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Abstract
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1 Introduction

Forecasting the yield curve is of much practical interest, not only for individual in-

vestors, but also for pension funds, central banks, and policy makers. Despite the

relevance of this issue, surprisingly little research effort has been spent on this issue

until recently. This may be partly due to negative results obtained by early studies on

yield curve forecasting, such as Duffee (2002). That study investigates the forecast-

ing performance of affine term structure models, which postulate that yields evolve

as affine functions of a limited number of latent risk factors, see Vašı́ček (1977), Cox

et al. (1985), Duffie and Kan (1996), and Dai and Singleton (2000). Duffee (2002)

dismisses this entire class of models for forecasting purposes by showing that the fore-

casts obtained from affine models are inferior to random walk (no-change) forecasts.

More positive results have emerged recently based on the framework of Nelson

and Siegel (1987). Originally intended to describe cross-sectional aspects of yield

curves, the Nelson-Siegel model imposes a parsimonious three-factor structure on the

links between yields of different maturities, where the factors can be interpreted as

level, slope and curvature. Diebold and Li (2006) find that a dynamic reformulation of

this model provides forecasts that outperform the random walk and various alternative

forecasting approaches, see also Christensen et al. (2007).

Both the Nelson-Siegel and affine models are essentially purely statistical models

of the yield curve. At the same time, it is widely believed that yield curve dynamics

are closely linked to macroeconomic developments, for various reasons. For example,

central banks around the world use short-term interest rates as their policy instruments,

and it is widely recognized that their actions respond to macroeconomic aggregates

such as inflation and output; see Taylor (1993). Because longer-term interest rates can

be regarded as a weighted average of expected future short-term rates, it is plausible
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that the entire yield curve responds to macroeconomic shocks. Such a link does also

exist in the reverse direction. Economic agents respond to changing interest rates by

altering their investment plans and by adjusting their inflation expectations. Not sur-

prisingly then, several recent studies have developed extensions of yield curve models

that incorporate macro variables, in an attempt to capture their interaction, see Ang

and Piazzesi (2003), Dewachter and Lyrio (2006), Hördahl et al. (2006), Rudebusch

and Wu (2008), among others. Diebold et al. (2006) propose a way to include macroe-

conomic factors in the Nelson-Siegel model, and they find clear evidence that macro

aggregates have a statistically significant effect on yields. The analysis in Diebold et al.

(2006) (and in the other studies cited above) is purely based on in-sample fit, however,

and does not consider out-of-sample forecasting.

In this paper we examine several important aspects related to the inclusion of

macroeconomic variables in the Nelson-Siegel model from a forecasting perspective.

First, in today’s data-rich environment, a natural question is which macro factors

to include in the model. Diebold et al. (2006) use three specific variables, intended

to represent the level of real economic activity, monetary policy, and inflation, respec-

tively. Arguably, many more macro variables may influence the evolution of the yield

curve. However, including a large number of individual variables leads to an abun-

dance of parameters to be estimated. A natural possibility is to use factors extracted

from a large panel of specific macro variables. Indeed, De Pooter et al. (2007) find

that including a small number of principal components leads to an improvement in

forecast accuracy, compared to the use of specific individual variables.1 Here we ex-

amine this issue in more detail by comparing a number of data-based variable selection

methods with several approaches to construct factors from a large panel of variables.

The methods for selecting specific macroeconomic variables in a data-driven way are
1Mönch (2008) finds similar results when augmenting an affine model with such principal compo-

nents.
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based on least angle regression (LARS) or multiresponse sparse regression (MRSR),

as proposed by Efron et al. (2004) and Similä and Tikka (2006), respectively. The

factor construction methods include Principal Component Analysis (PCA), next to a

number of alternative approaches discussed below.

Second, we investigate whether it is useful to take the forecast objective explic-

itly into account when constructing the macroeconomic factors. While this is a natural

thing to do when selecting specific individual variables, this is not the case for methods

that construct factors from a large panel of variables. In particular, principal compo-

nent analysis, which is by far the most popular factor construction method, renders

the same macro factors regardless of which series we wish to forecast. We examine

three alternative approaches that do take the series to be forecasted into consideration

in the construction of the macro factors, namely Partial Least Squares (PLS), as intro-

duced by Wold (1966), Principal Covariate Regression (PCovR) proposed by Heij et

al. (2007), and PCA based on variables selected by thresholding rules, proposed by Bai

and Ng (2008). In the first two approaches, factors are constructed using all available

macro variables, but with weights depending on their degree of comovement with the

forecast objective. In the latter approach, principal components are taken only from

those variables that are most correlated with the variable that we aim to predict. Hence,

with this method we also address the issue whether or not it is desirable to include all

available data in PCA, see also Boivin and Ng (2006).

Third, while there may be little doubt that the yield curve is linked to the macroe-

conomy, it is plausible that different characteristics of the yield curve are related to

different macroeconomic variables. We examine this issue by using the variable selec-

tion and factor construction methods in two different ways. Specifically, we select and

construct macro factors for the three Nelson-Siegel factors jointly and for the level,

slope and curvature factors separately.
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Fourth, we explore whether it pays off to construct factors from groups of re-

lated macro variables, instead of one large pool of all available variables. Given that

real economic activity, monetary policy, and inflation appear to be the most relevant

macroeconomic dimensions for the yield curve, it may be worthwhile to construct fac-

tors that are explicitly related to these characteristics. We implement this idea for both

PCA and PCovR.

Fifth, in addition to the question which macro factors to include in a yield curve

model, it is also relevant to ask how many factors should be included. Here we compare

the predictive accuracy of models with a fixed number of three factors to models with

a varying number of macro factors based on historical forecasting performance.

We address the issues listed above empirically, by examining the out-of-sample

forecasting performance of the Factor-Augmented Nelson-Siegel (FANS) model for

the US yield curve over the period from January 1994 until December 2003, for fore-

cast horizons of one, three, six and twelve months ahead. Our results show that data-

driven methods are particularly useful in volatile times, when simpler methods fail.

