In order to describe dependence of markets, the standard correlation mea-
sure has the advantages of being easy to calculate, it is well behaved under
linear operations and it is the natural measure in case of normally distributed
random variables. In case of heavy tailed random variables, apart from the
fact that the coefficient of correlation may be undefined, its main disadvan-
tage is that it does not capture very well possible dependence in the tails.
What worries supervisors and industry representatives is that a heavy loss in
one market might go hand in hand with a heavy loss in another market, de-
stroying the real value of a diversified investment portfolio. We are looking
for a measure which captures the potential for systemic breakdown. Con-
sider the following example. Suppose two reinsurers have risk profilesS
andT , whereS andT reflect the composite asset and liability sides of the
reinsurers, e.g.S = Q + K andT = W + L as discussed in the previous
section.

Naturally one asks given thatT > t, what is the probability thatS > s,
wheret, s are high loss levels. For notational simplicity, we take the two
levels on which we condition equal tos, but this is by no means necessary,
as is indicated in Theorem 5 below. If we assume that the marginal distri-
butions are equal (which we do in the definition below), a natural definition
of asymptotic independence is

(5.1) P (S > s|T > s) → 0 ass →∞.

Note that equality of the marginal distributions can be obtained using a
suitable transformation onS and/orT .

Instead of this conditional probability, we will adopt the related probabil-
ity that conditions on any company’s crash, without indicating the specific
reinsurer. This is the linkage measure

κs :=
P{S > s}+ P{T > s}
1− P{S ≤ s, T ≤ s}

proposed in Embrechts et al.[14]. The linkage measureκs reflects the ex-
pected numberE{Ns|Ns ≥ 1} of reinsurer’s crashesNs, given that least
one reinsurer has collapsed, i.e. givenS ∨ T > s.

Alternatively one may write

κs = E{Ns|Ns ≥ 1} = 1 +
P (S ∧ T > s)

P (S ∨ T > s)
.

SinceP (S ∨ T > s) = 2P (S > s)− P (S ∧ T > s), it follows that (5.1) is
equivalent toP (S ∨ T > s) ∼ 2P (S > s), or equivalently

P (S ∧ T > s)

P (S ∨ T > s)
∼ 1

2
P (S > s|T > t).
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As a consequence, asymptotic independence is equivalent to the statement
κs → 1 ass → ∞. We prefer the expressionE{Ns|Ns ≥ 1} since it can
naturally be generalized to higher dimensions.

An open issue is on which level ofs one speaks of a crash or company
default. Economics does not provide a natural default level, such as is the
case when we think of a flood in terms of the dike height. Crash levels differ
per asset category and circumstances. For this reason we are interested in
the asymptotic behavior ofκs ass →∞.

Obviously1 ≤ κs ≤ 2. Consider two extreme cases.

• If S and T are independent with d.f.’sF and G, we haveκs =
1 + F (s)G(s)/(F (s) + G(s)− F (s)G(s)), hence the rate at which
κs approaches1 ass →∞ is given byκs−1 ∼ F (s)G(s)/(F (s)+
G(s)).

• If P (X = Y ) = 1, obviouslyκs = 2.

It should be observed thatκ = lims→∞ κs may be equal to1 even if the
components are dependent. This is typical for the situation of light tails,
like the bivariate normal distribution.

In what follows we investigate the interdependency between two rein-
surer’s asset or liability sides, cf. section 4. Using similar methods, these
results can be extended to linear combinations of more than two random
variables, such as in the case of combining the asset and liability sides. Us-
ing the linear framework for balance sheet items as explained in section 4,
we consider the total risksS = a1X + b1Y andT = a2X + b2Y of two
markets which both have standard normal distributions. Then Sibuya’s re-
sult [37] shows that the total risks are asymptotically independent in the
sense of (5.1). See also Resnick [35], Proposition 5.27.

Since the risk profiles of stocks are often heavy tailed, we are interested
in the case of subexponential tail behavior. In that situation, asymptotic
dependence is to be expected. Before we discuss general portfolios, we
give a simple example where this occurs.

Proposition 1. [17] Consider the risk profiles of two portfoliosX + Z and
Y + Z, whereX, Y andZ are i.i.d. with subexponential distribution func-
tion. Thenκ = lims→∞ κs = 4/3.

For two linear portfolios with independent loss levelsX,Y having subex-
ponential distributions, satisfyingHa,b ∈ S for a, b > 0 (Ha,b is the d.f. of
aX + bY ), Theorem 5 below implies that there can be asymptotic depen-
dence and

κs − 1 ∼ F ((a−1
1 ∨ a−1

2 )s) + G((b−1
1 ∨ b−1

2 )s)

F ((a−1
1 ∧ a−1

2 )s) + G((b−1
1 ∧ b−1

2 )s)
.
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If X, Y are i.i.d. with regularly varying tail functions, it follows that the
limiting expected additional number of crashes ass → ∞, given at least
one crash at levelk, is κ − 1 = lims→∞ κs − 1 and the limit exists in the
interval(1, 2]. Similarly we find in this case thatκ = 1 for subexponential
d.f.’s with a rapidly varying tail, unlessa1 = a2 andb1 = b2.

This observation underlines the phenomenon that the heavy tailed behav-
ior of asset returns may lead to increased risk, even for diversified portfolios.

For reasons of notational simplicity we formulate the result below for two
random variables.

