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Abstract

The coordination of just-in-time production and transportation in a network of par-

tially independent facilities to guarantee timely delivery to distributed customers is one of

the most challenging aspect of supply chain management. From the theoretical perspec-

tive, the timely production/distribution can be viewed as a hybrid combination of planning,

scheduling and routing problem, each notoriously affected by nearly prohibitive combina-

torial complexity. From a practical viewpoint, the problem calls for a trade-off between

risks and profits. This paper focuses on the ready-made concrete delivery: in addition to

the mentioned complexity, strict time-constraints forbid both earliness and lateness of the

supply. After developing a detailed model of the considered problem, we propose a novel

meta-heuristic approach based on a hybrid genetic algorithm combined with constructive

heuristics. A detailed case study derived from industrial data is used to illustrate the poten-

tial of the proposed approach.
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1 Introduction

Recently, production industry is experiencing a strategic evolution toward the decentralization

of many production activities. Due to the various, extremely challenging problems related to

collaboration, cooperation, information sharing, synchronization of logistic and production ac-

tivities, research areas such as supply chains, virtual enterprizes, global manufacturing networks

and similar forms of organization have gained a prominent role in the field of industrial automa-

tion. Supply chains can be viewed as dynamic networks of partially independent production

centers that agree to collaborate for pursuing both individual and collective aims. For instance,

independent companies that are able to provide complementary services for the production of a

given good may take a significant advantage by synchronizing their activities to reduce product

lead times or costs. Also companies providing the same type of services may find convenient

to form strategic consortia and satisfy market requests that exceed the capacity of each individ-

ual company. The inter-company and company-to-customer relationships are also experiencing

a strong evolution due to the developments in computer and communication technologies, in-

cluding large scale distributed information networks such as internet. All these aspects have

generated a multi-disciplinary research area involving the control and the optimization of ma-

terial, information and financial flows [17].

From the logistic viewpoint, the management of supply chains involves a set of complex

and interdependent combinatorial problems (e.g. acquisition of raw materials, scheduling of

production facilities, routing of transport vehicles, etc.). Even when considered as independent

from the other ones, each of the mentioned logistic problem suffers from a nearly prohibitive

combinatorial complexity. However, there is also a strong need for approaches that are capa-

ble of finding satisfactory solutions in short computation times, since these environments are

continuously subject to unpredictable dynamic changes (new orders, delays, failures) that may

require a sort of continual revision of the planned solution.

In this paper, we focus on a supply chain for the production and distribution of ready-made

concrete. The supply chain consists of a network of independent and distributed production

centers serving a set of customers distributed across a predefined geographical area surround-

ing the nodes of the supply chain. Each customer contacts one of the nodes of the supply chain

(in general the closest one) to place an order that has to be either accepted or refused. Most

production centers in the chain own a fleet of trucks to deliver the produced good to the cus-
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tomer, but a few centers do not own a local fleet for transportation and explicitly rely on the

other nodes for the delivery of their production. By joining the supply chain, each production

center agrees to convey the received demands to a central planning system, which is in charge of

scheduling the production on the various centers in order to optimize the operation of the entire

supply chain. This means that after the optimization, the company producing a given demand

may no longer be the one that received the order, if this leads to a better overall schedule. The

considered problem is made particularly challenging by the fact that the produced good is a

perishable material that has to be mixed on-demand and delivered within strict time-windows

to customers locations. The individual goal of each production center is to accept and satisfy

the maximum number of requests, guaranteeing the timeliness of the deliveries at the minimum

overall cost. Some of the received requests may partially exceed the capacity of the contacted

production center, but the center may still accept the request and redirect part of the order to

another node of the supply chain, or outsource it to an external company. It should be noted

that the goal of each production center is composed of inherently conflicting aspects, because

on the one hand the maximum utilization of resources implies the reduction of idle and waiting

times, and on the other hand these time intervals are the only actual safety margins that make

the schedule tolerant to transportation delays or other unexpected circumstances. In any case,

since the costs associated to late deliveries can be extremely high, an effective tradeoff between

schedule robustness to perturbation and production costs must necessarily be found.

At present, many companies tend to rely on skilled operators that set up an initial planning

of production, also estimating which customers request can be accepted, and which has to be

rejected [1, 10]. Other companies prefer to plan their operations on short production horizons,

sacrificing the optimization on longer horizon to achieve a reduced risk of delayed delivery [15].

However, to authors’ knowledge, there is no specific approach in the extremely rich literature

on process scheduling and vehicle routing with time-constrained deliveries that can be directly

(i.e. without substantial modifications) used to address the considered problem, which suffers

from both the typical combinatorial complexity of constrained assignment problems, and from

a very large number of specific peculiarities that must be addressed with ad hoc approaches.

Thus, the main contribution of this paper is the development of an effective strategy to sys-

tematically model and solve the just-in-time production and supply of perishable goods in a

efficient, reliable, and systematic way, so as to bridge the gap between industrial practice and
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technical research. The development of such an effective approach also improves the sustain-

ability of the supply chain management solutions by increasing the utilization of equipment and

by decreasing the demand on scarce resources.

This manuscript focuses on the development and validation of an efficient heuristic approach

to address the following strongly interrelated problems.

1. Assigning customers’ demands of concrete to a number of geographically distributed

storage and production centers.

2. Scheduling the available fleet of (company-owned or hired) transport vehicles to deliver

all the produced quantities.

To pursue this objective, in the first part of this paper we develop a detailed mathematical model

of the considered problem, explaining the available decision variables and the main constraints

of the problem. The development of an extensive model constitutes the first important contri-

bution of this paper with respect to the related literature, which is mainly focused on simplified

formulations taking into account only a part of the considered problem. Subsequently, the pa-

per focuses on the development of an algorithm belonging to a class of modern problem-solving

metaheuristics that seem particularly suited to the considered problem, commonly referred to

as Genetic Algorithms (GAs). GAs are heuristic search techniques inspired from the principles

of survival-of-the-fittest in natural evolution and genetics, which have been extensively used to

solve combinatorial problems that cannot be handled by exhaustive or exact methods due to

their prohibitive complexity. When properly configured, GAs are efficient and robust optimiza-

tion tools, because they do not explicitly require additional information (such as convexity, or

availability of derivative information) about the objective function to be optimized. For this rea-

son, in the last decade, they have been applied to a considerable variety of problems, including

scheduling and vehicle routing problems that are partially related to our case.

It should be remarked that GAs are not immune from drawbacks: they are generally slow,

they require large numbers of iterations, and suffer from specific problems that may cause pre-

mature convergence in suboptimal solutions if not carefully handled with ad hoc methods. Due

to the combinatorial nature of our distributed scheduling-routing problem, when considering a

real-world daily scenario, the considered problem may become prohibitive also for a GA. In

fact, a generic solution of our problem involves
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1. assigning demands to production center,

2. scheduling the production at each center,

3. scheduling the loading operations,

4. routing vehicles from (to) production centers to (from) depots,

5. scheduling the unloading operations at each customer’s site.

In conclusion, the average time that a well-configured GA would need to search for a satisfac-

tory solution of the entire supply-chain problem may be too high for a practical use in a real

industrial context, where decision-algorithm must provide a solution in relatively short times.

For this reason, rather than a conventional use of the GA as a global optimizer of all the free

decision variables of the problem, in our research the GA is only used to address a part of the

whole problem. Namely, we use the GA to perform demand-to-production center assignment,

and the production sequencing at each center, while the remaining part of the whole scheduling

problem is handled by constructive heuristic algorithms. This approach leads to a hybrid evo-

lutionary algorithm in which the GA constitutes the core of the search strategy, while multiple

heuristic rules called in specific circumstances contribute to reconstruct a feasible solution that

satisfies all the constraints and objectives. In this respect, the proposed approach is significantly

different from other recent applications of GAs and other meta-heuristics approaches to com-

plex combinatorial problems sharing some similarities with the ready-mixed cement supply.

To our best knowledge, this manuscript is among the first attempts to address the extremely

complex scheduling problem of an entire supply-chain for just-in-time production by explic-

itly taking into account all the constraints and requirements of the real-world scenario with an

hybrid meta-heuristic strategy based on GAs. Finally, it is also important to underline that,

even though this paper is mainly devoted to the problem of ready-mixed concrete supply, both

the proposed model and the resolving strategy are fairly general, and can be easily extended to

address a variety of analogous just-in-time distributed production and delivery problems.

The paper is organized as follows. Section 2 gives an overview of the related literature, while

Section 3 describes the mathematical model of the considered problem. Section 4 introduces

the proposed hybrid meta-heuristic approach, illustrating the main GA-based search engine, and

the additional schedule construction heuristics in separate subsections. Section 5 describes the
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case study, summarizing the main results of our approach in comparison with other scheduling

heuristics. It also provides a detailed analysis of the tolerance of the optimized schedules to

delivery delays. Finally, Section 6 provides the concluding remarks.

2 Literature Overview

Producing and distributing ready-made concrete is a complex logistic problem that involves sev-

eral interdependent assignment and scheduling problems. Moreover, the specific characteristics

of the produced material and its utilization in construction entail a large number of additional

technical constraints that must be taken into account. An overview of the main characteristic

of cement production and delivery is provided in [15], which illustrates the reasons that make

concrete production possible only on a just-in-time basis, and surveys the various types of ver-

tical supply chain organizations that can be adopted by production companies and customers

to pursue their respective objectives. Reference [15] also provides a discussion on how infor-

mation and material flows can be optimized by placing materials, and time-buffers at strategic

locations in construction processes. In this discussion, the authors remark that the most com-

mon case is where the batch plant also delivers the mix to the contractor’s project site, i.e. the

case considered in this paper.

