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Abstract

For classi�cation problems with ordinal attributes very often the

class attribute should increase with each or some of the explaining at-

tributes. These are called classi�cation problems with monotonicity

constraints. Classical decision tree algorithms such as CART or C4.5

generally do not produce monotone trees, even if the dataset is com-

pletely monotone. This paper surveys the methods that have so far

been proposed for generating decision trees that satisfy monotonicity

constraints. A distinction is made between methods that work only

for monotone datasets and methods that work for monotone and non-

monotone datasets alike.
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1 Introduction

Even though data mining is often applied to domains where little theory is
available, in many cases it is either known that the target function satis-
�es certain constraints, or it is simply required that the model constructed
satis�es those constraints.

One type of constraint that is available in many applications states that
the dependent variable (or its expected value) should be a monotonic func-
tion of the independent variables. Economic theory would state for exam-
ple that people tend to buy less of a product if its price increases (ceteris
paribus), so price elasticity of demand should be negative. The strength
of this relationship and the precise functional form are however usually not
dictated by economic theory. Other well-known examples are labor wages
as a function of age and education (see e.g. [11]) or so-called hedonic price
models where the price of a consumer good depends on a bundle of charac-
teristics for which a valuation exists [9].

Another class of problems where monotonicity constraints often apply
are so-called selection problems. Consider for example the selection of ap-
plicants for a job or a loan on the basis of their characteristics.

Because the monotonicity constraint is quite common in practice, many
data analysis techniques have been adapted to be able to handle such con-
straints.

Isotonic regression, for example, deals with regression problems with
monotonicity constraints. The traditional method used in isotonic regression
is the pool-adjacent violaters algorithm [15]. This method however only
works in the one-dimensional case. A versatile non-parametric method is
given in [11].

Monotonicity constraints have also been investigated in the neural net-
work literature. In [16] the monotonicity of the neural network is guaranteed
by enforcing constraints on the weights during the training process. Daniels
and Kamp [8] present a class of neural network that are monotonic by con-
struction. This class is obtained by considering multilayer neural networks
with non-negative weights.

Various methods have also been proposed for classi�cation problems with
monotonicity constraints, such as decision lists [4], logical analysis of data
[5], rough sets [6] and instance-based learning [3, 1].

Classi�cation or decision trees are among the most popular algorithms
for classi�cation problems in data mining and machine learning. Therefore
we consider in this paper methods to build monotone classi�cation trees.

In Section 2 we de�ne monotone classi�cation and other important con-
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cepts that are used throughout the paper. We also provide a motivating
example concerning applicants for a bank loan, that is used to illustrate
many of the algorithms presented.

The paper then divides into algorithms that work on monotone datasets
(Section 3) and algorithms that also work on non-monotone data sets (Sec-
tion 4).

In Section 3.2 we present an algorithm that forces the construction of a
monotone tree by adding, if required, the corner elements of a node with an
appropriate class label to the dataset. A somewhat more eÆcient algorithm
that �rst builds a quasi-monotone tree, and then repairs, if required, any
minor local non-monotonicities is presented in Section 3.3.

In Section 4 we present two algorithms that work on non-monotone data.
The �rst is due to Ben-David [2], and adapts the well-known entropy split-
ting criterion by including a measure for the non-monotonicity of the tree
that results after the split. In Section 4.2 we present a straightforward
generate-and-test approach that constructs many di�erent trees by resam-
pling the training data, and selects a monotonic tree.

Finally, in Section 5 we end with a discussion, and some ideas for further
research.

2 Monotone Classi�cation

Let X be a partially ordered set of instances, called the instance space, and
let C be a �nite linearly ordered set of classes. The order relations of X and
C will both be denoted by �. An allocation rule is a function

f : X ! C

which assigns a class from C to every instance in the instance space X . A
classi�cation problem is the problem of �nding a class labeling f that satis�es
certain constraints, to be speci�ed in the problem description. One possible
constraint is that the labeling f be monotone: a monotone allocation rule
is a function f : X ! C for which

x � x0 ) f(x) � f(x0) (1)

for all instances x;x0 2 X : In this paper, X will always be a feature space

X = X1�X2� : : :�Xp consisting of vectors x = (x1; x2; : : : ; xp) of values on
p features or attributes. Here we assume that each feature takes values xi in
a linearly ordered set Xi. The partial ordering � on X will be the ordering
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induced by the order relations of its coordinates Xi: x = (x1; x2; : : : ; xp) �
x0 = (x01; x

0
2; : : : ; x

0
p) if and only if xi � x0i for all i. It is easy to see that

a classi�cation rule on a feature space is monotone if and only if it is non-
decreasing in each of its features, when the remaining features are held �xed.

