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1 Introduction 
In the Netherlands the last couple of years the monopoly situation of having one Telecom Service Provider 

(KPN Telecom) has changed to a competitive situation. Other companies have penetrated into the telecom 

market offering a wide range of telecommunication services.  

Such a competitive situation together with the development of new technologies have forced the Telecom 

Service Providers (TSP's) to watch more than before the costs of investment into those new technologies and 

the resulting pricing of services to the customers. 

Therefore TSP's are looking for sophisticated optimisation methods to reduce the costs of their communication 

services especially for new areas such as the application of fibre technology. 

There are several reasons why one should make the decision to apply fibre for telecommunication purposes. 

Fibre is being considered as the transmission medium of the future because fibre deadens the signals much 

less than the traditional media such as copper and coax. This means among other things that less amplifiers 

are needed; a lot of data can be transmitted at the same time and there are only a few failures. Another 

advantage is that fibre cables are thin and light so that they can be put into the ground rather easily.  

The TSP's have the objective to minimise the costs of constructing and managing a fibre network. 

Therefore essential decisions have to be made about the design of the network. 

This article describes how the management of a TSP can be supported by mathematical modelling in making 

optimal decisions about the design and use of a fibre network.  

The optimisation models are based on the practical situation at Enertel being one of the new TSP's. For Enertel 

a national backbone was already realised. The main problem to be solved concerned the optimisation of the 

access to the fibre network. 
 

2 Decisions in perspective. 
Although the main subject of this article is the optimisation of the access to the fibre ring, the decisions about 

optimal access are as a matter of fact part of other decisions at other levels. 

In figure 1 a review of the decision levels is given mentioning the main aspects at each level.  

On the highest level the choice of technology should be made. Relevant options are : the use of fibre, the use of 

leased lines and the use of microwave. The latter one might be useful as a temporary solution until the market 

for fibre has reached such a size that fibre will become economically feasible. 

Once the decision has been made to use fibre the optimisation of the fibre network will be the next subject. 

Decisions should be made about the design of the fibre network that is to say about number and position of 

fibre rings and of the number and positions of the Points of Presence (PoP). A PoP connects fibre rings along 

which the customers are situated with the fibre backbone. A PoP can be considered as a kind of distribution 

point. 

Then we come to the decision level to which this article refers : the access optimisation. 
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Access optimisation implies the determination of the number and position of the so-called flexibility points 

being the connections of the customers to the fibre ring so that the total costs of connecting the customers are 

minimised. 

The last kind of decisions concern the determination of the cost price and of the tariffs which are as usual 

based on the value of the cost price, but also and commercial insight into the reaction of the market on the 

proposed tariffs compared to tariffs of other telecom operators.  

It will be obvious that decisions on a certain level will be influenced by feedback of decisons at lower levels. For 

instance if it is not possible to offer attractive tariffs to the market a relatively small number of customers is 

willing to be connected to a fibre ring. 

 

Choice of technology
(fibre, leased lines,

microwave etc.)

Fibre network optimisation
(number and postion of
 fibre rings, POP's etc)

Access optimisation
(number and postion of

flexibility points)

Determination of costprice
and tariffs

 
 
 

Figure 1 - Review of decisions 

3 Overview of models to optimise fibre networks 
Quite a number of models have been developed to optimise fibre networks. Cortés et al. [6] have formulated a 

quantitative model evaluating the global topological design of an optical fibre network over synchronous digital 

hierarchy (SDH; see also [10]). This model describes the economic aspects The model includes the economic 

aspects involved in the project, the civil works, the capacity evaluation costs and the introduction of reliability 

conditions. 

The output of the problem must be the location of transmission nodes (hubs), the locations of transmission 

links and their capacities, the paths to transport the origin-destination pair demand and the costs associated to 

the planning and dimensioning process in the network. 

The same authors [7] have described in another paper an operations research application to the design of an 

optic fibre network based on B-ISDN for the Andalusian region. The economical appraisal is the main 

consideration in order to take the appropriate decisions: hub location, region sizes and selection of the urban 
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nodes that will recieve telecommunications contents. A decision support system with a graphic interface taht 

allows interactive analysis of different scenarios is presented. 

Several computing techniques can be found dealing with the real time network operation. Diverse authors 

[9,15] have shown the use of neural approaches to solve the real time traffic routing problem. Aboelela and 

Douligeris [1] present a fuzzy multiobjective optimization model to develop a routing algorithm to guarantee the 

various quality of service characteristics requested by the wide range of applications supported by B-ISDN.  