The problem of cement delivery is also considered in [10]. After giving a general discussion

of the main peculiarities of the problem, the author focuses on the problem of routing two

different types of vehicles: the cement carriers for the delivery of the concrete to customers

sites, and the pumps that may be necessary in some sites to unload the cement from the trucks.

The routing problems for each type of vehicle have different characteristics, because the carriers

must load the cement at a depot, unload it at its destination and then return to the same depot for

a new load, while the pumps are allowed to move from one customer to another one. The author

proposes a decision-support system to solve both routing problems with a heuristic approach

that iteratively improves an initial assignment done by plant managers.

It can be easily noted that the just-in-time supply problem considered here also shares many

common aspects with a large number of related logistic problems that have been considered in

technical literature. For instance, the assignment of trucks for transportation can be modelled as

a vehicle routing problem (VRP), which is among the most thoroughly investigated problems of
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operations research. The version of the VRP more related to our case study concerns the routing

of a fleet of vehicles with time-window constraints and is known as Multi-Depot Multi-Vehicle

Routing Problem with Time Windows. The nearly prohibitive combinatorial complexity of this

problem makes analytical approaches impracticable, especially for cases of a size comparable

to our problem. Thus, available literature focuses on heuristic approaches capable to achieve

satisfactory solutions in acceptable times. Comprehensive surveys about exact and heuristic

methods to deal with the VRP are available in [5, 9, 16]. A study on vehicle capacity plan-

ning system that is considerably related to our problem is provided in [7]. The authors model

the problem of container transportation as a vehicle routing problem, also taking into account

several time-window constraints. As in our case, each carrier starts from a depot, delivers the

unit load (container), and then reaches another depot for a new task. The objective function

is to minimize the sum of the cost of delivering the containers by company-owned trucks, and

the cost of outsourcing the requests that cannot be satisfied by the company. The authors pro-

pose a heuristic approach based on Tabu Search, which is able to determine solutions that are

significantly better than those provided by the existing rules adopted by the company.

Several approaches for dealing with similar problems have been proposed in recent litera-

ture concerning the scheduling of production centers. As in the case of routing, most of the re-

cent literature overcomes the extreme combinatorial complexity with heuristic solutions. More

specifically, there has been an increasing interest towards search algorithms inspired from the

principles of survival-of-the-fittest in natural evolution and genetics, generally referred to as

Evolutionary Computation [11]. Since these heuristic algorithms are also the main optimiza-

tion engine of the approach proposed in this paper, we now pay particular attention to some

recent references that describe an evolutionary approach for problems related to the supply-

chain scheduling considered here.

The allocation of a set of independent jobs with delivery time constraints to a set of dis-

tributed plants presents some similarities with scheduling problems with earliness / lateness

penalty considered in the context of single or parallel machine scheduling. GAs lend them-

selves to attack such type of problems as suggested in e.g. [6]. The authors devise a scheduling

algorithm composed of a timing algorithm that computes the optimal start time of each job,

and a sequencing strategy to determine the processing order based on a GA. The proposed

method offers significant improvement with respect to other available heuristics, and provides
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nearly optimal solutions as confirmed by a comparison with an exact algorithm. The problem

of scheduling independent jobs on identical parallel machines to minimize earliness / tardiness

with a GA has been considered in [2]. Two GAs, one without crossover, and the other one using

a crossover operator devised by the authors for the specific problem are proposed and evaluated

against a neighborhood exchange search algorithm. While the latter algorithm provides better

results for small instances, the GAs outperform such search algorithm in larger-sized, more dif-

ficult problems, providing improvements that increase with the problem size. The scheduling

of identical parallel machines with a GA has been considered also in [12], where the objective

is formulated as the minimization of the makespan, and the performance of the GA is com-

pared against Simulated Annealing and other available heuristics. Also here, the proposed GA

outperforms the other methods suggested in the paper for comparison.

Recently, some authors have proposed the application of GAs to solve some of the problems

related to concrete production and delivery. For instance, [3] considers the problem of schedul-

ing a single production plant in order to satisfy delivery time constraints. In particular, each load

has to be delivered in a certain desired time, and a linear penalty proportional to the amount of

earliness / tardiness with respect to this reference time is introduced. The authors propose two

approaches, an exact method suitable only for very simple cases, and a GA for instances of

more realistic size. The GA solves the problem by constructing an initial schedule that attempts

to arrange the jobs so that they can be delivered as close as possible to the desired time. Since

this initial schedule may encompass overlapping jobs that cannot be produced simultaneously,

the algorithm searches for the subset of non-conflicting jobs that lead to the smallest value of the

cost function. It should be noted that the paper considers only a single depot, does not consider

limited resources for transportation, and considers instances that are significantly smaller than

those used in our case studies.

Another recent research work on just in time cement production and delivery is reported

in [1]. As in the previously mentioned research, the authors focus on scheduling a single de-

pot, equipped with a fleet of vehicles with identical capacity and a fixed (customer and depot

independent) loading/unloading times. Similarly to our study, they consider the case of or-

ders exceeding the capacity of a single vehicle, which determine the need for a sequence of

tightly coupled successive sub-deliveries operated by separate trucks. The authors propose the

use of a GA for searching a production sequence that maximizes a predefined performance
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index (taking into account truck waiting times and a penalty for violating the unloading conti-

nuity of multi-truck orders) that is evaluated by discrete-event simulation of the operations of

the fleet of vehicles. It is worth emphasizing that the assumption of identical production and

loading/unloading times for each order is not acceptable in our real-world case studies. It also

transforms the scheduling of production into a simpler job permutation / sequencing problem.

Moreover, it should be noted that the largest instance considered in the paper (composed of a

single depot processing 9 demands divided into 22 distinct sub-deliveries performed by a fleet

of 20 trucks) is significantly smaller than the cases considered here (five depots receiving 40 to

70 demands, determining 200 to 450 sub-deliveries assigned to a fleet of about 50 trucks).

3 Modelling The Ready-Made Concrete Supply Chain

We now give a more detailed description of the concrete delivery problem examined in this

paper. First of all, it should be mentioned that once the production center adds water to the mix

of dry materials, the concrete has only about two hours (unless specific chemical retarders are

employed) before the hydration process forms a gel that, if disrupted, would compromise the

ultimate strength of the concrete. Thus, large orders require a strictly uninterrupted supply of

concrete in order to avoid dangerous construction joints [15]. A delivery sequence for unin-

terrupted supply at a site requires a loaded truck to be available at the site when the preceding

truck has ended the unloading. In some circumstances, there can be extremely large orders that

involve a considerable number of trucks and thus tie up most of production plant’s and vehicle

fleets capacity. Since concrete should be placed no later than two hours after the addition of

water, travel from the batch plant to a site should not take much more than an hour or so. There-

fore, a plants operating radius tends to be limited based on the nature and condition of haul

roads. The time a ready-mix truck may sit in traffic during rush hours is a significant consider-

ation when scheduling site deliveries. On-time delivery of concrete is essential to a customer.

If a truck arrives early, the concrete placement crew may not yet be ready. If a truck arrives late

the continuity of the unloading is violated, and if the delay exceeds the concrete setting time the

entire load has to be disposed.

We consider a network ofD suppliers or Production Centers (PCs) located in a given geo-

graphical area. Each PC is equipped with a single loading dock, where the produced cement is
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loaded on the trucks for its delivery. Moreover, each loading dock can service only one truck

at a time. Each PC can supply a variety of concrete types, that are obtained by mixing water

and predefined amounts of dry material while they are being loaded on the truck. Thus, each

order or fraction of an order is actually produced at the time the truck assigned to it is available

at the loading dock for loading the material. As also remarked in [15], since cement mixing

operation is highly automated, and dry components can be supplied at the loading dock in very

short times, the production time is entirely determined by the time needed to place the load on

the truck. The total loading time for a truck consists of a fixed part (independent of the loading

rate) and a flexible part that depends on the required volume and the loading rate of the loading

dock. Moreover, there is no significant setup time depending on the type of concrete mixed in

two successive load operations.

An order consists minimally of a delivery moment (date and time), type of concrete, required

amount and delivery location. Additionally, a customer may require explicitly that an order be

produced by a specific PC or that it must not be supplied by some of the PCs of the chain.

Several other attributes of customers’ resources at the unloading site must also be taken into

account. Namely, each customer can unload at a maximum rate, and may specify a maximum

amount of product per single delivery. Moreover, the customer may require a truck to arrive in

advance with respect to the requested delivery time for some logistic reasons at the construction

site. In other words, the customer may require that the truck waits a predefined time interval at

the unloading site prior to begin unloading. Some orders do not need a delivery, as the customer

picks up the concrete himself. Clearly, these orders must be taken into account only in the PCs

scheduling.

Some characteristics of the trucks are also fundamental parameters of the whole scheduling

problem. In fact, the delivering trucks have a limited capacity, and a maximum unloading rate.

Some specific types of concrete require that a certain fraction of the trucks capacity is left

empty, thus reducing the actual capacity of the truck for that type of cement. Trucks are parked

in specific base locations at the PCs from which they start every morning, and to which they

must return every evening. A vehicle can be used for a predefined day shift, so any delay or

additional job must be paid additionally. Differently from many other routing problems, here

each truck can service only one order at a time. It is not possible to service multiple small orders

by the same truck during the same delivery. Hence, a small order often implies that a truck will
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be only partially loaded during the delivery. As for the loading process, only one truck at a time

can be unloaded at the delivery location (if two trucks have arrived at the location, one must

wait until the other one is unloaded). Finally, whenever needed, it is possible to hire a number

of additional vehicles from external companies.

