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Abstract

The monotonicity constraint is a common side condition imposed
on modeling problems as diverse as hedonic pricing, personnel selection
and credit rating. Experience tells us that it is not trivial to generate
artificial data for supervised learning problems when the monotonic-
ity constraint holds. Two algorithms are presented in this paper for
such learning problems. The first one can be used to generate random
monotone data sets without an underlying model, and the second can
be used to generate monotone decision tree models. If needed, noise
can be added to the generated data. The second algorithm makes use
of the first one. Both algorithms are illustrated with an example.

1 Introduction

When developing a new or revising an existing method for solving a data
modeling problem, one usually tests this method extensively not only on real
life data, but also on artificial data. One reason for the inclusion of artificial
data in such experiments is that the parameters of the models underlying
the data can be much better controlled for artificial data when compared
with real data. For instance, if we want to test the robustness of a newly
devised data modeling method against varying degrees of noise in the data,
it is generally much easier to generate artificial data than to search for real
data sets with varying degrees of noise. In many cases, artificial data sets
can be constructed without much effort using simulation techniques [21],
for instance by first generating random values for the parameters of our
model, next generating random input values, calculating the corresponding
outputs and adding random noise to the output values. However, artificial



data generation is not always that easy. An example is the construction
of data sets for concept learning problems [13]. The construction of data
sets for monotone learning problems is another example. The monotonicity
constraint on a model or data set has recently been studied by a number of
authors [2, 17, 6, 11] and will be explained in Section 2. Application areas of
monotone classification and regression include pricing and various selection
problems [2, 17]. While working on algorithms for monotone classification
and regression problems, we found that it is not a trivial task to come up
with a monotone dataset, or a monotone classification or regression model.
This has to do with the great number of constraints on the data values
that is implied by the monotonicity constraint. In [18], an algorithm for
constructing random monotone datasets is proposed, which has never been
published in a regular medium. This algorithm is outlined in Section 3 of
this paper. In Section 4 we present a new method to construct monotone
classification or regression tree models, using the method of Section 3 and a
special order relation on the leaves of a tree introduced in [7]. This method
is illustrated with an example in Section 5. The last section contains the
summary of this paper.

2 The concept of monotonicity

Even though data mining is often applied to domains where little theory is
available, in many cases it is either known that the target function satis-
fies certain constraints, or it is simply required that the model constructed
satisfies those constraints.

One type of constraint that is available in many applications states that
the dependent variable (or its expected value) should be a monotone function
of the independent variables. Economic theory would state for example that
people tend to buy less of a product if its price increases (ceteris paribus),
so price elasticity of demand should be negative. The strength of this re-
lationship and the precise functional form are however usually not dictated
by economic theory. Other well-known examples are labor wages as a func-
tion of age and education (see e.g. [15]) or so-called hedonic price models
where the price of a consumer good depends on a bundle of characteristics
for which a valuation exists [12].

Another class of problems where monotonicity constraints often apply
are so-called selection problems, such as the selection of applicants for a
job or a loan on the basis of their characteristics. As an example, consider
a selection procedure for applicants to a job based on the outcomes of a

2



series of academic and/or psychological tests. If each of the test outcomes
xi is scored from low (bad performance) to high (good performance) and
the classes are taken to be 0 = not selected and 1 = selected, then it would
be very natural to demand the selection rule to be monotone. In fact, the
requirement of monotonicity would be equivalent to excluding all situations
in which applicant A scores better or at least as good on all tests as applicant
B, whereas B gets selected and A does not.

Because the monotonicity constraint is quite common in practice, many
data analysis techniques have been adapted to be able to handle such con-
straints.

Isotonic regression, for example, deals with regression problems with
monotonicity constraints. The traditional method used in isotonic regression
is the so-called pool-adjacent violators algorithm [20]. This method however
only works in the one-dimensional case. A versatile non-parametric method
is given in [15], see also [19].

Monotonicity constraints have also been investigated in the neural net-
work literature. In [22] the monotonicity of the neural network is guaranteed
by enforcing constraints on the weights during the training process. Daniels
and Kamp [10] present a class of neural networks that are monotone by con-
struction. This class is obtained by considering multilayer neural networks
with non-negative weights.

Various methods have also been proposed for classification problems with
monotonicity constraints1, such as decision or classification trees [2, 14, 16,
17, 11, 9], decision lists [4], logical analysis of data [5], rough sets [8] and
instance-based learning [3, 1].