Chou and Wu [5] have developed a hybrid neural-genetic procedure to deal with the bandwidth allocation of 

virtual paths in ATM networks. However not many references appear with respect to the planning and 

dimensioning stage. In spite of it, the global telecommunication networks topological design has been dealt 

with in the bibliography extensively with the use of traditional operational research approaches. Chang and 

Gavish [3,4] have developed communication models among hubs solved by means of Lagrangian relaxation 

techniques. Cox et al. [8] have implemented an exhaustive cost evaluation model for the US WEST in the 

Colorado area solved with the commercial optimisation software CPLEX. More recently, Yoon et al. [16] have 

developed with success an important model for hierarchical networks attending to hubs and terminal nodes 

broached with a dual ascent procedure. 

Holmberg and Yuan [12] propose a Lagrangean heuristic as a common approach to several fixed charge 

network design problems, capacitated or uncapacitated, directed or undirected, possibly with staircase costs. 

Klincewicz  et al. [13] describe a heuristic approach for designing tributary networks bases on self-healing 

rings (SHRs) . A common architecture for a telecommunications network is considered consisting of several 

tributary (often called access) networks, which connect locations to hubs and a backbone network, which 

interconnects the hubs. 

The tributary network consists of multiple ring families, and each of those is comprised of one or more SHRs, 

called "stacked" rings. The SHRs in a given ring family are routed over the same cycle of optical fibre cables, 

but each SHR serves only a subset of locations along the cycle. The tributary ring network design is viewed as 

a complex version of a vehicle routing problem with a single-depot and multiple vehicles. 

Belvaux et al. [2] have studied the problem of optimal placement of add/drop multiplexers to the telecommuni-

cation networks at France Telecom. Given a set of centres in a city or conglomeration linked together on a ring 

architecture, given the expected demand between the centres and an essentially unlimited availability of rings 

of fixed capacity on the network the demand pairs and corresponding add/drop multiplexers  should be 

assigned to the rings so as to satisfy the demands and minimise the number of 'costly' multiplexers installed. 

None of the above mentioned models describes how to connect individual customers (buildings) to a fibre ring 

by using flexibility points in such a way that the access costs will be minimised. This will be the subject of the 

following chapters. 
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4 The access situation and its cost elements 
To connect the customers to a fibre ring a so-called tail between the customer and the fibre ring will be 

constructed consisting of a hand hole with a socket and an individual  fibre cable having the hand hole and the 

building of the customer as endpoints. The hand hole with the socket will be called a flexibility point. In the 

socket (a kind of box) the individual fibre cable and the fibre ring cable will be connected to each other 

physically.  

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2:  Construction of a new fibre ring 
 
In practice more than one customer (building) can be connected to one flexibility point as illustrated by figure 3. 

Once the ring has been constructed it is rather easy to connect new customers to the same flexibility point by 

just opening the hand hole and adapting the contents of the socket. This explains as a matter of fact the use of 

the word flexibility point 
 
 
 
 
 
 
 
 
 
 
 
Figure 3:  Ways of connecting buildings to flexibility points 
 
 
The cost elements which are relevant for the determination of the optimal access are: 

kfl  = costs of constructing a flexibility point 

klas  = costs of welding an individual cable to a socket 

kopp  = costs to break the surface and of recovery per meter 

kgr  = costs of digging per meter 

kmb  = initial expense and costs of placing of a tube per meter 

kkb  = initial expense of an individual fibre cable per meter  
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kbl  = costs of blowing an individual cable into a tube per meter 

kcr  = costs of making a crossing per meter (in case a road is between a building and a flexibility     point) 
 

These costs elements will be used in the connecting optimisation models The most comprehensive model 

describes the situation at which buildings are positioned at different sides of the fibre ring and a road is 

separating the fibre ring from the buildings at one side of the fibre ring. The latter aspect requires that in order 

to connect these buildings to the fibre ring the road should be crossed at one or more points. The 

corresponding model will be discussed in chapter 7. 

The results should be the optimal number and positions of flexibility points and crossings and the optimal 

assignment of the buildings to those flexibility points and crossings in order  to get minimal costs of connecting 

the buildings to the fibre ring. 

 

Less complicated models describe the following situations: 

− all buildings are positioned at the same side of the fibre ring and have an equal distance to the fibre ring 

(chapter 5).  

