
 

 
 
 
 

 

MODULAR DECOMPOSITION OF BOOLEAN FUNCTIONS 
JAN C. BIOCH 

 
 
 

 
 
 
 
 
 
 
 
 
 

ERIM REPORT SERIES RESEARCH IN MANAGEMENT 
ERIM Report Series reference number ERS-2002-37-LIS 
Publication  April 2002 
Number of pages 36 
Email address corresponding author bioch@few.eur.nl 
Address Erasmus Research Institute of Management (ERIM) 

Rotterdam School of Management / Faculteit Bedrijfskunde 
Erasmus Universiteit Rotterdam 
P.O. Box 1738  
3000 DR Rotterdam, The Netherlands 
Phone:  +31 10 408 1182  
Fax: +31 10 408 9640 
Email:  info@erim.eur.nl 
Internet:  www.erim.eur.nl 

 
Bibliographic data and classifications of all the ERIM reports are also available on the ERIM website:  

www.erim.eur.nl 

http://www.erim.eur.nl/


ERASMUS  RESEARCH  INSTITUTE  OF  MANAGEMENT 
 

REPORT SERIES 
RESEARCH IN MANAGEMENT 

 
 
 

BIBLIOGRAPHIC DATA AND CLASSIFICATIONS 
Abstract Modular decomposition is a thoroughly investigated topic in many areas such as switching theory, 

reliability theory, game theory and graph theory. Most applications can be formulated in the 
framework of Boolean functions. In this paper we give a uni_ed treatment of modular 
decomposition of Boolean functions based on the idea of generalized Shannon decomposition. 
Furthermore, we discuss some new results on the complexity of modular decomposition. We 
propose an O(mn)-algorithm for the recognition of a modular set of a monotone Boolean function 
f with m prime implicants and n variables. Using this result we show that the the computation of 
the modular closure of a set can be done in time O(mn2). On the other hand, we prove that the 
recognition problem for general Boolean functions is coNP-complete. 
5001-6182 Business 
5201-5982 Business Science 

Library of Congress 
Classification  
(LCC) HB 143 Mathematical Programming 

M Business Administration and Business Economics  
M 11 
R 4 

Production Management 
Transportation Systems 

Journal of Economic 
Literature  
(JEL) 

C 69 Mathematical Methods and Programming 
85 A Business General 
260 K 
240 B 

Logistics 
Information Systems Management 

European Business Schools 
Library Group  
(EBSLG) 

250 A Mathematics 
Gemeenschappelijke Onderwerpsontsluiting (GOO) 

85.00 Bedrijfskunde, Organisatiekunde: algemeen 
85.34 
85.20 

Logistiek management 
Bestuurlijke informatie, informatieverzorging 

Classification GOO 

31.10 Logica, verzamelingenleer 
Bedrijfskunde / Bedrijfseconomie 
Bedrijfsprocessen, logistiek, management informatiesystemen 

Keywords GOO 

Boolean-functions, wiskundige ontleding, modulaire functies, modulaire matrices, speltheorie, 
betrouwbaarheid 

Free keywords Boolean functions, committees, computational complexity, decomposition algorithm, modular 
decomposition, modular sets, substitution decomposition, game theory, reliability theory, 
switching theory. 

 



Modular Decomposition of Boolean Functions

Jan C. Bioch

Dept. of Computer Science, Erasmus University Rotterdam,

P.O. Box 1738, 3000 DR Rotterdam.

email: bioch@few.eur.nl

Abstract

Modular decomposition is a thoroughly investigated topic in many areas such

as switching theory, reliability theory, game theory and graph theory. Most appli-

cations can be formulated in the framework of Boolean functions. In this paper

we give a uni�ed treatment of modular decomposition of Boolean functions based

on the idea of generalized Shannon decomposition. Furthermore, we discuss some

new results on the complexity of modular decomposition. We propose an O(mn)-

algorithm for the recognition of a modular set of a monotone Boolean function f

with m prime implicants and n variables. Using this result we show that the the

computation of the modular closure of a set can be done in time O(mn2). On the

other hand, we prove that the recognition problem for general Boolean functions is

coNP-complete.

Keywords: Boolean functions, committees, computational complexity, decompo-

sition algorithm, modular decomposition, modular sets, substitution decomposition,

game theory, reliability theory, switching theory.

1 Basic concepts and applications

1.1 Disjunctive decompositions

Let f : f0; 1gn 7! f0; 1g be a Boolean function and V = f1; 2; � � � ; ng. Identify each

i 2 V with the variable xi: Then f is said to be a function de�ned on V: Furthermore, if

V = A1 [ A2 [ � � �Am is a partition of V (Ai \ Aj = ;; i 6= j); then we will denote this

by xV = (xA1
; � � � ; xAm

) and f(xV ) = f(xA1
; � � � ; xAm

): Let F (yI) and gi(xAi
) be Boolean



functions de�ned on the mutually disjoint sets I = f1; � � � ; mg and Ai; i 2 I, and let

V = [m
i=1Ai. Then the Boolean function de�ned by

f(xV ) = F (g1(xA1
); � � � ; gm(xAm

));

is called the composition of the functions F and gi; i 2 I, obtained by substitution of the

variables yi in F by the functions gi; i 2 I. This composition is denoted by F [gi; i 2 I]:
A composition is called proper if jIj > 1 and jAij > 1 for some i 2 I. A Boolean function

is said to be decomposable if it has a representation as a proper composition. Otherwise,

the function f is called indecomposable or prime. If F [gi; i 2 I] is a decomposition of the

function f then the partition � = fAi; i 2 Ig is called a congruence partition and F is

called the quotient of f modulo �: This is denoted by F = f=�: From the de�nition of

decomposition it follows easily that

f = F [gi; i 2 I], f d = F d[gi
d; i 2 I]: (1)

Therefore, we have F = f=� , F d = f d=�: Moreover, we will show that the functions

gi; i 2 I, are determined modulo complementation of the functions, and that the quotient

F is determined modulo complementation of the variables (see corollary 1.1). It appears

(cf [18]) that each decomposition of a Boolean function f can be obtained by a series of

so called simple disjunctive decompositions. These are decompositions of the form

f(xV ) = F (xA; g(xB));

where � = fA;Bg is a partition of V . It is known ([18, 15]) that the study of non-

disjunctive decompositions can also be reduced to that of simple disjunctive decomposi-

tions. However, a discussion of non-disjunctive decompositions is outside the framework

of this chapter.

De�nition 1 Let f be a Boolean function de�ned on V . Then A � V is called a modular

set of f if f has a simple disjunctive decomposition of the form f(xV ) = F (g(xA); xB):

The function g is called a component of f .

From this de�nition it follows that the base set V and its singleton subsets are modular.

Before we proceed we introduce some notations used in this chapter.

Notations

A Boolean function f is called trivial if it is constant: f � 0 (denoted by f = ?) or f � 1

(denoted by >). Otherwise f is called non-trivial. We say that a set A � V is essential

2



for f or that f depends on A; if A contains at least one essential variable of f . The set

of all modular sets of f is denoted by �0(f) and the set of all modular sets of f that are

essential for f is denoted by �(f) . A congruence partition � is called essential if all the

classes of � are essential for f: Furthermore, the set of all essential congruence partitions

of f is denoted by �(f):

The following theorem shows that the modular sets of a function f are precisely the

classes of the congruence partitions of f:

Theorem 1 Let f be a Boolean function and let � = fAi; i 2 Ig be a partition of f .

Then � 2 �(f), Ai 2 �(f) for all i 2 I:

Proof. If f(xV ) = F [gi(xAi
); i 2 I], then obviously for all i 2 I there exists a Boolean

function Fi such that f(xV ) = Fi(gi(xAi
); x �Ai

), implying that Ai 2 �(f): To prove the

converse we �rst assume that jIj = 2: If A;B 2 �(f), then f(xA; xB) = F (g(xA); xB) =

G(h(xB); xA): Since A and B are essential for f , there exist binary vectors a(y) and b(y)

such that y = g(a(y)) = h(b(y)), where y 2 f0; 1g: Now we de�ne the function H by:

H(y1; y2) = H(g(a(y1)); h(b(y2)) := f(a(y1); b(y2)):

To prove that f(xA; xB) = H(g(xA); h(xB)), we note that g(a1) = g(a2) implies f(a1; xB) =

F (g(a1); xB) = F (g(a2); xB) = f(a2; xB): Furthermore, h(b1) = h(b2) implies f(xA; b1) =

f(xA; b2): Therefore, we conclude f(a1; b1) = f(a2; b1) = f(a2; b2): Conclusion: if A;B 2
�(f); then � = fA;Bg 2 �(f): The case jIj � 2 is a straightforward generalization. �

1.2 Applications

Substitution decomposition has been studied thoroughly by researchers in many di�erent

contexts such as switching theory, game theory, reliability theory, network theory, graph

theory and hypergraph theory. Not surprisingly, the concept of a modular set is rediscov-

ered several times under various names: bound sets, autonomous sets, closed sets, stable

sets, clumps, committees, externally related sets, intervals, nonsimpli�able subnetworks,

partitive sets and modules, see [12, 21] and references therein. An excellent survey for the

various applications of substitution decomposition and connections with combinatorial

optimization is given by M�ohring and Radermacher in [21, 22]. The decomposition of

monotone Boolean functions has been studied in several contexts: game theory (decom-

position of n-person games [28]), reliability theory (decomposition of coherent systems

[7]) and set systems (clutters [6]).

3



In switching theory decomposition of general Boolean functions is still an important

tool in the design and analysis of circuits. Some applications of decompositions of positive

Boolean functions to be discussed briey here are in the areas of reliability theory, game

theory and combinatorial optimization.

Application 1 (Reliability theory) In reliability theory a system S consisting of n

components is modeled by a positive (monotone) Boolean function fS called the structure

function of fS. This function indicates whether system S is operating or not depending

on the states of the n components: operative (xi = 1) or failed (xi = 0): Modular sets

play a role in the design and analysis of a complex system S because they reect the

decomposability possibilities of S in subsystems.

Application 2 (Game theory) The concept of an n-person simple game (or voting

game) G can be modeled by a positive Boolean function fG such that the winning coalitions

of G correspond to the prime implicants of fG. Factorisation of compound simple games

studied by Shapley [28] is equivalent to decomposition of the associated positive Boolean

function.

Application 3 (Clutters) Combinatorial optimization over set systems has initiated

the research on decomposition of clutters (Sperner families) (see e.g. [21, 6]). The inter-

face between a clutter C and its associated positive function fC is given by the correspon-

dence between the elements of C and the prime implicants of fC.