As an example, consider a selection procedure for applicants to a job
based on the outcomes of a series of academic and/or psychological tests. If
each of the test outcomes xi is scored from low (bad performance) to high
(good performance) and the classes are taken to be 0 = not selected and 1
= selected, then it would be very natural to demand the selection rule to
be monotone. In fact, the requirement of monotonicity would be equivalent
to excluding all situations in which applicant A scores better or at least as
good on all tests as applicant B, whereas B gets selected and A does not.

A very common classi�cation problem occurs, when the allocation rule
should be induced from an available dataset or set of examples: for a �-
nite number of instances a corresponding class is given; an allocation rule
should be constructed that `�ts' these data. Formally, a dataset is a series
(x1; c1); (x2; c2); : : : ; (xn; cn) of n examples (xi; ci) where each xi is an ele-
ment of the instance space X and ci is a class label from C. The presence
of noise may lead to inconsistencies in the dataset that might disturb the
faultless operation of our algorithms. We call a dataset consistent if for all
i; j we have xi = xj ) ci = cj . That is, each instance in the dataset has
a unique associated class. For such a dataset it makes sense to speak of
the class �(x) associated with an instance x. Another important distinction
we make in this paper is between monotone and non-monotone datasets.
In fact, the methods of Section 3 work only for monotone datasets whereas
those of Section 4 can be used also for non-monotone datasets. We call a
dataset monotone if for all i; j we have xi � xj ) ci � cj . It is easy to see
that a monotone dataset is necessarily consistent. In fact, if xi = xj then
we have xi � xj and xj � xi, so ci � cj and cj � ci, and consequently,
ci = cj . This discussion leads to the following formal de�nitions.

De�nition 1 A consistent dataset D is a pair (D;�) where D � X is a
�nite subset of the instance space X and � : D ! C is a class labeling of the
elements of D. The pairs (x; �(x)) with x 2 D will be called the examples

of the dataset.

Note that the class labeling � of a consistent dataset D = (D;�) is
not an allocation rule: it is only de�ned on D, a subset of X , while an
allocation rule must be de�ned on all elements of the instance space X . In
fact, a classi�cation problem for a consistent dataset consists of �nding an
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allocation rule f that is an extension of the class labeling � of the dataset
to the whole instance space X .

De�nition 2 A monotone dataset is a consistent dataset D = (D;�) for
which the implication (1) holds for all x;x0 2 D with f replaced by �.

We will now give an example of a monotone classi�cation problem. Sup-
pose a bank wants to base its loan policy on a number of features of its
clients, for instance on income, education level and criminal record. If a
client is granted a loan, it can be one in three classes: low, intermediate
and high. So, together with the loan option, we have four classes. Suppose
further that the bank wants to base its loan policy on a number of credit
worthiness decisions in the past. These past decisions are given in Table 1:

client income education crim.record loan

cl1 low low fair no
cl2 low low excellent low
cl3 average intermediate excellent intermediate
cl4 high low excellent high
cl5 high intermediate excellent high

Table 1: The bank loan dataset

A client with features at least as high as those of another client may expect
to get at least as high a loan as the other client. So, �nding a loan policy
compatible with past decisions amounts to solving a monotone classi�cation
problem with the dataset of Table 1.

In order to save space we will often map the values of the attributes of
a dataset to a set of numbers. For instance, Table 1 could be written as

X1 X2 X3 C

0 0 1 0
0 0 2 1
1 1 2 2
2 0 2 3
2 1 2 3

when we use the mapping low! 0, average ! 1, high! 2 for feature X1 =
income, etc. More often, we will write concisely
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001 0
002 1
112 2
202 3
212 3

for the above dataset.
Finally, we will establish some notation to be used throughout this paper:

� The minimal and maximal elements of C will be denoted by cmin and
cmax respectively.

� [a; b] denotes the interval fx 2 X : a � x � bg, where both a and b
are instance vectors from X .

