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Abstract

We examine the size properties of tests for causality in variance in the presence of
structural breaks in volatility. Extensive Monte Carlo simulations demonstrate that
these tests suffer from severe size distortions when such breaks are not taken into
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1 Introduction

During the last two decades, a great deal of attention has been paid to modelling the dy-

namic properties of volatility. An important strand of this research has analysed volatility

spillovers, particularly across financial series. Morgenstern (1959) first investigated if fi-

nancial market crises spill over to other countries. The modelling of spillover effects has

subsequently been developed primarily through correlation analysis based on GARCH

models, including King and Wadhwani (1990), Lin, Engle and Ito (1994), Susmel and En-

gle (1994), Ng (2000) and Billio and Pelizzon (2003). These papers estimate parametric

models to examine specific formulations for the spillover effects, while Cheung and Ng

(1996) and Hong (2001) develop general causality-in-variance tests within this framework.

Through a distinct strand of literature, there has recently been increasing awareness

that many time series experience occasional structural breaks in (unconditional) volatility;

see Andreou and Ghysels (2002), Lamoureux and Lastrapes (1990), McConnell and Perez-

Quiros (2000), Stock and Watson (2003) and Sensier and van Dijk (2004), among others.

In the light of the evidence for such structural breaks, it is important to investigate whether

they affect the appearance of volatility spillover effects. The present paper examines this

question by analyzing the impact of volatility breaks on the causality-in-variance tests of

Cheung and Ng (1996) and Hong (2001).

Based on an extensive set of Monte Carlo simulations, we demonstrate that these tests

suffer from severe size distortions when such breaks are neglected. However, we also show

that pre-testing for volatility breaks provides an effective solution to the size problem.

2 Tests for causality in variance

Let yt = (y1t, y2t)
′ be a bivariate series of interest. In Cheung and Ng (1996), y2t is said

to cause y1t in variance if

E[(y1t − µ1t)
2|Ωt−1] 6= E[(y1t − µ1t)

2|Ω1t−1] (1)
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where Ωit is the information set defined by Ωit = {yit−j ; j ≥ 0}, i = 1, 2, Ωt = Ω1t ∪ Ω2t,

and µit is the mean of yit conditional on Ωit. Let εit = yit − µit, i = 1, 2, and assume

that εit = ξit

√
hit, where hit is a positive, time-varying function measurable with respect

to Ωit−1, and ξit is an innovation process with E[ξit|Ωit−1] = 0 and E[ξ2
it|Ωit−1] = 1. Hence

hit is the (univariate) conditional variance of εit by construction, that is hit = V[εit|Ωit−1].

The null hypothesis that y2t does not cause y1t in variance can now be formulated as

H0 : V[ξ1t|Ωt−1] = V[ξ1t|Ω1t−1]. (2)

Define the squared standardized residuals

ût = (y1t − µ̂1t)
2/ĥ1t and v̂t = (y2t − µ̂2t)

2/ĥ2t (3)

where hats indicate suitable estimates of the corresponding quantities, and the sample

cross-correlation at lag k,

ruv(k) = cuv(k)/
√

cuu(0)cvv(0), (4)

where cuv(k) is the sample cross-covariance

cuv(k) =

{

1

T

∑T

t=k+1(ut − u)(vt−k − v), if k ≥ 0
1

T

∑T−k

t=1 (ut − u)(vt−k − v), if k < 0,

with T denoting sample size, u and v the sample means of ut and vt, respectively, and

cxx(0) = 1/T
∑T

t=1(xt − x)2 for x = u, v.

Cheung and Ng (1996) suggest testing H0 using the statistic

S = T

K
∑

k=1

r2
uv(k), (5)

which has an asymptotic chi-square distribution with K degrees of freedom. The reverse

hypothesis that y1t does not cause y2t in variance can be tested analogously, summing the

squared cross-correlations r2
uv(k) from k = −K to −1.

Hong (2001) modifies the Cheung-Ng test in two ways. First, µit, i = 1, 2, is defined

to be the mean of yit conditional on the complete information set Ωt−1. Using such a
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“bivariate” conditional mean definition ensures that any causality-in-mean is filtered out

when testing for causality-in-variance.1 Pantelidis and Pittis (2004) show that neglected

causality-in-mean leads to severe (positive) size distortions for the Cheung-Ng test, but

this is easily remedied by obtaining µ̂it from a bivariate conditional mean specification. In

this paper, we abstract from conditional mean issues by using a data generating process

with no causality in mean, so that we can use the corresponding sample mean for µ̂it.