The preselected variables suggested by Diebold et al. (2006) provide the best forecasts

only for predicting medium-term yields (15 to 60 months) at the longest horizon con-

sidered in this study (12 months). For longer maturities, it is better to form groups of

related variables and then extract factors from these groups, preferably by using prin-

cipal covariate regression — thus, explicitly considering the forecast objective when

constructing factors. For shorter maturities, and for medium maturities at shorter hori-

zons, it is even better to extract principal components or covariates from all available

information. Methods that treat the three Nelson-Siegel factors jointly generally out-

perform methods that treat these factors separately. Finally, varying the number of

macro factors based on recent historical performance leads to an additional improve-

ment in forecast accuracy.

5



In the remainder of this article, Section 2 begins with a description of the Nelson-

Siegel model and the extension by Diebold et al. (2006). Furthermore, the techniques

of least angle regression, multiresponse sparse regression, principal covariate regres-

sion, partial least squares, and hard and soft thresholding are discussed. Section 3

describes the data on U.S. zero-coupon yields and macroeconomic aggregates, as well

as details of our forecasting procedure. Section 4 contains the empirical forecasting

results, and Section 5 concludes.

2 Methods

This section reviews the Nelson-Siegel model and the techniques that we employ to

construct macroeconomic factors to be included in this model.

2.1 Nelson-Siegel model

Nelson and Siegel (1987) propose a parsimonious model for describing the yield curve.

With minor modifications as explained in Diebold and Li (2006), the model is

yt (τ) = β1t + β2t

(
1− exp (−λtτ)

λtτ

)
+ β3t

(
1− exp (−λtτ)

λtτ
− exp (−λtτ)

)
, (1)

where yt (τ) is the yield at time t for a maturity of τ months. As discussed in Diebold

and Li (2006), the β1t, β2t, and β3t parameters can be interpreted as level, slope, and

curvature factors, respectively. Further, the parameter λt determines the rate of decay

of the loading for the slope factor β2t and the maturity at which the loading for the

curvature factor β3t attains its maximum value.

If we consider a fixed set of maturities (τ1, τ2, . . . , τm) and denote the correspond-

ing vector of observed yields at time t by yt = (yt (τ1) , yt (τ2) , . . . , yt (τm))′ and the
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parameter vector by βt = (β1t, β2t, β3t)
′, and if we add an error term to Equation (1),

we find

yt = Λtβt + εt, (2)

where Λt depends on λt only, for given τ .

Diebold and Li (2006) interpret Equation (2) as the measurement equation of a state

space model. The state variables βt are assumed to evolve according to a first-order

vector autoregressive process (with mean µ):

βt − µ = A (βt−1 − µ) + ηt. (3)

The disturbances εt and ηt are assumed to be zero-mean white noise and to be mutually

uncorrelated. The covariance matrix of εt is commonly assumed to be diagonal, see,

for example, Diebold and Li (2006) and Diebold et al. (2006). The covariance matrix

Q of ηt is left unrestricted in those studies. As Diebold and Li (2006) find that one

lag is sufficient to describe the dynamics of βt, no further lags are included in the tran-

sition equation (3). Assuming normally distributed error terms, maximum likelihood

estimates and forecasts are obtained using the Kalman filter.

In most studies, λt is assumed constant and its value is fixed by the researcher, as

in Diebold and Li (2006). However, a constant λt can also be estimated along with

the other model parameters using the Kalman filter, as in Diebold et al. (2006) and De

Pooter et al. (2007). Koopman et al. (2010) propose ways of allowing for time-varying

λt. For simplicity, we will use a time-invariant λ, which is estimated along with the

other model parameters.2

Now assume that, at every time t, a large number of k macroeconomic variables are

2That is, λ is kept fixed for the estimation period. As we discuss below, the Nelson-Siegel model is
estimated using a ten-year rolling window, so that the estimated value of λ will actually vary from one
window to the next.
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available, denoted by xt. For reasons of parsimony, we wish to summarize this large

amount of information by a limited number of p factors, ft. These factors can, for ex-

ample, be obtained by preselection of a subset of variables from xt, as in Diebold et al.

(2006). Alternatively, the factors can be extracted from xt using principal component

analysis as in De Pooter et al. (2007). We describe alternative methods for constructing

these factors below, in Sections 2.2—2.6.

For now, assume that ft is available and that it is normalized to have mean zero.

We follow Diebold et al. (2006) in their procedure for incorporating this information

into the Nelson-Siegel framework. The observation equation (2) remains unchanged.

In the state equation (3), ft is appended to the state vector βt and the dimensions of A,

ηt, and Q are increased as appropriate.

Introducing macroeconomic information into the model in this manner leads to a

substantial increase in the number of parameters. For example, the inclusion of three

macro factors increases the dimension of both A and Q from 3 × 3 to 6 × 6. As Q

is symmetric, the factor-augmented model has (36− 9) + (21− 6) = 42 additional

parameters. To avoid problems of overfitting and numerical difficulties, we impose the

following two restrictions. First, the VAR transition matrix is restricted to have the

following structure:

A =

 diagonal unrestricted

zero diagonal

 ,

where the blocking corresponds to the partitioning of the state vector into βt and ft. In

particular, this restriction implies that we do not model any yields-to-macro feedbacks.

Second, the covariance matrix Q is restricted to be diagonal. Diebold et al. (2006)

tested and rejected both of these restrictions. However, as mentioned before, their

analysis was strictly based on in-sample criteria. As our focus is on out-of-sample
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forecasting, the notion of parsimony is an important consideration. As we show in

Section 4, imposing these restrictions improves the forecasting performance.

For convenience, the model considered in this study is shown below:

yt = Λβt + εt, εt ∼ NID (0, diag (σ2
1, . . . , σ

2
m)) , βt − µ

ft

 = A

 βt−1 − µ

ft−1

+ ηt, ηt ∼ NID (0, Q) .

(4)

We shall refer to this model as the Factor-Augmented Nelson-Siegel (FANS) model.

Below, we describe methods to extract the factors ft from the macroeconomic vari-

ables xt. To facilitate the discussion, we define

B+ =



β′2

β′3
...

β′T


, B =



β′1

β′2
...