� (a; b] denotes the interval fx 2 X : a < x � bg, where both a and b
are instance vectors from X .

� For all x 2 X , we de�ne the upset generated by x as

"x = fy 2 X : y � xg

and, if D is a subset of X the upset generated by D is de�ned as

"D =
[
x2D

"x:

� Similarly, for x 2 X , we de�ne the downset generated by x as

#x = fy 2 X : y � xg

and the downset generated by a subset D of X is de�ned as

#D =
[
x2D

#x:

2.1 Monotone Extensions of Datasets

As noted above the problem of �nding a solution to a monotone classi�cation
problem amounts to �nding a monotone extension f of the class labeling �
of a dataset D = (D;�). Formally, a function f : X ! C is an extension of
� : D ! C, if the restriction of f to D i.e. f jD = �. Or, if f(x) = �(x)
for all x 2 D. If D = (D;�) is monotone, we denote the collection of all
monotone extensions of � with M(D). Note that M(D) is partially ordered
by the order relation f � f 0 i� f(x) � f 0(x) for all x 2 X . We will now
de�ne two special elements of this collection.
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De�nition 3 If D = (D;�) is a monotone dataset, we de�ne �Dmin : X ! C,
and �Dmax : X ! C, as follows: for all x 2 X

�Dmin(x) =

�
maxf�(y) : y 2 D \ #xg if x 2 "D
cmin otherwise

and

�Dmax(x) =

�
minf�(y) : y 2 D \ "xg if x 2 #D
cmax otherwise.

We will now show1 that the functions �Dmin and �
D
max, as de�ned, are the

minimal resp. maximal elements of M(D).

Lemma 1 If D = (D;�) is a monotone dataset, for the functions �Dmin and

�Dmax the following statements hold:

(i) �Dmin; �
D
max 2M(D)

(ii) M(D) = ff : �Dmin � f � �Dmax and f monotoneg.

Theoretically, we now have at least two solutions for a monotone clas-
si�cation problem with dataset D = (D;�): the minimal and maximal ex-
tension of �. These two allocation rules we will call the minimal rule and
the maximal rule respectively. In addition we have for every point x in the
instance space bounds that any rule f must satisfy:

�Dmin(x) � f(x) � �Dmax(x):

Any monotone allocation rule that satis�es these bounds will be another
solution to our problem.

In Section 3 we will require the representation of our allocation rule to
have a speci�c form, viz. the form of a classi�cation tree or decision tree.

2.2 Quasi-monotone Allocation Rules

As can been seen in Makino et al. [10] for the two-class problem, it may
be hard to �nd an exact solution to a monotone classi�cation problem.
Therefore, Makino et al. introduce the concept of quasi-monotonicity, which

1The proofs of all lemmas in this paper can be found in [12].
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we generalize here to the k class problem. An allocation rule f will be called
quasi-monotone for dataset D = (D;�) if for all x;x0 2 X

x � x0 and [x;x0] \D 6= ; ) f(x) � f(x0): (2)

Recall that [x;x0] is the interval from x to x0. So, for a quasi-monotone
allocation rule (1) needs to hold only for pairs of instances that have at
least one data-example in between them.

The set of quasi-monotone extensions of dataset D will be called Q(D).
It is clear that M(D) � Q(D), since monotonicity is stronger than quasi-
monotonicity.

b

b

b

bc

bc

0

1

1

P

P
0

X1

X2 A

B

Figure 1: A quasi-monotone classi�cation rule, that is not monotone

In Figure 1 we give an example of a quasi-monotone classi�cation rule
that is not monotone. In this example we have a dataset with two attributes
X1 and X2 and two classes (0 and 1). Both attributes are numerical with
values in some interval, say [0; 1]. The dataset contains three examples which
have been marked in the �gure with their classes, one example with class=0
and two with class=1. A quasi-monotone classi�cation rule, that extends
this dataset, is any rule that assigns class=0 to the points in the horizontally
shaded area A, and class 1 to the points in vertically shaded area B. It does
not matter what class is assigned to the points in the non-shaded area. So,
if we assign class=1 to point P and class=0 to point P 0, then it follows from
P � P 0 and 1 = f(P ) > f(P 0) = 0 that a non-monotone classi�cation rule
results, which is quasi-monotone as long as it stays 0 at A and 1 at B.