We model the integrated supply chain scheduling as a cost minimization problem. For con-

venience, the list of all the symbols and acronyms used in our model is reported in Appendix A.

The symbols are grouped according to their indices defined as follows. We suppose that at a

given decision time,R (request) demands from different customers have been received, and

have to be assigned toD (depot) different PCs. If a demand exceeds the capacity of a single

truck, it is divided in a number of sub-demands (jobs), which will be delivered to customers.

Thus, we introduce the following indices:

d ∈ {1, . . . , D}, depot-related index.

r ∈ {1, . . . , R}, customer or demand-related index.

i ∈ {1, . . . , N}, job-related index relative to the job. N is the total number of jobs to perform.

The sub-demands are arranged in sequential orders, so that the indexi can be interpreted

as follows:

i ∈





1, . . . , Z1︸ ︷︷ ︸
r=1

Z1 + 1, . . . , Z1 + Z2︸ ︷︷ ︸
r=2

Z1 + Z2 + 1, . . . , Z3︸ ︷︷ ︸
r=3

· · ·
R−1∑
r=1

Zr + 1, . . . , N

︸ ︷︷ ︸
r=R





,

whereZr is the number of sub-deliveries in which a request exceeding a truck’s capacity

is divided. Furthermore, we indicate withfr andlr the first and last job in the demandr,

respectively.

k ∈ {1, . . . , K}, truck-related index. K is the total number of trucks (K = Kc + Ko, where

Kc is the number of trucks of the company, andKo is the number of additionally hired

trucks).

m ∈ {1, . . . , Mk}, task-related index. A task of a truck is the delivery of a job to its destination.

Mk is the maximum number of tasks allowed to a single truckk.
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Preferably, the trucks owned by the cement delivery company are used. However, additional

capacity (trucks) may be hired if necessary. If theD PCs are not able to supply the entire

amount of requested materials, a part of the requests will be outsourced to external companies

at an additional cost. We should mention that we assume that if the production of a job is

outsourced, the job will be directly delivered to the customer at the specified time, i.e. our model

does not deal with the delivery of outsourced production. On the contrary, we do consider the

scheduling of hired trucks for the delivery of jobs that cannot be handled by the internal fleet as

a part of our problem. Thus, our model considers the following decision variables:

Xikm ∈ {0, 1} If the job i is assigned to truckk asm-th task,Xikm = 1, otherwise

Xikm = 0.

Yid ∈ {0, 1} If job i is produced at the depotd, Yid = 1 and i ∈ Γd ⊆ {1, . . . , R},
otherwiseYid = 0.

Yoi ∈ {0, 1} If the production of jobi is outsourced,Yoi = 1, otherwiseYoi = 0.

The cost function is composed of three terms:

C = C ′ + C ′′ + C ′′′. (1)

The first one,C ′, takes into account the transportation costs, in terms of total distance travelled

by the fleet of trucks to deliver all the produced jobs (see (2)). This first term for transportation

costs takes into account the sum of all the distances from PCs to customer sites. The second

term for transportation costs accounts for the return trip to the PC for the next job, while the

third term accounts for the cost of reaching the PC supplying the first job of the truck, if it differs

from the base location, and the cost of returning to the base-location at the end of the working

day. From a global viewpoint, the production of the entire supply chain should be organized so

as to minimize the delivery costs

C ′ =
CP

V
(A1 + A2 + A3) , (2)

where

A1 =
N∑

i=1

D∑

d=1

YidΛ(ri, d), (3)

A2 =
M−1∑
m=1

N∑
i=1

N∑
j = 1

j 6= i

XikmXjk(m+1)

(
D∑

d=1

YjdΛ(ri, d)

)
, (4)
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A3 =
K∑

k=1

(Λ(DPk,DF k) + Λ(DLk,DPk)) . (5)

The second termC ′′ takes into account the loading and unloading waiting times (see (6)).

As mentioned before, this is a critical variable of the problem. The waiting times measure how

much in advance the truck must be ready for the operations at a PC or at a delivery site with

respect to the actual start of the loading or unloading operation. In principle, waiting times

should be minimized because they typically represent a loss (the more the waiting times, the

lower the resource utilization). However, waiting times are the only safety margins of a given

solution, since a schedule with reasonable waiting times allows a truck to perform its operation

also in presence of delays (e.g. transport delays due to traffic).

C ′′ = CA

(
K∑

k=1

M∑
m=1

LWT km +
N∑

i=1

UWT i

)
. (6)

The third termC ′′′ accounts for the additional costs related to outsourced production, hired

trucks and the overtime work for some truck drivers (see (7)). Solutions requiring a different

number of outsourced jobs or hired trucks can be found for any given set of demands. The

more the schedule is optimized, the lower the amount of requested outsourcing. Of course, this

contrasts with the just mentioned safety margins, because in general optimized schedules have

very tight safety windows.

C ′′′ = PT

(
N∑

i=1

Yoi

Qr(i)

Zr(i)

)
+ HC Ko + (7)

+XTR

(
K∑

k=1

max
{
0, STWDk − T start

k

}
+ max

{
0, T 6

kMk
− ENDWDk

}
)

.

The optimization model is subject to a considerable number of assignment and timing con-

straints that will be introduced and commented separately in the next subsections.

3.1 Assignment constraints

Every job can be assigned to a production depot or outsourced once, and so∀i ∈ {1, . . . , N},
D∑

d=1

Yid + Yoi = 1. (8)
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Similarly, each job can only be assigned once to either a truck of our fleet or to an hired one,

i.e.∀i ∈ {1, . . . , N} 



if Yoi = 0,
∑K

k=1

∑M
m=1 Xikm = 1

if Yoi = 1,
∑K

k=1

∑M
m=1 Xikm = 0

. (9)

Finally, jobs must be assigned to trucks sequentially (in other words guaranteeing that for the

m-th task of any truckk all the preceding tasks are assigned and all the succeeding task are not

assigned).∀k ∈ {1, ldots, K}, ∀m ∈ {1, . . . ,Mk − 1},
N∑

i=1

Xik(m+1) ≤
N∑

i=1

Xikm ≤ 1. (10)

3.2 Computation of operation and travel times

The considered supply problem has a number of constraints related to some start or end times of

specific truck operations. In order to clearly introduce such constraints, Fig. 1 defines the typical

sequence of operations for a truck, and specifies the associated time intervals. In particular, once

a truck is available at the PC, it has to

1. wait for the start of loading operations,

2. load the material,

3. travel to destination,

4. wait for unloading (including the customer-specified fixed time),

5. unload, and

6. return to a PC or base location.

The job loading timeLT i depends only on the depot loading rateLRd and on job size

Qr/Zr, i.e.∀i : fr ≤ i ≤ lr

LT i =
D∑

d=1

Yid

(
FLT d +

Qr

Zr

1

LRd

)
, (11)

while thesource to destination travelling timeSDT i for job i is computed as∀i : fr ≤ i ≤ lr

STD i =

∑D
d=1 Yid Λ(ri, d)

V
. (12)
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duration for task of truckm k

T 0
km start of the taskm of truckk

T 1
km start loading of taskm of truckk

T 2
km end loading and start outward trip

T 3
km end outward trip and start of waiting for unloading

T 4
km end of waiting and start unloading

T 5
km end unloading and start trip toward the source of the next task

T 6
km end trip toward the source of the next task

Figure 1: Sequence of operations for a single truck.

Finally the travelling time between the destination of jobi and the source of jobj DST ij is

computed as follows:∀i : fr ≤ i ≤ lr

DST ij =

∑D
d=1 Yjd Λ(ri, d)

V
. (13)

3.3 Delivery time-window related constraints

Since each customer assigns the time window for delivery, a preliminary verification of data

consistency should be carried on. In particular, it should be inspected if∀r{1, . . . , R}

LDT r − EDT r ≥ Zr UT i, (14)

i.e. that the customer assigned delivery time-window is sufficiently wide to allow the completion

of unloading operations at the available unloading rate of the customerr. If this requirement

is violated, a warning is issued to the customer. Moreover, accepted jobs must be scheduled

meeting the following constraints.

∀i : fr ≤ i ≤ lr

ELT i − SLT i ≥ LT i. (15)
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This condition guarantees that the time window allocated to each single job is large enough to

allow the completion of the loading at the depotd.

∀i : fr ≤ i ≤ lr

SLT i ≥ LDT r − (lr − i) UT i − Tsetr. (16)

This constraint guarantees that the start of loading time-window is not so early that the concrete

may solidify before it is completely unloaded.

∀i : fr ≤ i ≤ lr

ELT i ≤ LDT r − SDT i − Fix r − (lr − i + 1) UT i. (17)

This constraint affects the end of the loading time window, ensuring that the end of the loading

cannot be so late that the sequence of remaining jobs will not be completed within the customer-

specified time window.

∀d ∈ {1, . . . , D}, ∀i1,∀i2 ∈ Γd, i1 6= i2,

ELT i1 ≤ SLT i2 ∨ SLT i1 ≥ ELT i2 . (18)

This constraint forbids the overlap of loading time windows at the same depot.