2 Generalized Shannon decomposition

Let f be a Boolean function on V. Then for all j 2 V the following decomposition holds:

f = �xjfxj=0 _ xjfxj=1: (2)

Equation (2) is known as a Shannon decomposition of f: Now consider the simple disjunc-

tive decomposition

f(xV ) = F (g(xA); xB): (3)

Then by applying equation (2) to F we get:

f(xV ) = �g(xA)F0(xB) _ g(xA)F1(xB); (4)

where F0(xB) = F (xB; 0) and F1(xB) = F (xB; 1):

Conversely, let g and h0; h1 be arbitrary Boolean functions de�ned respectively on A and

4



B such that f = �gh0 _ gh1; and let the function F be de�ned by F (y; xB) := �yh0 _ yh1:
Then f(xV ) = F (g(xA); xB) is a simple disjunctive decomposition of f , where F0(xB) = h0
and F1(xB) = h1: Therefore, we have proved the following fundamental lemma:

Lemma 1 Let f be a Boolean function on V . Then A � V is a modular set of f i�

there exists a Boolean function g on V and functions h0 and h1 on B = V n A such that

f = �gh0 _ gh1:

We call the decomposition in the previous lemma a generalized Shannon decomposition. In

particular, we call the decomposition in equation (4) a generalized Shannon representation

of the simple disjunctive decomposition (3). If A is a modular set of the function f such

that A contains at least one essential variable of f , then it follows from the decomposition

f = �gh0 _ gh1; (5)

that the function g is non-trivial and that the functions h0 and h1 are not identical.

Therefore, there exists a binary vector b0 such that either g(xA) = f(xA; b0) or �g =

f(xA; b0): Since �g is a component of f i� g is a component of f we may assume that the

function g is a subfunction of f .

De�nition 2 Let A be a modular set of f . Then a non-trivial subfunction f(xA; b0) is

denoted by fA(xA): For general Boolean functions this subfunction is determined mod-

ulo complementation. For monotone Boolean functions the function fA(xA) is uniquely

determined and called the contraction of f with respect to to A:

In general, equation (5) shows that if b is a �xed vector then the function f(xA; b) is either

trivial or identical to g of identical to �g: It is not diÆcult to see that the converse holds

also. Therefore, the following theorem holds:

Theorem 2 Let f be a Boolean function de�ned on V . If A � V contains at least one

essential variable of f , then the following statements are equivalent:

a) A is modular

b) There exists a vector b0 such that the function g(xA) := f(xA; b0) is non-trivial and

for all �xed b the function fb := f(xA; b) is either trivial or identical to either g or

�g:

Corollary 1 Suppose f(xV ) = F (g(xA); xB) = G(h(xA); xB); and that A is essential for

f: Then either g = h and F = G or g = �h and F (y; xB) = G(�y; xB):

Proof. We leave this as an exercise. �

5



3 Properties of modular sets

In this section we derive a number of properties of modular sets by proving decomposition

theorems such as in ([15]). The main tool we use here is the Shannon representation of a

simple decomposition and theorem (2).

Lemma 2 Let f(x; y) be a Boolean function depending on x and y.

Then f(x; y) = y1 ? y2; where y1 = x or �x, y2 = y or �y and ? denotes _;^; or �:

Proof. Consider the decomposition f(x; y) = �yf(x; 0)_ yf(x; 1): Since x is a component

of f we have according to theorem (2) to consider the following cases: x = f(x; 0); x =

f(x; 1); �x = f(x; 0) or �x = f(x; 1): If x = f(x; 0) then f(x; 1) 2 f0; 1; �xg; implying that

f(x; y) 2 fx�y; x _ y; x � yg: If x = f(x; 1) then f(x; y) 2 fxy; x _ �y; x � �yg: Both cases

together can be expressed as f(x; y) 2 fx ? y; x ? �yg: Similarly, the other two cases yield

f(x; y) 2 f�x ? y; �x ? �yg: �

Corollary 2 There are ten Boolean functions functions of two essential variables.

Theorem 3 Suppose A 2 �(f) and �A is essential for f . Then �A 2 �(f) , f has a

decomposition f(xV ) = g(xA) ? h(x �A); where ? denotes _;^; or �:

Proof. Suppose B = �A 2 �(f): Then by theorem (1) f can be written as f(xA; xB) =

F (g1(xA); h1(xB)): Since A and B are essential for f , the function F has two essential

variables. So, by lemma (2) it follows that f(xV ) = g(xA) ? h(x �A); where g and h are

respectively equal to g1 and h1 modulo complementation. The converse is obvious. �

Theorem 4 Let A 2 �(f) and let g be a component of f de�ned on A. Then �0(g) =

fC � A j C 2 �0(f)g: In addition, if f depends on all the variables in A; then �(g) =

fC � A j C 2 �(f)g:

Proof. Wlog we may assume that g = fA: So, f(xA; x �A) = F (g(xA); x �A) and there

exists a vector b such that g(xA) = f(xA; b): If C � A and C 2 �0(f); then we also have

f(xC ; x �C) = G(h(xC); x �C): Therefore, g(xA) = G(h(xC); xAnC ; b): Let the function H be

de�ned by H(y; yAnC) := G(y; xAnC ; b): Then g(xC ; xAnC) = H(h(xC); xAnC); so we have

C 2 �0(g): If in addition f depends on all variables in A then C 2 �(g):
Conversely, suppose C 2 �0(g): Then g(xA) = G(h(xC); xAnC): Therefore, f(xA; x �A) =

F (G(h(xC); xAnC); x �A): Let the function H be de�ned by H(yC ; y �C) := F (G(y; yAnC); y �A):

6



Then f(xC ; x �C) = H(h(xC); x �C); so C 2 �0(f): If in addition f depends on all variables

in A; then we have C 2 �(f): �

Proposition 1 Let � = fAi; i 2 Ig 2 �(f) and let F = f=�. Suppose ; 6= J � I: If

B =
S
fAj; j 2 Jg; then J 2 �(F ), B 2 �(f):

Proof. Suppose f(xV ) = F [gi(xAi
); i 2 I] and J 2 �(F ): Wlog we may assume J =

f1; 2; � � � ; lg � I = f1; 2; � � � ; mg; where 1 < l < m: Then F (yI) = G(h(yJ); y �J) and

f(xV ) = G(h(g1(xA1
); � � � ; gl(xAl

)); gl+1(xAl+1
); � � � ; gm(xAm

)): (6)

Let the functions k and H be de�ned by:

k(xB) := h[gj(xAj
); j 2 J ]

and

H(y; x �B) := G(y; g(xAl+1
); � � � ; g(xAm

));

where B =
S
fAj; j 2 Jg: Then equation (6) implies f(xV ) = H(k(xB); x �B); so that

B 2 �(f):
Conversely, let B 2 �(f); where B =

S
fAj; j 2 Jg; and J = f1; 2; � � � ; lg: Then

according to theorem (1) [B;Al+1; � � � ; Amg 2 �(f), so that f can be written as:

f(xV ) = G(g(xA1
; � � � ; xAl

); gl+1(xAl+1
); � � � ; g(xAm

)): (7)

Since f depends on Ai; i 2 I; for all i 2 I and y 2 f0; 1g there exists a binary vector ai(y)
such that y = gi(ai(y)): If h is the function de�ned by

h(y1; � � � ; yl) = h(g1(a1(y1)); � � � ; gl(al(yl))) := g(a1(y1); � � � ; al(yl));

then equation (7) implies

F (yI) = F [gi(ai(yi))); i 2 I] = f [ai(yi) i 2 I]

= G(g(a1(y1); � � � ; al(yl)); yl+1; � � � ; ym)

= G(h(yJ); y �J):

This shows that J 2 �(F ): �

7



Theorem 5 Let f be a Boolean function de�ned on the partition fA;B;Cg: Let A;B;C
be essential for f . If A [ B and B [ C are modular sets of f , then A;B;C 2 �(f) and

f = fA ? fB ? fC ; where ? denotes _;^; or �:

Proof. We may assume that f(xV ) = F (g(xA; xB); xC) = G(xA; h(xB; xC)); where g =

fA[B and h = fB[C : According to theorem (2) there exists a c such that g(xA; xB) =

f(xA; xB; c) = G(xA; h(xB; c)) = G(xA; k(xB)); where k(xB) = h(xB; c): Therefore, B is

a modular set of the component g of f and since B is essential for f theorem (4) implies

that B 2 �(f): Similarly, there exist a vector a such that h(xB; xC) = f(a; xB; xC) =

F (g(a; xB); xC) = F (G(a; k(xB)); xC): Furthermore, we have G(a; k(xB)) = f(a; xB; c) =

g(a; xB) = h(xB ; C) = k(xB): From this we conclude that k = fB and that

f(xV ) = F (G(xA; k(xB)); xC) = G(xA; F (k(xB); xC)): (8)

Since C is essential for F there exists a vector d such that Fd(y) := F (y; d) 6= y: Therefore,

Fd(y) 2 f0; 1; �yg: We now consider the following three cases:

1) Fd(y) = 0: Then equation (8) implies G0(xA) := G(xA; 0) = 0: Therefore, we

have g(xA; xB) = �k(xB)G0(xA) _ k(xB)G1(xA) = k(xB)G1(xA); where G1(xA) :=

G(xA; 1): There exists a vector b such that k(b) = 1: So, we can writeG1 asG1(xA) =

g(xA; b) = f(xA; b; c): Therefore G1 = fA:

2) Fd(y) = 1: In this case we have G(xA; 1) = 1 implying that g(xA; xB) = k(xB) _
G0(xA); and G0 = fA:

3) Fd(y) = �y: In this case equation (8) yields �G(xA; k(xB)) = G(xA; �k(xB)): In par-

ticular, since the function k is not identical to one, we have �G0(xA) = G1(xA):

Therefore, g(xA; xB) = k(xB)�G0(xA); and G0 = fA:

Note, that the cases G0 = 0; G1 = 1 and �G0 = G1 are mutually exclusive. For example, if

G0 = 0 and G1 = 1; then g(xA; xB) = k(xB); contrary to our assumption that f depends

on A: Conclusion: A and B are modular sets of f and g = fB ? fA; where ? denotes _;^;
or �: Similarly, C is a modular set of f and exactly one of the following cases occurs:

F0 = 0; F1 = 1 and �F0 = F1: Now consider the following decompositions:

f = �gF0 _ gF1; g = �kG0 _ kG1 (9)

and the cases:

a) F0 = G0 = 0: Then (9) implies f = kG1F1 = fBfAfC :

8



b) F1 = G1 = 1: Then f = k _G0 _ F0 = fB _ fA _ fC :

c) �G0 = G1 and �F0 = F1: Then f = k �G0 � F0 = fB � fA � fC :

To show that there are no other possible cases we consider the cases:

d) If F0 = 0 and G1 = 1; then:

h(xB; xC) = k(xB)F1(xC) and g(xA; xB) = k(xB) _G0(xA): (10)

Since f depends on C there exists a vector c such that F1(c) = 0: Now assume

that k(b) = 1 holds. Then by (10) h(b; c) = 0 and g(xA; b) = 1; implying that

G0 = G(xA; h(b; c)) = F (g(xA; b); c) = F1(c) = 0: This contradicts the assumption

G1 = 1: Therefore, F1(c) implies 8b : k(b) = 0: Contradiction.

e) If F0 = 0 and �G0 = G1; then:

h(xB; xC) = k(xB)F1(xC) and g(xA; xB) = k(xB)�G0(xA): (11)

There exists a vector c such that F1(c) = 1: Now assume that k(b) = 0 holds. Then

by (11) h(b; c) = 0 and g(xA; b) = G0(xA); implying that

G0 = G(xA; h(b; c)) = F (g(xA; b); c) = F (G0(xA); c) = 0: (12)

Since f depends on A there exists a vector a such that G0(A) = 0: Then (12)

implies F0(c) = 0 contrary to our assumption F1(c) = 1: From this we conclude:

8b : k(b) = 1: Contradiction.