Using the notation of Section 2.1 we can give a useful characterization
of the concept of quasi-monotonicity and of the set Q(D).
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Lemma 2 If D = (D;�) is a monotone dataset, then

Q(D) = ff : �Dmin � f � �Dmax; fquasi-monotone for Dg:

Thus, the minimal monotone allocation rule �Dmin for a dataset D, is also
the minimal quasi-monotone allocation rule.

If f : X ! C is any allocation rule, we de�ne the allocation rules f̂ and
�f as

f̂(x) = maxff(y) : y � xg

and
�f(x) = minff(y) : y � xg

for x 2 X . It is easy to see that, for all x 2 X

�f(x) � f(x) � f̂(x)

and �f and f̂ are monotone. In fact, it can be easily shown that f̂ is the
least monotone major of f , and �f is the greatest monotone minor of f .
Using these functions �f and f̂ we can give the following characterizations of
monotonicity and quasi-monotonicity.

Lemma 3 If f : X ! C is an arbitrary allocation rule, then

f monotone , for all x 2 X : �f(x) = f̂(x)

Lemma 4 If D = (D;�) is a monotone dataset and f : X ! C is an

extension of �, then

f quasi-monotone for D , for all x 2 D : �f(x) = f̂(x)

So, a monotone allocation rule coincides with its least monotone major
and its least monotone minor on the whole instance space, while for a quasi-
monotone rule this is only true for instances in the dataset.

In order to ensure the algorithms to work for both discrete and con-
tinuous instance spaces, we need one more concept that we will call D -
granularity. For a consistent dataset D = (D;�) we de�ne

D i = fxijx 2 Dg for i = 1; : : : ; p

and
D = D 1 � D 2 � : : : � D p :
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Since D is �nite, D i and D are �nite sets as well. In fact, D is a �nite lattice
with minimal element dmin and maximal element dmax. Now, for each x 2 X
with x � dmin we de�ne the D -approximation ~x of x as follows:

~xi = maxfd 2 D i : d � xig for i = 1; : : : ; p

and
~x = (~x1; : : : ; ~xp):

We will call an allocation rule f : X ! C to be D -granular for dataset D,
if for all x 2 X with x � dmin we have f(x) = f(~x). Thus, f is D -granular
if it is constant on all regions that have the same D -approximation.

3 Methods for monotone data

Classi�cation or decision trees have long been used for classi�cation prob-
lems. Well-known introductions to this �eld can be found in [7] and [14].
In this paper we will only consider so-called univariate decision trees: at
each split the decision to which of the disjoint subsets an element belongs,
is made using the information from one feature or attribute only. Within
this class of univariate decision trees, we will only consider so-called binary

trees. For such trees, at each node a split is made using a test of the form

Xi � c (orXi < c)

for some c 2 Xi; 1 � i � n. Thus, for a binary tree, in each node2 the
associated set T � X is split into the two subsets T` = fx 2 T : xi � cg and
Tr = fx 2 T : xi > cg. An example of a univariate binary decision tree is
the following:

2By slight abuse of language in the sequel we will make no distinction between a node
or leaf and its associated subset.
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X2 � 1:8��
��

X1 � 4:5��
��

X3 � 0:5��
��

c1
�
�� S

SS
c2

�
�� S

SS
c2

�
�
�
�� Q

Q
Q
QQ

X3 � 2:7��
��

c2
�
�� S

SS
c3

Figure 2: Univariate Binary Decision Tree: Example

This tree splits the instance space X = R
3 into the �ve regions

T1 = fx 2 R
3 : x1 � 4:5; x2 � 1:8; x3 � 0:5g

T2 = fx 2 R
3 : x1 � 4:5; x2 � 1:8; x3 > 0:5g

T3 = fx 2 R
3 : x1 > 4:5; x2 � 1:8g

T4 = fx 2 R
3 : x2 > 1:8; x3 � 2:7g

T5 = fx 2 R
3 : x2 > 1:8; x3 > 2:7g

the �rst and the last of which are classi�ed as c1 and c3 respectively, and the
remaining regions as c2. The allocation rule that is induced by a decision
tree T will be denoted by fT .