− the buildings are positioned at different sides of the fibre ring and at unequally distances to the fibre ring 

(chapter 6). 
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5 Connection optimisation model for buildings at one side of and 
at equal distance to the fibre ring 

 

The optimisation model to connect buildings being positioned at one side of the fibre ring an with equal 

distances to that fibre ring has to give a solution for the following questions: 

1. How may flexibility points are needed to connect all buildings by minimal costs? 

2. To which flexibility point should a building be assigned? 

3. Which are the optimal positions of the required flexibility points? 

 

Figure 4 illustrates the situation to be optimised. 
 
 
 
 
 
 
 
 
 
 
 

Figure 4:  Situation to be optimised 

 
 

5.1 Formulation of the facility location problem 
 

The problem above can be considered as the so-called facility location problem  on one line as described by 

Wagelmans[14] and Hillier and Lieberman[11]. 

 

To solve the problem the following variables have been defined: 

n = number of buildings 

m = maximum number of buildings to be connected to one flexibility point 

xij =  decision variable having the value 1 if building i (i = 1,…,n) will be connected to the flexibility point at

 position j (j = 1,…,2n-1) and having the value 0 otherwise 

yj =  decision variable having the value 1 if the flexibility point at position j (j = 1,….,2n-1) will be used and 

having the value 0 otherwise 

fj =  costs of the flexibility point at position j (j = 1,…,2n-1) 

cij =  costs to connect building i (i = 1,…,n) to the flexibility point at position j (j = 1,…,2n-1) 

 

The facility location problem has been modelled as follows : 
 
 

buildings 

possible positions of  flexibilitypoints 

Fibre ring 
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(1) objective function consisting of the total  costs to connect the buildings and to construct the required 

flexibility points; the coefficient cij is equal to k las+ h*(k opp + k gr + 2*k mb + k kb + k bl) + d*(2*k mb + k kb + 
k bl), where h is the shortest distance from the building to the ring and d is the length of the tube along 
the ring to connect the building to the flexibility point; the coefficient fj is equal to k fl 

 
(2)  restriction which describes that a building can be connected to one flexibility point only 
 
(3) restriction which describes that no more than M buildings can be connected to one flexibility point  
 
(4) restriction which describes that a building can not be connected to a flexibility point which is not being 

used 
 
(5) the decision variables xij  en y j are binary  variables (value 0 or 1) 

 

For a practical application of the above mentioned model the following issues have been studied into more 

detail: 

− the break-even point for the distance between two adjacent buildings to be connected to one and the same 

flexibility point or to two separate ones   

− dividing the total number of buildings into one or more clusters 

− the determination of the possible positions of the flexibility points 
 

5.2 Connection of two buildings 
Figures 5a and 5b show two ways of connecting two buildings to a fibre ring. At figure 5a each building has its 

own flexibility point, while in figure 5b both buildings have use the same flexibility point 
 
 
 
 
 
 
 
 
 
Figure 5a:  Connection of two buildings by two flexibility points 

 

building 2 

fibre ring 

d1 

d2 

building 1 
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To connect the two buildings in the situation of figure 5a the following costs will be made: 
 

K1 = 2*k fl + 2*k las+ 2*d2*(kopp + kgr + 2*kmb + kkb12 + kbl) 
 
 
 
 
 
 
 
 
Figure 5b:  Connection of two buildings by one flexibility point 

 

To connect the two buildings in the situation of figure 5b the following costs will be made: 
 

K2 = k fl + 2*k las+ 2*d2*(kopp + kgr + 2*kmb + kkb + kbl) + 2*½*d1*(2*kmb + kkb + kbl) 
 
 
To find the right choice between the two situations we put K1 equal to K2 which gives: 

blkbmb

fl

kkk

k
d

++
=

*21              (1) 

         
     

as the break-even distance between the two buildings. 

 

It can easily be proven that it does not matter where the flexibility point in figure 5b is situated provided it is 

between the positions of the two flexibility points in figure 5a: 

 

Suppose the flexibility point in figure 5b is positioned at a distance p at the right from the left flexibility point in 

figure 5a. The remaining distance to the flexibility point at the right is equal to d-p. 

The relevant costs as far as the cost of connection are concerned are: 
 

p*(2*kmb + kkb + kbl) +(d - p)*(2*kmb + kkb + kbl) = d*(2*kmb + kkb + kbl)  
 

Thus the value of p does not matter. 