The cases F0 = 1 and G0 = 0; and F0 = 1 and F0 = 0 and �G0 = G1; are symmetrical

with d) and e). Similarly, the case �G0 = G1; and �F0 = F1; also leads to a contradiction

(we leave this as an exercise).

Conclusion: Cases a), b) and c) are the only possible ones. Therefore, we have proved

that f = fA ? fB ? fC ; where ? is uniquely determined as _;^; or �: �

Theorem 6 Suppose f is a Boolean function de�ned on the partition fA;B;C;Dg; and
f depends on A;B and C. If A [ B and B [ C are modular sets of f , then A;B;C and

A [ C;A [ B [ C 2 �(f): Moreover, fA[B[C = fA ? fB ? fC ; where ? denotes _;^; or �:

9



Proof. Since A [ B;B [ C 2 �(f) there exist functions F;G and h such that f(xV ) =

F (g(xA; xB); xC ; xD) = G(xA; h(xB; xC); xD); where g = fA[B and h = fB[C : Moreover,

g depends on A and B and h depends on B and C: Since f depends on A;B and C there

exists at least one vector d such that the function fd = f(xA; xB; xC ; d) 62 f>;?g: We

�rst prove the following

Claim 1): If fd 62 f>;?g; then fd depends on A;B and C.

Suppose Fd(y; xC) depends on the variable y: Then since g depends on A and B and

fd = Fd(g(xA; xB); xC); the sets A;B and C are essential for fd: Similarly, if Gd(z; xA; xD)

depends on z, then fd depends on B and C: Now assume that Fd(y; xC) does not depend

on y. Then we will derive a contradiction as follows: Since fd = Fd(g(xA; xB); xC) we

have: fd depends on C: Therefore, since fd = G(xA; h(xB; xC)); the function Gd depends

on the variable z; implying that fd depends on B and C: Consequently, fd depends on y;

contrary to our assumption. Conclusion: Fd and Gd depend respectively on y and z; and

fd depends on A;B and C:

Claim 2): If fd; fe 62 f>;?g; then fe 2 ffd; �fdg:
Suppose fd 62 f>;?g: Then theorem (5) implies fd = �1 ? �2 ? �3; such that g = �1 ? �2
and h = �2 ? �3; where ? is uniquely determined as _;^; and �: Since �1 2 �(g) and

g 2 �(f); theorem (4) implies that �1 2 �(f): Since g and h are subfunctions of f we

have �1 = fA; �2 = fB and �3 = fC : Similarly, if fe 62 f>;?g; then fe =  1 Æ  2 Æ  3

where Æ is uniquely determined as _;^; and �: Moreover, g =  1 Æ  2; h =  2 Æ  3 and

 i 2 f�i; ��ig: These constraints imply that fe 2 ffd; �fdg: Therefore, we have proved that

8e : fe 2 f>;?; fd; �fdg: According to theorem (2) this is equivalent to A [ B [ C is a

modular set of f: So by theorem (5) we have fA[B[C = fA ?fB ?fC ; where ? denotes _;^;
or �; and A [ C 2 �(f):

�

Let A;B � V: Then A and B are called overlapping i� A and B are not comparable

and A\B 6= ;: The following theorem is a useful reformulation of theorems (5) and (6) :

Theorem 7 Let f be a Boolean function. Suppose A and B are overlapping modular sets

of f and that f depends on AB;A �B; and �AB: Then AB;A �B; �AB;A �B [ �AB and A [ B
are modular sets of f , and fA[B = fA �B ? fA\B ? f �AB; where ? is either ^, _ or � :

Theorem (7) is a famous result called the Three Modules Theorem of Ashenhurst [2].

But as far as we know this result is due to Singer [26]. For monotone Boolean functions

this theorem is reproved in game theory and reliability theory [25]. This fundamental

theorem is proved in the literature by using Ashenhurst decomposition charts, expansions

of Boolean functions or di�erential calculus ([1, 2, 15, 18, 17]).

10



Example 1 Let f be function de�ned by f = x1x3x4 _ x2x3x4 _ x1x3x5 _ x2x3x5: Let
A = f1; 2; 3g; and B = f3; 4; 5g: Then A;B, A \ B;A �B and �AB are modular and f =

(x1 _ x2)x3(x4 _ x5):

Let f be a Boolean function de�ned on the set V and let � = fAi j i 2 Ig be a

congruence partition of f . The set of classes of � will also denoted by V=�: The quotient

F = f=� is a function de�ned on the set I: By identifying I and V=� we de�ne the natural

mapping �� : V 7! V=� by: ��(j) = i , j 2 Ai: Furthermore, we de�ne the completion

of a set C � V as �(C) :=
S
fAi j C \ Ai 6= ;g:

Proposition 2 If � 2 �(f) and B 2 �(f) then �(B) 2 �(f):

Proof. Let � = fAi j i 2 Ig: Then by de�nition �(B) =
S
fAi jB\Ai 6= ;g: IfB � Ai for

some i then �(B) = Ai: Furthermore, if �(B) =
S
fAj j j 2 J � Ig; then �(B) = B: In all

other cases there exists a j such that B and Aj are overlapping. According to theorem (7)

we have B[Aj 2 �(f): Therefore, �(B) = B[fAj j B and Aj are overlappingg 2 �(f): �

Theorem 8 If � 2 �(f) and B 2 �(f) then ��(B) 2 �(f):

Proof. Since ��(B) = ��(�(B)), this follows from proposition (1) and proposition (2) �

Theorem 9 If J 2 �(F ) then ��1
�
(J) 2 �(f):

Proof. This follows from proposition (1) �

We will now collect a number of properties of modular sets proved thusfar:

Theorem 10 Let f be a Boolean function de�ned on V depending on all its variables

and let g be a component of f de�ned on C 2 �(f): Suppose � 2 �(f) and let F be the

quotient f=�: Then:

M0 : �(f) = �(f d):

M1 : V 2 �(f) and fig 2 �(f) for all i 2 V:

M2 : If A;B 2 �(f) are overlapping then the sets A �B;AB;B �A;AB and A �B [ B �A all

belong to �(f):

M3: �(g) = fB 2 �(f) j B � Cg:

11



M4: If B 2 �(f) then �(B) 2 �(f):

M5: If B 2 �(f) then ��(B) 2 �(f):

M6: If J 2 �(F ) then ��1
�
(J) 2 �(f):

Proof. M0 follows from equation (1). M1 is an immediate consequence of the de�nition

of modular sets. The other properties are respectively proved in theorems (4, 6, 2) and

theorems (8, 9).

4 The set of congruence partitions

Let f be a Boolean function de�ned on V . The set of partitions on V will be denoted

by �(f) = �(V ): In this section we briey discuss the structure of the set of congruence

partitions �(f) � �(f): It is known ([8]) that �(f) is a �nite lattice with ordering relation

�1 � �2 denoting that each class of �1 is contained in a class of �2: In that case �1 is

called a re�nement of �2; and �2 is called a coarsening of �2: The least uppper bound

respectively greatest lower bound of �1 and �2 are denoted by �1 _ �2 and �1 ^ �2: The
partition �1 ^ �2 consists of all non-empty intersections of a class of �1 and a class of

�2: The partition �1 _ �2 is the intersection of all partitions � containing �1 and �2: It

is easy to see that if R is a class of �1 _ �2 and if C is a either class of �1 or of �2 then

C \ R 6= ; ) C � R: Therefore each class R of �1 _ �2 can be written as

R = P1 [Q2 [ P3 [Q4 [ � � � [ Pl; (13)

where respectively the Pi are (possibly not di�erent) classes of �1 and the Qj are (possibly

not di�erent) classes of �2: Furthermore, Pi \Qi+1 6= ; and Qi \ Pi+1 6= ;:

Proposition 3 �(f) is a sublattice of �(f):

Proof. We have to prove that �(f) is closed under the meet and join operations of �(f):

Suppose �1; �2 2 �(f): Then each class of �1 ^ �2 is the non-empty intersection of two

modular sets. Therefore, it follows theorem (7) that �1 ^ �2 2 �(f): Similarly, theorem

(7) and equation (13) imply that �1 _ �2 2 �(f): �

�(f) and �(f) contain a �nest partition �0 consisting of all singleton subsets of V

and a coarsest partition �1 consisting of a single class namely the set V: Let �1; �2 be two

partitions with �1 < �2 then �2 covers �1 if for all partitions � with �1 < � < �2 we have

12



either � = �1 or � = �2: A partition � 2 �(f) is called an atom of �(f) if � covers �0: It

is easy to see that � is an atom of �(f) i� � = fA; fig j i 2 V n Ag; where A 2 �(f) and
fA is prime. Let P be a �nite poset (partially ordered set). If a; b 2 P and a < b then a

sequence a = a0; a1; � � �an = b is called a chain between the endpoints a and b of length

n if ai�1 < ai for i = 1; 2; � � � ; n: Moreover, a chain is called maximal if ai covers ai�1; for

i = 1; 2; � � � ; n: The poset P satis�es the Jordan-Dedekind chain condition if all maximal

chains in P between two endpoints a and b have the same length.

De�nition 3 A �nite lattice L is called upper semi-modular if ai covers a1 ^ a2; i =1,2,
implies that a1 _ a2 covers both a1 and a2:

Theorem 11 Let f be a Boolean function. Then �(f) is upper semi-modular.

Proof. Suppose �1; �2 2 �(f) cover �1^�2 = fPj j j 2 Jg: Then there exists exactly one

class Ai of �i such that Ai is a union of classes of �1^�2 and �i = fAi; Pk j k 2 Jig; where
Ji � J; i = 1; 2 and fAi

is prime. If J1\J2 = ;; then �1_�2 = fJ1; J2; Pj j j 2 Jn(J1[J2)g:
If J1 \ J2 6= ;; then �1 _ �2 = fJ1 [ J2; Pj j j 2 J n (J1 [ J2)g: Therefore, in both cases

�1 _ �2 covers �1 and �2.
�

The following theorem is proved in the literature, see ([8]).

Theorem 12 If L is a �nite upper semi-modular lattice, then L satis�es the Jordan-

Dedekind chain condition.

As a corollary of theorems (11, 12) we have:

Theorem 13 Let f be a Boolean function. Then �(f) satis�es the Jordan-Dedekind

condition.

Other algebraic properties of congruence partitions are discussed in [21, 22].

5 Composition trees

In this section we assume that all Boolean functions depend on all their variables. Com-

position trees have been studied �rst by Shapley ([28]) in the context of simple games

(monotone Boolean functions) . These trees represent in a compact way all the infor-

mation on the modular sets of a Boolean function. Although the number of modular

sets maybe exponential in the number n of variables, it appears that that the number

13



of nodes in a composition trees is linear in n: Let f be a Boolean function de�ned on

V . Then C 2 V is called a maximal modular set of f if C 2 �(f) and for all B with

C � B 6= V; we have B 62 �(f): The set of all maximal modular sets is denoted by m(f):

A function f is of composition type I if no two maximal modular sets have a non-empty

intersection, otherwise f is of composition type II. We will show that in the latter case

the set of complements of the maximal modular sets, denoted by �?; is a partition of V

De�nition 4 A Boolean function f de�ned on V is called degenerated i� every non-

empty-set A � V is a modular set of f:

Theorem 14 If f is a function on V = fx1; x2; � � � ; xng: Then f is degenerated i� f =

y1 � y2 � � � � � yn; where yi = xi or �xi:

De�nition 5 Let f be a Boolean function. Then �(f) is the set of all congruence parti-

tions � such that the quotient f=� is degenerated.