Lemma 5 If X is an instance space with continuous features and T is a

univariate binary decision tree on X , then if T � X is the subset associated

with an arbitrary node or leaf of T ,

T = fx 2 X : a < x � bg = (a; b] (3)

for some a; b 2 X with a � b.

Here we use the expression X instead of X , because in some cases X
would have to be extended with in�nity-elements in order to have a repre-
sentation of form (3) for each node or leaf.

If X is an instance space with discrete features, then any subset T asso-
ciated with a univariate binary decision tree T on X will satisfy

T = fx 2 X : a � x � bg = [a; b] (4)
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for some a; b 2 X , with a � b. As an abbreviation we will use the notation
T = [a; b] for a set of this form. Below we will call min(T ) = a the minimal

element3 and max(T ) = b the maximal element of T . Together, we call these
the corner elements of the node T .

3.1 Testing the Monotonicity of a Decision Tree

In this subsection we describe an eÆcient algorithm for testing whether a
given decision tree T is monotone or not. A naive way to test the monotonic-
ity of a decision tree T would be to check all pairs of instances x;x0 2 X ,
determine fT (x) and fT (x

0) by throwing them through the tree and check
whether we �nd a non-monotonicity like x � x0 and at the same time
fT (x) > fT (x

0). Of course, this method would be very time consuming
and, in the continuous case, even sheer impossible. Fortunately, there is
a straightforward manner to test the monotonicity using the maximal and
minimal elements of the leaves of the decision tree:

for all pairs of leaves T; T 0:

if
�
fT (T ) > fT (T

0) and min(T ) < max(T 0)
�
or�

fT (T ) < fT (T
0) and max(T ) > min(T 0)

�
then stop: T not monotone

It is easy to check that a decision tree is passed through the above algorithm
without stopping, if and only if the tree is monotone.

3.2 The Direct Method

In this subsection we will describe the algorithm proposed in [12] for the
induction of a monotone binary decision tree from a monotone dataset. The
algorithm has been tested extensively on arti�cial and real world data, see
[13] for an application to a bankruptcy problem. We will �rst describe
the algorithm for the case of a discrete feature space. At the end of the
section we will indicate what changes are needed to run this algorithm in
the continuous case.

An algorithm for the induction of a decision tree T from a dataset D
contains the following ingredients:

� a splitting rule S: de�nes the way to generate a split in each node,

3In the continuous case this de�nition implies min(T ) 62 T , but that does not lead to
any complications.
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� a stopping rule H: determines when to stop splitting and form a leaf,

� a labeling rule L: assigns a class label to a leaf when it is decided to
create one.

If S;H and L have been speci�ed, then an induction algorithm according
to these rules can be recursively described as in Figure 3.

tree(X ;D0):
split(X ;D0)

split(T;var D):
D := update(D; T );
if H(T;D) then
assign class label L(T;D) to leaf T

else

begin

(T`; Tr) := S(T;D);
split (T`;D);
split (Tr;D)

end

Figure 3: Monotone Tree Induction Algorithm

In this algorithm outline there is one aspect that we have not mentioned
yet: the update rule. In the algorithm we use, we shall allow the dataset to
be updated at various moments during tree generation. During this process
of updating we will incorporate in the dataset knowledge that is needed to
guarantee the monotonicity of the resulting tree.

Note, that D must be passed to the split procedure as a variable param-
eter, since D is updated during execution of the procedure.

In addition to the update rule, we need to specify a splitting rule, a
stopping rule and a labeling rule. Together these are then plugged into the
algorithm of Figure 3 to give a complete description of the algorithm under
consideration.

We start with describing the update rule. When this rule �res, the
dataset D = (D;�) will be updated: at most two elements will be added to
the dataset, each time the update rule �res. As soon as a node T is accessed,
either the minimal element of T or the maximal element, or both will be
added to D, provided with a well-chosen class labeling. If both these corner
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elements of T already belong to D, nothing changes. Here is the complete
update rule:

update (var D; T ):
a := min(T );
b := max(T );
if a 62 D then

begin

�(a) := �Dmax(a);
D := D [ fag

end;
if b 62 D then

begin

�(b) := �Dmin(b);
D := D [ fbg

end;
return D = (D;�)

Figure 4: The Standard Update Rule

So, when a minimal element of node T is added to the dataset, it gets the
highest possible class label. In contrast, a maximal element that is added to
the dataset will receive the lowest possible class label. The reason for this
choice has to do with the desire to produce a small tree. It speeds up the
course towards homogeneous leaves.