3.4 Single truck related constraints

Truck operation times must be computed according to the following relations, by meeting the

constraints introduced subsequently.∀k{1, . . . , K}

T 0
k1 =

Λ(DPk,DF k)

V
+ T start

k . (19)

The start of taskm for truck k can be related to the timeT 0
k1 when it begins its first task as

follows: ∀k ∈ {1, . . . , K}, ∀m ∈ {2, . . . , Mk},

T 0
km = T 0

k1 +
m−1∑

l=1

(
LWT kl +

N∑
i=1

Xikl (LT i + SDT i + UWT i + FIX i + UT i)

)
+

+
m−1∑

l=1

N∑
i=1

N∑
j = 1

j 6= i

Xikl Xjk(l+1) DST ij. (20)

∀k ∈ {1, . . . , K},
LWT k1 = T 1

k1 − T 1
k0. (21)
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∀k ∈ {1, . . . , K}, ∀m ∈ {2, . . . , Mk}

LWT km = T 1
mk −

N∑
i=1

Xik(m−1) T 6
k(m−1). (22)

∀k ∈ {1, . . . , K}, ∀m ∈ {1, . . . , Mk},

LWT km ≥ MWT , (23)

T 1
km = T 0

km + LWT km, (24)

T 2
km = T 1

km +
N∑

i=1

Xikm LT i, (25)

T 3
km = T 2

km +
N∑

i=1

Xikm SDT i. (26)

∀i = fr

UWT i = max

(
EDT r − Fix r −

K∑

k=1

M∑
m=1

Xikm T 3
km,MWT

)
. (27)

This condition states that for the first job related to a demandr, the truck will have to wait

longer thanMWT only if it arrives earlier than the expectedT 3
km.

∀i : fr < i ≤ lr,

UWT i = max

(
M∑

m=1

K∑

k=1

X(i−1)km T 5
km − Fix r −

K∑

k=1

M∑
m=1

Xikm T 3
km,MWT

)
. (28)

Analogously, this condition specifies that for the all the other jobs related to a demandr, the

truck will have to wait longer thanMWT only if it arrives earlier than the end of the unloading

of the previous job.

∀k ∈ {1, . . . , K}, ∀m ∈ {1, . . . , Mk},

T 4
km = T 3

km +
N∑

i=1

Xikm (UWT i + Fix ri
) , (29)

T 5
km = T 4

km +
N∑

i=1

Xikm UT i, (30)

T 6
km = T 5

km +
N∑

i=1

N∑
j = 1

j 6= i

Xikm Xjk(m+1) DST ij. (31)

∀k ∈ {1, . . . , K}, ∀m ∈ {1, . . . , Mk − 1},

T 6
km = T 0

k(m+1). (32)
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∀k ∈ {1, . . . K},
T 6

kMk
=

Λ(DLk,DPk)

V
+ T 5

kMk
. (33)

The latter equation simply models the return of each truck to its base location.

Truck scheduling constraints are defined as follows.∀i : fr ≤ i ≤ lr,

SLT i ≤
K∑

k=1

M∑
m=1

Xikm T 1
km ≤ ELT i − LT i = LLT i. (34)

This means that the loading of jobi must start and end within its loading time window.

∀i : fr ≤ i ≤ lr,

K∑

k=1

M∑
m=1

X(i+1)km T 1
km ≥

K∑

k=1

M∑
m=1

Xikm T 6
km + MWT . (35)

This constraint guarantees thatT 1
km is chosen so as to ensure that theLWT km is greater than

the minimum allowed safety marginMWT .

∀i : fr ≤ i ≤ lr,

K∑

k=1

M∑
m=1

Xikm T 1
km ≤

K∑

k=1

M∑
m=1

Xikm T 4
km − SDT i − Fix r −MWT . (36)

Similarly, this constraint means that the choice ofT 1
km must guarantee thatUWT i is not less

thanMWT .

∀i : fr ≤ i ≤ lr,

∑D
d=1

∑i−1
j=fr

Yjd = 0, and
∑D

d=1 Yid = 1

EDT r + (i− fr) UT i ≤
∑K

k=1

∑M
m=1 Xikm T 4

km ≤ LDT r − (lr − i + 1) UT i.
(37)

This equation considers the case in which some of the jobs composing a demand are outsourced.

In particular, the equation refers to the case in which the first jobs in the sequence (all those

preceding jobi) are outsourced. In such a case, the jobi must be scheduled so that the preceding

jobs are fully unloaded. All the other cases are considered in other equations (see (38)).

3.5 Constraints between different trucks

The unloading of all the jobs (but the first one) composing demandr must start exactly when the

preceding one ends. This strict requirement guarantees the continuity of the unloading process
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that is fundamental in many construction sites. The model takes into account this requirement

with the following constraint:∀i : fr ≤ i < lr,
K∑

k=1

M∑
m=1

Xikm T 5
km =

K∑

k=1

M∑
m=1

X(i+1)km T 4
km. (38)

4 Hybrid Metaheuristics For Concrete Production And De-

livery

Given a certain set of demands, finding a feasible schedule for the overall supply chain may be

a task of variable but generally prohibitive complexity, which depends not only on the number

but also on the specific characteristics of the demands. For instance, it can happen that the

requests for a given day are well within the overall capacity of the network, but concentrated

in areas that are out of the operating radius of most PCs, which consequently remain inactive.

Similarly, requests may be conflicting in terms of closeness of their delivery times, so that it is

not possible to schedule the loading operation on the various PCs guaranteeing the delivery of

all the jobs in the requested time-windows. Many other problems may arise due to the limited

fleet of vehicles for delivery. Moreover, there are a number of practical requirements that have

not been explicitly taken into account in the proposed model for sake of simplicity, but may

have a significant influence on the quality of the final solution. For instance, it is preferable to

make all the efforts to keep the sub-demands composing a single request assigned to the same

PC, in order to avoid schedules with an excessive coupling between the PCs. Moreover, some

customer may explicitly require the production at a specific PC, thus constraining some of the

decision variablesYid to predefined values. In order to take into account all the requirements

of the problem, we have devised a heuristic algorithm that decomposes the supply-chain prob-

lem in two separated sub-problems, which are tackled one after the other. In particular, in a

preliminary stage, the demands are subdivided into separated jobs according to trucks capacity

and customers requirements. Then, the first problem regards the assignment of jobs to PCs, and

the associated scheduling of the simultaneous mixing and loading operations at each PC. When

a loading operation is scheduled at a PC, it is assumed that a truck will be made available at

the loading dock at the assigned loading start time. The second problem regards the routing of

the fleet of carriers, guaranteeing that a truck is located at a loading dock at a time a loading

operation is scheduled to start. If the routing algorithm is not able to make a truck be available
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in time for the loading of the assigned job, an external truck is hired for this purpose at an addi-

tional cost. Clearly, this decomposition of the problem in two consecutive problems may lead

to sub-optimal solutions, while ideally the problems of PC scheduling and truck routing should

be jointly considered in a single global formulation. However, the decomposition allows us to

achieve two subproblems of reasonable complexity, and solve them effectively with relatively

simpler algorithms. Moreover, it should also be remarked that the experimental investigation in

our case study shows that the proposed search strategy is in general able to find solutions with

generally short and evenly distributed waiting times, confirming that the internal fleet of trucks

is in general appropriately exploited.

The two separated sub-problems are solved with different heuristic algorithms. Namely, a

GA is used to optimize the assignment of demands to depots (the decision variablesYid) and the

order of priority of loading of the demands to the assigned depots, while efficient constructive

heuristics are used to deal with timing constraint satisfaction (i.e. determining a feasible overall

schedule according to the assignment performed by the GA) and truck dispatching. For the sake

of clarity, we describe the GA and the constructive heuristics in separate subsections.

4.1 The Genetic Algorithm

Genetic algorithms belong to a class of stochastic search methods that work iteratively on a

population of candidate solutions of the problem (individuals), performing a search guided by

the fitness (i.e. the value of the objective function) of each solution. In particular, the higher the

fitness, the more the genes of a solution are likely to be propagated to the solutions explored in

the next iterations. This Darwinian principle is emulated with specific crossover, mutation and

selection operators, which are applied with stochastic mechanisms that make the GA explore

solutions with increasing fitness. One of the frequently acknowledged merit of these optimiza-

tion algorithms is their flexibility with regards to the characteristics of the objective function, as

they do not rely on specific a priori hypotheses (e.g. continuity and convexity).

Every GA requires a preliminary definition of an encoding strategy to transform a generic

solution of the problem into a string of symbols, chosen from a pre-specified alphabet and suit-

able to the application of recombination operators for generation of new solutions (i.e. crossover

and mutation operators). In GAs literature, an encoded solution is generally referred to as chro-

mosome, and a single parameter of the solution vector is called a gene. As mentioned, an ex-
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Customer’s Request-to-Depot AssignmentPriority of request in schedule construction

r1 r2 r3 r4 r5 r6 p1 p2 p3 p4 p5 p6

1 3 2 1 2 2 4 5 6 1 3 2

Figure 2: A generic chromosome.

tremely rich literature on GA-based sequencing and scheduling methods is available to date, and

a considerable variety of different encoding strategies have been devised to address specific re-

quirements. When dealing with scheduling problems, there are several conflicting requirements

in the definition of the coding strategy. In particular, the coding strategy should be devised so

as to have compact chromosomes that completely characterize the associated solution. Ideally,

the coding should be defined so as to ensure that the crossover (mutation) of two (one) chro-

mosomes describing legal (i.e. satisfying all the constraints) solutions always lead to legal new

solutions. For complex scheduling problems, such as the one considered here, guaranteeing le-

gal offspring involves either extremely long chromosomes (which may compromise the search

ability of the GA) or very complex and computationally demanding crossover and mutation

operators. Many different solutions to overcome these problems in related contexts have been

proposed in the literature (e.g. [6], [8], [11], [14], [18] to mention only some). Our research

tackles the solution representation problem by adopting a coding strategy that describes only a

part of the whole scheduling problem, and then using constructive heuristics to determine the

complete schedule associated with the chromosome each time the fitness of a chromosome is

computed.