β′T−1


, X =



x′1

x′2
...

x′T−1


, F =



f ′1

f ′2
...

f ′T−1


,

where T is the length of the estimation sample. To rule out scale effects, every column

of X (that is, the time series of observations on each variable separately) is normalized

to have mean zero and unit variance over the estimation window. We denote the num-

ber of original macro variables (columns of X) by k, and the number of macro factors

(columns of F ) by p.

In essence, all of the methods for constructing factors considered in this study boil

down to choosing a k × p matrix W and defining F = XW . That is, the factors

that we use in the FANS model are linear combinations of observed macroeconomic

aggregates. The following sections describe three methods for choosing these combi-

nations. Common features are that they achieve a dimension reduction (ft contains far
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fewer elements than xt; that is, p � k) and that ft−1, together with βt−1, should have

predictive power for βt.

One more technical comment is in place at this stage. Each of the factor construc-

tion methods described below requires, in principle, full observability of B, whereas

B is latent in our application. We choose to overcome this problem by the follow-

ing straightforward approach. First, we estimate the FANS model without any macro

factors, by maximum likelihood using the Kalman filter. The resulting estimates of

βt (in Kalman filtering terminology: the smoothed state vectors) form the matrices B

and B+, which are used to build response variables in constructing the macro factors

ft. The FANS model is then reestimated using these factors. Although this procedure

could be iterated, this approach is not pursued here for computational considerations.

2.2 Least angle regression

The Least Angle Regression (LARS) methodology, originating with Efron et al. (2004),

can be used to select a limited number of informative variables out of a large group.

The main idea is to “add” predictors to the model one at a time, starting with the pre-

dictor that correlates most with the response variable. This predictor’s coefficient is

increased from its starting value zero, up to the point where the residual is equally

correlated with the predictor chosen initially and a second predictor. This second pre-

dictor is added to the “most correlated” set, and the coefficients on both predictors in

this set are now simultaneously increased in such a way as to keep the residual equally

correlated with the two predictors. As soon as a third predictor shows equal correla-

tion, it also enters the “most correlated” set, and so on, until either the residual is zero

or all predictors have entered.

In any stage of this procedure, only the predictors in the “most correlated” set have

nonzero coefficients. Hence, LARS can be used as a variable selection method by
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stopping the algorithm after a prespecified number of predictors have been selected.

This procedure closely approximates the more well-known Lasso method proposed by

Tibshirani (1996); see Efron et al. (2004) for a discussion of this similarity.

In our setting, we wish to select a small number of variables (columns) from X

which, together with B, have predictive power for B+. To this end, we employ a

simple two-step procedure: we first perform an auxiliary OLS regression in B+ =

ια′ + B∆ + E. (We use the symbol ι to denote a vector of ones, α is a vector of

constants, ∆ is a matrix of regression coefficients, and E is a matrix of disturbance

terms.) The residuals R from this regression are used as response variables in the

LARS algorithm, in order to explain those features of the yield factors that remain

after correcting for autoregressive effects.

As R is multivariate in our setup, the most obvious application of the LARS al-

gorithm is to feed the columns of R into the algorithm one at a time. An alternative

approach is “multiresponse sparse regression” (MRSR), proposed by Similä and Tikka

(2006) as an extension of LARS that allows for a multivariate response variable.

To apply LARS in a multivariate setting, an extension of the correlation con-

cept is required to make the condition “equally correlated” meaningful. Denote the

fitted value of R, based on the first m regressors chosen, by R̂m (with R̂0 = 0),

and denote the j-th column of X by x(j). Following Similä and Tikka (2006), the

role of correlations in the description of the univariate case above is now played by∣∣∣∣∣∣∣∣(R− R̂m

)′
x(j)

∣∣∣∣∣∣∣∣, where ||v|| represents the L2 vector norm (
∑

i v
2
i )

1/2. No other

changes to the procedure are needed. An efficient algorithm to find the order in which

variables are added is presented in Similä and Tikka (2006).

We use both the univariate and the multivariate variant of the LARS algorithm to

select a predefined number of explanatory variables from a large panel of macro data.

The selected predictors are used as the macro factors ft in the FANS model.
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2.3 Principal component regression and principal covariate regression

Heij et al. (2007) propose principal covariate regression (PCovR) as an alternative to

principal component regression (PCR).

In PCR, principal components are first extracted from a group of predictors and

then used as regressors. To obtain p principal components, the k predictors in the

matrix X are “summarized” in p � k factors by minimizing ||X −XUV || over the

k × p matrix U and the p × k matrix V . The desired factors are the columns of XU .

The method then proceeds as a standard OLS regression of the (univariate) dependent

variable z on a constant and XU . That is, the objective function ||z − αι−XUγ|| is

minimized over the scalar α and the vector γ.

Heij et al. (2007) argue that the failure to take the prediction objective into account

when constructing the factors is a drawback of PCR. To overcome this problem, they

combine the two steps of PCR into one objective function: in the same notation as

above, they minimize

w ||z − αι−XUγ||2 / ||z||2 + (1− w) ||X −XUV ||2 / ||X||2 , (5)

where w ∈ [0, 1] is a tuning parameter that governs the relative weight placed on each

of the two objectives. Thus, the aims of good prediction and adequate use of the data

are balanced in the PCovR objective (5); setting w at a higher value means that more

weight is placed on predicting z relative to summarizing X , whereas choosing w = 0

amounts to standard PCR.

An obvious multivariate extension of Objective (5) to our problem is to minimize

w ||R−XUΓ||2 / ||R||2 + (1− w) ||X −XUV ||2 / ||X||2 , (6)
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where Γ is now a matrix and R is, as before, the matrix of residuals from the OLS

regression of B+ on B and a constant.

Direct minimization of Objective (6) can be done using two singular value decom-

positions, as outlined in Heij et al. (2007). To operationalize this procedure, we need

to specify a value for w. The high-dimensional nature of X leads to overfitting if w

is chosen too large; see Heij et al. (2006) for a discussion of this aspect. The upper

bound that they propose evaluates to about w ≤ 0.1 for our problem. In order to make

PCovR sufficiently different from standard PCR, we do not want to set w too small

either; therefore, we fix w = 0.1.