Corollary 3 Let f 2 �(f) and let � 2 �(f): Then every union of classes of � belongs to

�(f): In particular, if A 2 � then �A 2 �(f):

Theorem 15 If f is of type II, then jm(f)j � 3 and �? 2 �(f):

Proof. Suppose A;B 2 m(f) and A \ B 6= ;: Then we have respectively: A and B are

overlapping, V = A[B; �A\ �B 6= ; and �A[ �B = A �B[B �A 2 �(f): Since A\B 6= ; implies
�A [ �B 6= V; there exists a C 2 m(f) such that C � �A [ �B: From this we conclude that

jm(f)j � 3 and that 8C;D 2 m(f) the following holds: CD 6= ;; �C �D = ;; �C[ �D 6= V and
�C [ �D 2 �(f): According to theorem (7) this implies that U := �C1[ �C2[� � �[ �Cm 2 �(f):
Moreover, we claim that U = V; for otherwise there would exist a Cj 2 m(f) such that

U � Cj, which is clearly a contradiction. Therefore, �? is a partition of f . Now let

J � I = f1; 2; � � � ; mg: Then
S
f �Cj j j 2 Jg =

S
f �Ci j i 2 �Jg =

T
fCi j i 2 �Jg 2 �(f):

This proves that �? 2 �(f): �

Theorem 16 A Boolean function f is of type II i� jm(f j � 3 and �(f) 6= ;:

Proof. The if-part of this theorem follows from theorem (15). Conversely, assume

jm(f)j � 3 and � 2 �(f): Suppose f is of type II and �� is the maximal disjoint congru-

ence partition of f . Let A and B be two classes of � such that A � Ci and B � Cj, where

Ci and Cj are di�erent classes of �
�. Since A[B 2 �(f) and 8 Ck 2 �

� : A[B 6� Ck; we

have a contradiction. Therefore, f is of type II. �

14



Corollary 4 A Boolean function f is of type I i� jm(f j = 2 or �(f) = ;:

Theorem 17 Suppose f is of type II and let �? = fC1; C2; � � � ; Cmg:
Furthermore, let �?(f) denote the set of all unions of classes in �?: Then:

�(f) = �(fC1) [ �(fC2) [ � � � [ �(fCm
) [ �?(f):

Proof. Let B 2 �(f): Assume that B is not properly contained in a class of �? and B is

not a union of classes of �?: Then there exists a class C 2 �? such that either B � �C or B

and �C are overlapping, implying B [ �C 2 �(f): However, this contradicts the maximality

of �C: �

Theorem 18 If f is of type II and � 2 �(f) then �? � �:

Proof. Suppose � 2 �(f) and A is a class of �: Then by corollary (3) �A 2 �(f): There-
fore, the class A cannot be properly contained in a class C of �?: For otherwise �C � �A;

contrary to the maximality of �C: So according to theorem (17) every class of � is a union

of classes of �?; implying that �? � �: �

The following theorem shows that �star is the �nest partition such that f=� is degen-

erated.

Theorem 19 If �1; �2 2 �(f), then �1 ^ �2 2 �(f):

Proof. Suppose �1; �2 2 �(f): Then �? � �1 ^ �2: Therefore, f=�1 ^ �2 is a quotient of
f=�?: Since f=�? is degenerated, this implies that �1 ^ �2 2 �(f): �

Based on the two composition types we can construct a composition tree T (f) for a
Boolean function f de�ned on V :

1) The root of T is the set V . Each node of T is a modular set of f:

2) If C is a node and fC is of type I, then fC has a maximal disjoint decomposition

�? = fC1; C2; � � � ; Cmg: Then C1; C2; � � � ; Cm are the children of node C; and node

C is labeled with P (rime):

3) If fC is of type II, then �(fC) has a �nest partition �? = fC1; C2; � � � ; Cmg; with
m � 3: Then C1; C2; � � � ; Cm are the children of node C; and node C is labeled with

D(egenerated) : D^; D_ or D�:

15



4) The leaves of T (f) are the singleton sets fig 2 �(f):

Example 2 Let f and g be positive functions de�ned by:

f = (x1 _ x2)x3(x4 _ x5) = x1x3x4 _ x2x3x4 _ x1x3x5 _ x2x3x5; and
g = x1x2x4 _ x1x3x4 _ x2x3x4 _ x1x2x5x6 _ x1x3x5x6 _ x2x3x5x6 _ x4x5x6 _
_ x1x2x7 _ x1x3x7 _ x2x3x7 _ x4x7.
Then m(f) = ff1; 2; 3g; f3; 4; 5g; f1; 2; 4; 5gg and �?(f) = ff4; 5g; f1; 2g; f3gg:
Moreover, m(g) = ff1; 2; 3g; f4g; f5; 6; 7gg: The modular trees of these functions are given

in �gure (1). Note that although a function with jm(f)j = 2 is prime, the corresponding

node in the tree is labeled as D:

V D^

D_ 1,2

1 2

3 4,5 D_

4 5

V P

P 1,2,3

1 2 3

4 5,6,7 D_

5,6

5 6

7

Figure 1: Modular decomposition of f and g

Theorem 20 Let f be a Boolean function de�ned on V: A subset of C � V is a modular

set of f i� one of the following holds:

a) C is a node of T (f):

b) C is the union of children of a node of type D:

Proof. This follows from theorem (10:3) and theorem (17). �

Theorem 21 Let f be a Boolean function de�ned on V and let jT j denote the number

of nodes of the modular tree T : Then jT (f)j � 2jV j � 1:

16



Proof. We use induction on n = jV j: The assertion is trivial for n = 2: Suppose the

the assertion is true for all Boolean functions with n � k: Now consider a function f on

V with jV j = k + 1: Let C1; C2; � � � ; Cm be the children of node V; where m � 2: ThenP
m

i=1 jCij = jV j: We then have

jT (f)j = 1 +
mX

i=1

jT (Ci)j � 1 +
mX

i=1

(2jCij � 1) = 1 + 2jV j �m � 2jV j � 1:

�

6 The complexity of recognizing modular sets

In this section we prove that for general Boolean functions the problem of recognizing

modular sets (called MODULAR) is coNP-complete. In switching theory this complex-

ity has not been discussed. In this context modular sets and decompositions are based

on the evaluation of Ashenhurst decomposition charts or by using di�erential calculus

[1, 2, 15, 18, 17]. It has been shown in [22, 21] that the algorithms for the determination

of modular sets is exponential in the number of variables. However, here we will study

the complexity of the recognition problem of Boolean functions given in DNF-form. In

particular we will discuss the following problems:

Problem MODULAR

Given: A Boolean function f in DNF de�ned on V and a set C � V that contains at

least one essential variable of f .

Question: Is C a modular set of f ?

We relate this problem to the following recognition problem:

Problem COMPLEMENT

Given: Boolean functions f and g in DNF.

Question: f = �g ?

It is easy to see that this problem is (polynomial) equivalent to the the problem

whether two functions f and g are mutually dual: f = gd. It is well known that this

problem is coNP-complete, see e.g. ([3]).

Theorem 22 Problem MODULAR is coNP-complete.

17



Proof. Suppose g1 and g2 are Boolean functions given in DNF on A = fx1 � � � ; xng:
De�ne the function f on A [ fx; yg as:

f = xg1 _ yg2: (14)

If g2 = �g1; then A is a modular set of f . Conversely, suppose A is modular and A contains

essential variables of f . Then there exists a pair of binary values (x0; y0) such that the

function g de�ned by g = f(x0; y0; xA) is non-trivial. Furthermore, according to theorem

(2) for all �xed x and y the function h(xA) = f(x; y; xA) is constant or identical to the

function g or its complement. From equation (14) it follows that h 2 f?; g2; g1; g1 _ g2g:
Therefore, we have g2 = �g1: Conclusion: g2 = �g1 , A is modular. This shows that the

problem MODULAR is coNP-hard. To prove that this problem is in coNP we note that

according to theorem (2) A is a modular set of f i� for all binary vectors b the function

fb := f(xA; b) 2 f>;?; g; �gg, where g is a component of f on A: Therefore, the set A is not

modular i� there exist binary vectors b1 and b2 such that fb1 ; fb2 62 f>;?g and fb1 6=
�fb2 :

Equivalently, the set A is not modular i� there exist three di�erent binary vectors a; a1; a2,

and two di�erent vectors b1; b2 such that fb1(a) = fb2(a) 6= fb1(a1) = fb2(a2): This shows

that problem MODULAR is in coNP. �

7 Decomposition of monotone Boolean functions

7.1 Introduction

If f is a monotone Boolean function de�ned on N and f(xN) = F (g(xA); xB), then

there exist uniquely determined monotone Boolean functions G and h such that f(xN) =

G(h(xA); xB). This shows that the decomposibility of a monotone function within the

class of monotone functions is the same as in the class of general Boolean functions.

Therefore, we will restrict the decompositions of a monotone Boolean function to the

class of all monotone Boolean functions. This implies that if A 2 �(f); then a (monotone)

component g of f de�ned on A is uniquely determined. Furthermore, we show that a set A

is a modular set of a monotone function f i� there exists a monotone Boolean function g

such that for all binary vectors b we have fb(xA) := f(xA; b) 2 f?;>; gg: The other results
obtained in the previous sections also apply to monotone Boolean functions. In particular,

the decomposition tree contains all the available information about the modular sets of a

monotone function f . However, if f is monotone function and if a node of the composition

tree is of type II, then only the cases D_ or D^ can occur.

18



7.2 Preliminaries

Notations: Let f be a positive function de�ned on N: Then a subset A � N will be

represented frequently by its characteristic vector a := char(A) 2 f0; 1gn, with n = jN j:
If A = ; then this will be denoted by a = 0; where 0 is the all-zero vector. If A � N;

then the functions f(a = 0) and f(a = 1) are the restrictions of f de�ned on the set �A

by setting all variables in A to 0 respectively 1. Similarly, the function f(�a = 1) is the

restriction of f to A de�ned by setting all variables in �A to 1, see example (4). However,

where needed we will consider all these restrictions of f as functions de�ned on N by

adding dummy (non-essential) variables. Furthermore, the set of all essential variables of

f is called the support set of f: This set is denoted by S(f); and the vector char(S(f)) is

denoted by �(f):

As known a positive Boolean function has a unique irredundant DNF consisting of all

prime implicants. The set of prime implicants correspond to the set of minimal true

vectors of f , denoted by minT (f): It is well-known that minT (f d) represents the set

of minimal transversals of minT (f). The complement of a false vector is a transversal:

f(x) = 0, f d(�x) = 1.

If v; w 2 f0; 1gn; then v ^ w (also denoted by vw ), and v _ w denote respectively the

vectors obtained by applying component-wise the and-operation and the or-operation to

the vectors v and w: Finally, we will denote the variables of a positive function by their

index and + denotes the _-operation.