 

5.3 Connection of n buildings 
 

The results of the previous section provide the basis for the following theorems 

 

Theorem 1 

If n buildings should be connected to a fibre ring and the distance between two adjacent buildings is larger 

than d1 (in (1)), then these two buildings do not belong to the same cluster of buildings, which means they will 

not be connected to the same flexibility point. 

 

building 1 building 2 

fibre ring 

d2 

d1 
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Proof 

Let a and b be two adjacent buildings and let d be the distance (d > d1) between these two buildings (the 

distance is measured over the ring). See figure 6. 
 
 
 
 
 
 
 
Figure 6:  Buildings a and b with a mutual distance of d 

 

If a and b  would be connected to a flexibility point to the left of a respectively to the right of b  (along the ring) the 

distance (over the ring) between b  and the flexibility point respectively between a and the flexibility point is larger 

than d1 (see (1)). 

Then it is cheaper to connect b  respectively a to a separate flexibility point.  

If a and b  would be connected to a flexibility point between a and b  (along the ring) we have the situation as 

described by figure 5b. as we have to bridge over a distance d which is larger than d1 (see(1)) it is cheaper to 

give a and b  an 'own' flexibility point.  

 

Theorem 2 

If we consider a cluster of n buildings numbered from 1 to n, the optimal position of the flexibility point is at the 

median of the n buildings. 

 

Proof 

Let M be the point with n1 buildings at the left and n2  (= n – n1) buildings at the right. 

 

When we change the position of M by p to the right the total costs of connection change by: 

 (n1-n2)*p*(2*kmb + kkb + kbl) =(2n1-n)*p*(2*kmb + kkb + kbl) 
 

When we change the position of M by p to the left the total costs of connection change by: 

 (n2-n1)*p*(2*kmb + kkb + kbl) =(n-2n1)*p*(2*kmb + kkb + kbl) 
 
From the results above it is easily to be seen that we can reduce the costs of connection by moving M to the 

right if n1 < n2 respectively to the left if n1 > n2. Only for n1 = n2 no further reduction of the costs are possible. This 

means that M should be the middle one of all n buildings if n is odd and between the two middle ones if n is 

even.  
 

d 

a b 

fibre ring 
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5.4 Optimisation method 
 

The optimisation method consists of the following steps. 

1. We divide the total number of buildings into clusters according to theorem 1. This means each time we 

have two adjacent buildings with a mutual distance larger than d1 we get a new cluster. 

2. We determine the possible positions of the flexibility points within each of the clusters separately using 

theorem 2, which says that a flexibility point will either be positioned straight under a building (see figure 

5a) or everywhere between the two positions in figure 5a.. Figure 7 illustrates this step. 

 

 

 

 

 

 

 

 

 

 

Figure 7:  Possible postiions of flexibility points within one cluster of buildings 

 

 

3. The optimal number and positions of the flexibility points will be determined for each cluster separately by 

using the assignment model from paragraph 3.1, where the possible positions of the flexibility points as 

the result of the previous step. 
 
 
 

buildings 

possible positions of flexibilitypoints 

fibre ring 
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6 Connection optimisation model for buildings at two sides of the 
fibre ring and at unequal distances to the fibre ring 

 

In the previous description it has been assumed that all buildings are along the same straight line, whereby 

the distance between each building and the fibre ring is the same. 

In practice we have different distances between buildings and the fibre ring and buildings may be located at 

different sides of the ring. Figure 8 illustrates such a situation. 
 
 
 
 
 
 
 
 
 
Figure 8:  Buildings at both sides of a road 
 

To find the optimal connections in the situation at figure 8 we start with the optimal connection considering all 

buildings at the same site of the fibre ring and with the same distance to it. 

See the figure below. 
 
 
 
 
 
Figure 9:  Optimal connection of buildings situated along one straight line 

 

Moving the buildings back to their original position does not change anything to the optimal connection (see 

figure 10). 
 
 
 
 
 
 
 
 
Figure 10:  Optimal connection of buildings at two sides of the fibre ring 

 

 

The reason for it is that the distance from the building to the ring does not influence the optimal connection, 

because we always dig from the building to the ring via the shortest way. 

The optimal connection will depend on the distances between two adjacent buildings (along the ring), but 

these distances do not change. 

fibre ring 

fibre  
ring 

fibre  
ring 
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7 Connection optimisation model for buildings at two sides of the 
fibre ring and an obstacle 

 

In the most realistic situation we have different distances between buildings and the fibre ring and moreover an 

obstacle for instance a road or a canal might be situated between the buildings and the fibre ring. 