2.4 Partial least squares

Wold (1966) proposed partial least squares (PLS) as a technique for finding orthogonal

linear combinations of the variables in X that have predictive power for a univariate

response, say, z. That is, in contrast to PCR, the PLS factors are constructed to explain

the variance of z rather than X . Following Garthwaite (1994), we describe PLS in

terms of sequential regressions.

Assume that X and z have mean zero. We first regress z on each column x(j) of

X , yielding fitted vectors ẑ(j). The first factor is then constructed as f1 =
∑

j wj ẑ(j),

where the weights are proportional to the variances of the columns ofX , wj = x′(j)x(j),

such that f1 =
∑

j cov
(
x(j),z

)
x(j). Hence the first factor is a weighted average of the

macro variables xt, with weights depending on their covariance with the variable we

aim to forecast. Now, replace both z and X by their residuals from regressions on f1.

The second factor f2 is then found by applying the same procedure to the “new” z and

X . Continuing in this manner, we can sequentially construct f3, . . . , fp.

This procedure can be copied almost verbatim for a multivariate responseZ; details

can be found in Garthwaite (1994).
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To apply this method in our context, we use a similar two-step approach as for the

LARS algorithm. That is, we first find the residuals R from a regression of B+ on

B and a constant. The three columns of R are then used, either one at a time or all

together, as response vectors z in the PLS algorithm. The constructed factors are used

together as ft in the FANS model.

2.5 Hard thresholding

Bai and Ng (2008) propose hard thresholding as a simple method for variable selection.

In their univariate setting, consider forecasting a univariate response z using its own

lag z− and the columns of X . To select the most relevant columns, estimate the linear

model

z = αι+ δz− + γjx(j) + ε (7)

with OLS, for all columns of X , j = 1, 2, . . . , k. We then select those columns of X

for which the t test rejects γj = 0, at a prespecified significance level.

Following the suggestion in Bai and Ng (2008), to construct p predictors, we start

by selecting p∗ variables, with p∗ > p. The first p principal components extracted from

this subset of selected variables are then used as predictors.

In our multivariate context, we estimate

B+ = ια′ +B∆ + x(j)γ
′
j + E (8)

with OLS, and compute the Wald statistic Wj for the test γj = 0.3 We select the p∗

variables for which this null hypothesis is rejected at 5% significance, and we use p

principal components extracted from this set as macro factors in the FANS model.

3Note that this Wald test involves a zero restriction on one parameter in each of multiple (in our
case, three) interdependent univariate regression equations. The computation of the Wald statistic in
this nonstandard situation is outlined in Roy (1957).
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2.6 Soft thresholding

Soft thresholding is also proposed by Bai and Ng (2008). They argue that a drawback

of a hard thresholding rule is that it can easily lead to the selection of many simi-

lar predictors, because in deciding whether or not to include a certain predictor, the

information contained in the other predictors is not considered.

They propose to use a sequential method, such as LARS or the Lasso, to select vari-

ables, and then to find the number of variables that minimizes an information criterion,

such as the BIC. In our multivariate setting, we use MRSR as the selection method.

The number of selected variables is chosen by minimizing the BIC in the system of

linear equations

B+ = ια′ +B∆ +XmΓm + E, (9)

whereXm consists of the firstm selected columns ofX . The pmacro factors to be used

in the FANS model are again principal components extracted from the p∗ variables that

minimize the BIC.

3 Data and forecasting procedure

3.1 Data

Our yield data are unsmoothed Fama-Bliss U.S. Treasury yields for maturities of

3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 108, and 120 months, from January

1979 to December 2003. For more information on the construction of these data, we

refer to Bliss (1997). Time series plots of a short-term (three months), a medium-term

(two years), and a long-term (ten years) yield are shown in Figure 1. We observe that

these yields vary over a wide range of values over the sample period. Moreover, al-

though the yields for different maturities show a large degree of comovement, it can
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be seen that the spreads between yields of different maturities also vary considerably

over time.

(Include Figure 1 around here.)

The different possible shapes of the yield curve are illustrated in Figure 2, where we

show all seventeen yields in four selected months. A “typical” yield curve is increasing

and slightly concave, as is the case in January 1992. However, other shapes, such as

humped (1979), decreasing (1981), and almost flat (1990), occur fairly regularly. The

Nelson and Siegel (1987) model can accurately approximate all these different shapes.

(Include Figure 2 around here.)

The macro factors that we include in the FANS models are extracted from a set of

132 monthly variables. These variables are categorized into eleven groups in an eco-

nomically meaningful way. (For example, one group contains various price indices,

one contains aggregates related to real output, and so on.) A previous version of this

data set is described in Stock and Watson (2002). They also describe the transforma-

tions to stationarity and the grouping of variables.4

3.2 Forecasting procedure

We estimate the parameters of the FANS model over a rolling window with a length

of 120 months. At the end of each window (say, at time t), predictions are made for

times t+ h, with forecast horizon h = 1, 3, 6, or 12. Thus, for forecast horizon h = 1,

the first prediction that we make is for January 1989. For h = 3, it is for March 1989,

et cetera.
4We thank Cem Cakmakli for making a more recent version of these data available to us.
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We report forecasting results for the subsamples January 1994 until December

1998 and January 1999 until December 2003. The first subsample closely corresponds

to the forecasting period considered by Diebold and Li (2006). (The forecasts for

January 1989 until December 1993 are only used for selecting the number of macro

factors, as we describe below.) As is clear from Figure 1, the yields exhibit a lower

level and more volatility in the latter of these two subsamples. However, Figure 3

shows that the average yield curves (defined as simple arithmetic averages) for both

subsamples have roughly similar shapes.

(Include Figure 3 around here.)

If we denote the point forecast for the yield for maturity τ at time t + h, made at

time t using method M , by ŷt+h|t (M, τ), the predictive accuracy is evaluated as the

mean squared forecast error, defined as

MSE (M,h, τ) =
1

T

∑
t

[
ŷt+h|t (M, τ)− yt+h (τ)

]2
, (10)

where the summation runs over the period with length T over which we wish to eval-

uate the performance.

The forecasting methods that we consider differ in the procedure for constructing

macroeconomic factors. Table 1 gives an overview and shows the abbreviations by

which we refer to each method. In all but the first of these methods, the number of

macro factors is fixed at three to make our results comparable to those in Diebold et

al. (2006) and De Pooter et al. (2007).

