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1 Introduction

Ever since the seminal work of Nelson and Plosser (1982), common wisdom
has held that many macroeconomic and �nancial time series contain stochastic
trends (such as a random walk process) or unit roots. When the stochastic
trends in various time series are independent of one another, then no stable
relationship exists among the di¤erent series. However, in practice one often
observes that there exist linear combinations of di¤erent unit root time series
that behave like stationary series. Examples in macroeconomics and �nance
abound, including consumption and permanent income, prices and dividends
on the stock market and short and long term interest rate series. If linear
combinations of unit root variabels are stationary, then cointegration is said to
occur. Since the fundamental work developing the concept of cointegration (e.g.
Engle and Granger (1987)), an enormous literature has developed on estimation,
testing and prediction in potentially cointegrated models. Most of the work has
adopted a classical econometric perspective (see, e.g., Johansen (1995) for an
introduction to this literature). However, there has been a substantive amount
of Bayesian work on cointegration. The purpose of this chapter is to survey and
critically assess the Bayesian cointegration literature.
The chapter is aimed at Bayesians and non-Bayesians. For Bayesians, we

o¤er discussion of the key issues which must be considered when specifying prior
distributions and the likelihood and a description of the posterior simulation
methods necessary to implement Bayesian methods empirically. As we shall
see, the issues the Bayesian must address in cointegration analysis are somewhat
di¤erent from those addressed by the classical econometrician. Hence, we feel
that non-Bayesians should be interested in Bayesian cointegration methods as
the di¤erent perspective they adopt sheds a new light on many key properties
of cointegrated models.
To establish notation and illustrate the basic ideas underlying Bayesian coin-

tegration analysis, let fxtgTt=1 be a realization of the p-dimensional vector au-
toregressive (VAR) process of lag length k:

xt =

kX
i=1

�ixt�i +�dt + "t; (1)

where "t
iid� Np(0;�).1 dt contains deterministic terms (i.e. an intercept, de-

terministic trends, dummy variables, etc.). This model can be written in error
correction model (ECM) form as:

�xt = �xt�1 +
k�1X
i=1

	i�xt�i +�dt + "t; (2)

1 In this chapter, we will assume errors are Normally distributed. Extensions to more
�exible distributions (e.g. the Student-t) can easily be obtained by using mixtures of Normal
distributions in the standard Bayesian manner. See, for instance, Geweke (1993) or Escobar
and West (1995) for examples of such an approach.
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where the matrix of long run multipliers, �, can be written as � = ��0, where
� and � are both full rank p � r matrices and where 0 � r � p is the number
of cointegrating relationships. Note that, if r = p then all the elements of xt
are trend-stationary, while if r = 0 then the series all contain a unit root, but
cointegration does not occur.
In one sense, Bayesian analysis of cointegration is straightforward. Equa-

tions (1) or (2) and the accompanying assumptions de�ne the likelihood func-
tion. The researcher can combine the likelihood function with a prior and do
Bayesian inference with the resulting posterior. However, interesting and empir-
ically important issues of identi�cation (and, as a result, prior elicitation) arise
from the fact that � is potentially of reduced rank. A global identi�cation issue
can be seen by noting that � = ��0 and � = �AA�1�0 are identical for any
nonsingular A. This indeterminacy is commonly surmounted by imposing the
so-called linear normalization where � = [Ir B0]

0. However, as we shall see,
there are some drawbacks to this linear normalization. Even if global identi�-
cation is imposed, a local identi�cation issue occurs at the point � = 0 (i.e. at
this point � does not enter the model). As we shall see, this local identi�cation
problem can cause serious problems for Bayesian inference. For instance, a com-
mon noninformative prior can lead to a posterior distribution which is improper
(i.e. is not a valid p.d.f. since it does not integrate to one) thus precluding valid
statistical inference. This issue was brought forward by Kleibergen and Van
Dijk (1994, 1998). The development of the Bayesian cointegration literature
re�ects an increasing awareness of these issues and this chapter is organized to
re�ect this development. In particular, we begin by discussing early work, based
on VAR or Vector Moving Average (VMA) representations which ignored these
issues. We then proceed to a discussion of work based on the ECM representa-
tion, beginning with a simple speci�cation using the linear normalization and
Normal priors before moving onto the recent literature which develops methods
for sensible treatment of the identi�cation issues.

2 Early Work: Unrestricted VARs and infer-
ence conditional upon the cointegration rank

Much of the earliest Bayesian work on cointegration (e.g. DeJong (1992), Dorf-
man (1994), Koop (1991, 1994)) did not work with the cointegrated ECM. This
simpli�ed Bayesian computation, but meant that the priors used by the authors
did not re�ect or consider the reduced rank restrictions implied by cointegration.
As a representative example of this work, consider DeJong (1992) who worked
with a VAR using a noninformative prior for the model parameters. Bayesian
VAR methods are simple and well-established and, hence, DeJong (1992) re-
mained within a familiar framework (see, e.g., Zellner (1971)). He used Monte
Carlo integration to take random draws from the posterior of (�1; ::;�k) which
are then transformed to build up posteriors of the roots of the VAR represen-
tation. Cointegration is related to the number of nonstationary roots in the
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VAR, the probability of which is calculated using output from the Monte Carlo
integration procedure. Given future developments, it is interesting to note that
DeJong (1992) discusses the properties of his prior and points out that, despite
being Uniform and �noninformative� over the VAR coe¢ cients, it is far from
Uniform over the VAR roots which are the basis for cointegration inference.
The issue that a �at prior in one representation of a model may be very

informative in an undesired way in another representation will come back in
the next section. It is, however, important to note that in the case where data
information on the number of stationary relations in a VAR is so strong that
this information follows unambiguously from the posterior of the roots of the
VAR, then it follows that the choice of a Uniform prior, restricted by some
inequality conditions to the regions where the data are informative, is a sensible
choice. In many empirically relevant economic models like the term structure
of interest rates and present value models for stock and bond prices, the data
information is usually not that informative and more informative priors than the
Uniform (over the VAR coe¢ cients) are necessary. Thus an important research
area became the search for a weakly informative prior where the information in
the likelihood dominates strongly but where the posterior density of parameters
of interest and posterior probabilities of model characteristics are well de�ned.
In�uential early work using the ECM includes Bauwens and Lubrano (1996),

Geweke (1996) and Kleibergen and van Dijk (1994). Since this work forms
the basis of much of the future Bayesian cointegration work, it is instructive
to consider these papers in more detail. The key innovation of these papers
was to condition on a given number of cointegrating vectors, r, and directly
work with � and �. In other words, unlike previous approaches, the reduced
rank nature of � is directly imposed in a posterior simulation algorithm. This
allows for Bayesian estimation and inference on � and � (and all other model
parameters) for a given r. By carrying out posterior inference for every possible
r, the researcher can then use standard Bayesian model comparison methods
(e.g. posterior or predictive odds ratios) to select r.
Relative to the VAR, Bayesian inference in the ECM is complicated by the

fact that � = ��0 involves a product of parameters. This precludes direct use of
analytical or Monte Carlo integration results for the VAR. However, Bauwens
and Lubrano (1996), Geweke (1996) and Kleibergen and van Dijk (1994) note
that once we condition on the cointegrating vectors, �, the otherwise nonlinear
ECM becomes a linear one. This means that, under suitable informative priors
(e.g. Normal priors of the form presented in Geweke (1996)), standard Bayesian
analysis of the VAR model applies (conditional on �). Furthermore, for partic-
ular speci�cations, the posterior distribution of � conditional on �,	, � and �
has a standard distribution (where 	 = (	1; ::;	k�1)). This suggests that a
posterior simulation method known as Gibbs sampling may be set up.
Gibbs sampling starts out from an initial value for all model parameters and

then produces a sequence of random draws by cycling through the full condi-
tional posterior distributions, always conditioning on the most recent draws of
the conditioning parameters. Under weak conditions (veri�ed by Geweke (1996)
for the prior he considers), it can be shown that this sequence of draws from
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the full conditionals converges to a sequence of draws from the joint posterior
density. Thus, Gibbs sampler output can be treated in the same fashion as out-
put from a Monte Carlo integration procedure (e.g. averages of draws converge
to posterior means).
A Gibbs sampling algorithm for the cointegrated ECM consists of the fol-

lowing steps.