We will now define the concept of monotonicity somewhat more formally.
Let X = X1 ×X2 × . . .×Xp be an instance space with p attributes, Y a set
of target values. (In a classification problem, Y is a finite set of classes, in a
regression problem it is an interval of real numbers.) We suppose that each
coordinate space Xi and the target space Y has an ordering ≤. This means
that each attribute, including the target, has at least an ordinal scale. Then
the instance space X = X1 ×X2 × . . .×Xp has a partial ordering ≤, defined
by x = (x1, x2, . . . , xp) ≤ x′ = (x′

1, x
′
2, . . . , x

′
p) if and only if xi ≤ x′

i for all i.
Now, a model

f : X → Y

will be called monotone, if

x ≤ x′ ⇒ f(x) ≤ f(x′) (1)
1In [9] these are called supervised ranking problems.
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for all instances x,x′ ∈ X . A data set D is a set of examples (x, y) from
X × Y. A dataset is called monotone if for all pairs (x, y) and (x′, y′) from
D we have

x ≤ x′ ⇒ y ≤ y′. (2)

A data set D is consistent if x = x′ ⇒ y = y′ whenever both (x, y) and
(x′, y′) are examples from D. It is easy to see that a monotone data set is
automatically consistent.

Table 1: The bank loan dataset
client income education crim.record loan
cl1 low low fair no
cl2 low low excellent low
cl3 average intermediate excellent intermediate
cl4 high low excellent intermediate
cl5 high intermediate excellent high

We will now give an example of a monotone classification problem. Sup-
pose a bank wants to base its loan policy on a number of features of its
clients, for instance on income, education level and criminal record. If a
client is granted a loan, it can be one in three classes: low, intermediate and
high. So, together with the ’no loan’ option, we have four classes. Suppose
further that the bank wants to base its loan policy on a number of credit
worthiness decisions in the past. These past decisions are given in Table 1.
A client with features at least as high as those of another client may expect
to get at least as high a loan as the other client. So, finding a loan policy
compatible with past decisions amounts to solving a monotone classification
problem with the dataset of the above table. In order to save space we
often map the values of the attributes of a dataset to a set of numbers. For
instance, the table just presented could be written like Table 2.

Table 2: Two types of shorthand for the dataset of Table 1
x1 x2 x3 y x y

0 0 1 0 001 0
0 0 2 1 002 1
1 1 2 2 112 2
2 0 2 2 202 2
2 1 2 3 212 3
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3 Generating random monotone datasets

In this section we will propose a technique that produces monotone datasets
with prescribed parameters. This technique could, for instance, generate
a monotone data set of n elements from a given instance space X and a
set of target values Y, such that the frequency of the occurrence of these
target values follows a prescribed pattern. This data set will be random, in
the sense that it is a random sample from the space of all possible datasets
satisfying the prescribed conditions. However, it is not guaranteed that all
possible datasets have equal chances of being drawn. In order to describe
the technique we will first introduce a mapping between datasets and certain
graphs, that will facilitate the description.

Let X = X1 ×X2 × . . .×Xp be an instance space with p attributes, Y a
set of target values and let D be a set of examples (x, y) from X ×Y. With
D we will associate a labeled directed graph G(D) as follows: Dx, the set of
x-values from dataset D, will be the set of vertices of the directed graph,
and let [x,x′] be an arc2 of the graph iff x > x′. (Note, that this graph G(D)
will always be acyclic.) Let further each vertex x of the graph be labeled
with the target value y of data example (x, y). For example, the 3-attribute
data set D of Table 2 will have as its associated graph G(D) the graph of
Figure 1.

212

112 202

002

001

3

2

2

1

0

Figure 1: The Graph Associated with a Dataset

2An arc is an edge together with a direction.
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We will call a path in a graph G(D) non-increasing if the labels of the
successive vertices on the path form a non-increasing sequence. For instance,
the path [212, 112, 002, 001] is non-increasing since the labelings form the
non-increasing sequence [3, 2, 1, 0]. Even if we would relabel 002 to 2, the
path would stay non-increasing; however if we would relabel 001 to 2 the path
would loose this property. The following lemma connects the monotonicity
of a data set with the non-increasing nature of the paths in its associated
graph.

Lemma 1 Let D be a data set on X × Y and let G(D) be its associated
labeled graph. Then we have

D is monotone ⇐⇒ all paths in G(D) are non-increasing.

Proof: First we prove the ⇒ part. In that case we suppose that (2)
holds for all (x, y) ∈ D. Now, suppose we have a path [x0,x1, . . . ,xn] in
G(D), then [x0,x1],[x1,x2], etc. must be arcs of the graph, so from the
definition of the associated graph it follows that x0 > x1 > . . . > xn. Now,
from (2) we can conclude that y0 ≥ y1 ≥ . . . ≥ yn). Next we prove the ⇐
part. So we suppose that all paths in G(D) are non-increasing. We must
now prove (2) for all pairs (x, y) and (x′, y′) from D. So let (x, y) an (x′, y′)
be data examples from D with x ≤ x′. If x = x′ then y = y′, so (2) is
trivial. If x < x′ then [x′,x] is an arc of G(D) so [x′,x] is also a path. Since
all paths are non-increasing it follows that y′ ≥ y. �

We proceed with an informal description of the algorithm for producing
monotone datasets. Suppose, the required datasets must have N examples.
We start with selecting N different vectors x1,x2, . . . ,xN randomly from X .
Next, we select N not necessarily different target labels y1, . . . , yN from Y.
Now, each of the target labels y1, . . . , yN must be assigned to exactly one of
the vectors x1, . . . ,xN to obtain the required data set. This will be done as
follows:

• construct the graph associated with x1, . . . ,xN

• sort the sequence y1, . . . , yN such that y1 ≤ y2 ≤ . . . ≤ yN

• now, interpret the graph as a flow network: each of the target labels
y1, . . . , yN is allowed to travel through the network, following a ran-
dom path; each path starts at a randomly chosen source node (a node
without incoming arcs) and ends at a sink node (a node without out-
going arcs); note that each path is finite since the graph is acyclic;
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when the label comes to the end of its path, the target label is sticked
to the last vertex on the path; this vertex is subsequently removed
from the graph, and the next label is allowed to travel through the
new graph. This is done until each vertex of the original graph has a
target label sticked to it.

For instance, if the randomly drawn vectors are 001, 002, 112, 202, and 212
and the target labels are 0, 1, 2, 2, 3 we end up with the above graph G, so
the above data set D results. However, if with the same set of vectors we
want to associate the target labels 0, 1, 1, 2, 3, one of the following datasets
will result:

Dataset 1 Dataset 2
001 0 001 0
002 1 002 1
112 1 112 2
202 2 202 1
212 3 212 3

each with probability 1
2 .

We will end with a formal description of the algorithm for producing
monotone datasets:

1. Draw x1, . . . ,xN randomly, without replacement, from X .

2. Select y1, . . . , yN from Y, see Remark 1 below.

3. Order y1, . . . , yN such that y1 ≤ y2 ≤ . . . ≤ yN .

4. Define the (N + 1) × N matrix M = (mij) as follows:
for 1 ≤ i, j ≤ N

mij =

{
1 if xj < xi

0 otherwise

and for 1 ≤ j ≤ N :

m0j =

{
1 if

∑N
i=1 mij = 0

0 otherwise

5. Perform the following algorithm on M :
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for j := 1 to N do
begin

k := FindSink(M);
label(k) := yj ;
for i := 0 to N do mik := 0

end

where the function FindSink, which returns a number between 1 and N , is
defined as follows:

FindSink(var M):
p := 0;
while PathsFrom(p) is non-empty do

p := random element from PathsFrom(p);
return p

where the set PathsFrom(p) is defined as

PathsFrom(p) := {i ∈ {1, . . . , N} : mpi > 0}.

Remark 1 Note, that in step 2 of this algorithm, we can fill in our own se-
lection mechanism. For instance, we could select the target labels according
to a random mechanism or take some arbitrary set of labels at will.

Remark 2 It can be shown that for a given set of vectors {x1, . . . ,xN} and
an ordered list of target labels [y1, . . . , yN ] the above algorithm can generate
each possible monotone data set D with Dx = {x1, . . . ,xN} and Dy =
[y1, . . . , yN ]. Sometimes, it also generates all the possible monotone datasets
with equal probability, as is the case in the above example. However, this
is not necessarily the case, as can be seen from the following example: If
the set of vectors is 000, 100, 010, 011, 111 the associated graph has the
following shape

111

011

100

010

000
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Now, if the target label list is [0, 0, 1, 1, 1] we can generate two different
monotone datasets, like in Figure 2.

Figure 2: The graphs of two different monotone datasets

111

011

100

010

000

1

1

1/0

0/1
0

Here the notation 1/0 means class 1 for the first data set and class 0 for the
second data set. Note that the first data set is generated with probability
2
3 and the second one with probability 1

3 . Thus, the datasets generated by
our algorithm, although guaranteed to be monotone, might contain a slight
bias in the sense that some monotone datasets have a higher probability of
being selected than others. This point needs further investigation.

4 Generating structured monotone datasets

In many cases, we want our artificial datasets to be structured or model-
based. The reason for this is the following: usually, the algorithm we want to
test on the artificial dataset is supposed to discover an underlying pattern or
structure in the data; for instance, in classification or regression problems, a
relation between the attributes and the target values is supposed to be dis-
covered. Thus, our artificial dataset should be based on such an underlying
relation or model: it is hard to discover something, when there is nothing to
discover. In case we deal with a monotone problem, the underlying model
should be monotone. If our model is to be tree-based (as will be the models
in this paper), how are we going to label the leaves in such a fashion that the
resulting tree will be monotone? In this section we will show that to label
the leaves, we can essentially use the algorithm of the preceding section,
applied to the leaves of the tree, provided these leaves are ordered according
to the special ordering, introduced in [7].
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Specifically, if T is a decision tree on instance space X = X1×X2×. . .×Xp