(Include Table 1 around here.)

The groups of variables used in the PCAG and PCOVRG methods are three of the

eleven groups identified by Stock and Watson (2002), chosen such that each group
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contains one of the variables used by Diebold et al. (2006). This choice is intended to

make our results comparable to theirs.

We consider the first six methods listed in Table 1 as our basic methods. The

second set of six are multivariate methods, each selecting three macro factors. A final

set of six methods contains variants of each of these multivariate methods, in which

the number of factors is not fixed at three. Instead, we estimate the FANS model

with either 1, 2, 3, or 4 macro factors, after which the actual number of factors used

in forecasting is selected based on past performance; that is, the number of factors

leading to the smallest MSE over the last 60 months is used. The abbreviations used

to refer to these methods are equal to those for their three-factor counterparts, plus a B

for “Best number of factors”.

4 Forecasting results

In this section, we evaluate the forecasting performance of the various methods of

factor construction listed in Table 1. As our focus is not on the parameter estimates, a

short discussion on that topic is deferred to Appendix A.

We divide the seventeen maturities that we study into three groups: short (one year

or less), medium (one to five years), and long (more than five years). For each of these

groups, we report results only for one representative maturity (three months, two years,

and ten years, respectively).5 The results are qualitatively similar for all maturities

within the three groups. The values of MSE (M,h, τ), as defined in Equation (10), are

shown in Tables 2 and 3.

(Include Tables 2 and 3 around here.)
5Results for the other maturities are available upon request.
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For all methods, the general pattern can be summarized as follows. Forecasts are

more accurate if the horizon is shorter and if the maturity is longer, as can be seen from

the rows labeled “NO” in Tables 2 and 3. Comparing these two rows, we can also

see that forecasting is easier in the first (less volatile) period. Note that, as Diebold

and Li (2006) reported before, simple forecasts made without any macro information

are already of reasonable quality. Consider, for example, the MSE for maturity τ =

3 months at a forecast horizon of h = 1 month in Table 2, which is equal to 697.

This means that when forecasting the short-term yield one month ahead, the average

absolute error is
√

697 ≈ 26 basis points. In fact, one-month-ahead prediction errors

are around 0.3 percentage points across all maturities and for both subperiods.

As discussed in Section 2.1, we have imposed some restrictions on the parameter

matrices in the state equation of the FANS model. We have also constructed yield

forecasts with the FANS model without these restrictions, and we find that the re-

stricted version outperforms the unrestricted model in almost all cases, whether macro

information is included or not. The unrestricted model is superior only for forecasting

short-term yields over short horizons. For all other cases, dropping the restrictions

leads to a dramatic increase in MSE of more than 40% on average, possibly due to

overfitting. Therefore, in what follows we only report results obtained from the re-

stricted FANS model.

Considering Table 2 further, it becomes clear that including macro information

does not improve much on the no-macro benchmark in the first subperiod. The yield

curve was not very volatile in 1994-1998, see Figure 1, and the Nelson-Siegel model

without any macro factors appears to be sufficient as a forecasting tool in this period.

In 1999—2003 (Table 3), however, gains in predictive accuracy range from 3% to

as much as 34% for the basic methods. For both the long and the short ends of the

yield curve, the best-performing basic methods are generally PCAG and PCOVRG.
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The latter method even beats the benchmark in all twelve situations listed in the table.

For medium-term yields (15 to 60 months) the DRA method, based on the variables

selected by Diebold et al. (2006), performs very well. Note that PCAG, PCOVRG and

DRA have in common that a major part of the macro information is excluded from

the model: PCAG and PCOVRG use only three out of the eleven groups identified by

Stock and Watson (2002) (amounting to 58 out of 132 variables), whereas DRA uses

only 3 out of 132 variables. On the other hand, the LARSU and PLSU procedures

have all macro variables as inputs; their performance is not impressive, suggesting that

these methods have difficulties in coping with the abundance of macro variables.

Turning to the multivariate methods with the number of factors fixed at three in

the middle six rows of Table 3, we find that it is possible to include all macro infor-

mation without obstructing forecast accuracy. PCA and (especially) PCOVR perform

better than their basic counterparts in many cases. The most notable example is the

forecast for the short yield over a 6-month horizon in 1999—2003: PCOVR results

in a mean squared forecast error that is 16% (12 percentage points) smaller than the

best-performing basic method, and 39% smaller than the no-macro benchmark. Com-

paring the multivariate methods to the basic methods, a similar picture emerges in

1994—1998; however, it is difficult even for PCA and PCOVR to beat the no-macro

benchmark during this period.

Two of these multivariate methods have univariate counterparts: we may compare

LARSM to LARSU and PLSM to PLSU. In general, the multivariate methods outper-

form their univariate counterparts. Thus, it is profitable to consider the yield factors

β as a group rather than as three distinct variables. (Incidently, for PLS, Garthwaite

(1994) argues that “in most situations, the univariate method is likely to give the better

prediction equations.” This does not seem to be the case in our application.)

Considering the last six rows of Tables 2 and 3, we observe that data-driven selec-
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tion of the number of macroeconomic factors leads to further improvements (compared

to fixing this number at three) in some cases, most notably hard thresholding (HTB)

and partial least squares (PLSMB). For principal component analysis (PCAB), how-

ever, the results deteriorate slightly: it appears that the additional model uncertainty

is not worth the additional degree of freedom in this case, so that it seems better to

simply work with three factors, as advocated by De Pooter et al. (2007). For the other

three methods, the predictive accuracy does not change much. As shown in Table 4,

the methods that gain most from selecting the number of factors (hard thresholding

and PLS) generally require fewer than three factors, suggesting that the first two fac-

tors constructed by these methods already summarize most relevant information. This

result illustrates the importance of considering the forecast objective in factor con-

struction: as the first two factors have sufficient predictive power, it is often better to

neglect the third factor.

(Include Table 4 around here.)

Table 5 enables a closer look at the relative importance that each method assigns

to each group of macroeconomic variables. It shows the average squared weight of all

variables in each group, normalized to sum to one for each method. For example, the

first number in this table means that 22% of the variation in the LARSU factors comes

from variables connected to real output and income. We observe that all methods give

large weights to the “Employment and Hours” group; however, the best-performing

methods (PCA and PCOVR) put more weight on price indices.