1. Initialize all parameter matrices: �(0); �(0);	(0);�(0) and �(0) with, for
example, the maximum likelihood estimates in Johansen (1995).

2. Generate a draw �(1) from the posterior distribution of � conditional on
�(0); �(0);	(0);�(0).

3. Generate a draw (	(1);�(1)) from the joint posterior distribution of 	 and
� conditional on �(0); �(0) and �(1).

4. Generate a draw �(1) from the joint posterior distribution of � conditional
on �(0);	(1);�(1) and �(1).

5. Generate a draw �(1) from the joint posterior distribution of � conditional
on �(1);	(1);�(1) and �(1).

6. Repeat steps 2-5 until the sequence of draws f�(i); �(i);	(i);�(i);�(i)gNi=1
is large enough to provide an accurate approximation of the properties of
p (�; �;	;�;�jData).2

Geweke (1996) also discusses methods of evaluating the accuracy of esti-
mates of posterior properties of functions of the parameters (e.g. posterior
means) produced using the Gibbs sampler. The posterior density itself may be
estimated from f�(i); �(i);	(i);�(i);�(i)gNi=1 using simple histograms or more
sophisticated density estimates. Posterior moments are, in most cases, easily
computed by arithmetic averages.
Geweke (1996) addressed the global identi�cation issue described in Section 1

through linear normalizations such as � = [Ir B0]
0. He showed that, if standard

informative priors are used, the Gibbs sampling algorithm is of a particularly
simple form involving only draws from the multivariate Normal distribution (in
Steps 3, 4 and 5) and the inverted Wishart (in Step 2). The standard prior
considered by Geweke (1996) involved Normal forms for �;B;	 and � and an
inverted Wishart form for �.
Even if the linear normalization is retained, the sampling scheme outlined

above is not generally applicable for all of the priors for B that one may wish to
choose. However, given the standard form of the posterior for (�;	;�;�jB) ;
once a draw of B is obtained, the drawing of the remaining parameters is
straightforward regardless of the form of the prior for B. This suggests, then,
that a method of sampling B from its marginal posterior distribution is required.

2N can be chosen using any of the standard convergence diagnostics. See, for instance,
Markov Chain Monte Carlo in Practice, edited by Gilks et al (see the chapters by Raftery
and Lewis or Gelman) or Geweke (1999).
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To this end, Bauwens and Lubrano (1996) present an approach to obtaining
draws of B using importance sampling, while Bauwens and Giot (1998) demon-
strate that a particular sort of Gibbs sampler known as griddy-Gibbs works
well.
Bauwens and Lubrano (1996) and Geweke (1996), who developed compu-

tational methods which allowed for simple and e¢ cient Bayesian inference in
the cointegrated ECM under a range of commonly-used priors (including an
apparently �noninformative�one), seemed to complete the research project es-
tablishing the basic tools for Bayesian analysis of cointegrated models. However,
it soon became clear that there were problems with these early approaches (some
of which were noted already by Kleibergen and van Dijk (1994)), which stimu-
lated a �urry of additional approaches. Before describing these approaches, we
�rst explain what these problems are.

3 Problems with the early work: Identi�cation
and normalization issues

As we have seen in Section 2, several standard prior distributions have emerged
in the early Bayesian cointegration literature. Most of them are either non-
informative or conjugate, i.e. priors with the attractive property of leading to
posterior distributions in the same parametric family as the prior. Even when
non-conjugate informative priors are used, it is common to stay within familiar
frameworks which make computation easy. Typically, in Normal likelihood mod-
els, the use of Normal priors over regression coe¢ cients and inverted-Wishart
priors over error covariance matrices is particularly convenient. These prior
choices are made, e.g., in Geweke (1996). When designing priors for a new
model class, it is common practice to use such standardized priors, at least as
a �rst attempt, and the cointegrated VAR is no exception.
There are two main features of the cointegrated ECM which make the stan-

dard priors unsuitable for cointegration analysis, however. First, the reduced
rank restriction of the cointegrated ECM introduces a rather complex nonlin-
earity in the otherwise linear VAR. Most standard priors have been developed
and evaluated on linear models and there is no guarantee that their properties
will carry over to nonlinear models. Second, the cointegrated ECM is inherently
non-identi�ed in the sense that the cointegration vectors are only uniquely deter-
mined up to arbitrary linear combinations (see Section 1), i.e. data only carries
information about the cointegration space. This means that the cointegration
vectors must be restricted for identi�cation and that the set of unrestricted el-
ements of � that remain to be estimated depends on the chosen identi�cation
scheme. As mentioned, a common choice of identifying restrictions is the set of
linear restrictions. To implement these restrictions, we assume we know which r
rows of � will be linearly independent, partition � =

�
�01; �

0
2

�0
where �1 is r� r

and specify a selection matrix c such that c� is invertible (jc�j 6= 0). Next, we
normalize upon these rows by � (c�)�1. For example, assume we select the �rst
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r rows (c = [Ir 0]), then the resulting speci�cation for � will be the linear nor-
malization � = [Ir B0]

0 where B = �2�
�1
1 : This, however, will have implications

for the speci�cation of � as these two parameters always occur in the model
as the product ��0: The choice of prior is thus intertwined with the choice of
identi�cation, which makes the prior speci�cation a rather delicate problem.
An example of how a straightforward adoption of traditional priors to the

cointegrated ECM brings unwanted distortion of prior beliefs is given by Stra-
chan and van Dijk (2004). They show that a �at and apparently �noninforma-
tive�prior on B in the linear normalization � = [Ir B0]

0 favors the cointegration
spaces near the region where the linear normalization is invalid (jc�j = 0).
Hence, the linear normalization is used under the assumption that it is valid
while at the same time the prior says that the normalization is very likely to be
invalid.
Assuming we use the linear identifying restrictions, another important issue

identi�ed by Kleibergen and van Dijk (1994) is that of local non-identi�cation.
The issue here is that when � has reduced rank (e.g., � = 0) the conditional
posterior distribution for Bj� is equal to its prior (i.e. since B does not en-
ter the likelihood function at the point � = 0 there is no data-based learning
about B and, thus, its posterior equals its prior at this point). If the prior
for Bj� = 0 is improper (as it is in the common �noninformative�case), then
the posterior will also be improper. Formally, Kleibergen and van Dijk (1994)
associate the local non-identi�cation problem with nonexistence of posterior mo-
ments and non-integrability of the posterior (under a common noninformative
prior). Kleibergen and van Dijk (1998) additionally point out that local non-
identi�cation implies an absorbing state in a Gibbs sampler, thereby violating
the convergence conditions for the sampler.
Another issue with the identifying restrictions is the validity of the chosen

normalization. Put di¤erently, when we select c (and so the rows of � upon
which to normalize), we may make an invalid selection such that c� is singular.
There has been much work in the classical framework addressing this issue (see,
for example, Boswijk (1996) and Luukkonen, Ripatti and Saikkonen (1999)),
and a Bayesian investigation is provided in Strachan (2003). Finally, even if
the chosen normalization is valid, the class of models that may be considered
is restricted to exclude some that have proven very important in cointegra-
tion analysis generally. For example, Strachan and van Dijk (2004) show that
imposing weak exogeneity results in an improper posterior not only when a
noninformative prior is used, but also when particular informative priors are
used.