with instances x = (x1, . . . , xp) and the test in each node of the tree has the
form Xi ≤ c for some c ∈ Xi, 1 ≤ i ≤ p, then the associated subset T ⊂ X
of each node or leaf has the form T = {x ∈ X : a < x ≤ b} = (a,b] for
some a,b ∈ X with a < b and X = X extended with infinity elements.
We will call a = min(T ) the minimal element or left corner of node T and
b = max(T ) the maximal element or right corner. The set of leaves L of the
tree form a partition of X and are labeled with values from Y. Thus, the
tree defines an associated labeling rule f : X → Y. The tree will be called
monotone if for its associated labeling rule f(x) we have

x ≤ x′ ⇒ f(x) ≤ f(x′). (3)

The special ordering we need for nodes and leaves is the following: if T and
T ′ are nodes or leaves, then we define

T ≤ T ′ ⇐⇒ min(T ) ≤ max(T ′). (4)

In [7] it is shown that this ordering is reflexive and anti-symmetric, but not
transitive. Thus, it does not induce a partial ordering on the set of leaves.
However, a partial ordering is not necessary for the following lemma to hold.

Lemma 2 Let T be a classification or regression tree on X with leaves L
and let f be its associated labeling rule. For all pairs T, T ′ ∈ L we have

T ≤ T ′ ⇒ f(T ) ≤ f(T ′), (5)

if and only if T is monotone.

Proof: We first prove the ‘only if’ part. It is clear that with f(T ) we mean
the labeling assigned to leaf T by tree T . To prove that T is monotone we
should prove (3) for all x,x′ ∈ X . If x and x′ belong to the same leaf, (3)
is trivial. So, let us suppose that they belong to different leaves, with T the
leaf that contains x and T ′ the leaf that contains x′. Since by hypothesis
x ≤ x′, we have min(T ) ≤ x ≤ x′ ≤ max(T ′), so according to our definition
(4) we have T ≤ T ′. Thus, by (5) we have f(T ) ≤ f(T ′), which proves (3).
The reverse part follows the same lines. �

We can use Lemma 2 to assign labels to an unlabeled decision tree T with
leaves L such that the resulting decision tree will be monotone, as follows.
First, generate as many labels y ∈ Y as there are leaves in the tree. This can
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be done according to any distribution. Next, sort these labels in ascending
order: y1 ≤ y2 ≤ . . . ≤ yk. Next, we build the associated graph G(L) of the
leaves just like we did we the instances in Section 2. Thus, the vertices of
the graph are now leaves instead of instances. We now run the algorithm of
Section 2 on this graph together with the labels y1 ≤ y2 ≤ . . . ≤ yk. The
proof that the resulting labeled tree will be monotone follows directly from
Lemma 2.

5 Example

In this section we will show how we can use the method of Section 3 to label
an unlabeled decision tree monotonically. Suppose we have the following
unlabeled tree:

X2 ≤ 1�

X1 ≤ 2 �

?
T1

�
� �

�
?
T2

�
�

�� �
�

��
X2 ≤ 2�

?
T3

�
� �

�
X1 ≤ 1�

?
T4

�
� �

�
?
T5

The corner elements min(Ti) and max(Ti) of the leaves of this tree are
easily checked to be as follows:

leaf min(Ti) max(Ti)
T1 (−∞,−∞) (2, 1)
T2 (2,−∞) (∞, 1)
T3 (−∞, 1) (∞, 2)
T4 (−∞, 2) (1,∞)
T5 (1, 2) (∞,∞)

By inspection of this table we can find all the arrows in the associated
graph for these leaves, which is shown in Figure 3.
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T5

T2 T3 T4

T1

Figure 3: The associated graph for the leaves of the example tree.

Now, if we generate the following set of labels {0, 1, 1, 1, 2}, the algorithm
of Section 2 returns the following label assignment: f(T1) = 0, f(T2) =
f(T3) = f(T4) = 1, f(T5) = 2 which gives indeed a monotone decision tree
as can be easily checked.

As an aside, this example also shows the non-transitivity of the special
ordering of the leaves: we have T2 ≤ T3 and T3 ≤ T4, but T2 	≤ T4 since
(2,−∞) 	< (1,∞).

6 Conclusion

The algorithms of this paper are an important aid to help us with the difficult
task of generating artificial data for monotone models. The first algorithm
is guaranteed to give a monotone data set, the second algorithm yields a
monotone decision tree based on any unlabeled tree. This monotone tree
can subsequently be used to generate structured monotone data; if needed,
random noise can be superimposed. As a side effect, in this paper interest-
ing characterizations of monotone datasets and monotone decision trees are
proved.
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