To illustrate the basic mechanisms of our strategy, let us first focus on the chromosome

encoding. The chromosome is made up by two separate parts, both containingR (the number

of demands) elements, as described in Fig. 2 forR = 6. The first part defines the assignment

of demands (requests) to the depots. Each gene is an integer number between1 andD (the

number of depots): thelth gene of this first part of the chromosome indicates the depot to

which requestrl is assigned. For instance, in the chromosome represented in Fig. 2, requestsr1

andr4 are assigned to depot 1,r2 to depot 3 and all the remaining ones to depot 2. The second

part of the chromosome establishes the order in which theR requests will be considered in the

construction of the complete schedule of the production chain. Thel-th gene in this second

part indicates the demand that will be considered at thel-th step of the scheduling construction
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/* Single Criterion GA */

/* Algorithm Startup */

i = 1;

Pop(1) = random pop

fitness eval(Pop(1))

i = 2;

/* main loop of the GA */

WHILE terminating condition == false

p best = findbest(Pop( i− 1)) /* elitist preservation of

the best-known individual*/

Pop( i) = select(Pop( i− 1),sel ops);

Pop( i) = crossover(Pop( i));

Pop( i) = mutation(Pop( i));

Fitness eval(Pop( i))

Pop( i) = Pop( i) ∪ p best

i = i + 1;

END WHILE

Figure 3: The basic structure of the GA.

procedure. For instance, in the chromosome in Fig. 2, requestr4 appears in the first location

of the second part of the chromosome (p1), and so it is assigned the highest priority. Thus,

r4 will be the first one to be allocated in the scheduling plan. Following the same sequence

of appearance in the chromosome, the next demand in order of priority isr5 (assigned with

priority p2), followed by requestr6 (priority p3), and then,r1, r3, and finallyr2. Clearly, the

second part of the chromosome can be any permutation of the sequence of integers1, 2, . . . , R.

In other words, the first part of the chromosome defines the values of the decision variableYid,

while assignment variablesYoi andXikm are not specified, but computed by the constructive

heuristic procedure (described in Section 4.2), which is called every time the fitness of a new

chromosome must be computed. The main schema of the GA is summarized in Fig. 3 using

a descriptive meta-language. The setPop( i) represents the set of solutions (including the
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associated fitness) composing the population ati-th iteration (generation). The role of each

meta-function used in the description can be summarized as follows.

random pop This function creates a random initial population of 100 individuals in our ex-

periments.

fitness eval(Pop) The fitness of eachnewindividual (i.e. resulting from a random ini-

tialization, or from a crossover or mutation operation that produced a solution differing

from its parent(s)) inPop is computed. As mentioned, the chromosome of an individ-

ual only specifies a part of the decision variables of the scheduling process (Yid), while

the remaining variables (Yoi, Xikm) and the scheduled times for each operation are de-

termined by a sequence of constructive heuristic algorithms that will be described in the

next subsection. Once the overall schedule of the whole supply chain has been defined

by the constructive algorithms, the value of the cost function associated to the individual

is computed and assigned as fitness of the chromosome.

select(Pop,sel ops) This function returns a new population of solutions selected from

those inPop with a strategy that assigns higher probability of selection to individuals

with higher fitness. We usetournament selection[11] with two individuals for each tour-

nament.

crossover(Pop) This function randomly selects couples of solutions inPop to perform

a crossover that returns two new individuals, which partially inherit some characteris-

tics of both parents. After the crossover, the resulting offspring replaces the two parents.

Given the particular structure of our the chromosome structure we devised a new operator

that combines two effective operators derived from recent literature (e.g. [13], [4]). Our

crossover randomly selects a chromosome cut point. If this point falls on the first half of

the chromosome, it performs a standard single-cut crossover to the first part of the chro-

mosome (request to depot assignment), otherwise it performs an order-based crossover

on the remaining part. The effects of this operator are illustrated in Fig. 4.

mutation(Pop) This function randomly alters a solution to obtain a new one. Similarly

to the crossover, we selectively apply two different mutation operators. A gene in the

chromosome is selected randomly. If it belongs to the first part, the gene is replaced by
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SINGLE-CUT CROSSOVER ORDER BASED CROSSOVER

parent
string 1

parent
string 2

new
string 1

new
string 2

1  3  2  1  2  2

3  1  2  1  2  2

3  1  2  2  3  1

1  3  2  2  3  1

1  3  2  1  2  2

1  3  2  1  2  2

3  1  2  2  3  1

3  1  2  2  3  1

4  5  6  1  3  2

4  5  6  1  3  2

1  5  4  2  3  6

1  5  4  2  3  6

4  5  6  1  3  2

4  5  1  3  6  2

1  5  4  2  3  6

1  5  4  3  2  6

Figure 4: Examples of the crossover operator.

SIMPLE MUTATION INVERSION MUTATION

parent
string

new
string

1  3  2  1  2  2

1  3  3  1  2  2

1  3  2  1  2  2

1  3  2  1  2  2

4  5  6  1  3  2

4  5  6  1  3  2

4  5  6  1  3  2

4  1  6  5  3  2

Figure 5: Examples of the mutation operator.

a randomly extracted integer between 1 andD. Otherwise, the inversion mutation (two

randomly selected genes are swapped in the sequence) is applied to the order based part.

The effects of this operator are illustrated in Fig. 5.

terminating condition For all our experiments, we stopped the algorithm after 200

generations.

Once a part of the solution is specified in the chromosome, a constructive heuristic procedure

(CHP) is used to determine a legal schedule for the entire supply chain. The CHP is composed

of two separate parts, respectively dealing with the scheduling of loading operations at the PCs,

and the scheduling of job deliveries by trucks. For the sake of brevity, it is not possible to

provide an exhaustive description of all the steps performed by each part of the CHP, so in the

following we focus on the illustration of the main mechanisms of each part.

4.2 Constructive Heuristic Procedure: scheduling loading operations

Basically, the procedure starts to process the demands following the order of priority specified

in the second part of the chromosome. The operations of the CHP are relatively simple when

there is only one job for each request (R = N ). If this is the case, the first processed demand

24



is scheduled on the PC assigned in the chromosome, unless the PC-to-customer distance, PC

loading rate, and customer unloading rate make this assignment unfeasible. In the latter case,

the demand is redirected to the nearest depot to the delivery location of the demand. When no

conflict with previously scheduled demands is detected, a demandr is scheduled so that the

unloading (of its first job) starts exactly at theEDT r. The second and successive demands are

scheduled with similar criteria. Firstly, it is inspected if they can be scheduled at the assigned

PC so that they are delivered and unloaded within the specified time window. When a demand

r is scheduled at a PC that has already been assigned other demands, some different situations

can occur:

1. the customer-specified time-windows for the requests are such that the production times

of r is not in conflict with the previously assigned ones, or

2. r is in conflict with some other job loading at the PC, and the assignment cannot be

accepted as is.

The partial overlap of loading times is one of the simplest conflicts that may arise in the com-

plex scheduling problem addressed here. The CHP firstly tries to shift forward the start of

the loading time-window ofr until it is no longer overlapping with the others assigned to the

same depot. Of course, this operation may have negative effects. In particular, the start time

of unloading ofr will be shifted forward as well and consequently it may happen that the de-

livery cannot be completed in the time requested by the customer. In this case the CHP makes

a second adjustment trial, this time shifting backward the loading window ofr until there is

no overlapping. This operation is in general less favorable than the previous one because it

implies that the truck will arrive at the delivery location before theEDT , and thus it will have

to wait. The waiting time cannot be so long that the concrete starts to set before its complete

unloading. If this constraint is violated, there is no other solution except for either reassigning

the demand to another PC, or making other adjustments that involve also the already assigned

demands, i.e. those having a higher priority than the one ofr. We must note that whenever a

request is reassigned to a depot differing from the one specified in the chromosome, the CHP

will change the chromosome accordingly. If a request cannot be successfully reassigned to one

of the available depots of the company, then it is outsourced. Thus, the priority of demands

in schedule construction strongly influences the way the demand are scheduled over time. The
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CHP

INPUT A CHROMOSOME

(INITIAL JOB ASSIGNMENT Y
id

AND DEMAND PRIORITY)

PHASE 1:

SCHEDULE JOBS OF THE SAME

DEMAND TO THE SPECIFIED

DEPOT

PHASE 2:

REDIRECT UNSCHEDULED JOBS

TO OTHER DEPOTS

PHASE 3:

FORCE INSERTION OF

UNSCHEDULED JOBS

PHASE 4:

ASSIGNMENT OF THE JOBS TO

THE TRUCKS OF THEIR DEPOT

PHASE 5:

ASSIGNMENT OF THE

UNDELIVERED JOBS TO THE

OTHER TRUCKS

FITNESS EVALUATION

GENETIC ALGORITHM

INPUT AVAILABLE DEMANDS

1,...,r R

SUBDIVIDE DEMANDS INTO JOBS

Y
id

Y
oi

X
ikm

 K
o

Figure 6: The main steps of the CHP and its integration in the GA.

way schedules are (re)constructed to meet all the timing constraints also makes possible that

two or more different chromosomes lead to the same final schedule, and thus to the same fitness

value.