4 Prior distributions for the cointegrated ECM

As discussed in the previous section, priors placed upon the elements of the
cointegrating vectors B, even ones which appeared to be �noninformative�, have
many important (and often undesirable) impacts upon empirical analysis. In
this section, we describe three key recent approaches for surmounting many of
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the problems outlined in the previous section. The �rst, which we only brie�y
discuss, is the Je¤reys�prior approach (e.g. Kleibergen and van Dijk (1994)).
The second is the embedding approach due to Kleibergen (1997), Kleibergen
and van Dijk (1998), Kleibergen and Paap (2002), and Kleibergen (2004)) and
extended in Strachan (2003). These approaches deal variously with issues of
local nonidenti�cation and the possibility of using invalid identifying restrictions.
The third line of research, see Villani (2000) and the further developments in
Villani (2005a), Strachan (2003), Strachan and Inder (2004) and Strachan and
van Dijk (2004), shifts the focus from the cointegrating vectors to treating the
cointegrating space sp(�) as the object of interest.

4.1 The Je¤reys�prior approach

In proposing the use of the Je¤reys�prior, Kleibergen and van Dijk (1994) were
motivated by the result that at points of local nonidenti�cation (such as where
� has reduced rank) the Je¤reys�prior is zero. Thus, these problematic points
are excluded from the support of (�;B) in the posterior distribution. This ap-
proach has been extended by Martin (2001) to a fractional cointegration model.
The Je¤reys�prior has the additional advantage that it is invariant with respect
to certain speci�cations of the model and thus is more attractive than a Uni-
form prior. The posterior of several parameters of interest (such as r and k in
(2)) becomes improper, however, due to the Je¤reys�prior being improper (see
subsection 5.3 for further discussion on this issue commonly termed Bartlett�s
paradox). In light of this, posterior probabilities on sharp nulls are not well
de�ned (e.g. selecting a value for r cannot be done using posterior odds ratios).
This point, which lessens the usefulness of the Je¤reys�prior for cointegration
analysis, will be elaborated on in Section 5. Another problem when using the
Je¤reys� prior is treatment of initial conditions. This matter is discussed in
Kleibergen and van Dijk (1994) where a number of possible solutions are out-
lined.

4.2 The Embedding Approach

The embedding approach is a way of addressing the problems arising from the
local identi�cation problem discussed in Section 3. This approach is based
upon the insight that, while � is globally identi�ed, the problems arising from
local non-identi�cation exist because � has reduced rank if cointegration occurs.
However, a so-called embedding model can be constructed which nests the ECMs
for various values of r and, crucially, contains a matrix of parameters, �, which
re�ects the degree of rank reduction. In this approach, prior elicitation is carried
out by �rst eliciting a prior for the unrestricted embedding model, i.e., p (�).
Then a transformation from � to �; � and � is carried out to obtain the prior
p (�; �; �). Priors for the reduced rank ECMs are then obtained as this prior
conditional on � = 0, p (�; �j� = 0). As we shall see in this subsection, such an
approach has many desirable properties.
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Kleibergen and van Dijk (1994) investigate the implications of employing a
simple variable addition speci�cation for the restriction of the p � p long run
multiplier matrix � to reduced rank. They consider the decomposition

� =

�
�11 �12
�21 �22

�
=

�
�1
�2

� �
Ir B0

�
+

�
0 0
0 �

�
where �11 and �1 are r � r matrices, �12;�021 and �2 are r � (p� r) matrices
and �22 and � are (p� r)� (p� r) matrices. The embedding model is (2) with
this speci�cation for � . Note that, if � = 0, then this model is the cointegrated
ECM with r cointegrating vectors. The embedding approach involves putting a
prior over the parameters in the embedding model, and the prior for the ECM
with r cointegrating vectors is derived from this prior conditional on � = 0.
The validity of this approach relies upon the following argument. If the

matrix � has reduced rank r < p; then it has r linearly independent rows and
columns. If we know which rows and columns these are, we may rearrange
the matrix such that these are the �rst r rows and columns and �11 is of full
rank r and we have the de�nitions �1 = �11; �2 = �21; B

0 = ��111 �12 and
� = �22 ��21��111 �12: In this case, if � has reduced rank r (and, thus, � = 0)
then this implies �22 = �21�

�1
11 �12.

3

A local identi�cation problem occurs where �1 = �11 = 0 and, as we have
seen in Section 3, this causes problems for Bayesian analysis. If we knew which
rows and columns of � are linearly independent we could simply exclude from
the support of �11 the point where j�11j = 0: Problems arise, however, when
we do not know which rows and columns of � are linearly independent - which
occurs in most practical situations. Kleibergen and Paap (2002) also link this
approach to the problem of non-uniqueness of the posterior distribution of � and
B conditional upon rank reduction, a manifestation of the Borel-Kolmogorov
paradox.
For this reason, a direct application of the embedding approach along the

lines outlined above is problematic. However, Kleibergen and van Dijk (1998)
and subsequently Kleibergen and Paap (2002) address this issue by proposing a
singular value decomposition (see, e.g., Golub and van Loan (1989), page 70).
To see how this avoids the problem of not knowing which rows and columns of
� are linearly independent, consider the singular value decomposition of � as

� = USV 0 = U1S1V
0
1 + U2S2V

0
2

where V =

�
V11 V12
V21 V22

�
; U =

�
U11 U12
U21 U22

�
; S =

�
S1 0
0 S2

�
and S is

a diagonal matrix with the (positive) singular values of � in descending order
down the diagonal and both U and V are orthonormal matrices such that U 0U =

3This result must hold as at rank r with �11 full rank, then each ijth element of �22 =

[�22;ij ] is determined by the determinant

���� �11 �12;j
�21;i �22;ij

���� = 0 where �12;j is the jth column
of �12 and �21;i is the ith row of �21.
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V 0V = Ip. Further, U11; S1 and V11 are r � r matrices such that given � is a
p�p matrix, the dimensions of the remaining matrices are subsequently de�ned.
From the singular value decomposition above, the elements of the cointegrat-

ing model are de�ned by Kleibergen and Paap (2002) as �0 = V11S1
�
U 011 U 021

�
;

B = V �111 V12 and � = (V
0
22V22)

�1=2
V22S2U

0
22 (U22U

0
22)

�1=2
: The decomposition

of � then becomes
� = ��0 + �?��

0
?

such that a rank of r implies S2 = 0 and so � = 0 and � = ��
0: The implemen-

tation of this approach requires speci�cation of the posterior for the full rank
�; p� (�jy) ; and then the transformation to (�;B; �) to obtain the posterior

p� (�;B; �jy) = p�
�
��0 + �?��

0
?jy
�
jJ (� : �;B; �)j ;

where jJ (� : �;B; �)j is the Jacobian for the transformation from � to (�;B; �) :
The reduced rank model obtains by considering this distribution at the point
� = 0:
It is interesting to note the relationship between the Je¤reys� prior and

embedding approaches. As we have seen, an attractive property of the Je¤reys�
prior is that it is zero at points of local nonidenti�cation (such as where � has
reduced rank) and, thus, these points are excluded from the support of (�;B) in
the posterior distribution. The singular value approach uses a similar (related)
behavior of the Jacobian for the transformation from � to exclude points of local
nonidenti�cation from the support of the posterior. That is, when � has reduced
rank, jJ (� : �;B; �)j = 0: Kleibergen and Zivot (2003) show that the Je¤reys�
prior results from the embedding approach when the embedding speci�cation is

imposed upon �� =
�
�xt�1x

0
t�1
� 1
2 ���

1
2 and a �at prior is speci�ed on ��.