Example 3 Let f be the function de�ned by f(x) = x1x2 _ x2x3: Then :

f is denoted as: f = 12 + 23: Furthermore, f d = (1 + 2)(2 + 3) = 2 + 13; minT (f) =

f110; 011g; and minT (f d) = f010; 101g is the set of the minimal transversals of minT (f):

Moreover, 001 is a false vector of f and its complement 110 is a transversal of minT (f).

The following lemma is easy to prove:

Lemma 3 Let f be a monotone function. Then �(f d) = �(f):

8 Decompositions of monotone Boolean functions

In this and the next sections (only) we frequently use the following de�nition.

De�nition 6 A Boolean function f is called monotone if f is monotone non-decreasing

and positive if f is monotone and non-trivial.

19



De�nition 7 Let f be a positive function de�ned on N and let A � N: If f depends on A

(i.e �(f)^ a 6= 0); then the positive function fa on A is de�ned by: minT (fa) = fv j v 2
minT (f); v ^ a 6= 0g; where a = char(A): Otherwise fa := ?:

From this de�nition it follows that every positive Boolean function f can be decom-

posed as:

f = f(a = 0) _ fa; where A � N: (15)

Furthermore, for a monotone Boolean function f Shannon's decomposition has the form:

f(x) = f(xj = 0) _ xjf(xj = 1): (16)

De�nition 8 Let f be a positive function de�ned on N; and A � N: Then the contraction

fa of f on N is de�ned by fa(xA) = fa(�a = 1)(xA); where a = char(A):

Example 4 Let f be the positive function on f1; 2; � � � ; 6g de�ned by:

f = 1245 + 126 + 2345 + 236 + 46 and let A = f1; 2; 3g: Then a = char(A) = 111000;

f(a = 0) = 46; fa = 1245 + 126 + 2345 + 236; and fa = 12 + 23:

It is easy to verify that the following lemma holds:

Lemma 4 Let f be a positive function de�ned on N; and let A � N:

Then fa(x) = 1, 9v 2 minT (f) such that x � v ^ a > 0:

The following characterization of the contraction is well-known, see [25]:

Theorem 23 Let f be a positive function de�ned on N and let A � N: Suppose that

a = char(A) and x � a. Then: fa(x) = 1, 9y � �a such that f(y) = 0 and f(x_ y) = 1.

Proof. Suppose that x � a and that fa(x) = 1: Then by lemma (4) 9v 2 minT (f)

such that x � v ^ a > 0: Let y = v ^ �a: Then y � �a and x _ y � v: This implies that

f(x _ y) = 1: Moreover, since v ^ a > 0; wehavev ^ �a < v: Therefore: f(y) = 0:

Conversely, suppose 9y � �a such that f(y) = 0 and f(x_y) = 1: Then x_y � v for some

v 2 minT (f): From this we conclude that x � v ^ a and that y = y ^ �a � v ^ �a: From

this we derive that v 6� �a; for otherwise we would have y � v; contrary to our assumption

that f(y) = 0: Conclusion: 9v such that v ^ a 6= 0: and x � v ^ a: According to lemma

(4) this is equivalent to fa(x) = 1: �

The following theorem shows that if f is a positive function and if A 2 �(f), then the

component g(xA) of f is just the contraction of f on A:

20



Theorem 24 Let f be a positive Boolean function de�ned on N and let A � N .

Then A is modular i� fa = fa(a = 1)fa:

Proof. If f does not depend on A, then fa = ?, so the theorem is obviously true.

If A 2 �(f), then by de�nition s(f) ^ a 6= 0 and f = F (g(xA); xB), where fA;Bg is a

partition of N: Then Shannon's decomposition: F (y; xB) = F (y = 0)_yF (y = 1); implies

the fundamental equation:

f = f(a = 0) _ gf(a = 1): (17)

Furthermore, according to equation (15), f(a = 1) = fa(a = 1) _ f(a = 0): Therefore,

equation (17) implies that fa = gfa(a = 1); and that:

f = f(a = 0) _ gfa(a = 1): (18)

Using the fact that the functions f(a = 0) and fa(a = 1) only depend on B = N n A,
equation (18) implies:

fa(xA) = fa(�a = 1)(xA) = g(xA):

Therefore, we have the decomposition:

f = f(a = 0) _ fa(a = 1)fa: (19)

However, equation (19) is equivalent to

fa = fa(a = 1)fa: (20)

Conversely, if equation (20) holds, then A is modular. �

Corollary 5 Let f be a positive function de�ned on N such that f depends on A � N:

If f(xN ) = F (g(xA); xB); where F and g are positive functions, then g = fa; with a =

char(A):

Corollary 6 Let f be a positive function de�ned on N and A � N: Then the following

assertions are equivalent:

a) A 2 �(f)

b) There exists a positive function g de�ned on A such that 8b : fb(xA) := f(xA; b) 2
f?;>; gg:

21



Proof. If A 2 �(f); then equation (17) shows that there exists a positive function g on

A such that g(xA) = f(�a = 0)(xA): This shows that g is a subfunction of f . The corollary

is therefore a consequence of theorem (2). �

Remark 1 Note, that the problem of deciding whether a set A is modular or not can be

solved in time O(m2n2) by checking the equation fa = fa(a = 1)fa !

Example 5 Consider the function f of example (4), and let A = f1; 2; 3g: Then: fa =
fa(a = 1)fa = (45 + 6)(12 + 23).

Characterizations of modular sets

The following characterizations of a modular set (except e)) are well-known, see e.g. ([25]):

Theorem 25 Suppose that f is a positive function de�ned on N , and A � N: Further-

more, let �(f) ^ a 6= 0; where a = char(A): Then the following assertions are equivalent:

a) A is a modular set of f

b) fa is a component of f

c) A is a modular set of fa

d) (f d)a = (fa)
d

e) There exists a positive function g de�ned on A such that

8b : fb(xA) := f(xA; b) 2 f?;>; gg:

f) 8v; w 2 minT (fa) : f(va _ w�a) = 1

g) minT (fa) = fva _ w�a j v; w 2 minT (fa)g

h) �(((fa)d)a) = �(f) ^ a.

Proof. a), b), c) , d), e) , f) The equivalence of the assertions a), b), c), e) and

f) follows from theorem (24). The equivalence of a) and d) follows from b) and the fact

that g is a component of f on A , gd is a component of f d on A (cf xx).

f) , g) Obviously, g) implies f). Conversely, suppose assertion f) holds true, and

z = xa _ y�a 2 T (fa), with x; y 2 minT (fa): If z 62 minT (fa); then z > v for some

v 2 minT (fa): So at least one of the following inequalities holds true: xa > va or y�a > v�a:

22



However, the �rst inequality implies that x = xa_ x�a > va_ x�a 2 T (fa); contrary to the

minimality of x: Similarly, y�a > v�a; implies that y = ya_ y�a > ya_ v�a 2 T (fa); contrary
to the minimality of y: From this we conclude that f) and g) are equivalent.

a) , h) Finally, we note that according to theorem (24) A 2 �(f) , fa = gh;

where g and h are monotone functions with �(g) = �(f) ^ a; and �(h) � �a: How-

ever, fad = (fa)d = gd _ hd implies that fada = gd: Therefore, if A 2 �(f); then

�(fada) = �(gd) = �(g) = �(f) ^ a: Conversely, if �(fada) = �(f) ^ a; then there ex-

ists monotone functions g and h such that fad = gd _ hd; with �(g) = �(f) ^ a; and

�(h) � �a; implying that fa = gh: This establishes the equivalence of the assertions a) and

h). �

Example 6 Consider the function f = (12 + 23)(45 + 6) = 1245 + 126 + 2345 + 236:

If A = f1; 2g or A = f1; 2; 3g; then fad = 2 + 13 + 46 + 56: If A = f1; 2; 3g, then

�(fada) = a: However, if A = f1; 2g, then A is not modular because �(fada) 6= a:

Proposition 4 Let f be a positive function de�ned on N; A � N; and a = char(A):

If A 2 �(f); then minT (fa(�a = 1)) = fva j v 2 minT (fa)g and minT (fa(a = 1)) =

fv�a j v 2 minT (fa)g:

Proof. Suppose v; w 2 minT (fa) and v�a > w�a: If A 2 �(f); then by theorem (25)

v = v�a _ va > w�a _ va 2 T (fa); contrary to the minimality of v: Similarly, va > wa

cannot be true if v and w are minimal. �

9 The modular closure

Unless stated otherwise we assume that a positive function f depends on all its variables.

A central step in the determination of the modular tree of a positive function is the

computation of the modular closure of a set. It is proved by Singer (see (5)) that a non-

empty intersection of two modular sets of a Boolean function is again modular. Therefore,

each subset A of variables is contained in a smallest modular set called themodular closure

of A. The modular closure of a set was �rst introduced by Billera [6] in the context of

clutters.

De�nition 9 Let f be a Boolean function de�ned on N . The closure of A � N is de�ned

by: Cl(f)(A) = \fB j A � B; B is a modular set of fg:

23



Proposition 5 Let f be a positive function on N and A � B � S(fa); where a =

char(A): Then B 2 �(fa), 8v 2 minT (fad) : b � v or b � �v; where b = char(B):

Proof. Let L and R denote respectively the right side and left side of the equivalence

of the proposition. Suppose R is false, then 9v 2 minT (fad) such that v ^ b 6= 0 and

v ^ �b 6= 0: This implies that fad(bv) = fad(b�v) = 0: Therefore, fa(vb) = fa(v�b) = 1;

and according to theorem (25.f) 9x; y 2 minT (fa) such that x � vb and y � v�b: Let

z = xb_y�b: Then it is easy to verify that z � �v: Suppose B 2 �(fa): Then z 2 minT (fa);
implying that fa(�v) = 1: This contradicts the fact that fad(v) = 1: Conclusion: L) R:

Conversely, suppose that R is true. If B 62 �(fa); then 9 x; y 2 minT (fa) such that

z := xb _ y�b 62 T (fa): Therefore, �z = �xb _ �y�b 62 T (fad): From this it follows that 9w 2
minT (fad) such that w � �xb _ �y�b: Since we assume that R is true, we have that either

b � w or b � �w: This means that at least one of the vectors �x or �y belongs to T (fad);

contrary to the fact that x; y 2 T (fa): Conclusion: R) L:

�

De�nition 10 Let f be a positive function on N and ; 6= A � N: Then we de�ne an

equivalence relation � on N by: i�j , i = j or there exists a sequence i = i1; � � � ik = j;

with k � 2; such that il and il+1 both occur in some v 2 minT (fad); l = 1; � � � ; k � 1:

Proposition 6 Let f be a positive function on N and ; 6= A � N: Then we have:

Clfa(A) = fi : i 2 N and i�j for some j 2 Ag:

Proof. Let B = Clfa(A) and R = fi : i 2 N and i�j for some j 2 Ag: Then A � B �
S(fa); and B 2 �(fa): According to proposition (5) we have: 8v 2 minT (fad) either

v � b or v � �b; where b = char(B): Using de�nition (10) we conclude that R � B: On

the other hand this de�nition implies that: 8v 2 minT (fad) either v � r or v � �r; where

r = char(R): Since A � R � S(fad); proposition (5) implies that R 2 �(fa): Therefore,

we have R � B: This shows that R = B: �

The following theorem [25] relates the modular closure of fa to the dual of fa:

Theorem 26 Let f be a positive function on N and A � B � S(fa); with a = char(A):

Then A � S(fada) � Clfa(A) � Clf(A):

Proof. Since by assumption f depends on all variables in N we have A � S(fada):

Furthermore, it is easy to verify that proposition (5) implies we that S(fada) � Clfa(A):

24



Finally, since Clf (A) 2 �(f); we note that A � Clf(A) 2 �(fa): This implies that

Clfa(A) � Clf(A):

�

Theorem 27 Suppose f is a positive function and u; v 2 minT (fa): If f(ua _ v�a) = 0;

then the vector t := �ua _ �v�a 2 T (fad): Furthermore, 8w 2 minT (fad) such that w � t we

have 0 6� w�a � �(fada):

Proof. It is easy to see that �t = ua_v�a; so t 2 T (fad): Furthermore, the assumptions im-

ply w � �ua_ �v�a; and �u; �v 2 F (fad): Therefore, since w 2 minT (fad) we conclude w 6� �ua

and w 6� �v�a, implying w�ua 6= 0 and w�v�a 6= 0: From this we conclude that w � �(fada)

and that w�a 6= 0: �

Given t; then a vector w in theorem (27) can be determined in time O(mn2), since

it is known that a minimal transversal w can be obtained from a transversal t in O(n)

steps. Therefore, if A is not modular, then the last theorem shows that we can determine

an element in Clf(A) n A given t in time O(mn2); see also remark (2).