Given the relatively poor performance of both thresholding methods (ST and HT),

it is perhaps surprising that the weights they assign to the eleven groups of variables

are not very different from those assigned by other methods. This similarity means that

the thresholding methods do not select variables from the wrong groups; rather, they
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seem to pick “the wrong variables from the right groups”. As it is hard for thresholding

methods to differentiate between variables with large in-sample correlations, it seems

preferable to use methods that summarize all information in the data set, instead of

selecting a smaller number of variables.

(Include Table 5 around here.)

To gain more insight in the variability of the predictive performance over time,

we plot a five-year rolling mean squared forecast error in Figure 4. Each point shows

the mean squared forecast error measured over the past 60 months. Thus, the circled

points (December 1998 and December 2003) correspond to the numbers used in Tables

2 and 3, respectively. We plot the errors only for two methods, one maturity, and one

forecast horizon, but the picture is similar for the other cases. The best predictability of

yields is realized around the turn of the century, while forecasting accuracy was better

in 2003 than in the years preceding it.

(Include Figure 4 around here.)

Figure 5 illustrates the relative performance of univariate PLS, multivariate PLS,

and PLS with data-driven selection of the number of factors. (Again, the circled points

correspond to the numbers in Tables 2 and 3, and the picture for other methods is

roughly similar.) The multivariate method almost always dominates the univariate

method, and not fixing the number of factors leads to an additional improvement. As

we can see by comparing Figures 4 and 5, adding macroeconomic information helps

most when forecasting without such information is difficult, particularly from 2001

onwards.

(Include Figure 5 around here.)
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Summarizing our empirical results, we find substantial evidence that including

macroeconomic information in the Nelson-Siegel model improves predictive accuracy

the most in volatile periods, when the basic yields-only model is insufficient. Con-

cerning the specific issues related to the use of macro factors as discussed in the intro-

duction, we also find several interesting conclusions. First, including factors extracted

from a large panel of macro variables generally renders more accurate forecasts than

pre-selecting specific individual variables in a data-driven way. Second, it is better to

use the target variable in constructing macro factors than to ignore it. Third, it is better

to construct a single set of factors for all three yield factors jointly than to treat each

yield factor separately. Fourth, for long-term yields it is better to construct factors from

groups of related macro variables, instead of one large pool of all available variables,

but the opposite holds for short- and medium-term yields. Fifth, it is better to select

the number of macro factors based on past performance than to fix it in advance.

5 Conclusion

This study investigates various ways of incorporating macroeconomic information in

the Nelson-Siegel framework for forecasting the yield curve. By comparing the pre-

dictive performance of these techniques with methods found in the recent literature,

we find that alternative methods perform better in important cases. It is not easy to

improve upon forecasts made without any macro information in stable times, like the

years 1994—1998. When there is little volatility in yields, the dynamic Nelson-Siegel

model without macro factors is sufficient for forecasting, although gains of around

10% can still be attained in several cases. On the other hand, when volatility is rel-

atively high (as in 1999—2003), macroeconomic variables are of substantive help in

forecasting the yield curve. Gains of around 30% are attainable in this case.
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The gains obtained by including macroeconomic information depend crucially on

the way in which macro information is incorporated in the model. Selecting variables,

as in Diebold et al. (2006), is useful only for forecasting yields with medium-term

maturities (more than one, but less than five years). In all other cases, it is beneficial to

extract information from a larger pool of available variables: from predefined groups

of variables for longer maturities (using 58 variables in this study), or even from all

available information (132 variables in our case) for shorter maturities.

Principal component analysis (PCA), as advocated by De Pooter et al. (2007),

yields acceptable results: using principal components generally improves forecast ac-

curacy by around 10%, relative to the no-macro benchmark. Still, principal covariate

regression (PCovR) improves on simple PCA under most circumstances, often gaining

another 10%. Other factor construction methods, based on selecting variables (using

least angle regression, or a thresholding rule), are dominated by methods that use all

available information, such as PCovR. We also find that it is helpful to consider the

three yield factors as a group, rather than as three separate variables.

We also investigated the benefits of selecting the number of factors in a data-driven

way, based on predictive performance in the recent past. The results indicate that such

a selection procedure leads to a small decrease in forecast errors for some methods.

There is, however, a trade-off between additional modeling freedom and model uncer-

tainty.

To conclude, incorporating macroeconomic information appears to be most useful

when it is needed the most, when yields are highly volatile, and it is beneficial to

explicitly consider the forecasting objective when constructing factors. We expect that

the factor construction rules studied here may also prove useful in other models and

contexts. An interesting example may be the use of augmented affine models for the

yield curve, in the style of Mönch (2008).
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A Parameter estimates

This appendix illustrates some of the estimates of the parameters of the FANS model.

Figure 6 shows a time series plot of the estimates of λ. All estimates are dated in

the last month of the estimation window. We only show results for the model without

macro factors; for the methods with macro factors, the estimates are very similar.

(Include Figure 6 around here.)

Typical values of λ found in the literature, such as Diebold and Li (2006), Diebold

et al. (2006), and De Pooter et al. (2007), are around 0.06 to 0.08. Our estimates lie,

on average, around these values. However, the λ estimates show great variability over

time, casting some doubt on studies where λ is kept fixed over long time periods.

For the parameter estimates of µ, our results are similar to those found in the papers

cited above. The mean of the level parameter (the hypothetical yield of infinitely long

maturity) is estimated to be around 600 basis points. The mean slope parameter is

around −200, corresponding to an upward-sloping yield curve. Finally, the mean of

the curvature parameter is small, but larger than zero, which indicates that the yield

curve is slightly concave.

For the other parameters in the FANS model, our estimates are comparable to those

reported by Diebold et al. (2006). The standard deviations σi are largest for the shortest

maturities: typical values are around 15 basis points for short maturities, 2 to 4 for

medium-term yields, and again slightly higher for longer maturities (over five years):

roughly between 3 and 10 basis points.