The embedding approach was a signi�cant advance in Bayesian cointegration
analysis in overcoming the problems associated with local non-identi�cation and
results in a prior that is invariant to the chosen normalization (from the set of
linear normalizations). However, the linear normalization was used in its de-
velopment and, thus, does not address the problem of global non-identi�cation.
This point is made in detail in Strachan (2003), which links the use of linear
identifying restrictions to a range of the problems (some discussed in Section 3),
and in particular to the issue that using linear identifying restrictions places a
restriction on the estimable region of the cointegrating space (see subsection 5.3
for further discussion). Strachan and Inder (2004) provide an extensive discus-
sion of further problems associated with the use of linear identifying restrictions.
Strachan (2003) therefore proposes a speci�cation of the identifying restrictions
in an embedding approach that does not restrict the estimable cointegration
space. The work discussed in the following section takes this concept further.

4.3 The Cointegration Space Approach

The global identi�cation problem (i.e. that there are an in�nite number of ways
of carrying out the decomposition � = ��0 ) mentioned in the introduction
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implies that the cointegration vectors are only identi�ed up to arbitrary linear
combinations. Thus, only the space spanned by the cointegrating vectors, p =
sp (�), can be estimated from data. Taking the cointegration space as the
fundamental entity in cointegration models leads naturally the view expounded
in Villani (2000) that a prior on the cointegration vectors should be evaluated
by how it distributes probability mass across the support of p. For example, it is
natural to use a Uniform distribution over the support of p to express ignorance.
However, as demonstrated in Strachan and Inder (2004), a Uniform prior on B
implies a very di¤erent informative, and undesirable, prior distribution on p.
Developing a prior for p requires, therefore, a way of visualizing the parameter
p, its support, and ways of placing priors upon this support.
Formally and generally, the cointegrating space p is an r-dimensional hyper-

plane in a p-dimensional space and its relation to the cointegrating vectors � is
that these vectors lie in and thereby identify that plane. To assist in visualizing
the parameter p, we give two simple examples. Consider �rst the case where
p = 2 and r = 1 such that � is a 2� 1 vector. This vector is shown in Figure 1
as the black line with the open arrow head. The space spanned by this vector
p = sp (�) is the dashed line in which the vector lies. The support of p is,
in this case, the collection of all possible lines passing through the origin. To
generalize this slightly, consider the case p = 3 and r = 2 such that � is a 3� 2
matrix and each of the 3 � 1 vectors are plotted in Figure 2. In this case p is
the 2-dimensional cross-hatched plane in which the vectors lie and the support
of p is all of the 2-dimensional planes passing through the origin such that all
directions for the planes are covered.

β

sp(β)

Figure 1: The cointegrating space is the one-dimensional plane, or line, rep-
resented by the dashed line. The vector lying in the cointegrating space is a
cointegrating vector.
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Figure 2: Two dimensional cointegrating space represented by the cross-hatched
plane. The two vectors lying in the plane are therefore cointegrating vectors.

The support for p (which we will formally de�ne in a moment) in general,
then, is a rather abstract space. Three questions come to mind: i) is there a non-
controversial de�nition of a Uniform distribution over the set of cointegration
spaces, ii) does such a distribution exist, and iii) is it unique? All three of these
questions can be answered in the a¢ rmative and the appropriate mathematical
apparatus has been around for nearly a century.
In order to describe this line of research we revert to the simplest case in

Figure 1 of a bivariate process with a single cointegration vector parameterized
in polar coordinates � = (cos � sin �)0 ;where � 2 [��=2; �=2). The length of � is
restricted to unity for identi�cation. As shown in Strachan and Inder (2004), this
identifying restriction does not distort the weight on the space of the parameter
of interest, p. A natural candidate for a noninformative distribution on p is
the Uniform distribution on �, the parameter governing the direction of � and
therefore p.
The next step is to extend the concept of Uniform distribution to the general

case of an arbitrary number of cointegrating relations. In this case a Uniform
distribution for p will no longer be implied by a Uniform distribution on an-
gles in higher dimensions. Our aim is thus to arrive at a rigorous de�nition of
the intuitive idea of assigning equal prior probability to every possible cointe-
gration space of dimension r. In order to do this we need to introduce a few
concepts. Our treatment here will focus on ideas and we refer to James (1954)
for background details.
The set of all p� r orthonormal matrices is called the Stiefel manifold Vp;r.

Two special cases of the Stiefel manifold are the unit sphere (r = 1) and the
orthonormal group Op, the set of p � p orthonormal matrices (r = p). The
Stiefel manifold is a compact space and admits a Uniform distribution. In the
case where r = 1; one might conceptualize the collection of directions of all
p-dimensional unit vectors, � 2 Vp;1; as describing a p-dimensional unit sphere
centered at the origin. Thus, we may visualize a Uniform distribution on the
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p-dimensional unit sphere as characterizing a Uniform distribution on Vp;1. For
r > 1; we can think of each vector in � as describing a unit sphere with the
additional restriction that the vectors are all orthogonal to each other.
TheGrassman manifold Gp;r is the abstract space of all possible r-dimensional

planes of Rp. An example of an element of G3;2 is given as the two-dimensional
cross-hatched plane in Figure 2. This de�nes the cointegrating space (the pa-
rameter of interest) as an element of the Grassman manifold (the support of
the parameter), that is p 2 Gp;r. As stated earlier, in the ECM only the space
spanned by the columns of � is identi�ed, such that we only have information
on p = sp (�) 2 Gp;r. A Uniform prior for the cointegration space is therefore
given by the Uniform distribution on Gp;r.
The next step is to make the notion of a Uniform prior distribution on

Gp;r operational for a Bayesian analysis. Villani (2000, 2005a) develops the
Uniform prior on the cointegrating space in the linear normalization of �. He
shows that the Uniform distribution on the Grassman manifold implies a matrix
Cauchy distribution on B. Thus a Uniform distribution on Gp;r implies p (B) _
jIr +B0Bj�p=2 :
The linear normalization may be regarded as convenient in many respects,

but, as discussed in Strachan and Inder (2004) and Strachan and van Dijk
(2004), it has a number of drawbacks (some discussed in Section 3, but also
some others which we will not elaborate on here). These papers develop an al-
ternative approach which avoids the use of linear identifying restrictions through
a more direct method of eliciting a prior on Gp;r. This approach uses the natural
relationship between the Grassman manifold and the Stiefel manifold and the
development of measures on these spaces presented in James (1954). In particu-
lar, they use the result that the Uniform distribution on Vp;r induces a Uniform
distribution on Gp;r (James (1954) and Strachan and Inder (2004)). Thus, it
is possible to work with semiorthogonal matrices, i.e. � 2 Vp;r, and adjust all
integrals by dividing with the volume of Or (James (1954) and Strachan and
van Dijk (2004)) to account for the fact that Vp;r is a larger space than Gp;r.
A convenient feature of this approach is no normalization is imposed, but if a
normalization is desired, this may be imposed after estimation of �.
So far, all our discussion in this subsection focusses on the prior for the cointe-

gration space and ignores the other parameters in the model. For completeness,
we should mention that the prior distribution on �, � and � may be chosen
in many ways. For instance, ideas from the traditional VAR literature may be
used (e.g. the well known Minnesota prior in Litterman (1986) can be used).