Second, Hong (2001) suggests weighting the cross-correlations to obtain more powerful

tests. In particular, he defines the statistic

Q =
T

∑T−1

k=1 w2(k; K)r2
uv(k) − C(w)

√

2D(w)

asy∼ N(0, 1), (6)

where w(k; K) is a weight function, and

C(w) =
T−1
∑

k=1

(1 − k/T )w2(k; K),

D(w) =
T−1
∑

k=1

(1 − k/T )(1 − (k + 1)/T )w4(k; K),

are approximately the mean and variance, respectively, of T
∑T−1

k=1 w2(k/K)r2
uv(k). There

is considerable freedom in the choice of weight function w(k; K), see Hong (2001) for

examples. Here we use the Bartlett kernel2

w(k; K) =

{

1 − |k/(K + 1)| if k/(K + 1) ≤ 1

0 otherwise.
.

3 Monte Carlo design and size results

We examine the size of causality-in-variance tests for a data generating process with

yt = (y1t, y2t)
′ ∼ NID(0, Σt), where Σt =

(

σ2
1t σ1tσ2tρ

σ1tσ2tρ σ2
2t

)

. The effects of neglected

changes in volatility are examined through the following five experiments:3

1See also Hong (2001, footnote 5) for discussion.
2Results for other weight functions are qualitatively similar and are available upon request.
3Analogously to experiments D and E, we also examined increases in volatility in σ2

1t
and σ2

2t
from 1 to

2. Results for these are the mirror images of the corresponding cases shown. These results are available
on request.
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A. Shift in volatility of y2t only: σ2
1t = 1 for all t, while σ2

2t = σ2
b for t ≤ T/2 and

σ2
2t = σ2

a for t > T/2;.

B. Simultaneous and identical changes in volatility: σ2
1t = σ2

2t = σ2
b for t ≤ T/2 and

σ2
1t = σ2

2t = σ2
a for t > T/2;

C. Simultaneous but opposite changes in volatility: σ2
1t = σ2

a, σ
2
2t = σ2

b for t ≤ T/2, and

σ2
1t = σ2

b , σ
2
2t = σ2

a for t > T/2;

D. Simultaneous decline in volatility: σ2
2t and σ2

1t change from 1 to 0.5 at t = πT ;

E. Declines at different times: σ2
1t changes at t = T/2 while σ2

2t changes at t = πT ,

both from 1 to 0.5.

Experiments A to C use σ2
b = 1 and σ2

a such that σ2
a

σ2

b

= 0.1, 0.2, . . . 0.9, 1.0, 1

0.9
, ..., 1

0.1
. Ex-

periments D and E use π = 0.10, 0.15, . . . , 0.90 with π = 0.45, 0.46, . . . , 0.55 also examined

for E).

We consider sample sizes of T = 160 and 480, corresponding to 40 years of quarterly

and monthly data, respectively; 10000 replications are used throughout. The test statistics

S in (5) and Q in (6) for testing causality-in-variance from y2t to y1t and vice versa are

computed for K = 1, 2, . . . , 10. The tests are applied to yt, replacing µ̂it and ĥit in (3)

by the sample mean and variance, respectively. Rejection frequencies at the nominal 5%

significance level4 are shown graphically, with empirical rejection frequencies for sample

sizes of 160 and 480 shown in panels (a) and (b) respectively of Figures 1-5. The results

for the Cheung-Ng and Hong test statistics are very similar; hence, to save space, only

results for the former test are shown.

Figure 1 shows that neglecting structural breaks in volatility has only minor effects

when just one of the series experiences a volatility change, although tests using |K| > 1

are slightly oversized when the volatility shift is relatively large. In contrast, simultaneous

4Results for other nominal significance levels are qualitatively similar and are available upon request.
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changes in volatility lead to substantially larger size distortions, irrespective of whether

the volatility change is identical or opposite (Figures 2 and 3). In addition, these plots

demonstrate that the size distortion is symmetric in the ratio σ2
a

σ2

b

, and becomes larger as

the sample size T increases. Figure 4 makes clear that the timing of the volatility change

matters: the size distortions are largest when the simultaneous volatility decline occurs

at one-third of the sample period. Finally, from Figure 5 it appears that simultaneous

volatility changes lead to the largest size distortions, with the distortion declining as the

time interval between breaks increases.

Since volatility changes have been shown to occur across a wide range of observed eco-

nomic and financial time series, the severity of the size distortions revealed in our results

appears to indicate that these tests may, in practical applications, provide unreliable in-

ference about (the non-existence of) causality in variance. Size problems arise particularly

when both series exhibit volatility changes in close temporal proximity, in which case the

tests frequently and incorrectly attribute this occurrence to an underlying causality.

4 Solving the problem: pre-testing for volatility breaks

The Monte Carlo results in the previous section convincingly demonstrate that the tests

for causality-in-variance suffer from considerable size distortions when breaks in volatility

are neglected. In this section we explore the usefulness of pre-testing for structural changes

in volatility to remedy this problem.