The estimated transition matrix A in the FANS model (see Equation (4)) is al-

ways close to nonstationarity, with large own-lag coefficients for the level and slope

parameters, illustrating the high persistence of yield curves. The block of A govern-

ing the macro-to-yields feedback relations is not negligible compared to the diagonal
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elements, confirming our economic intuition about such links and the result that these

parameters are significantly nonzero, obtained by Diebold et al. (2006). Finally, the

estimates of the state variance matrix Q generally show a pattern with much larger

shocks to the curvature factor than to the other factors.

As an illustrative example, we provide the parameter estimates found by the PCOVR

method over the last estimation window, January 1994—December 2003. The vector

of maturities τ is shown for ease of interpretation of the vector of standard deviations

σ. Note that all elements of A and Q shown as “0” were actually imposed to be zero,

as discussed in Section 2.1.

λ = 0.06, µ =
(

619.86, −333.59, −172.69
)′
,

τ = ( 3, 6, 9, 12, 15, 18, 21, 24, 30,
36, 48, 60, 72, 84, 96, 108, 120 )′,

σ = ( 35.04, 21.84, 16.17, 8.59, 2.74, 1.93, 2.32, 3.92, 2.08,
2.35, 2.37, 5.29, 4.39, 3.85, 2.85, 4.04, 9.54 )′,

A =



0.93 0 0 0.02 0.05 0.01
0 0.98 0 0.36 0.38 0.16
0 0 0.93 0.03 0.09 0.14

0 0 0 0.79 0 0
0 0 0 0 0.74 0
0 0 0 0 0 0.72


,

Q =



670 0 0 0 0 0
1364 0 0 0 0

5273 0 0 0

3780 0 0
4638 0

5076


.
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Similä, T., and J. Tikka, 2006, Common subset selection of inputs in multiresponse

regression, in: Proceedings of the IEEE international joint conference on neural

networks, 1908–1915.

Stock, J.H., and M.W. Watson, 2002, Macroeconomic forecasting using diffusion in-

dexes, Journal of Business and Economic Statistics 20, 147–162.

Taylor, J.B., 1993, Discretion versus policy rules in practice, Carnegie-Rochester con-

ference series on public policy 39, 195–214.

Tibshirani, R., 1996, Regression shrinkage and selection via the Lasso, Journal of the

Royal Statistical Society: Series B 58, 267–288.

Vašı́ček, O., 1977, An equilibrium characterization of the term structure, Journal of

Financial Economics 5, 177–188.

Wold, H., 1966, Nonlinear estimation by iterative least squares procedures, in:

F. David, ed., Research papers in statistics: Festschrift for J. Neyman (Wiley, New

York), 411–444.

29



Table 1: Macro factor construction methods.

Abbreviation Name Description

Basic methods
NO No macro factors The Nelson-Siegel model without any macro factors, as

in Diebold and Li (2006)
DRA

Diebold, Rudebusch,
Aruoba

Macro factors are capacity utilization, the federal funds
rate, and the price deflator for personal consumption ex-
penditures, as in Diebold et al. (2006)

LARSU Univariate LARS The first macro variable selected by LARS for each of
the three yield factors β

PLSU Univariate PLS The first PLS factor constructed for each of the three
yield factors

PCAG PCA on groups One principal component from each of the three groups
“Real Output and Income”, “Interest Rates and Spreads”,
and “Price Indices”, from Stock and Watson (2002)

PCOVRG PCovR on groups One principal covariate from each of the same three
groups as in PCAG

Multivariate methods
LARSM Multivariate LARS The first three macro variables selected by MRSR for the

three yield factors jointly
ST Soft thresholding Three factors constructed by the soft thresholding rule
HT Hard thresholding Three factors constructed by the hard thresholding rule
PLSM Multivariate PLS The first three PLS factors constructed for the three yield

factors jointly
PCA Principal component

analysis
Three principal components from the full macro data set,
as in De Pooter et al. (2007)

PCOVR Principal covariate
regression

Three principal covariates from the full macro data set



Table 2: Mean squared forecast errors, 1994—1998.

Maturity 3 24 120
Horizon 1 3 6 12 1 3 6 12 1 3 6 12

NO 697 1577 3626 8837 758 3214 6705 13208 715 2611 6188 12704

Basic methods
DRA (0) 1.35 1.33 1.32 1.78 1.09 1.26 1.48 2.06 1.05 1.18 1.29 1.65
LARSU (0) 2.00 2.28 1.95 1.81 1.15 1.25 1.29 1.60 1.18 1.17 1.19 1.29
PLSU (0) 1.82 2.17 2.04 1.74 1.20 1.18 1.16 1.15 1.34 1.25 1.22 1.26
PCAG (3) 1.25 1.00 0.98 1.11 1.03 1.02 1.01 1.05 1.12 1.03 0.96 0.95
PCOVRG (1) 1.06 0.98 1.19 1.76 1.00 1.14 1.40 1.74 1.04 1.16 1.27 1.39

Multivariate methods
LARSM (2) 1.86 1.95 1.54 1.56 1.19 1.16 1.09 1.54 1.03 0.98 0.98 1.42
ST (1) 1.71 1.63 1.29 1.24 1.13 1.07 1.05 1.28 1.07 0.98 1.01 1.20
HT (1) 1.73 1.75 1.35 1.07 1.06 1.04 1.02 0.95 1.09 1.08 1.11 1.09
PLSM (1) 1.81 1.80 1.53 1.18 1.10 1.09 1.04 0.96 1.32 1.22 1.13 1.15
PCA (3) 1.55 1.48 1.10 0.93 1.02 1.03 0.98 0.91 1.05 1.04 1.02 1.03
PCOVR (1) 1.18 1.00 0.88 1.03 1.06 1.06 1.08 1.07 1.03 1.03 1.08 1.09