A common reference prior for the adjustment coe¢ cients is �ij�
iid� N(0; �2��),

where �i contains the adjustment coe¢ cients for the ith cointegrating relation
in the semiorthogonal normalization of � (see Strachan and Inder (2004) and
Villani (2005a)). The hyperparameter �� controls the shrinkage toward the zero
matrix.
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4.3.1 Informative priors on the cointegrating space

Although the Uniform prior is often used in theoretical work, it is common
for practitioners to employ informative priors for parameters. Strachan and
Inder (2004) therefore present a method of eliciting an informative prior for
p. The objectives of the method they propose are to place the mass of the
prior distribution upon some preferred location, and to specify some level of
dispersion for this distribution. The discussion here is cursory for brevity and
we refer the reader to Strachan and Inder (2004) for details.
If a researcher believes a parameter is likely to have a particular value, to

incorporate this prior belief she places more prior mass around this likely point.
Here the �parameter�is the cointegrating space, p; and it will often be the case
that a researcher has prior beliefs about plausible regions of this space. As a
simple example, consider a vector of four interest rates xt = (x1;t x2;t x3;t x4;t).
Various expectations theories of the term structure of interest rates imply that
if each of the xi;t has a unit root, the spreads, xi;t � xj;t, will be stationary.
This would suggest that such prior beliefs can be expressed through a matrix
H (see Johansen (1995) for examples and Strachan and van Dijk (2003) for an
application) such as

H =

2664
1 0 0

�1 1 0
0 �1 1
0 0 �1

3775 :
Since sp (H) = sp (H�) for any full rank square �; after constructing H; we may
innocuously map H to Vr;n by the transformation H ! H (H 0H)

�1=2
: For the

parameter p then, denote the likely or location value as ph = sp (H) :
A dogmatic prior for p could be obtained by letting � = H and this prior

assigns probability one to the point p = ph: However it is common that the
researcher will want to employ a less dogmatic prior. In our example, we may
wish the random space p to have a mean under the prior of ph; but be allowed
to vary over the entire Grassman manifold. This is achieved by introducing a
random scalar � which performs a number of roles. First, it acts as a weight
such that mass of the prior distribution is distributed over the Grassman man-
ifold between the space of H and the space of H? which lies in the orthogonal
complement of ph: Second, the variance of � controls the dispersion of the dis-
tribution of p around the location ph. Finally, as the sign of � may be positive
or negative with equal probability, probability mass is allocated to all regions
of the Grassman manifold, including between the spaces of H and �H? .
One method of developing an informative prior follows. Let the random

scalar � have E (�) = 0 and E
�
�2
�
= �2� : For example, we may choose � s

N
�
0; �2�

�
. The value of �� will control the tightness of the prior around ph.

Next construct P� = HH 0 +H?H
0
?� and let the n� r matrix Z be distributed

as vec (Z) s N (0; Inr). The matrix X = P�Z can be decomposed as X =
�� where � 2 Vr;n and � is an r � r lower triangular matrix. The resulting
distribution for p = sp (�) will then be centred upon ph with its dispersion
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around this point determined by the value chosen for �� : The reader interested
in more detail is referred to Strachan and Inder (2004).
This completes our discussion of prior elicitation. Of course, a researcher

may choose any prior she wishes to re�ect her prior beliefs. In this section,
we have described several common choices, ending with a discussion of prior
elicitation (both informative and noninformative) directly over the cointegration
space. We argue that this last approach, which surmounts the problems caused
by global and local non-identi�cation in a sensible manner, will be the preferable
one to use in most applications. Now that we have interesting classes of priors
and a likelihood (given by equation 2 and the assumption of Normal errors), we
can now proceed to posterior analysis.

5 Posterior distributions: p (rjy) and p (�jr; y) :
In Bayesian cointegration analysis there are usually two primary aims. The �rst
is to determine the dimension of the cointegrating space, r, and the second is
to obtain an estimate of that space. From the decomposition p (�; rjData) =
p (�jData; r) p (rjData), we can frame our discussion in terms of p (�jData; r)
and p (rjData). In this section, we discuss both analytical expressions (where
they exist) and posterior simulation algorithms. The �nal part of this section
discusses point estimation of the cointegrating space. This is a non-trivial is-
sue in cointegration analysis due to the non-identi�ability of the cointegration
vectors and, as we shall see, methods that might suggest themselves intuitively
are, in fact, inappropriate.

5.1 Analytical results

As we have seen in Section 2, most Bayesian treatments of the ECM use posterior
simulation methods such as Gibbs sampling or importance sampling. However,
a few analytical results have been derived and it is constructive to examine them
to help understand the properties of the posterior in cointegrated models.
Bauwens and Lubrano (1996) show that the marginal posterior of � under a

common noninformative prior p(�; �;�;�;�) / j�j�(p+1)=2 (and / denotes "is
proportional to") is of the form

p(�jData; r) /
���0C1���l1���0C2���l2 ; (3)

where C1 and C2 are p� p data matrices and l1 and l2 are scalars (see Bauwens
and Lubrano (1996) for precise de�nitions). In terms of B in the linear nor-
malization � = (Ir; B0)0, this density can be written as a ratio of two matrix t
density kernels. This type of density has been termed a 1-1 poly matrix t den-
sity by Drèze (1978). Villani (2005a) shows that, for the speci�cation used in
that paper, the marginal posterior of B with a Uniform prior on the Grassman
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manifold (see Section 4.2) and a proper prior on �; is of the same form with
di¤erent parameters C1, C2, l1 and l2.
The posterior distribution of B in (3) is integrable, but lacks moments of any

order (see Kleibergen and van Dijk (1994) or Bauwens and Lubrano (1996)).
Villani (2005a) points out this is a natural feature of the prior in the linear
normalization. To see this, let � 2 Vp;r such that a Uniform distribution on
Vp;r implies a Uniform distribution on Gp;r. Then B equals the matrix quotient
�2�

�1
1 , where �1 and �2 are the upper r � r and lower (p� r)� r submatrices

of �, respectively, with a Cauchy form for the Jacobian for this transformation
� ! B, and B will therefore have very fat (Cauchy-like) tails in the posterior.
In explaining why the maximum likelihood estimator occasionally produces very
unreliable estimates of B; Phillips (1994) makes the same point in proving that
this estimator has Cauchy tails. By contrast, Strachan and van Dijk (2004) prove
that all posterior moments of � are �nite in their approach with � speci�ed as
a semiorthogonal matrix, � 2 Vp;r.
The analytical posterior results for B are useful for establishing some vital

properties of the posterior, such as integrability, but are of limited value to
practitioners as the class of poly matrix t distributions is, to a large extent, un-
explored beyond the dimension r = 1. For example, marginal distributions and
moments of poly matrix t variates (the case where r > 1) are not known. With
the semiorthogonal speci�cation for � of Strachan and Inder (2004) many more
analytical results can be obtained. However, analytical results for p(�jData; r)
are not enough to deliver posterior distributions of various features of inter-
est, such as forecasts and impulse response functions, which are an important
components in applied work. For these reasons, most Bayesian researchers use
posterior simulation.