As in McConnell and Perez-Quiros (2000) and Sensier and van Dijk (2004), we test

for a break in volatility using the mean of the absolute value of the demeaned series. Let

WT (τv) denote the Wald test of the null hypothesis H0 : δi1 = δi2 in the regression
√

π

2
|yit − µ̂i| = δi1(1 − I(t > τi)) + δi2I(t > τi) + εit, t = 1, . . . , T (7)

where, in our context, µ̂i is again the sample mean of yit, τi is the specified break date and

I(A) is an indicator function for the event A5. We treat the break date τi as unknown

5If yit is iid and follows a normal distribution with mean µi and variance σ2
i
,
√

π

2
|yit− µ̂i| is a unbiased
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and use the sup-Wald statistic developed by Andrews (1993), given by6

SupW = sup
τmin≤τi≤τmax

WT (τi). (8)

Both pre- and post-break periods are required to contain at least 10 % of the available

observations, that is we set τmin = [πT ] and τmax = [(1 − π)T ] + 1 with π = 0.10, where

[·] denotes integer part. We use the method of Hansen (1997) to obtain approximate

asymptotic p-values.

This volatility break test is applied prior to the causality-in-variance test. If, using

(8), the null hypothesis of no volatility change in yit is rejected at a 5% significance level,

we take the estimated volatility break at τ̂i (the time period that minimizes the sum of

squared residuals in (7)) into account when standardizing the series. This is achieved by

replacing ĥit in (3) by the sample variance before (after) τ̂i for all t ≤ (>) τ̂i.

Results are shown in panels (c) and (d) of Figures 1-5. In all cases this pre-testing

procedure yields empirical rejection frequencies close to the nominal significance level of

5%. For K = ±1, the procedure tends to yield some under-sizing, with some evidence

of over-sizing for larger K. Nevertheless, these distortions are relative modest, with (for

example) the empirical size almost always being between 4% and 8% when T = 160.

Therefore, pre-testing for breaks in volatility provides an effective solution to the size

problem of the causality-in-variance tests.

5 Conclusions

In this paper we have examined the effects of volatility breaks on the tests for causality-

in-variance developed by Cheung and Ng (1996) and Hong (2001). Based on an extensive

set of Monte Carlo simulations, we demonstrate that these tests suffer from severe size

estimator of σi.
6Average and exponential statistics, computed as AveW = 1

τmax−τmin+1

∑

τmax

τi=τmin
WT (τi) and ExpW =

ln
(

1

τmax−τmin+1

∑

τmax

τi=τmin
exp

(

1

2
WT (τi)

)

)

, respectively, render qualitatively similar results. The same

holds for Lagrange Multiplier and Likelihood Ratio based tests. Details are available upon request.
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distortions when such breaks are neglected. Pre-testing for structural changes in volatility

is shown to remedy this problem. Therefore, we recommend that these causality-in-

variance tests should be applied only after such pre-testing for breaks in volatility.
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(a) Raw series, T = 160 (b) Raw series, T = 480

(c) Pre-tested series, T = 160 (d) Pre-tested series, T = 480

Figure 1: Rejection frequencies of the Cheung-Ng test (5) at 5% nominal significance level.
Positive (negative) values of K indicate the null hypothesis is no causality-in-variance from
y2t to y1t (from y1t to y2t). Experiment A: shift in volatility of y2t only.
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(a) Raw series, T = 160 (b) Raw series, T = 480

(c) Pre-tested series, T = 160 (d) Pre-tested series, T = 480

Figure 2: Rejection frequencies of the Cheung-Ng test (5) at 5% nominal significance level.
Positive (negative) values of K indicate the null hypothesis is no causality-in-variance from
y2t to y1t (from y1t to y2t). Experiment B: simultaneous and identical shift in volatility of
y1t and y2t.
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(a) Raw series, T = 160 (b) Raw series, T = 480

(c) Pre-tested series, T = 160 (d) Pre-tested series, T = 480

Figure 3: Rejection frequencies of the Cheung-Ng test (5) at 5% nominal significance level.
Positive (negative) values of K indicate the null hypothesis is no causality-in-variance from
y2t to y1t (from y1t to y2t). Experiment C: simultaneous but opposite shift in volatility of
y1t and y2t.
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(a) Raw series, T = 160 (b) Raw series, T = 480

(c) Pre-tested series, T = 160 (d) Pre-tested series, T = 480

Figure 4: Rejection frequencies of the Cheung-Ng test (5) at 5% nominal significance level.
Positive (negative) values of K indicate the null hypothesis is no causality-in-variance from
y2t to y1t (from y1t to y2t). Experiment D: simultaneous and identical decline in volatility
of y1t and y2t.
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(a) Raw series, T = 160 (b) Raw series, T = 480

(c) Pre-tested series, T = 160 (d) Pre-tested series, T = 480

Figure 5: Rejection frequencies of the Cheung-Ng test (5) at 5% nominal significance level.
Positive (negative) values of K indicate the null hypothesis is no causality-in-variance from
y2t to y1t (from y1t to y2t). Experiment F: identical decline in volatility of y1t and y2t with
different timing.
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