The splitting rule S(T;D) must be such that at each node the associated
subset T is split into two nonempty subsets

S(T;D) = (T`; Tr) with T` = fx 2 T : xi � cg
and Tr = fx 2 T : xi > cg

(5)

for some i 2 f1; : : : ; pg, and some c 2 Xi. Furthermore, the splitting rule
must satisfy the following requirement: i and c must be chosen such that

9x;x0 2 D \ T with �(x) 6= �(x0);x 2 T` and x0 2 Tr: (6)

Next, we consider the stopping rule H(T;D). As a result of the actions of
the update rule, both the minimal element min(T ) and the maximal element
max(T ) of T belong to D. Now, as a stopping rule we will use:

H(T;D) =

�
true if �(min(T )) = �(max(T )),
false otherwise.

(7)
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Finally, the labeling rule L(T;D) will be simply:

L(T;D) = �(min(T )) = �(max(T )): (8)

For the proof that this algorithm works we will need two lemmas. The
�rst of these lemmas tells us that if we add an instance to a dataset while
giving it a class label that is in between the lower and upper bounds that
are given by the dataset as it is now, the dataset remains monotone. The
second lemma tells us that if the minimal and maximal element of a node
both have the same class label, then we can make this node into a leaf with
that class label.

Lemma 6 Let D = (D;�) be a monotone dataset with D � X and � : D !
C. Let x+ be an arbitrary instance vector with x+ 62 D, and let c 2 C be

such that

�Dmin(x
+) � c � �Dmax(x

+):

If D+ = (D+; �+) is de�ned as follows:8<
:

D+ = D [ fx+g

�+(x) =

�
�(x) for x 2 D
c for x = x+

then the following assertions are true:

(i) D+ is a monotone dataset,

(ii) �Dmin � �D
+

min � �D
+

max � �Dmax

(iii) M(D+) �M(D).

(iv) Q(D+) � Q(D).

Lemma 7 If D = (D;�) is a monotone dataset and a; b 2 D, such that

a � b and �(a) = �(b) = c 2 C, then for all monotone allocation rules

f 2M(D) we have for all x 2 T = fx 2 X : a � x � bg

f(x) = c:

Now we can formulate and prove the main theorem of this section.

Theorem 1 Let X be a �nite instance space with discrete features and let

D = (D;�) be a monotone dataset on X . If the functions S;H;L satisfy

the requirements (5),(6),(7) and (8), then the algorithm of Figure 3 together
with the update rule of Figure 4 will generate a monotone decision tree T
with fT 2M(D).
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Proof: The update rule of the algorithm generates a �nite sequence of
datasets D1;D2; : : : ;Dk, with Di = (Di; �i); Di 2 X ; �i : Di ! C; 1 � i � k,
such that, according to Lemma 6, each Di is monotone, D � D1 � D2 �
: : : � Dk,

�Dmin � �D1

min � : : : � �Dk

min � �Dk

max � : : : � �D1

max � �Dmax;

and
M(Dk) � : : : �M(D1) �M(D):

The update rule guarantees, that the minimal and maximal element of each
node, where the stopping rule �res, are members of the dataset. For such
a node, Lemma 7 asserts there is only one labeling possible. For the last
dataset Dk we must have: all minimal and maximal elements of all leaves
are members of Dk, so M(Dk) will consist of just one member: fT . The
process must be �nite since we have a �nite instance space X , and each Di

must be a subset of X . 2
Note, that this theorem actually proves a whole class of algorithms to

be correct: the requirements set by the theorem to the splitting rule are
quite general. Nothing is said in the requirements about how to select the
attribute Xi and how to calculate the cut-o� point c for a test of the form
t = fXi � cg. Obvious candidates for attribute-selection and cut-o� point
calculation are the well-known impurity measures like entropy, Gini or the
twoing rule, see [7].
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�
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3