5.2 Posterior Simulation in the Cointegrated ECM

The Gibbs and importance samplers discussed previously (e.g. those in Geweke
(1996) and Bauwens and Lubrano (1996) described at the end of Section 2)
were designed for models with computationally convenient priors. However,
with the more sophisticated (and reasonable) priors of Section 4, they cannot
be directly applied. Kleibergen and van Dijk (1998) point out a complication
due to the presence of local non-identi�cation that an inappropriately designed
Gibbs sampler will have an absorbing state and so produce a reducible Markov
chain, thus violating the conditions necessary for convergence of the chain to
the posterior. Accordingly, it is useful to o¤er a more general discussion of
posterior simulation methods. As discussed in Section 2, the key challenges for
posterior computation arise due to � and � entering the ECM in a nonlinear
fashion. Hence, much of this discussion is focussed on these parameters. To
simplify notation, we will collect the parameters other than �; � and r into the
vector �:
Posterior simulation with respect to � and � is generally straightforward and

integration with respect to (�; �) can often be achieved analytically as the poste-
rior distributions for elements of (�; �) (conditional upon � and r) belong to well
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understood standard classes of distributions such as the multivariate Normal,
inverted Wishart or Generalized Student-t distributions (see for example Zellner
(1971) or Bauwens and van Dijk (1990)). For these parameters, methods such as
those outlined in Section 2 can be used. Notable exceptions to this case are the
embedding speci�cations which incorporate a complicated Jacobian term such
as Kleibergen and van Dijk (1998), Kleibergen and Paap (2002), and Strachan
(2003) (see subsection 4.2) and the Je¤reys�prior approach of Kleibergen and
van Dijk (1994).
In contrast to p (�; �jData; �; r), posterior simulation of � is not straight-

forward. There are three general approaches that have been taken. The �rst is
to draw from p (�jData; �; �; r) in the context of a Markov Chain Monte Carlo
(MCMC) algorithm. Examples of this approach are Geweke (1996), Kleiber-
gen and van Dijk (1998), Kleibergen and Paap (2002) and Strachan (2003).
With the computationally convenient prior of Geweke (1996), p (�jData; �; �; r)
is Normal and Gibbs sampling is straightforward. However, for the other three
studies, p (�jData; �; �; r) is not of a simple form form and a standard Gibbs
sampler cannot be employed. Thus, in these articles, a Metropolis-Hastings al-
gorithm (see Chib and Greenberg (1995)) is developed in which the candidate
density is derived from the full rank VAR.
A second approach uses the standard form for p (�; �jData; �; r) to analyti-

cally integrate with respect to (�; �). Then draws from p (�jData; r) are taken.
If r = 1; such that B has a 1-1 poly-t density, moments may be approximated
using the approach detailed in Richard and Tompa (1980). For r � 1; Bauwens
and Lubrano (1996) used an importance sampling scheme (see Kloek and van
Dijk (1978) or Geweke (1989)) to obtain draws from the posterior distribution of
B: Alternatively, by showing that the conditional densities for (�1j�2; : : : ; �r) ;
(�2j�1; �3; : : : ; �r) ; : : : and so on, are 1-1 poly-t, they suggest a Gibbs sampling
approach could be used and such an algorithm is presented in Bauwens and
Richard (1985). This approach is useful only for a Uniform prior on B; and so
Bauwens and Giot (1998) present a griddy-Gibbs sampler for obtaining draws
on B for more general priors. Strachan and van Dijk (2004), who use both
Uniform and informative priors over the cointegration space, also work with
p (�jData; r) but use a Metropolis-Hastings algorithm.
A third approach is presented by Villani (2005a) in which � is analytically

integrated out and an MCMC scheme developed to draw from p (�jData; r; �)
and p (�jData; r; �) : This approach, which uses the linear normalization � =
[Ir B

0]
0 , takes advantage of the result that the conditional densities for �jB and

Bj� are Generalized Student t such that a Gibbs sampler may be used.
An important advantage of a simulation based evaluation of the posterior

distribution is that the posterior distribution of any quantity which is a function
of the parameters and the data can easily be computed from the generated
posterior sample. So, for instance, posterior properties of impulse response
functions and forecasts are immediately available.
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5.3 Posterior distribution of the cointegration rank

It is common to select a value for r (e.g. the posterior mode) and then base
empirical results (e.g. about the cointegration space) conditional on this choice.
However, one of the advantages of the Bayesian approach is that uncertainty
about this parameter may be incorporated into the analysis by using p (rjData)
to average across the various models. These two approaches relate respectively
to model selection and Bayesian model averaging, the latter being a topic we
will discuss in more detail below. Regardless of whether the researcher adopts a
model selection or model averaging approach, it is necessary to know p (rjData).
In this subsection, we will discuss several ways of learning about this den-

sity. Before we do this, the issue of Bartlett�s paradox should be mentioned in
passing. This issue arises when two models of di¤erent dimensions are being
compared and is relevant here because deriving p (rjData) can be interpreted as
comparing models of di¤erent dimension (e.g. r = 1 and r = 2 describe ECMs of
di¤erent dimension). Bartlett�s paradox is often informally expressed as saying
improper priors4 should be avoided when calculating Bayes factors (except over
parameters common to both models), since then the Bayes factor can depend
on arbitrary integrating constants. So, for instance, Bartlett�s paradox implies
that, with the Je¤reys�prior approach, p (rjData) cannot be obtained. Some of
the technical issues in the recent literature relate to this point, although we will
not elaborate on it in any detail in this survey.
Nesting the reduced rank cointegrated ECM within the embedding model

(i.e. the unrestricted VAR), Kleibergen and Paap (2002) use MCMC output
from a Metropolis-Hastings sampler and the Savage-Dickey density ratio (see
Verdinelli and Wasserman (1995)) to estimate the Bayes factors for the model
with rank r < p to the model with full rank r = p. Using the embedding prior
of subsection 4.2 makes estimation from the reduced rank model and its mar-
ginal likelihood computationally easy. However the computation of the Bayes
factors does require estimation of a correction factor (which is not de�ned for
the improper prior due to Bartlett�s paradox) for the ECM with r < p. Exam-
ples of the application of this approach are given in Paap and van Dijk (2003)
and Strachan (2003). Interestingly, Kleibergen (2004) shows by use of Haus-
dor¤measures and integrals that the posterior odds ratio developed in this way
is well de�ned even with improper priors on the parameters of the full rank
model (thus avoiding Bartlett�s paradox) and negates the need to estimate the
correction factor for the improper prior. The understanding of this argument re-
quires that the researcher is comfortable with non-subjectively determined prior
odds ratios and using the Hausdor¤ measure rather than the more commonly
employed Lebesgue measure.
Villani (2005a) develops an e¢ cient procedure for obtaining the posterior

4 Improper priors are those which do not integrate to one. Thus, the integrating constant
is not �nite and must be selected/justi�ed in some manner. Typically, for estimation of
parameters, the integrating constant does not matter and use of improper priors is common.
However, when doing model comparison (e.g. using Bayes factors or posterior odds), the
integrating constant cannot be ignored and, thus, problems such as Bartlett�s paradox can
arise with improper priors.
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distribution of r using the (proper) Uniform prior on the cointegration space
in the linear normalization. He derives closed form solutions for the posterior
probabilities of r = 0 and r = p. The posterior probabilities of r = 1; :::; p � 1
are computed from the posterior sample of � and B under each cointegration
rank utilizing the method developed by Chib (1995).
Asymptotic approximations to the integral with respect to (�; �) have also

been used to obtain p (rjData). Corander and Villani (2004) use the fractional
Bayes approach of O�Hagan (1995) to derive an approximation of the posterior
distribution of the cointegration rank jointly with the lag length of the VAR and
the deterministic trend model. The fractional Bayes approach has an intuitive
appeal and has been supported by asymptotic arguments, but has also been
criticized by a number of authors (see e.g. the discussion of O�Hagan (1995)
and Fernández, Ley and Steel (2001)) on the ground that it lacks a proper
Bayesian interpretation.
After integrating out (�; �) to provide an analytical form for p (�; rjData) ;

Strachan and Inder (2004) use a Laplace approximation of the integral with
respect to � to obtain an expression for p (rjData). This approach takes ad-
vantage of the Poincaré separation theorem from which we can obtain useful
analytical results on the posterior, and utilizes techniques developed in James
(1954, 1969). Chao and Phillips (1999) use the posterior information criteria
(PIC) developed in Phillips (1996) and Phillips and Ploberger (1996) to select
the modal value for r: Related approaches are the common Schwarz Bayes infor-
mation criteria (Schwarz (1978)) as a �rst order approximation to the marginal
likelihood, while the PIC and Laplace methods use second order approxima-
tions. A limitation of these approaches is that there is less control over the
accuracy of the approximation than when using MCMC methods.