De�nition 11 Suppose 9u; v 2 minT (fa) such that f(ua _ v�a) = 0: Then we call the

vector ua _ v�a a culprit of f with respect to a.

The following lemma is of independent interest:

Lemma 5 Suppose f is a positive Boolean function and f d(w) = 1:

Let v 2 argminfjuwj j u 2 minT (f)g: Then for all unit vectors e � wv there exits a

vector w0 2 minT (f
d) such that e � w0 � w:

Proof. Since w�v ^ v = 0 and v 2 minT (f) we conclude that w�v 62 T (f d): On the other

hand we claim that

w�v _ e 2 T (f d): (21)

To prove this claim we suppose that u 2 minT (f) but (w�v _ e) ^ u = 0: Then we have

e 6� u and w�vu = 0: However, the last equality implies wu � v; implying

0 6= wu � wv: (22)

By the minimality assumption we then have wu = wv: Since e 6� u and e � wv; this is a

contradiction. This proves our claim (21). Furthermore we claim that:

8w0 2 minT (f
d) such that: w0 � w�v _ e; we have e � w0: (23)

25



To prove claim (23), assume e 6� w0: Then we would have: w0 � w�v: However, w�v 62 T (f d),
so w0 6� w�v: Contradiction. This �nishes our proof. �

The following lemma is a reformulation of a proposition in [25]:

Lemma 6 Suppose f is a positive Boolean function and f d(w) = 1: Let c be a vector

such that U = fu 2 minT (f) j uwc = 0g 6= ;: Let v 2 argminu2Uf juwj g: Then for all

unit vectors e � wv there exits a vector w0 2 minT (f
d) such that e � w0 � w:

Proof. Note, that the inequality (22) implies: wuc � wvc = 0; so u 2 U: Using this

observation the proof of this lemma is the same as the proof of lemma (5). �

The following fundamental theorem is a variation of a theorem in [25]:

Theorem 28 Let f be a positive function. Suppose t is the complement of a culprit of

f with respect to to a. Then U = fu 2 minT (fa) j uta = 0g 6= ;: Furthermore, if

u0 2 argminu2Uf jutj g; then 0 6= u0t = u0t�a � Clf(a):

Proof. Since t is the complement of a culprit we have 9v; w 2 minT (fa) such that

t = �va _ �w�a; and fad(t) = 1: Furthermore, since �va 62 T (fad) there must exist a vector

u0 2 minT (fa) such that u0�va = 0: From u0ta = u0�va = 0 it follows that u0 2 U:

Now suppose u0 2 argminu2Uf jutj g; then according to lemma (6): for all unit vectors

e � u0t we have: 9t0 2 minT (fad) such that e � t0 � t: Now theorem (26) implies

0 6= t0�a � �(fada): Therefore, we have: 0 6= u0t = u0t�a � Clf(a): �

Remark 2 The vector u0t can be determined in O(mn) time. Therefore, if a culprit is

known, then we can determine in O(mn) time an element in Clf (A) n A:

10 Computational aspects

We have already seen that the recognition problem MODULAR for general Boolean func-

tions is coNP-complete. For positive Boolean functions the situation is quite di�erent.

Various decomposition algorithms (in di�erent contexts) are known. Therefore, we briey

discuss the computational aspects of the decomposition of positive Boolean functions. A

uni�ed treatment of all algorithms (up to 1990) related to modular sets known in game

theory, reliability theory and set systems (clutters) is given by Ramamurthy [25].

26



Historical remarks

Let f be a positive function de�ned on the set N , where jN j = n; and let m be the

number of prime implicants of f . Then according to M�ohring and Radermacher [21] the

modular tree can be computed in time O(n3T (m;n)), where T (m;n) is the complexity of

computing the modular closure of a set A � N . The �rst known algorithm to compute

the modular closure due to Billera [6] is based on computing the dual of f . Although this

problem is NP-hard in general, for positive functions the complexity of the dualization

problem is still not known, although this problem is unlikely to be NP-hard, see e.g [3].

An improvement of Billera's algorithm by Ramamurthy and Parthasarathy [23] also based

on dualization has a similar complexity. The �rst polynomial algorithm given by M�ohring

and Radermacher (1984) reduced the complexity to T (m;n) = O(m3n4): Subsequently,

the complexity was further reduced by Ramamurthy and Parthasarathy [23] and Rama-

murthy [25] to respectively T (m;n) = O(m3n2) and T (m;n) = O(m2n2): It is easy to see

that the determination of the modular closure can be solved by solving O(n) times the

following problem:

Problem PMODULAR

Input : A Boolean function f with m prime implicants de�ned on N , where jN j = n and

A � N .

Output : "A is modular" if A is modular. An element x 2 Closure(A) n A otherwise.

In the next section we show that the search problem PMODULAR can be solved

in time: O(mn). Therefore, the modular closure of a set can be determined in time

T (m;n) = O(mn2):

10.1 Solving PMODULAR in time O(mn)

Before we solve problem PMODULAR we �rst show that for positive functions the recog-

nition problem whether a set A is modular or not can be solved in time O(mn):

Recognition of modular sets

Let f be positive Boolean function f on N; ; 6= A � N; and a = char(A): Then we

denote M = minT (fa) = fv1; � � � ; vmg, S = fva j v 2 Mg; T = fv�a j v 2 Mg; p = jSj
and q = jT j: Furthermore, without loss of generality we may assume that M 6= ; and

that 8v 2 M = minT (fa) we have v 6� a: For each v 2 M we can write v = va _ v�a as a

27



2n-vector: (vajv�a): Note, that by assumption both vectors va and v�a are non-zero. We

now consider the list of all (column-)vectors:

v1a v2a � � � � � � vma

v1�a v2�a � � � � � � vm�a
.

According to [27], the set of all these 2n-vectors can be lexicographically sorted in time

O(mn):

Example 7 Let f = 15 + 16 + 245 + 35 + 36 + 46; and A = f1; 2; 3; 4g: Then fa = f

and the sorted list is given by S =
1 1 24 3 3 4

5 6 5 5 6 6
. Note here, that the 2n-vector

(vajv�a) is denoted by a pair of subsets, e.g. the third column-vector (010100j000010) is
denoted by (24j5):

Theorem 29 A is modular i� the sorted list of all 2n-vectors has the following structure:

S =
s1 � � � s1 s2 � � � s2 � � � � � � sp � � � sp
t1 � � � tq t1 � � � tq � � � � � � t1 � � � tq

, where si 2 S and tj 2 T;

and we have: S = minT (fa) and T = minT (fa(a = 1)): So if A is modular, then the list

S consists of p segments of length q, and m = pq:

Proof. According to theorem (25), we have: A 2 �(f) , fa = faf(a = 1) ) S =

minT (fa) and T = minT (fa(a = 1)): Furthermore, if v1; v2; w1; w2 2 minT (fa); then

v1a _ w1�a = v2a _ w2�a, v1a = v2a and w1�a = w2�a: �

Example 8 Let f be the function of example (4), and let A = f1; 2; 3g: Then we have:

fa = 126 + 236 + 1245 + 2345; and the sorted list is given by S =
12 12 23 23

45 6 45 6
.

Therefore, A 2 �(f) and p = q = 2: Similarly, it can be checked that f1; 3g 2 �(f):

It is easy to see that the structure S can be identi�ed in time O(mn), by scanning

the list S from left to right. Therefore, it can be determined in time O(mn) whether

a set A is modular or not. However, the more diÆcult part is to detect an element

x 2 Closure(A) n A in time O(mn) if A is not modular. According to theorem (7) this

can be done in time O(mn) if we can �nd a culprit in time O(mn):

28



Finding a culprit in time O(mn)

Recall that the vector va_w�a; with v; w 2 minT (fa) is called a culprit with respect to to

A if f(va_w�a) = 0: The next basic lemma is used several times in order to �nd a culprit

if it exists. In this lemma the following notations are used: v � w , (v < w or v > w);

and v ' w, (v � w or v > w):

Lemma 7 Let (s1jt1) and (s2jt2) denote any two di�erent columns of the list S. Then:

a) s1 ' s2 ) t1 6' t2

b) t1 ' t2 ) s1 6' s2

c) If s1 � s2 then either s1 _ t2 or s2 _ t1 is a culprit

d) If t1 � t2, then either s1 _ t2 or s2 _ t1 is a culprit

e) If the 2n-vector (s1jt2) does not occur in the list S and s1 and t2 are minimal, then

s1 _ t2 is a culprit.

Proof. Let v and w be minimal vectors of fa such that s1 = va; s2 = wa; t1 = v�a and

t2 = w�a.

c) Suppose s1 � s2, e.g va > wa. Then v = va _ v�a > wa _ v�a. Since v is a minimal

vector of fa, the vector wa _ v�a is a culprit: f(wa _ v�a) = 0, see theorem (25.f). The

assertions a), b) and d) are proved similar.

e) Suppose that the vector va_w�a is not a culprit. then f(va_w�a) = 1: Hence, there

exists a vector u 2 min(T (fa) such that u � va_w�a: This implies ua � va and u�a � w�a:

Since by assumption va and w�a are minimal, we have ua = va and u�a = w�a: Therefore,

the vector (vajw�a) = (uaju�a) is a column-vector of S; contrary to our assumption. So the

vector va _ w�a is a culprit. �

Suppose that (s1jt2) does not occur in the list S: Then we can check in O(mn) time

whether the elements s1 and t2 are minimal. If both elements are minimal then we can

apply assertion e) of lemma (7). Otherwise, we can apply either c) or d). Therefore, we

have the following corollary:

Corollary 7 If (s1jt2) does not occur in the list S, then a culprit can be found in time

O(mn):

29



Example 9 Consider the sorted list in example (7): S =
1 1 24 3 3 4

5 6 5 5 6 6
. Then

the �rst segment has length q = 2. Since the �rst element of the fourth column is not

equal to 24 we detect that the column (24j6) is not in S. However, 246 (=010101) is not

a culprit, because the element 24 is not minimal. By scanning the �rst row we discover

that 4 is comparable with 24. Hence, by lemma (7.c) applied to the third and last column,

either 246 or 45 is not a true vector of fa: In this case 45 (=000110) is a culprit, because

(4j5) is not in S (see lemma (7.a)) and the elements 4 and 5 are minimal.