Figure 5: Monotone Decision Tree for the Bank Loan Dataset

As an illustration of the operation of the presented algorithm we will
use it to generate a monotone decision tree for the dataset of Table 1. As
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an impurity criterion we will use entropy, see [14]. Starting in the root,
we have T = X , so a = 000 and b = 222. Now, �Dmax(000) = 0 and
�Dmin(222) = 3, so the elements 000:0 and 222:3 are added to the dataset,
which then consists of 7 examples. Next, six possible splits are considered:
X1 � 0;X1 � 1; X2 � 0;X2 � 1;X3 � 0 and X3 � 1. For each of these
possible splits we calculate the decrease in entropy as follows. For the test
X1 � 0, the space X = [000; 222] is split into the subset T` = [000; 022] and
Tr = [100; 222]. Since T` contains three data elements and Tr contains the
remaining four, the average entropy of the split is 3

7 � 0:92 + 4
7 � 1 = 0:97.

Thus, the decrease in entropy for this split is 1:92 � 0:97 = 0:95. When
calculated for all six splits, the split X1 � 0 gives the largest decrease in
entropy, so it is used as the �rst split in the tree. Proceeding with the left
node T = [000; 022] we start by calculating �Dmin(022) = 1 and adding the
element 022:1 to the dataset D, which will then have eight elements. We
then consider the four possible splits X2 � 0;X2 � 1; X3 � 0 and X3 � 1,
of which the last one gives the largest decrease in entropy, and leads to the
nodes T` = [000; 021] and Tr = [002; 022]. Since �Dmin(021) = 0 = �(000), T`
is made into a leaf with class 0. Proceeding in this manner we end up with
the decision tree of Figure 5 which is easily checked to be monotone.

A useful variation of the above algorithm is the following. We change
the update rule to
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update (var D; T ):
if T is homogeneous then

begin

a := min(T );
b := max(T );
if a 62 D then

begin

�(a) := �Dmax(a);
D := D [ fag

end;
if b 62 D then

begin

�(b) := �Dmin(b);
D := D [ fbg

end

end

Figure 6: Update Rule: a variation

thus, only adding the minimal and maximal elements of a node T to the
dataset if the node is homogeneous, i.e. if

8x;y 2 D \ T : �(x) = �(y):

The splitting rule, stopping rule and labeling rule remain the same. With
these changes the theorem remains true as can be easily seen. However,
whereas with the standard algorithm from the beginning one works at 'mono-
tonizing' the tree, this algorithm starts adding corner elements only when it
has found a homogeneous node. For instance, if one uses maximal decrease
of entropy as a measure of the performance of a test-split t = fXi � cg, this
algorithm is equal to Quinlan's C4.5-algorithm, until one hits upon a homo-
geneous node; from then on our algorithm starts adding the corner elements
min(T ) and max(T ) to the dataset, enlarging the tree somewhat, but making
it monotone. We call this process cornering. Thus, the algorithm of Figure 6
can be seen as a method that �rst builds a traditional (non-monotone) tree
with a method such as ID3, C4.5 or CART, and next makes it monotone
by adding corner elements to the dataset. This observation yields also the
possible use of this variant: if one has an arbitrary (non-monotone) tree for
a monotone classi�cation problem, it can be 'repaired' i.e. made monotone
by adding corner elements to the leaves and growing some more branches
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where necessary.
As an example of the use of this remark, suppose we have the following

monotone dataset D:

000 0
001 1
100 0
110 1

Suppose further, that someone hands us the following decision tree for clas-
sifying the above dataset:

X1 � 0��
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��

0
�
�� S

SS
1

�
�
�
�� Q

Q
Q
QQ

X2 � 0��
��

0
�
�� S

SS
1

Figure 7: Non-monotone Decision Tree

This tree indeed classi�es D correctly, but although D is monotone, the
tree is not. In fact, it classi�es data element 001 as belonging to class 1 and
101 as 0. Clearly, this is against monotonicity rule (1). To correct the above
tree, we apply the algorithm of Figure 6 to it. We add the maximal element
of the third leaf 101 to the dataset with the value �Dmin(101) = 1. The leaf
is subsequently split and the resulting tree is easily found to be monotone:
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Figure 8: The above tree, but repaired

Of course, if we would have grown a tree directly with the above dataset
D with the standard algorithm we would have ended up with a smaller tree,
which is equally correct and monotone:
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Figure 9: Monotone Tree produced by the Standard Algorithm

Nevertheless, it helps to know that we can make an arbitrary tree mono-
tone by splitting up some of the leaves and adding a few more branches.