5.4 Point estimation of the cointegrating space

In standard inference problems one usually summarizes the posterior distrib-
ution with a measure of location, e.g. the posterior mean, median or mode,
and a measure of posterior spread, e.g. the posterior standard deviation or
interquartile range. The exact choice of location and spread is motivated by
decision theory. The optimal posterior summary is the estimate minimizing the
posterior expected loss

�̂ = argmin
~�2�

E[l(�; ~�)];

where l(�; ~�) is a loss function penalizing the discrepancy between the true
parameter value and its estimate. For example, the mean, median and mode
are the optimal estimates given a quadratic, absolute value or a 0-1 loss on the
discrepancy � � ~�, respectively (see, e.g., Berger (1985)).
It may be tempting to use the standard point estimates on the unrestricted

elements of �, e.g. the posterior mode or median of B in the linear normal-
ization (as noted above, the posterior mean does not exist with some priors)
and plugging these estimates into � to obtain an estimate of the cointegration
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vectors. Villani (2005b) criticizes this practice on two grounds. First, the loss
functions underlying the standard estimates are not suitable for point estima-
tion of the cointegrating vectors. Since only the cointegration space is identi�ed,
a loss function for estimating � should measure the discrepancy between linear
subspaces rather than between real matrices. It is not true that if two matrices
�1 and �2 are far apart then sp�1 is distant from sp�2. Optimal estimates of
the cointegration vectors should thus be based on distance measures developed
for the Grassman manifold. Second, by focusing on estimating unrestricted
parameters under a given normalization rule, we may end up with estimates
that are not invariant to the chosen normalization. For example, the estimators
based on plugging in standard estimates of B into � in the linear normalization
are dependent on the order of the variables in the system, even if the posterior
distribution is invariant.
Strachan and Inder (2003) present a method for approximating the mode of

the posterior for the cointegrating space using the Poincaré separation theorem.
However, for various reasons, many Bayesians are more comfortable with or
require mean estimates. Therefore, Villani (2005b) derives a more appropriate
measure of location using the square of the projective Frobenius linear subspace
distance

l(�; ~�) =
��0 � ~�~�02 ;

as loss function, where kAk = tr(A0A)1=2 is the Frobenius norm for matrices
and we have, without loss of generality, assumed that � is orthonormal. The
optimal estimate, given the projective Frobenius loss, is the matrix of eigenvec-
tors of E(��0) corresponding to the r largest eigenvalues. Note that ��0 is the
projection matrix of the linear subspace spanned by the columns of �. This
estimate is thus based on a quadratic loss on the space of projection matrices
and may therefore be interpreted as the mean cointegration space, rather than
the mean of the unrestricted elements of �.
Villani (2005b) proposes a scalar measure of overall uncertainty in the poste-

rior distribution of � based on the projective Frobenius linear subspace distance.
He shows that this measure is independent of both the number of variables in
the system and the number of cointegrating relations. It may therefore be used
to compare the uncertainty regarding the estimated cointegration space in dif-
ferent studies. The measure is bounded between zero and one, where the upper
bound is obtained if the posterior distribution is the Uniform distribution on
Gp;r.

6 Bayesian model averaging in cointegration mod-
els

As researchers usually have a range of models to use for their analysis and there
is usually uncertainty as to which model generated the data, a growing area of
interest in econometrics is the treatment of model uncertainty. Traditionally,
choice of model form has been based on some criteria such as goodness-of-�t or
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on a series of nested or non-nested hypothesis tests designed to discriminate be-
tween alternative models. Inference is then based upon this chosen best model.
One problem with this practice is that, once a particular model has been chosen,
the fact that a number of other models have been discarded is usually ignored
in measures of uncertainty for the object of interest. No allowance is made for
the possibility of sample statistics yielding an incorrect choice and assessment
of the precision of estimation via standard errors makes no provision for the
preliminary-test implications for inference. Accounting for, and incorporating,
model uncertainty can be achieved quite naturally in the Bayesian approach by
using Bayesian model averaging (BMA).
The basic ideas underlying BMA can be demonstrated if we let Mi for i =

1; : : : ;M denote the ith model with parameters �i. Suppose we wish to learn
about a function of interest common to all models (e.g. an impulse response)
! = g (�i). If we treat the Mi as random variables, then the rules of probability
imply that:

p (!jData) =
MX
i=1

p (MijData) p (!jData;Mi) :

In words, inferences about ! should be based on a weighted average of the
posteriors in each model, where the weights are given by the posterior model
probabilities p (MijData).5
Within the framework of cointegrated ECMs, a number of models can be de-

�ned based on the number of cointegrating vectors, lag lengths, or deterministic
terms. We may also have di¤erent speci�cations of cointegrating spaces which
we may consider important. For instance, in an application involving foreign
and domestic prices and an exchange rate, the theory of purchasing power parity
suggests that a particular cointegrating vector should be present. Such a model
implies a restricted version of p such as p = sp (H1) . Alternatively, one may
not wish to impose the theory of purchasing power parity and express ignorance
about p through the Uniform priors discussed in subsection 4.2. Other restricted
versions of the cointegrated ECM arise if exogeneity is present (Engle, Hendry
and Richard (1983), Johansen (1992) and Urbain (1992)). Although exogeneity
has statistical implications, it has also been given economic implications (e.g.,
Garratt et al. (2003)).
Given a set of models, the implementation of BMA in cointegrated ECMs

is straightforward, requiring only a posterior simulator for every model (see the
discussion in Section 5) and a method for calculating p (MijData) (see the dis-
cussion in subsection 5.3). The use of BMA in forecasting with cointegrated
ECMs is explored in Villani (2001). In a comprehensive study in which a range
of methods were used, Strachan and van Dijk (2004) present posterior probabil-
ities for very large classes of models covering all the issues we have mentioned
so far: cointegrating rank; lag length; deterministic processes; overidentifying

5The posterior model probability is the prior model probability times the marginal likeli-
hood. For cointegrated ECM�s there are many ways to obtain the marginal likelihood. The
discussion of subsection 5.3 implicitly describes some of these.
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restrictions; and weak exogeneity. The empirical results suggest that BMA is an
important issue in that results are substantially di¤erent from those obtained
from a single model. This is undoubtedly an issue of empirical importance that
will provoke a great deal of future research.