We will now describe our algorithm to decide if a set A is modular or otherwise to

�nd a culprit, given the sorted listed S: The overall algorithm is given in the procedure

Modular.

Modular(S, var culprit):
flag := false; culprit := false

call FirstSegment

while flag = true do call NextSegment

The procedure Firstsegment scans the list S from left to right, by comparing the

elements in the �rst row with the �rst element s1. The procedure �rst deals with the

special case s1 6= s2: If s1 6' s2 and the length of the �rst segment q > 1; then (s1 j tj0)
is not in S; where j0 := minfj j tj 6= t1g: In that case we return a culprit by applying

corollary (7). Note, that we will indicate the application of this corollary in the procedures

Firstsegment and Nextsegment by : return culprit*. On the other hand if one of these

procedures detect two comparable elements in S then application of lemma (7.c(d)) is

suÆcient to �nd a culprit. This will be denoted by: return culprit. In the procedure

Firstsegment we determine the length of the �rst segment and the �rst element in the

next segment. The i-th column of each next segment is denoted by (SijTi): In particular

the beginning of each next segment is given by (S1 j T1): While there is a next segment,

i.e if there is an element si 6= S1 and if si 6� S1 we set flag = true; and we start the

procedure Nextsegment. However, if si � S1; then we apply lemma (7.c) to determine a

culprit. Both procedures determine the beginning of the next segment by updating the

variable index.

FirstSegment(S, var index; f lag; culprit; p; q):
if s1 6= s2 then

if s1 � s2 then return culprit

else if 8j > 1 tj = t1 then return (q = 1; p = m)

else j0 := minfj j tj 6= t1g

30



(so (s1jtj0) is not in S) return culprit�
else if 8i > 2 si = s1 then return (p = 1; q = m)

else i0 := minfi j si 6= s1g;
if si0 � s1 then return culprit

else return (q = i0 � 1; p = m=q; index = q + 1; f lag = true)

In the next example we have s1 � s2:

Example 10 Suppose that A = f1; 2; 3; 4g and that fa = 15 + 124 + 234 + 345:

Then S =
1 14 34 34

5 2 2 5
. In this case q = 1: However 14 = s2 � s1 = 1. By applying

lemma (7.a) it follows that 12 (= 11000) is a culprit.

The procedure Nextsegment also detects whether the length l of each next segment is

equal to q. If l < q; then (S1 j Tl+1) is not in the list S. If l > q then (s1 j Tq+1) is not in
the list S. In both cases we apply corollary (7) to �nd a culprit.

NextSegment(S, var index; f lag; culprit):
flag := false; i := 2;S1 := sindex
while Si = S1 do i := i + 1

l := i� 1

if l 6= q then (note: either (S1 j Tl+1) or (s1 j Tq+1) is not in S) return culprit�
else call Compare

if Sq+1 � S1 then return culprit

else return (flag = true; index = q + 1)

The next example shows a list S with an 'incomplete' segment:

Example 11 Suppose S =
1 1 2

3 4 3
. Then q = 2. However, the second segment is

'incomplete'. In this case procedure Nexsegment detects that (2j4) is not in the list and

that 24 (=0101) is a culprit.

Even if all the elements in the �rst row of a segment are equal (implying that the

elements of the second row of that segment are all di�erent), we still have to compare all

the elements of the second row with those of the �rst segment. This comparison is made

in the procedure Compare called in the procedure Nextsegment.

31



Compare (T , var culprit):

culprit := false

if 8j 2 f1; � � � qg Tj = tj then return

else j0 := minfj j Tj 6= tjg
if Tj0 � tj0 then return culprit

else ((s1 j Tj0) or (Sj0 j t1) is not in S) return culprit�

Example 12 Suppose S =
1 1 2 2

3 4 3 45
. Then q = 2 and p = 2: However, the second

row of the second segment di�ers from the second row of the �rst segment. In this case

procedure Compare detects that 24 (=0101) is a culprit.

The preceding arguments and theorem (7) show that we have proved the following

theorem:

Theorem 30 Procedure Modular checks in time O(mn) whether a set A is modular or

not. If A is not modular then procedure modular returns a culprit in time O(mn): There-

fore, if A is not modular, an element in Clf(A) n A can be detected in time O(mn):

10.1.1 Computing the modular tree

In this subsection we assume that f is a positive function de�ned on N with n = jN j � 2

and �(f) = N: Furthermore, we assume that f is given by minT (f) and that jminT (f)j =
m: Recall that m(f) denotes the set of all maximal modular sets of f . We also refer to

the results in section (5).

Lemma 8 We can determine a C 2 m(f) in time O(nT (m;n)):

Proof. Let i 2 N; then we can construct the series of modular closures:

fig = C0 � C1 � � � � Ck = C; where Ci+1 = Clf(Ci

S
fjg) by choosing some j 2 �Ci; with

Clf(Ci

S
fjg) 6= N: If such an element j does not exist, then C = Ci 2 m(f): Since k � n;

the set C can be computed in time O(nT (m;n)): �

Proposition 7 The set m(f) can be determined in time O(n2T (m;n)):

Proof. We �rst construct a C1 2 m(f) using the procedure discussed in lemma (8). in

the same way we can construct a maximal modular set C2 using and element i 2 �C1:

Suppose C1

T
C2 = ;; and jm(f)j = k: If C1; C2 � � � ; Cl 2 m(f); then l < k i� D :=

32



C1

S
C2 � � � ;

S
Cl � N: Let j 2 �D 6= ;: Then we determine Cl+1 2 m(f) such that

j 2 Cl+1: If C1

T
C2 6= ;; then l < k i� E := �C1

S �C2 � � � ;
S �Cl � N: Therefore, if l < k

and C 2 m(f) n fC1; C2 � � � ; Clg; then C � E: Now we construct Cl+1 2 m(f) such that

Cl+1 � E: Since jm(f)j � n; it follows that m(f) can be generated in time O(n2T (m;n)):

�

Theorem 31 The modular tree of f can be determined in time O(n3T (m;n)):

Proof. Let T (f) denote the modular tree of f . We have already established in theorem

(21) that jT (f)j � 2n� 1: Since the leaves of T (f) are the singleton sets of N , it follows

that the number of internal nodes of the tree is less than or equal to n�1: Suppose C is an

internal node and m(fc) = fC1; C2; � � � ; Ckg; where k � n; and c = char(C): Then m(fc)

can be determined in time O(n2T (m;n)): Note here that if C 2 �(f); then minT (fc)

can be determined in time O(mn); see proposition (4). If C1

T
C2 = ;; then the children

of C are the nodes C1; C2; � � � ; Ck: Otherwise, the children of C are �C1; �C2; � � � ; �Ck: Since

there are at most n � 1 internal nodes, it follows that T (f) can be determined in time

O(n3T (m;n)): �

Finally, since we can compute the modular set of a non-empty set A � N in time

T (m;n) = O(mn2); we have the following result:

Corollary 8 The modular tree of f can be generated in time O(mn5):

11 Conclusions and future research

Compared with the set theoretic approach used in the literature it appears that the

Boolean function approach to modular decomposition is more transparent. Moreover, the

approach using generalized Shannon decomposition enabled us to give a uni�ed treatment

of many results scattered in the literature. We also derived new results on the complexity

of modular decomposition. For monotone Boolean functions the recognition of modular

sets and therefore the computation of the modular closure and the modular tree can be

reduced with a factor O(m). On the other hand we have proved that for general Boolean

functions the recognition problem is coNP-complete.

Since partially de�ned Boolean functions [11, 10, 19] play an important role in many

data mining tasks and in switching theory we consider decomposition theory in data

mining also as an important task for further research. Finally decompositions with com-

ponents restricted to a certain class, e.g. self-dual functions [4] (committees in game

theory), matroids [16], regular functions etc. are an interesting topic for future research.

33



Acknowledgement:

I would like to thank Peter Hammer, Endre Boros and Yves Crama for some stimulating

discussions and pointers to the literature.

References

[1] Ashenhurst, R.L. (1952): The Decomposition of Switching Functions. Bell Labora-

tories' Report No. BL-1(II) (reprinted in [15])

[2] Ashenhurst, R.L. (1959): The decomposition of switching functions. Proc. Interna-

tional Symposium on the Theory of Switching, Part I (vol. XXIX, Ann. Computation

Lab. Harward), Harward University Press, Cambridge, 75{116

[3] Bioch, J.C., Ibaraki, T. (1995): Complexity of Identi�cation and Dualization of

Positive Boolean Functions. Information and Computation 123, 50{63

[4] Bioch, J.C., Ibaraki, T., Makino, K. (1999): Minimum self-dual decompositions of

positive dual-minor Boolean functions. Discrete Applied Mathematics, 307-326.

[5] Bioch, J.C. (2002): The algorithmic complexity of modular decomposition, Erim

Report Series ERS-2001-30-LIS, 14p. , Erasmus University Rotterdam, www.erim.nl.

[6] Billera, L.J. (1970): On the composition and decomposition of clutters. Journal of

Combinatorial Theory 11, 234{245

[7] Birnbaum, Z.W., Essary, J.D. (1965): Modules of coherent systems. SIAM Journal

of Applied Mathematics 13, 444{462

[8] Birkho�, G. (1967): Lattice theory. AMS Colloquium Publications, Vol. 25.

[9] Bonizzoni, P., Vedova G.D. (1999): An algorithm for the Modular Decomposition of

Hypergraphs. Journal of Algorithms 32, 65{86

[10] Boros, E., Gurvich, V., Hammer, P.L., Ibaraki, T., Kogan, A. (1994): Decomposi-

tion of partially de�ned Boolean functions. Dimacs Technical Report 94-09, Rutgers

University, Rutcor Research Report, RRR-13-94, Discrete Applied Math., 62, 51{75

[11] Boros, E., Gurvich, V., Hammer, P.L., Ibaraki, T., Kogan, A. (2001): Structural

analysis of partially de�ned Boolean functions. Annals of Operations Research. Vol.

Optimal partitioning of combinatorial structures.

34



[12] Brandt, Le, V.B., Spinrad, J.P. (1999): Graph Classes: A Survey. SIAM Monographs

on Discrete Mathematics and Applications

[13] Cournier, A., and Habib M. (1994): A new linear algorithm for modular decomposi-

tion, LNCS, vol. 787, 68-84, Springer-Verlag, Berlin

[14] Butterworth, R.W. (1972): A set theoretic treatment of coherent systems. SIAM

Journal of Applied Mathematics 22, 590{598

[15] Curtis, H.A. (1962): A New Approach to the Design of Switching Circuits. Van

Nostrand, Princeton

[16] Crama, Y., Hammer P.L. (1989) Bimatroidal independence systems, Zeitschrift fr

Operations Research 33 (1989) 149-165.