In the most general case, each demand is composed of several jobs. In this case, the CHP

has to perform a considerably larger number of operations. The general sequence of operations

performed by the CHP is summarized in Fig. 6. Also in this case the CHP examines each

demand in the chromosome in order of the assigned priority. Let us focus on a given demand

r: after checking for possible infeasibility of the assignment due to excessive distance between

delivery location and assigned PC (if it occurs, it is handled as described before), the algorithm

starts to examine and schedule each job composing the demand. The algorithm computes the

SLT of the first job of the demand based on the customer-specifiedEDT and of the company-

specifiedUWT , avoiding the overlapping of the loading windows as explained in the previous
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section. If one of the adjustments leads to a successful schedule, then the gene specifying the

assignment of the demand to the PC is confirmed and marked as unchangeable. Otherwise,

the algorithm proceeds by attempting to assign the second job of the demand to the PC, using

almost the same procedure described above. It is worth noticing that when the CHP operates

on the second or subsequent jobs of a demand, it has to verify that both the preceding but

not yet assigned jobs, and the following ones can be scheduled satisfying the delivery time

constraints. If also the second job cannot be assigned to the depot, the algorithm tries with

the subsequent ones, until either one of the jobs is assigned to the depot, or none of the jobs

composing the demand can be scheduled on the PC. In the latter case (100% jobs must be

reassigned elsewhere), the gene of the chromosome is actually changed and the procedure will

start investigating the other PCs in order of shortest distance from depot to customers site.

After successfully assigning one of the jobs of the demand to a given PC, sayd, the CHP

proceeds to assign all the remaining jobs to the same PCd, guaranteeing that each job will be

delivered so that the end of its unloading coincides with the start of unloading of the following

job (see constraint (38)). In a second step, the CHP reconsiders the unscheduled jobs and tries

to place them on other PCs, considered in order of increasing distance from the customers site.

Note that it can occur that a job of a demand can be allocated in time earlier than other jobs of

the same demand having a smaller index. The CHP will then sort the jobs of the same demand

so that they have an increasing index. Moreover, this reorganization of the sequence of jobs

evenly redistributes the unloading waiting times of all the involved jobs, thus leading to an

improved schedule.

At this point, the main task of the CHP is to handle the jobs still not assigned to any PC.

The final attempt to assign a job to a PC is performed as follows. Starting from the first PC in

order of increasing distance to customers site, the CHP tries to “force” the insertion of the job at

the exact time that guarantees the ideal unloading time. The main property of this last attempt

is that the CHP now is allowed to shift-backward also the jobs already scheduled in previous

steps (including those having an higher construction priority). This operation is likely to have

a significant impact on the overall schedule at the PC, and also to increase the value of the cost

function associated to the solution. To evaluate the actual advantages of this insertion, the CHP

computes the increment of cost caused by the insertion of the jobi in the schedule. If either

the increment exceeds the cost of outsourcing of the jobi, or the insertion causes a violation of
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some feasibility constraint, the insertion is rejected and the CHP tries with the next PC. On the

contrary, if the insertion determines a cost increment that is lower than the cost of outsourcing,

then the insertion is accepted, and the schedule is modified accordingly.

4.3 Constructive Heuristic Procedure: scheduling trucks

Once the assignment solution encoded in the chromosome is converted in a feasible loading

sequence for each PC, the fleet of trucks must be assigned to jobs (setting the values of decision

variablesXikm) and routed from PCs to customer sites and vice-versa to pickup and deliver

loads. Basically, the truck scheduling must guarantee that a truck assigned to a job is available

at the loading dock of the supplying PC at the scheduled load start time. A heuristic procedure,

referred to asTruck Schedule Construction Algorithm(TSCA) is in charge of performing this

task. Initially, all the jobs that are marked as directly picked-up by customer-owned trucks are

removed from the assignment list. Also the TSCA works in two consecutive and separated

phases: first, it assigns the jobs produced at a given PC to the fleet of vehicles already owned

by and located at the same PC, and second it searches for vehicles for delivering the remaining

unassigned jobs. The main operations of the two phases are summarized in the flow charts

shown in Fig. 7.

To illustrate the allocation procedure, let us firstly define the set of available trucks at a depot

at the generic timet. This set is composed of the trucks that either have not left their base PC

from the beginning of the working day (hereinafter defined as type 1) or have already completed

some transport operations and can return to the PC before timet (type 2). This distinction is

particularly relevant, since when both types of trucks are available, the TSCA always tries to

assign those of type 2 first, in order to actually use the minimal amount of trucks for servicing

all the requests. If the set of available trucks contains some trucks of type 1 over the whole

working day, this clearly indicates that the size of the fleet exceeds the actual requirement. Now

let us focus on the assignment mechanisms.

At the beginning of the working dayt = t0, all the trucks of the PC are idle and ready

for operation (all the trucks are of type 1). The TSCA allocates the first jobs produced in the

working day to trucks of type 1 until the first truck of type 2 becomes available. From that time

on, the TSCA always gives higher priority to trucks of type 2. When multiple trucks of type 2

are available, the TSCA ranks them in order of increasing return time (the time at which they are
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Figure 7: The truck schedule construction algorithm.
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expected to be back at the base PC) and assigns the last one in the rank (the one with the latest

return time) first. Therefore, the truck assignment strategy is also referred in this manuscript as

Shortest(truck) Idle Time(SIT), because the truck with the smallest idle time at the PC is the

one assigned first. The reason of using such a priority strategy for the trucks is twofold. Firstly,

as mentioned earlier, this strategy tends to use a minimal number of trucks in the assignment.

Secondly, instead of evenly distributing the idle times among trucks, the SIT strategy causes

some trucks to have longer idle times between assigned services. In this way, these trucks can

be profitably assigned to jobs of other PCs, as done in the second part of the TSCA. When a

job is assigned to a truck, the variableXikm is updated accordingly. When the first assignment

strategy is unable to find a truck for a given job, the job is temporarily marked asundeliverable,

and its assignment is postponed to the second part of the procedure. The first part of the TSCA

proceeds with the job-to-truck assignment until it has inspected all the jobs. At this point, either

all the jobs have been successfully assigned to the trucks of their respective supplying PCs, or

there is a set of unassigned jobs marked as undeliverable that still needs to be handled. To sum

up, the first phase of the TSCA attempts to assign the jobs of a PC to the smallest number of

trucks already located at the PC.

The second phase of the TSCA involves the jobs marked as undeliverable. The main steps

of this second part are summarized in the right-hand part of Fig. 7. As mentioned, jobs may

be undeliverable because either they are scheduled on a PC that is not equipped with delivery

vehicles (and explicitly relies on the support of trucks from other PCs), or the trucks of the PC

have already been assigned to other delivery operations. In the first part of this second phase,

the sets of unassigned jobs at each PC are merged and sorted in the order of increasingSLT .

Let us focus on the first one of the resulting list, say jobi′′, and let us calld′′ the PC supplying

the job. The TSCA considers the set of remaining trucks sorted by completion time of last

operation, and tries to assigni′′ to the first truck in this list, sayk′′. To addi′′ to the schedule

of k′′, the TSCA inspects various insertion possibilities (either placing it after the last job, or

inserting it between two previously assigned jobs). If no insertion meets all the constraints, the

procedure considers the next truck in the list. If the jobi′′ cannot be assigned to any truck in the

list of remaining ones, then a request for hiring an external truck is issued. In conclusion, at the

end of TSCA, all the decision variables (Yid , Yoi andXikm) are assigned and the resources are

scheduled so as to meet all the problem constraints.
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Figure 8: PCs locations.

5 Case Study

Our research work is based on a supply chain composed of five PCs located in the Netherlands.

The fleet of trucks consists of 49 vehicles housed in two PCs. As we can see from Fig. 8, most of

the PCs of this company are located around the Rotterdam port area. Though the location of the

PCs is strategically planned, note that there are only two base depots for the trucks. This means

that three PCs will have to rely on the other two for delivering their produced concrete. Our in-

vestigation focuses on information regarding a typical working day, with several requests from

various customers spread over a large area surrounding the supply chain. Based on the available

data, we generated a further set of 250 hypothetical instances having extremely variable char-

acteristics (number and size of requests, concentration of requests in specific areas, conflicting

time constraints, etc.), in order to evaluate the effectiveness of the proposed approach in a wide

range of differing operating scenarios. It is worth mentioning that some characteristics derived

from the analysis of the available demand patterns are noticeably close to those discussed in
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Table 1: Weights in CU (Cost Units) for the components of the cost function.

CP 10 cost for each Km of travel of the trucks

CA 15 penalty for idle time

PT 2000 cost (loss of income) form3 of concrete to outsource

HC 10000 cost of an hired truck

XTR 5 cost (extra pay) for each minute of working out of the standard working time

related literature (high density of demand between 7:00-9:00 and 13:00-15:00, normal distribu-

tion for morning orders, exponential distribution for afternoon orders [10]). Table 1 summarizes

the values of the main cost parameters in normalized cost units (CU).

Each considered instance differs in the number and characteristics of the requests. In par-

ticular, each demand specifies a delivery time window(EDT ,LDT ), a quantityQ required (in

m3), a maximal delivery sizeMds, a fixed waiting time (Fix ), an unloading rate (UR) and a

percent of the truck that must be left empty (Per ). The trucks have a maximal capacityCmax

of 10 m3. In general, customer requests have very narrow time windows, which imposes to

schedule the delivery of the first job very close to theEDT . The average truck speed used in

our model is60 Km/h while the concrete setting timeTset is 150 minutes. The working day

for a truck is between 5:00 AM to 4:00 PM, and if some truck is scheduled to return to base

location later than the end of the working day, an additional cost is incurred.

The prototype of our GA-based hybrid scheduling strategy was developed in Matlab math-

ematical programming environment. An execution of a single run of the GA configured as

described in the previous section takes approximately 6 minutes on a Pentium 4 CPU 2.6 GHz.