7 Application

In this section we provide a simple application to demonstrate some of the
uniquely Bayesian aspects of the methods we have discussed such as BMA and
posterior analysis of the cointegrating space. King, Plosser, Stock and Watson
(1991) investigate evidence in support of model features implied by the Balanced
Growth Hypothesis within a Real Business Cycle model (RBC). The theory
developed in the paper implies that there is a single common stochastic trend
in log real US consumption (ct), investment (it) and income (inct) and the log
di¤erences ct � inct and it � inct form the cointegrating relations (if r = 2).
Collecting the variables into the vector yt = (ct; it; inct), these restrictions imply
the cointegrating vectors are overidenti�ed as � = H where H = (h1; h2) and
h1 = (1; 0;�1)0 and h1 = (0; 1;�1)0.
Using quarterly data covering the period from the �rst quarter 1951 to the

�nal quarter of 1999 from the study by Paap and van Dijk (2003), Strachan and
van Dijk (2004) investigate whether the restrictions of theory (r = 2; � = H)
are supported. They consider a set of models involving this restriction, di¤er-
ent numbers of cointegrating vectors, lag lengths and forms for the deterministic
trends (see Strachan and van Dijk (2004) for exact de�nitions). They �nd a high
degree of posterior uncertainty about whether the implications of theory hold,
but evidence against the features (r = 2; � = H) is not as strong as a sequential
testing procedure might suggest. The reason why a sequential approach comes
out so strongly against these features can be seen if we consider �rst testing
r = 2 and then investigating whether � = H is plausible. Without imposing
the cointegrating space restrictions, we �nd P (r = 2jy; � 6= H) � 0:004; how-
ever P (r = 2; � = Hjy) = 0:414 and this is the modal model (i.e. it has the
highest posterior model probability). The marginal probability P (r = 2jy) -
averaged across models with and without the cointegrating space restrictions
(and averaged across lag length and di¤erent forms for the deterministic terms)
- is 0:430.
As a complementary view on the credibility of the restrictions we may look at

some measure of distance, d = d(�;H), between the space of �, p� , and the space
of H, pH . The fact that � is unknown causes no problems in a Bayesian analysis
as the whole posterior distribution of the distance d(�;H) may be presented.
This distribution, which is easily obtained from the simulated posterior draws
of the cointegration vectors, is a clear presentation of how near the posterior
distribution of � is to the subspace in �-space determined by H. As we have
discussed in this chapter, the distance d(�;H) should not be based on the usual
Euclidean metric, but rather on a metric which measures the distance between
two subspaces. We will use the distance measure in Larsson and Villani (2001),
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which in our case is conveniently bounded between zero and one. A value of
d = 1 indicates that p� lies in the orthogonal complement of pH - which is as
far from pH as p� can get - and d = 0 indicates p� = pH .
The dashed line in Figure 3 is the posterior density of the distance d =

d(�;H) for the single best model chosen from the set of all possible models
(assuming two cointegrating relations). This density is constructed by generat-
ing a sample �(1); :::; �(M) from the posterior p(�jr = 2; y) and computing the
distance to H for each draw. It is clear from Figure 3 that the main part of
the posterior mass is not far from zero (the mean, median and mode are: 0:16,
0:15 and 0:14, respectively), suggesting support for � = H. The solid line in
Figure 3 is the unconditional posterior density of the distance where we average
across lag length and deterministic processes to reduce the dependence of our
results upon these features. The density is still conditional on r = 2. While the
large bulk of the unconditional density still centers on a value slightly below 0:2,
the averging across models produces non-neglibigble probability mass near the
point zero, thereby placing additional support on the restrictions given by H.

0 0.2 0.4 0.6 0.8 1

Figure 3: The solid line is the estimated unconditional posterior density of the
distance, d, between the space of � and the space of H: The dashed line is the
density of d conditional upon the best model.

8 Conclusion

In this survey, we have discussed Bayesian inference in the cointegrated error
correction model with a focus in particular on r (the number of cointegrating
vectors) and the cointegration space. A strong message of this survey is that,
in light of global and local non-identi�cation problems, prior elicitation is an
important issue and that it is better to think in terms of the cointegration space
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than in terms of cointegrating vectors. In particular, apparently �noninforma-
tive�priors on cointegrating vectors can imply very (unreasonably) informative
priors for the cointegration space and can even result in improper posteriors. In
light of this, we have discussed in detail two main approaches to prior elicitation
which surmount some or all of the problems caused by the identi�cation prob-
lems. These approaches, which have been found to yield sensible inferences, we
have called the Embedding Approach and the Cointegration Space Approach.
Fortunately, even using the Embedding and Cointegration Space approaches,

posterior computation is relatively straightforward and simple MCMC algo-
rithms can be derived. Accordingly, this chapter has only brie�y discussed
posterior computation.
As the majority of studies in the literature have use the traditional linear

cointegrated error correction model, this has been our focus in this survey.
A notable exception is Martin and Martin (2000), who present a method of
obtaining inference on the triangular cointegration model of Phillips (1991) using
the Je¤reys�prior. However, the models and methods we have described should
also be useful when it comes to considering a myriad of possible extensions to
the ECM (e.g. threshold/Markov switching cointegration models, ECMs with
structural breaks or time varying parameters, di¤erent error structures, etc.).
Bayesian prior elicitation and posterior computation methods typically can

be interpreted in terms of blocks of parameters. Many extensions can be inter-
preted as adding a new block of parameters to our current set. All the issues of
prior elicitation and posterior computation described in this survey are relevant
for the appropriate block of the extended model. As an example, collect all of
the parameters r; �; �;	;� and � into � and consider our ECM, which is para-
meterized in terms of �. We have discussed methods for eliciting the prior p (�)
and simulating from the posterior p (�jData). Now suppose we wish to extend
this model to allow for a single structural break at unknown time, T �, with �j
for j = 1; 2 denoting the ECM parameters before and after the break. Bayesian
prior elicitation would typically involve specifying p (�j) and p (T �). But the is-
sues and approaches described in this survey are relevant for p (�j) and, thus, the
researcher need only worry about p (T �). Posterior simulation would typically
involve drawing from p (�j jData; T �) (or p

�
rj ; �j jData; T �

�
) and p (T �jData)

(or some posterior conditional such as p (T �jData; �1; �2)). But the discussion
in this survey is relevant for p (�j jData; T �) and the researcher need only worry
about developing a method for simulating from p (T �jData).
Bayesian work on extensions of the cointegrated ECMs is still in its infancy

and is a promising area for future research. One extension worth noting is by
Paap and van Dijk (2003), who consider a Markov switching extension of a
cointegrated ECM. Another is by Martin (2001) who considers a fractionally
cointegrated model. Martin (2000) carries out a Bayesian analysis of a coin-
tegration model with structural breaks. Finally, a recent Ph.D. thesis (Sugita
(2004)) considers both a Markov switching and a structural break extension of
the cointegrated ECM.
Another interesting extension involves the issue of reduced rank in other

classes of models including instrumental variable regression models with weak
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instruments; simultaneous equations models with weak identi�cation and factor
models with common factors. Given that the same fundamental identi�cation
issues arise in cointegration, simultaneous equations and instrumental variable
regression models (see Hoogerheide and Van Dijk (2001)), it follows that the
approaches discussed in this chapter are also applicable in those models. For
instance, our terminology "Cointegration Space Approach" should not lead the
reader into thinking that the approach applies only to cointegrated models.
Finally, we should also mention that there exists an extensive general discus-

sion on the issues of identi�cation and normalization in a Bayesian context. We
refer the reader to Drèze (1974), Kadane (1974, 1978a, 1978b), Fisher (1976,
1977) and Poirier (1998) for a detailed and interesting exchange of viewpoints
on these topics.
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