Figure 11 illustrates such a situation. 
 
 
 
 
 
 
 
 
 
Figure 11:  Buildings at both sides of a road 
 

7.1 Optimisation when each building has its own crossing 
To find the optimal connections in the situation at figure 8 we start with the optimal connection as given by 

figure 10 in chapter 6.. 

 

Now we add the road to figure 10 (see figure 12). We assume that for each building at the non-ring side a 

crossing should be done by a pressure technique under the road. 
 
 
 
 
 
 
 
 
 
Figure 12:  Optimal connection having a road as an obstacle 

 

 

As each building at the non-ring side has its own crossing the addition of the road to the whole has no effect on 

the optimal connection; the number of flexibility points, their position and the assignment of buildings do not 

change at all. 

road 

fibre 
 ring road 

crossin
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7.2 One crossing for all buildings with the same flexibility point 
However we have to do with another optimisation problem: to use one crossing for all buildings at the non-ring 

side (see figure 13), having the same flexibility point. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 13:  Connection of buildings with one or two crossings 

 

We consider the situation with n buildings at the ring side and m at the non-ring side. 

The obstacle (road) has a width of do. Th total length of the extra groove to be digged at the non-ring side is 

equal to dg.  

We now have the following costs of crossing: 

 

For m crossings: 

m*do*kcr 
 

For one crossing: 
 

do*kcr+ dg*(kopp+ kgr) 
 
 
 
 

The break-even point can be found from: 

 

road 
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Formula (2) learns that it is cheaper to use only one crossing if the length of the extra groove to be digged  is 

smaller than the value from (2). Otherwise it is better to have a crossing for each building. 

However both situations (a separate crossing for each building at the non-ring side respectively one crossing 

for all) might be not optimal, but a mix could be. That is to say that we have to find the optimal number of 

crossings. 

Figure 14 illustrates this. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 14:  Connection with more common crossings 

 

We have to make a choice between a connection with let's say m1
 crossings and a connection with m2 

crossings. We assume that m2 is smaller than m 1, which means that the total length dg1 of the extra groove to 

be digged for m1 crossings is smaller than d g2 for m2 crossings. 

d d
m m d k

k kg g
o cr

opp gr
2 1

1 2- =
-

+
( )* *

               (3) 

This means that we should prefer m2 crossings above m1 if the length of the extra groove (which can exists of a 

number of subsequent grooves) is smaller than the value of formula (3); otherwise we have to use m1 

crossings. 

 

The only question which is left is to determine the optimal position of a crossing. It is easily to be seen that the 

crossing should be done as close as possible to the appropriate flexibility point to prevent unnecessary placing 

of tubes, as illustrated by figure 14. In this figure we have an unnecessary surplus of d1 . 

 
(a) (b) 

 
 
 
 
 
Figure 15: An optimal position for the crossing (a) and a non optimal one (b). 
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7.3 Overall optimisation for the flexibility points and the crossings 
In the previous paragraphs we have assumed that the optimal number and positions of the flexibility points will 

not be effected by the number and positions of the crossings. 

For instance when we would compare two buildings at the non-ring side we first look at formula (1)  to decide 

whether we should have two flexibility points (figure 16a) with each one crossing or one flexibility point (figure 

16b) with two crossings. Only in the latter case we use formula (2)  with m =  2 to decide whether we should 

have one crossing (figure 16c) instead of two ones (figure 16b). 
         
       (a)            (b)          (c) 
 
 
 
 
 
 
 
Figure 16: Possible connections and crossing for two buildings at the non-ring side 
 
This means until now we have not taken into account that the costs in situation (c) could be lower than the 

costs in situation (a), although the costs in situation (b) are the higher than the costs in (a) and (c).. 

This might be the case, when the cost per crossing becomes rather high. 

For instance considering the costs in the three situations above we have: 

Situation (a) :  2kfl + 2d0.kcr +2klas 

Situation (b) :   kfl + 2d0.kcr +2klas + d(2kmb + kkb + kbl) 

Situation (c) :   kfl +   d0.kcr +2klas + d(2kmb + kkb + kbl) + d(kopp + kgr) 

 

Situation (a) is cheaper than situation (b) if kfl - d(2kmb + kkb + kbl) < 0 

Situation (c) is cheaper than situation (b) if d0.kcr - d(kopp + kgr) > 0 

Thus when the first difference is smaller than the second one, or when d0.kcr  being the costs of a crossing is 

large enough, situation c) is the cheapest one. This means we should have one flexibility point when we have 

crossings instead of two flexibility points without crossings. 