Theorem 5. SupposeX,Y are independent random variables with d.f.
F, G ∈ S andZ = aX + bY has d.f.Ha,b ∈ S for a, b > 0.

Supposeλ1, λ2, µ1, µ2, x, y > 0 and both coordinates of the point of in-
tersection S of the linesλ1X + λ2Y = t andµ1X + µ2Y = t are positive
for t > 0. Then ast →∞

(5.2)
P (λ1X+λ2Y > tx∪µ1X+µ2Y > ty) ∼ F ((

x

λ1

∧ y

µ1

)t)+G((
x

λ2

∧ y

µ2

)t).

Corollary 3. Under the conditions of Theorem 5 it follows that
(5.3)
P (λ1X+λ2Y > tx∩µ1X+µ2Y > ty) ∼ F ((

x

λ1

∨ y

µ1

)t)+G((
x

λ2

∨ y

µ2

)t).

The special case of regularly varying tail functions leads to the following
Corollary. We only formulate the result corresponding to Theorem 5, the
analogue of Corollary 3 being similar.

Corollary 4. SupposeX1, X2 are i.i.d. with distribution functionF with a
regularly varying tail functionF with index−α. Then (withλi, µi, x, y as
above) ast →∞

P (λ1X1 + λ2X2 > tx ∪ µ1X1 + µ2X2 > ty) ∼
{( x

λ1

∧ y

µ1

)−α + (
x

λ2

∧ y

µ2

)−α}P (X1 > t).
(5.4)

In order to prove the theorem, we need a simple Lemma.

Lemma 10. SupposeX,Y are independent r.v.’s with distribution functions
F, G ∈ S , F ∼M G anda, b > 0 are constants. Then

F (at)G(bt) = o{F ((a + b)t) + G((a + b)t)}, (t →∞).

Proof of Lemma 10.Fix ε ∈ (0, 1). Then

P (X > εt, Y > (1− ε)t)

= P (X > t, Y > (1− ε)t) + P (εt < X ≤ t, Y > t)

+ P (εt < X ≤ t, (1− ε)t < Y ≤ t) =: A + B + C.
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ThenA = F (t)G((1 − ε)t) = o(F (t)) andB = (F (εt) − F (t)))G(t) =
o(G(t)). Moreover, sinceF ∼M G, it follows that C ≤ P (X + Y >
t)− P (X ∨ Y > t) = o(F (t) + G(t)).

Combination of the estimates and replacingε with a/(a + b) andt with
(a + b)t completes the proof. ¤
Proof of Theorem 5.The case in which the random variables take negative
values with non-zero probability can be reduced to the non-negative case by
Lemmas 3 and 4, so we assume thatX, Y > 0 with probability 1.

SinceHa,b ∈ S for a, b > 0, using Lemma 5, it follows thatF (./a) ∼M

G(./b), hence

P (λ1X + λ2Y > t, λ1X ∨ λ2Y ≤ t)

= P (λ1X + λ2Y > t)− P (λ1X ∨ λ2Y > t) = o(F (t/λ1) + G(t/λ2)).

(5.5)

Observe that it is sufficient to prove the theorem forx = y = 1 (replace
λi, µi with λix, µiy).

Write p := P (λ1X + λ2Y > t ∪ µ1X + µ2Y > t) and (t1, t2) =
( λ2−µ2

λ2µ1−λ1µ2
t, µ1−λ1

λ2µ1−λ1µ2
t) for the coordinates of the point S. Suppose

(5.6) µ2 < λ1 < µ1 < λ2.

We split the required probability into three parts.

p = P (λ1X + λ2Y > t, X ≤ t1) + P (µ1X + µ2Y > t, Y ≤ t2)+

P (X > t1, Y > t2) =: I + II + III.
(5.7)

Sincet1 → +∞ ast →∞, I ≥ G(t/λ2)F (t1) ∼ G(t/λ2).
MoreoverI ≤ G(t/λ2)F (t1) + P (λ1X + λ2Y > t, λ1X ∨ λ2Y ≤ t).
Combination of the lower and upper estimates with (5.5) shows that

I = G(t/λ2)+o(F (t/λ1)+G(t/λ2)) = G(t/λ2)+o(F (t/µ1)+G(t/λ2)).

Similarly we findII = F (t/µ1) + o(F (t/µ1) + G(t/µ2)) = F (t/µ1) +
o(F (t/µ1) + G(t/λ2)).

The last term can be estimated as follows. From (5.6) it follows that
t1 + t2 > t/µ1 ∨ t/λ2 = t/µ1.

As a consequence, fort →∞, by Lemma 8,

III = F (t1)G(t2) = o(F (t1 + t2) + G(t1 + t2)) = o(F (t/µ1) + G(t/λ2)),

hence combination of the estimates givesp ∼ F (t/µ1) + G(t/λ2).
The other cases (λ1 < µ2 < λ2 < µ1, µ1 < λ2 < µ2 < λ1 andλ2 <

µ1 < λ1 < µ2) can be proved similarly. ¤
Proof of Corollary 3.This follows trivially from theorem 5. ¤
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Proof of Corollary 4.Note that random variables with a regularly varying
tail function are subexponential. Corollary 1 together with Lemmas 3 and 4
now ensure that the conditionHa,b ∈ S is satisfied. Conclusion (5.4) now
follows from (5.2), using the regular variation ofF . ¤
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Thesis, University of Leuven.

25