Although execution times could be dramatically reduced by translating the prototype algorithm

into more efficient programming environments (e.g. C code), it is worth noticing that even the

average execution time of the Matlab code is short enough to allow a quasi-realtime reschedul-

ing in case a new urgent request is received while the current workplan is already started.

To test the effectiveness of the proposed hybrid GA approach, we compare it with four dif-

ferent scheduling policies obtained by applying assignment criteria that are suggested by experts

as main criteria to build their schedules. Namely, the typical decision criteria in this context as-

sign service priorities based on either the distance of the customers site from the nearest PC in

the chain, or the size of the requests (higher priority to larger orders). Analogously, also trucks
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are generally assigned using a constructive procedure that takes into account distances and truck

idle times. The four policies used here for comparison are obtained by the following different

combinations of these heuristic rules.

a)SD/SIT (Shortest Distance/Shortest Idle Time):This heuristic criterion firstly sorts requests

by decreasing size. Then, it starts allocating each job to the PC that is closest to job

delivery location. Conflict and timing constraints are handled with adjusting procedures

that are analogous to those illustrated in the previous section. When a job cannot be

assigned to the nearest PC, this heuristic algorithm retries with the next PC in the order

of increasing distance from delivery location (shortest distance). If no PC can supply the

job, it is outsourced. Once all the jobs are scheduled, they are assigned to trucks. The

strategy for truck assignment attempts to load each job on the truck that has been idle for

the shortest time (shortest idle time).

b) SD/LIT (Shortest Distance/Longest Idle Time):This is a variant of the previously described

policy in which only truck assignment is changed by trying to load each job on the truck

that has been idle for the longest time (longest idle time).

c) SW/SIT (Smallest Workload/ Shortest Idle Time):After sorting requests by decreasing size,

this heuristic algorithm tries to assign each job to PCs considering them in order of in-

creasing (already assigned) workload (smallest workload). The truck assignment strategy

is the same of the case a).

d) SW/LIT (Smallest Workload/ Longest Idle Time):This is a variant of policy c) in which

only truck assignment strategy is changed toLIT.

In order to provide a clear idea of the results obtained by the hybrid GA approach, let us fo-

cus on the scheduling of the production of a demand pattern observed during a typical working

day of the supply chain. Table 2 summarizes the results obtained by the five considered poli-

cies. This case considers 71 demands for a total amount of2116.3 m3 of ready-made concrete,

divided in 258 jobs. Timing details of each demand are summarized in Fig. 9. It is worth noting

that the GA-based policy is able to find a schedule that does not entail outsourced jobs, while

also minimizing the number of hired trucks necessary to deliver the concrete to customers. The

total cost of the solution obtained by the GA is about 20% lower than the one provided by
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Table 2: Summary of the results on a reference instance.
Variant

SD/SIT SD/LIT SW/SIT SW/LIT GA

components value cost value cost value cost value cost value cost

Jobs 3 56000 3 56000 6 96000 6 96000 0 0

outsourced (28 m3) (28 m3) (48 m3) (48 m3) (0 m3)

Hired trucks 17 170000 22 220000 21 220000 23 230000 15 150000

Extra pay (min) 0 0 0 0 23 115 23 115 55 275

Empty trips (Km) 5290 52900 5119 51190 7123 71230 7242 72420 5479 54790

Loaded trips (Km) 3129 31290 3129 31290 6716 67160 6719 67190 5068 50680

Waiting time (min) 7214 108210 15315 229725 4803 72045 10657 159855 4665 69975

Total cost 417952 CU 587757 CU 515856 CU 624856 CU 325720 CU
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Figure 9: Customers’ specified delivery windows.
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Figure 10: Chart of loading operations at the PCs.

SD/SIT, which is the most effective one amongst the heuristics compared with the GA. In par-

ticular, being 25 focused on the optimization of truck routes, the SD/SIT is able to provide the

smallest cost associated to transportation, at the expense of longer overall amount of waiting

times. It should be remarked that the large amount of waiting times is not evenly distributed

between the operations, so the solution found by SD/SIT is not significantly more delay-tolerant

than the one obtained with the GA. On the contrary, the job distribution obtained with the GA

provides a considerably increased overall length of truck routes, which is fully compensated by

the ability to assign all the requests to the 5 PCs of the supply chain. The Gantt charts of loading

and transportation operations corresponding to the solution obtained with the GA are shown in

Fig. 10, Fig. 11 and Fig. 12.

Almost one third of the requests (including most of the larger ones) have theirEDT between

the 7:00 and the 9:00 AM (Fig. 9). This high concentration of demands requires that all the PCs

contribute to the production. In this time interval, the effort of all the PCs is clearly visible

in Fig. 10, which reports the Gantt chart of the loading operations at the five PCs. It can

be noted that between 6:30 and 9:00 loading operations are continuously performed without
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Figure 11: Trucks Gantt diagram (49 vehicles from the internal fleet and 15 hired).
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Figure 12: Detail of the trucks Gantt diagram.
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pauses. Even the Tilburg–PC3 (the less favorable due to its peripheral position) is not allowed

to remain idle in the first part of the day. It can be noted that PC3 has to start mixing earlier than

the other ones, due to its larger distance from most of the customers. The concentration of such

a large number of deliveries in a relatively short time window implies several noticeable effects.

Firstly, many concrete batches have to be mixed considerably earlier than the optimal time, and

consequently the trucks delivering these jobs may arrive greatly in advance at the customers’

sites. This effect can be noted in Fig. 11 observing the waiting times (depicted in white) before

the first task of each truck (Fig. 12 reports a detail of the Gantt chart to better illustrate the

sequence of operations scheduled on each truck). Secondly, a great number of trucks is required

in this part of the day. In fact, it can be noted in Fig. 11 that many of them are used only until

9:00 AM. After this time, about half of the fleet returns to the relative base location as the supply

operations become less critical, as also visible in Fig. 10, where some relatively short idle times

between loading operations are allowed in the central part of the morning. In particular, the

schedule found by the hybrid GA tends to concentrate these idle times on the Tilburg-PC3, due

to the aforementioned distance of this center from most customers sites. As shown in Fig. 9, a

second peak of demands occurs at about 1:00 PM, causing four PCs to reenter the uninterrupted

loading stages. Finally, after 3:00 PM there are no more demands and the trucks are allowed to

return to their base depots.

Let us now consider the performance evaluation over the whole set of considered (hypothet-

ical and real world) problem instances. The 250 different demand patterns have been grouped

in five classes of gradually increasing complexity (labelled fromvery low, low, average, high,

andvery highdifficulty) based on the average number of hired trucks, and on the average quan-

tity of outsourced production resulting in the solutions found by the four heuristic strategies

used for comparisons. These performance indices were chosen to obtain a fairly realistic es-

timation of the difficulty of the instances, which is not only related to the number and size of

the demands, but also strongly affected by the interferences between the various orders, the

customer-specified time windows, unloading rates and additional requirements. The result of

the experimental investigation is summarized in Table 3. Since in every considered instance

the GA-based hybrid approach significantly outperforms all the terms of comparisons, the table

reports the average percentile increment of the cost function provided by each heuristic with

respect to the average result obtained by running the GA ten times for each instance.
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Table 3: Summary of cost increase of the other variants on the one obtained by GA.

Scheduling Policy

Difficulty SD/SIT SD/LIT SW/SIT SW/LIT

Very Easy 14.96% 108.99% 94.91% 174.83%

Easy 43.21% 130.33% 135.79% 215.81%

Normal 44.29% 98.30% 92.24% 142.61%

Hard 49.52% 100.08% 88.89% 132.80%

Very Hard 39.54% 67.85% 55.44% 82.04%

It can be noted that in all the considered cases, the SD/SIT is the best strategy among the

methods used for comparison, with an average loss with respect to GA of about 15% in the

easiest instances. In fact, when all the PCs mix at a rate that is significantly lower than their

maximum capacity, good overall solutions can be easily found by assigning the requests to the

nearest PCs. The discrepancy of cost values raises up to nearly 50% in the cases of moderate

and high complexity, owing to the optimized distribution of the loads performed by the GA. The

reduced difference of costs in the case of very high complexity is due to the fact that in these

cases the overall demand exceeds the maximum productive capacity of the supply chain. Thus,

also the solutions found by the GA entail a significant amount of outsourced production, with

associated additional costs that also flatten the differences between the most effective scheduling

policies and the less performing ones.

Finally, we carried out an investigation on the robustness of the found solutions to stochas-

tic perturbations, such as transportation delays due to traffic or other unexpected events. This

analysis is obtained with the aid of a discrete-event simulation of a detailed model of the supply

chain, developed within the Rockwell Arena 7 discrete event simulation environment. In the

simulated scenarios, the actual speed of trucks is modelled with a triangular distribution. In

particular, while the median value of the distribution is set equal to the truck speed assigned

in the deterministic model, the left- and right-hand half-widths of the distribution are progres-

sively enlarged so as to investigate the effects of transportation delays of increasing size. As

mentioned, the tolerance to delays of a given schedule is determined by the amount of truck

waiting timesLWT andUWT at PCs and at customers’ locations, respectively. For instance, if

a truck arrives ten minutes late at a delivery location, but it was initially scheduled to reach the
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Table 4: Percent number of failed replications for each simulation performed.
MWT Truck speed distribution - Half width (Km/h)

(mins) 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0

5 0% 0% 20% 80% 100% / / / / / / / /

10 0% 0% 0% 5% 40% 95% 100% / / / / / /

15 0% 0% 0% 0% 0% 45% 80% 100% 100% / / / /

20 0% 0% 0% 0% 0% 0% 10% 55% 80% 90% 95% 95% 100%

25 0% 0% 0% 0% 0% 0% 0% 10% 40% 65% 95% 100% /

30 0% 0% 0% 0% 0% 0% 0% 0% 5% 25% 80% 90% 95%

site fifteen minutes earlier than the customer specified unloading time (i.e.UWT = 15 min),

the delay is compensated by the waiting time without having any further consequence on the

remaining scheduling plan. On the contrary, if a truck returns to a PC later than the scheduled

loading time of its next job (i.e. the delay exceeds the plannedLWT ), the perturbation may

determine chained delays that may significantly affect all the successive operations. For this

reason, the safety parameterMWT defines the lower bound for all the loading and unloading

waiting times. It is worth mentioning that higher values for theMWT will certainly lead to

more delay-tolerant solutions, but it will also increase the value of the component of the cost

function associated to waiting times.