 

Practical values of the cost factors show that a relative high value of the costs of a crossings not very likely, but 

still a theoretical model has been developed to optimise the number and positions of both the flexibility points 

and the crossings at the same time. 

 

The appropriate model has been described below and is based on the possible positions of the flexibility 

points and the crossings as illustrated at figure 17. 
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Figure 17:  Situation to be optimised for both flexibility points and crossings 

 

 

To solve the problem the following variables have been defined: 

n = number of buildings 

s = number of buildings at the non-ring side (s ≤ n), numbered from 1 to s 

m = maximum number of buildings to be connected to one flexibility point 

xijk =  decision variable having the value 1 if building i (i = 1,…,s) will be connected to the flexibility point at

 position j  (j = 1,…,2n-1) using crossing k(k = 1,…,2s-1)  and having the value 0 otherwise 

xij0 =  decision variable having the value 1 if building i (i = s+1,…,n) will be connected to the flexibility point at 

position j (j = 1,…,2n-1)  and having the value 0 otherwise 

yj =  decision variable having the value 1 if the flexibility point at position j (j = 1,….,2n-1) will be used and 

having the value 0 otherwise 

zk =  decision variable having the value 1 if the crossing at position k (k = 1,….,2s-1) will be used and having 

the value 0 otherwise 

fj =  costs of the flexibility point at position j (j = 1,…,2n-1) 

gk =  costs of the crossing at position k (k = 1,…,2s-1) 

cijk =  costs to connect building i (i = 1,…,s) to the flexibility point at position j (j = 1,…,2n-1) using crossing k 

(k  = 1,…,2s-1) 

cij0 =  costs to connect building i (i = s+1,…,n) to the flexibility point at position j (j = 1,…,2n-1) 
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possible positions of crossings 
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The model is: 
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(1) objective function consisting of the total  costs to connect the buildings and to construct the required 

flexibility points;  
the coefficient cijk is equal to  
      k las+ (h – d0)  *(k opp + k gr)+ (h + d + d cf)*(2*k mb + k kb + k bl) + dn*(k opp + k gr), 

 where h is the shortest distance from the building to the ring, d 0 is the length of the  
            crossing, d is the lenght of the groove (parallel to the road) from the building to the crossing, 

is the distance between the crossing and the flexibility point and d n is the distance (parallel 
to the road) between the building and the next building at the non-ring side or if it is 
smaller to the crossing; 

the coefficient cij0 is equal to k las+ h*(k opp + k gr + 2*k mb + k kb + k bl) + d*(2*k mb + k kb + k bl), where h is 
the shortest distance from the building to the ring and d is the length of the tube along the ring to 
connect the building to the flexibility point; 
the coefficient fj is equal to k fl; 
the coefficient g k is equal to d 0.kcr where d0 is the length of the  crossing. 

 
(2)     restriction which describes that a building at the non-ring side can be connected to one flexibility point 

and one crossing only 
 
(3)     restriction which describes that a building at the ring side can be connected to one flexibility point only 
 
(4)     restriction which describes that no more than m buildings can be connected to one flexibility point  
 
(5) restriction which describes that a building can not be connected to a flexibility point which is not being 

used 
 
(6) restriction which describes that a building at the non-ring side can not be connected to a  crossing 

which is not being used 
 
(7) the decision variables ijkx , y j and zk are binary  variables (value 0 or 1) 

 



Flexpoints optimization  16-11-04  

Dick Leegwater  18 

8 Some numerical results 
 

In the figures below the optimal number of flexibility points are shown as a function of the cluster size (number 

of buildings) and of the mutual distance x between the buildings within one cluster. 
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9 Conclusions 
The investigation in the field of connecting buildings to fibre rings has shown that the use of modelling 

techniques and a mathematical approach can be an efficient way of supporting the management of telecom 

service providers in their access policies. 

Once having the formulas and procedures as mentioned in this article one is able to do not only optimisations 

for an existing number of buildings, but one is also able to calculate the expected results of adding future 

buildings to the same fibre ring. Therefore the same model can be used by running it twice: one time for the 

existing buildings and one time for all buildings including the future buildings. 

Taking into account estimations of the probability a future building will be built at which place and at which 

month, models as above will be an efficient tool to support investments into fibre rings, whereby also the risks 

of the investments can be made visibly  and thus responsible decisions can be taken. 
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