Selected number of factors
LARSMB (0) 1.90 1.95 1.66 1.54 1.10 1.17 1.09 1.49 1.01 1.03 1.05 1.37
STB (2) 1.69 1.81 1.34 1.21 1.15 1.09 1.04 1.22 1.09 0.99 0.99 1.14
HTB (0) 1.62 1.58 1.32 1.19 1.08 1.06 1.02 1.14 1.08 1.03 1.03 1.14
PLSMB (3) 1.43 1.30 1.19 1.05 1.13 0.94 1.02 0.88 1.26 0.97 1.08 1.12
PCAB (0) 1.58 1.56 1.28 1.09 1.01 1.09 1.11 1.06 1.04 1.09 1.09 1.07
PCOVRB (0) 1.26 1.36 1.34 1.26 1.02 1.12 1.23 1.21 1.03 1.06 1.08 1.04
Notes: The first row reports the MSE (in squared basis points), as defined in Equation (10), for the
method NO, see Table 1. For ease of comparison, relative values MSE (M,h, τ) /MSE (NO, h, τ)
follow in the remaining rows, for all other methods described in Table 1. For each maturity and horizon
(both measured in months), the lowest relative MSE is printed in bold. If a column contains no bold
entry, this means that none of the methods outperforms the NO benchmark. The numbers in parentheses
indicate in how many of the twelve cases the respective methods outperform this benchmark.



Table 3: Mean squared forecast errors, 1999—2003.

Maturity 3 24 120
Horizon 1 3 6 12 1 3 6 12 1 3 6 12

NO 1037 3155 8803 27194 1003 3551 8537 21445 903 2092 4077 7905

Basic methods
DRA (4) 1.41 1.30 1.24 1.44 0.95 0.95 0.87 0.66 1.15 1.36 1.36 1.18
LARSU (4) 1.09 0.84 0.81 0.89 1.00 1.01 1.04 1.09 1.12 1.25 1.30 1.40
PLSU (3) 1.38 1.05 0.93 1.05 0.96 0.95 1.01 1.10 1.28 1.27 1.37 1.42
PCAG (9) 0.87 0.74 0.80 0.91 0.97 0.97 0.98 0.97 1.03 1.03 1.01 0.94
PCOVRG (12) 0.95 0.76 0.73 0.90 1.00 0.97 0.96 0.94 0.97 0.97 0.91 0.77

Multivariate methods
LARSM (5) 1.13 0.91 0.84 0.87 0.88 0.97 1.02 1.11 1.05 1.21 1.30 1.52
ST (7) 1.17 0.85 0.74 0.80 0.90 0.91 0.86 0.92 1.03 1.08 1.02 1.07
HT (2) 1.22 0.93 0.95 1.08 1.02 1.01 1.07 1.11 1.22 1.20 1.22 1.24
PLSM (4) 1.17 0.85 0.88 1.01 0.87 0.95 1.00 1.06 1.17 1.17 1.16 1.20
PCA (8) 1.20 0.91 0.81 0.86 0.93 0.90 0.89 0.88 1.05 1.03 1.00 0.95
PCOVR (8) 1.12 0.71 0.61 0.78 0.94 0.80 0.84 0.84 1.06 1.02 1.08 0.98

Selected number of factors
LARSMB (5) 1.13 0.88 0.81 0.86 0.91 0.96 1.02 1.09 1.07 1.20 1.33 1.51
STB (7) 1.17 0.85 0.74 0.86 0.93 0.93 0.86 0.93 1.07 1.12 1.02 1.06
HTB (6) 1.20 0.90 0.77 0.74 1.04 0.99 0.91 0.80 1.12 1.16 1.11 1.02
PLSMB (7) 1.13 0.78 0.79 0.90 0.84 0.86 0.89 0.97 1.22 1.10 1.05 1.00
PCAB (8) 1.19 0.89 0.77 0.82 0.89 0.95 0.91 0.88 1.03 1.11 1.04 0.95
PCOVRB (7) 1.12 0.71 0.62 0.82 0.95 0.80 0.85 0.87 1.07 1.03 1.10 1.02
Notes: See Table 2.



Table 4: Average “best” number of factors, 1994—2003.
Horizon 1 3 6 12
LARSMB 2.38 3.50 2.93 2.53
STB 2.35 3.19 2.95 1.46
HTB 1.38 1.57 1.74 2.30
PLSMB 1.93 1.93 1.95 2.22
PCAB 1.63 2.28 2.27 2.20
PCOVRB 2.31 2.28 2.07 1.93



Table 5: Average weight of groups of macro variables, 1994—2003.

Group name # LARSU PLSU LARSM ST HT PLSM PCA PCOVR
Real Output and Income 20 0.22 0.09 0.11 0.11 0.12 0.08 0.12 0.12
Employment and Hours 30 0.39 0.51 0.29 0.29 0.19 0.33 0.17 0.17
Housing 10 0.00 0.00 0.06 0.07 0.28 0.00 0.14 0.14
Orders and Inventories 10 0.03 0.02 0.08 0.13 0.05 0.01 0.05 0.05
Money and Credit 11 0.04 0.06 0.11 0.09 0.05 0.08 0.03 0.03
Stock Prices 4 0.01 0.00 0.01 0.02 0.02 0.00 0.02 0.02
Interest Rates and Spreads 17 0.17 0.00 0.18 0.14 0.24 0.00 0.20 0.20
Exchange Rates 5 0.03 0.00 0.01 0.01 0.02 0.00 0.01 0.01
Price Indices 21 0.08 0.30 0.10 0.09 0.03 0.46 0.26 0.26
Wages 3 0.00 0.01 0.00 0.00 0.00 0.03 0.00 0.00
Consumer Expectations 1 0.03 0.00 0.05 0.05 0.00 0.00 0.00 0.00

Notes: this table shows the relative importance of each of the eleven groups of macroeconomic variables
in the factor construction methods. The numbers in the table are sums of squared weights, averaged over
the 120 estimation windows ending in 1994—2003, and normalized to sum to one for each method. For
each method, the largest weight is printed in bold. The column headed “#” lists the total number of
variables per group.



Figure 1: Time series plots of U.S. zero-coupon yields for three selected maturities.
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Figure 2: The yield curve in four selected months.
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Figure 3: The average yield curve in the two evaluation subsamples.
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Figure 4: Rolling means of squared forecast errors for forecast horizon h = 3, maturity τ = 24
months.
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Figure 5: Rolling means of squared forecast errors, forecast horizon h = 3, maturity τ = 24
months, relative to the NO benchmark.
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Figure 6: Estimates of the parameter λ in the FANS model.
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