The evaluation of tolerance to perturbations is carried on a reference instance selected from

the class ofharddifficulty. We consider 12 discrete increments for the half-width of truck speed

distribution (up to 30 km/h, which would cause on some long routes delays of more than two

hours), and 6 increasing values for the safety parameterMWT . For each combination of half-

width andMWT , 20 different replications of the discrete-event simulation of the supply chain

are run. The final results are summarized in Table 4, which reports the percentile number of

replications in which at least one of the following unacceptable events occurred.

• A truck arrives late at a customer site, either violating the continuity of the unloading

process or exceeding the concrete setting time.

• A truck returns late to the PC for its next job, delaying the next loading operations at the

PC.

Table 4 shows that solutions capable to fully tolerate even reasonably high variations of

average truck speed can be found by appropriately setting the value of the safety parameter

MWT . The costs associated to solutions with increasing values of theMWT are summarized
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Table 5: Total costs and number of hired trucks relative to the introduction of the safety vari-

ables.

MWT (mins) total cost hired trucks

0 242610 4

5 350370 11

10 460300 17

15 569485 22

20 632585 25

25 713345 29

30 796315 33

in Table 5. It should be noted that the extension of the safety margin does not only affect the

cost associated to waiting times, but obviously also involves cost related to external truck hiring,

since the utilization of the internal fleet is significantly reduced by the increased waiting times.

The results in the Table 5 indicate that both the overall costs and the number of hired trucks

have an approximately linear growth with the safety factorMWT . This particular feature of

the proposed model makes it possible to easily determine in advance the value ofMWT that

provides the desired tradeoff between delay tolerance and final cost associated to the solution

found with the proposed GA-based scheduling strategy.

6 Conclusions

In this work, we considered the problem of finding an optimized schedule for the just-in-time

production and delivery of ready-made concrete on a set of distributed and coordinated produc-

tion centers. Our attention was firstly focused on the development of a complete and detailed

deterministic model of the considered supply chain, enlightening all the peculiarities that make

it considerably different from other formulations of similar scheduling and routing problems. In

a subsequent step, we described an effective scheduling algorithm based on the proposed model.

The scheduling algorithm combines a GA and a set of constructive heuristics, which guarantee

the determination of a feasible schedule for any given set of requests. The proposed schedul-

ing algorithm was compared with other four constructive heuristics on an industrial case study
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using a comprehensive set of problem instances. The results obtained illustrate the interesting

potential of the proposed approach. Firstly, in the solutions found by the GA the amount of re-

quests that are redirected to external companies, or that need hired trucks for their delivery, is in

general very small compared to the other scheduling strategies. Secondly, the proposed model

allows the definition of safety margins for minimizing the effects of transportation delays. With

the aid of a discrete-event simulation campaign, we have shown that schedules capable of toler-

ating considerable variations of truck average speed can be found with the proposed algorithm.

Our research work is rich of promising directions deserving further investigations. Firstly,

even if the proposed GA is able to find satisfactory solutions in short execution times, such

an optimization algorithm can be refined in a number of different ways, e.g. devising more

efficient crossover and mutation operators. Moreover, a multi-objective version of the proposed

algorithm, which is capable of finding the Pareto front of nondominated solutions with respect to

the single components of the cost function (distances, cost of outsourcing, waiting times/safey

margins) is currently under development. Long term research also involves the investigation

of innovative paradigms based on distributed optimization, in which enhanced reactivity and

fault tolerances are achieved by distributing the scheduling task between various decision nodes

located at each PC of the supply chain, instead of concentrating it to a centralized optimization

engine.
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A Definition of Symbols and Acronyms

A.1 Demand related

r ∈ {1, . . . , R} Customeror demand-relatedindex.R is the number of customers/requests

processed in the considered time horizon.

Qr Quantity of cement requested inr-th demand.

[EDT r,LDT r] Customer-specified earliest and latest delivery time for requestr.

Per r User-specified percentage of truck capacity that should not be used.

Mdsr Maximum size of a delivery allowed by customerr to a single truck.

Fix r User-specified fixed waiting time at the destination.

URr Rate of unloading of customerr.

Tsetr Setting time of the type of concrete requested by customerr.
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Zr Number of sub-deliveries in which a request exceeding truck capacity is

divided. A sub-delivery is referred to as a job. We assume that all the sub-

deliveries to the same customer have the same size. In particular, when a

requestr can be handled by a single truck,Zr is equal to 1, otherwise it

is computed taking into account the user-specified limitations on the max-

imum size of deliveryMdsr as follows:

Zr =

⌈
Qr

min{Cmax (1− Per r),Mdsr}
⌉

, (39)

whereCmax is the capacity of a single truck, andd•e indicates theceiling

operation(rounding off to the nearest larger integer).

A.2 Sub-demand (job) related

i ∈ {1, . . . , N} Job-related index relative to the job.N is total number of jobs to perform.

Clearly, it holds:

N =
R∑

r=1

Zr. (40)

The sub-demands are arranged in sequential orders, so that the indexi can

be interpreted as follows:

i ∈





1, . . . , Z1︸ ︷︷ ︸
r=1

Z1 + 1, . . . , Z1 + Z2︸ ︷︷ ︸
r=2

· · ·
R−1∑
r=1

Zr + 1, . . . , N

︸ ︷︷ ︸
r=R





.

fr First job of requestr.

lr Last job of requestr. According to this notation, there is a biunivocal

correspondence betweenr andi. For brevity, we denote withri the demand

to which jobi belongs.

LT i Job loading time.

SDT i Source to destination travelling time for jobi.

DST ij Travelling time between the destination of jobi and the source of jobj.

SLT i Earliest loading start time that guarantees the completion of the supply

(end of unloading) before the concrete sets.
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LLT i Latest loading start time that guarantees the completion of the overall de-

livery within the expiration of the customer-specified timeLDT r.

ELT i Latest loading end time that guarantees the completion of the overall de-

livery within the expiration of the customer-specified timeLDT r; clearly,

it holds thatELT i = LLT i + LT i.

UWT i Waiting time before starting to unload at destination of jobi.

UT i Job unloading time. As we assume that all the jobs composing a single

demand have equal size, the unloading time depends only on the size of

the demandQr and on the unloading rate of the customerURr:

if fr ≤ i ≤ lr UT i =
Qr

Zr

1

URr

. (41)

A.3 Depot related

d ∈ {1, . . . , D} Depot-related index.D is the number of depots.

Λ(α, β) Distance between two known locationsα andβ (either a depot or a cus-

tomer site).

LRd Loading rate at depotd.

FLT d Fixed loading time at depotd.

Γd Subset of jobs that have source in the depotd.

A.4 Truck related

k ∈ {1, . . . , K} Truck-related index.K is the total number of trucks.K = Kc + Ko,

whereKc is the number of trucks of the company, andKo is the number of

additionally hired trucks.

Cmax Maximum capacity of a truck.

V Average speed of the trucks.

STWDk Starting time of the working day for truckk.

ENDWDk Ending time of the working day for truckk.

45



DPk Base location (depot) of truckk, DPk ∈ {1, . . . , D} ∪ {H}, whereH is

the base location for hired trucks.

DF k Depot where the truckk has to start its first load. This variable is intro-

duced because some trucks (e.g. all the hired trucks), may need to move to

a depot different from their base location to pick up their first load.

DLk Last customer served by truckk before its return to base location.

T start
k Time of departure of the truckk from its base location.

A.5 Task related

m ∈ {1, . . . , Mk} Task-related index.A task of a truck is the delivery of a job to its des-

tination. Mk is the maximum number of tasks allowed to a single truck

k.

Mk ≤ M =

⌈
length of the working day
minimal length of a task

⌉
. (42)

LWT km Waiting time for loading them-th task ofk-th truck.

A.6 Decision variables

Xikm ∈ {0, 1} If the jobi is assigned totruckk asm-th task,Xikm = 1, otherwiseXikm =

0.

Yid ∈ {0, 1} If job i is produced at the depotd, Yid = 1 and i ∈ Γd ⊆ {1, . . . , R},
otherwiseYid = 0.

Yoi ∈ {0, 1} If the production of jobi is outsourced,Yoi = 1, otherwiseYoi = 0.

A.7 Cost parameters

CP Cost for each minute of travel of a single truck (independently of truck

type, or travel condition (loaded, empty)).

PT Loss perm3 of outsourced product.

CA Penalty for waiting time.

HC Cost per day of an hired truck.
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A.8 Safety parameters

MWT Minimal waiting time for a truck before

1. loading its next job at a PC, or

2. unloading the concrete at the customers site.

This parameter is used as safety margin to tolerate transportation delays
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