[17] Davio, M., Deschamps, J.P., Thayse, A. (1978): Discrete and Switching Functions,

McGraw-Hill

[18] Hu, S.T.(1968): Mathematical theory of switching circuits and automata, University

of California Press, Berkely and Los Angeles

[19] Makino, K., Yano, K., Ibaraki, T. (1995) Positive and Horn Decomposibility of Par-

tially De�ned Boolean Functions, Rutgers University, Rutcor Research Report, RRR-

29-95.

[20] McConnell, R.M., Spinrad J.P. (1996): Linear-time modular decomposition of undi-

rected graphs and eÆcient orientation of comparabitlity graphs, Proc. of the 5th

ACM-SIAM Symposium on Discrete Algorithms, SODA'96, 536-545

[21] M�ohring, R.H., Radermachter, F.J. (1984): Substitution decomposition of discrete

structures and connections to combinatorial optimization. Annals of Discrete Math-

ematics, 19, 257{356

[22] M�ohring, R.H. (1985/86): Algorithmic aspects of the substitution of decomposition in

optimization over relations, set systems and Boolean Functions. Annals of Operations

Research 4, 195{225

[23] Ramamurthy, K.G., Parthasarathy, T. (1986): An algorithm to �nd the smallest

committee containing a given set. Opsearch, 23, 1{6

[24] Ramamurthy, K.G. (1988): A new algorithm to �nd the smallest committee contain-

ing a given set of players. Opsearch 25, 49{56

35



[25] Ramamurthy, K.G. (1990): Coherent Structures and Simple Games. Theory and

Decision Library, Series C, Kluwer, Dordrecht

[26] Singer, T. (1953): The Decomposition Chart as a Theoretical Aid. Bell Laboratories'

Report No., III-1-III-28, 1953. (reprinted in [15])

[27] Sedgewick R. (1990): Algorithms in C. Addison-Wesley

[28] Shapley, L.S. (1967): On committees. In New Methods of Thought and Procedure,

edited by F. Zwicky and A.G. Wilson, Springer-Verlag, New York, 246{270

36



Publications in the Report Series Research� in Management 
 
ERIM Research Program: “Business Processes, Logistics and Information Systems” 
 
2002 
 
The importance of sociality for understanding knowledge sharing processes in organizational contexts 
Niels-Ingvar Boer, Peter J. van Baalen & Kuldeep Kumar 
ERS-2002-05-LIS 
 
Crew Rostering for the High Speed Train 
Ramon M. Lentink, Michiel A. Odijk & Erwin van Rijn 
ERS-2002-07-LIS 
 
Equivalent Results in Minimax Theory 
J.B.G. Frenk, G. Kassay & J. Kolumbán 
ERS-2002-08-LIS 
 
An Introduction to Paradigm 
Saskia C. van der Made-Potuijt & Arie de Bruin 
ERS-2002-09-LIS 
 
Airline Revenue Management: An Overview of OR Techniques 1982-2001 
Kevin Pak & Nanda Piersma 
ERS-2002-12-LIS 
 
Quick Response Practices at the Warehouse of Ankor 
R. Dekker, M.B.M. de Koster, H. Van Kalleveen & K.J. Roodbergen 
ERS-2002-19-LIS 
 
Harnessing Intellectual Resources in a Collaborative Context to create value 
Sajda Qureshi, Vlatka Hlupic, Gert-Jan de Vreede, Robert O. Briggs & Jay Nunamaker 
ERS-2002-28-LIS 
 
Version Spaces and Generalized Monotone Boolean Functions 
Jan C. Bioch & Toshihide Ibaraki 
ERS-2002-34-LIS 
 
Periodic Review, Push Inventory Policies for Remanufacturing 
B. Mahadevan, David F. Pyke, Moritz Fleischman 
ERS-2002-35-LIS 
 
Modular Decomposition of Boolean Functions 
Jan C. Bioch 
ERS-2002-37-LIS 
 
 
 
 
 
                                                           
�  A complete overview of the ERIM Report Series Research in Management: 

http://www.ers.erim.eur.nl 
 
 ERIM Research Programs: 
 LIS Business Processes, Logistics and Information Systems 
 ORG Organizing for Performance 
 MKT Marketing 
 F&A Finance and Accounting 
 STR Strategy and Entrepreneurship  

  

http://www.erim.eur.nl/publications:


2001 
 
Bankruptcy Prediction with Rough Sets 
Jan C. Bioch & Viara Popova 
ERS-2001-11-LIS 
 
Neural Networks for Target Selection in Direct Marketing 
Rob Potharst, Uzay Kaymak & Wim Pijls 
ERS-2001-14-LIS 
 
An Inventory Model with Dependent Product Demands and Returns 
Gudrun P. Kiesmüller & Erwin van der Laan 
ERS-2001-16-LIS 
 
Weighted Constraints in Fuzzy Optimization 
U. Kaymak & J.M. Sousa 
ERS-2001-19-LIS 
 
Minimum Vehicle Fleet Size at a Container Terminal 
Iris F.A. Vis, René de Koster & Martin W.P. Savelsbergh 
ERS-2001-24-LIS 
 
The algorithmic complexity of modular decompostion 
Jan C. Bioch 
ERS-2001-30-LIS 
 
A Dynamic Approach to Vehicle Scheduling 
Dennis Huisman, Richard Freling & Albert Wagelmans 
ERS-2001- 35-LIS 
 
Effective Algorithms for Integrated Scheduling of Handling Equipment at Automated Container Terminals 
Patrick J.M. Meersmans & Albert Wagelmans 
ERS-2001-36-LIS 
 
Rostering at a Dutch Security Firm 
Richard Freling, Nanda Piersma, Albert P.M. Wagelmans & Arjen van de Wetering 
ERS-2001-37-LIS 
 
Probabilistic and Statistical Fuzzy Set Foundations of Competitive Exception Learning 
J. van den Berg, W.M. van den Bergh, U. Kaymak 
ERS-2001-40-LIS 
 
Design of closed loop supply chains: a production and return network for refrigerators 
Harold Krikke, Jacqueline Bloemhof-Ruwaard & Luk N. Van Wassenhove 
ERS-2001-45-LIS 
 
Dataset of the refrigerator case. Design of closed loop supply chains: a production and return network for 
refrigerators 
Harold Krikke, Jacqueline Bloemhof-Ruwaard & Luk N. Van Wassenhove 
ERS-2001-46-LIS 
 
How to organize return handling: an exploratory study with nine retailer warehouses 
René de Koster, Majsa van de Vendel, Marisa P. de Brito 
ERS-2001-49-LIS 
 
Reverse Logistics Network Structures and Design 
Moritz Fleischmann 
ERS-2001-52-LIS 
 

 ii



What does it mean for an Organisation to be Intelligent? Measuring Intellectual Bandwidth for Value Creation 
Sajda Qureshi, Andries van der Vaart, Gijs Kaulingfreeks, Gert-Jan de Vreede, Robert O. Briggs & J. Nunamaker 
ERS-2001-54-LIS 
 
Pattern-based Target Selection applied to Fund Raising 
Wim Pijls, Rob Potharst & Uzay Kaymak 
ERS-2001-56-LIS 
 
A Decision Support System for Crew Planning in Passenger Transportation using a Flexible Branch-and-Price 
Algorithm 
Richard Freling, Ramon M. Lentink & Albert P.M. Wagelmans 
ERS-2001-57-LIS 
 
One and Two Way Packaging in the Dairy Sector 
Jacqueline Bloemhof, Jo van Nunen, Jurriaan Vroom, Ad van der Linden & Annemarie Kraal 
ERS-2001-58-LIS 
 
Design principles for closed loop supply chains: optimizing economic, logistic and environmental performance 
Harold Krikke, Costas P. Pappis, Giannis T. Tsoulfas & Jacqueline Bloemhof-Ruwaard 
ERS-2001-62-LIS 
 
Dynamic scheduling of handling equipment at automated container terminals 
Patrick J.M. Meersmans & Albert P.M. Wagelmans 
ERS-2001-69-LIS 
 
Web Auctions in Europe: A detailed analysis of five business-to-consumer auctions 
Athanasia Pouloudi, Jochem Paarlberg & Eric van Heck 
ERS-2001-76-LIS 
 
Models and Techniques for Hotel Revenue. Management using a Roling Horizon. 
Paul Goldman, Richard Freling, Kevin Pak & Nanda Piersma 
ERS-2001-80-LIS 
 
2000 
 
A Greedy Heuristic for a Three-Level Multi-Period Single-Sourcing Problem 
H. Edwin Romeijn & Dolores Romero Morales 
ERS-2000-04-LIS 
 
Integer Constraints for Train Series Connections 
Rob A. Zuidwijk & Leo G. Kroon 
ERS-2000-05-LIS 
 
Competitive Exception Learning Using Fuzzy Frequency Distribution 
W-M. van den Bergh & J. van den Berg 
ERS-2000-06-LIS 
 
Models and Algorithms for Integration of Vehicle and Crew Scheduling 
Richard Freling, Dennis Huisman & Albert P.M. Wagelmans 
ERS-2000-14-LIS 
 
Managing Knowledge in a Distributed Decision Making Context: The Way Forward for Decision Support Systems 
Sajda Qureshi & Vlatka Hlupic 
ERS-2000-16-LIS 
 
Adaptiveness in Virtual Teams: Organisational Challenges and Research Direction 
Sajda Qureshi & Doug Vogel 
ERS-2000-20-LIS 

 iii



 
Assessment of Sustainable Development: a Novel Approach using Fuzzy Set Theory 
A.M.G. Cornelissen, J. van den Berg, W.J. Koops, M. Grossman & H.M.J. Udo 
ERS-2000-23-LIS 
 
Applying an Integrated Approach to Vehicle and Crew Scheduling in Practice 
Richard Freling, Dennis Huisman & Albert P.M. Wagelmans 
ERS-2000-31-LIS 
 
An NPV and AC analysis of a stochastic inventory system with joint manufacturing and remanufacturing 
Erwin van der Laan 
ERS-2000-38-LIS 
 
Generalizing Refinement Operators to Learn Prenex Conjunctive Normal Forms 
Shan-Hwei Nienhuys-Cheng, Wim Van Laer, Jan Ramon & Luc De Raedt 
ERS-2000-39-LIS 
 
Classification and Target Group Selection bases upon Frequent Patterns 
Wim Pijls & Rob Potharst 
ERS-2000-40-LIS 
 
Average Costs versus Net Present Value: a Comparison for Multi-Source Inventory Models 
Erwin van der Laan & Ruud Teunter 
ERS-2000-47-LIS 
 
Fuzzy Modeling of Client Preference in Data-Rich Marketing Environments 
Magne Setnes & Uzay Kaymak 
ERS-2000-49-LIS 
 
Extended Fuzzy Clustering Algorithms 
Uzay Kaymak & Magne Setnes 
ERS-2000-51-LIS 
 
Mining frequent itemsets in memory-resident databases 
Wim Pijls & Jan C. Bioch 
ERS-2000-53-LIS 
 
Crew Scheduling for Netherlands Railways. “Destination: Curstomer” 
Leo Kroon & Matteo Fischetti 
ERS-2000-56-LIS 
 

 iv