The main algorithm of this section further suggests a new impurity mea-
sure to be used as an attribute selection criterion. First note, that for each
T = fx 2 X : a � x � bg with T \D 6= ; we have

�Dmax(a) � �Dmin(b):
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This can be seen as follows: let x0 be an element of T \D, then

�Dmax(a) � �(x0) � �Dmin(b):

We now de�ne the variation of the dataset on T as

var (T ) = j[�Dmax(a); �
D
min(b)]j � 1;

the number of di�erent class labels that are possible within node T minus
one. It is clear that var(T ) = 0 i� �Dmax(a) = �Dmin(b). Clearly, this measure
can be used as an impurity measure, and the decrease in variation can be
taken as an attribute selection criterion. However, experiments have shown
that it is inferior to entropy or Gini: trees grown with this impurity measure
tend to be somewhat larger than those grown with entropy or the Gini-index.

3.2.1 Changes Needed for Continuous Attributes

Here we will sum up the changes that need to be made to the described
algorithms in case one or more of the attributes is continuous. For simplicity
of notation we will assume that all attributesXi; 1 � i � p; are continuous on
a �nite or in�nite subinterval Xi of R. If in practice, some of the attributes
are discrete while others are continuous, the reader can easily adapt the
described procedures to that situation.

Thus, we assume that we have an in�nite instance space X = X1� : : :�
Xp, with Xi a subinterval of R, the set of real numbers. However, the dataset
D = (D;�) will always be �nite. In particular, let us assume that attribute
Xi has values

x
(1)
i < x

(2)
i < : : : < x

(ki)
i

in the dataset D, where ki is the number of di�erent values that attribute
Xi has in the dataset D. Of course, ki � jDj. In fact, with probability one
we have ki = jDj, but, because of rounding o�, in practice ki < jDj will
often occur. Now, we de�ne

XD
i = fx

(1)
i ; : : : ; x

(ki)
i g

and
XD = XD

1 �XD
2 � : : :�XD

p :

Thus, XD is a �nite space which includes all instances in D, and which
is discrete. So we have mapped the classi�cation problem with in�nite in-
stance space X onto a classi�cation problem with �nite space XD. Using the
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methods of this section we can generate a decision tree for the classi�cation
problem on XD. The �nal step then will be to translate this decision tree
on XD to a decision tree on X .

Let T be a binary monotone decision tree on XD, generated by one of
the methods of this section using dataset D. Each test of this tree will have
either the form

Xi � x
(j)
i (9)

for some j with 1 < j � ki, for some i 2 f1; : : : ; pg. With a test of the form
(9) j = ki is impossible since in that case one of the splitted sets would be
empty.

Now, we replace each test of the form (9) by

Xi �
x
(j)
i + x

(j+1)
i

2
:

These changes will give us a binary decision tree on X that classi�es the
dataset D correctly.

As an example, let us assume we have a dataset with one continuous
attribute X1, while all other attributes are discrete. Let us further assume
that X1 has values

0.51 0.98 1.43 2.87 3.11

in the dataset. With these values, seen as discrete values, a decision tree
is built which happens to have two nodes in which X1 plays a role: in one
node we have a test X1 � 0:98 and in the other node we have X1 � 2:87.
Both tests are subsequently replaced by X1 � (0:98+1:43)=2 or X1 � 1:205
and X1 � (2:87 + 3:11)=2 or X1 � 2:99 respectively. This is similar to
applying a continuity correction when approximating a discrete distribution
by a continuous distribution in statistics.

As a �nal remark, note that in practice it is usually advisable to discretize
continuous attributes, since working with too many values per attribute
leads to prohibitive computing times.

3.3 An Indirect Method

In this subsection we present an alternative to the method of Section 3.2
using the concept of quasi-monotonicity. According to this method, we �rst
build a quasi-monotone tree using an algorithm that appears to be some-
what faster than the direct algorithm. Subsequently, this quasi-monotone
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tree is tested for monotonicity. If it is monotone already, we are done. If
not, we can use the repairing algorithm from Section 3.1 to �x it. As shown
in Section 2.2 such a quasi-monotone decision tree can only have minor local
non-monotonicities that are relatively easy to �x by splitting up a few more
leaves. The main advantage of this method is that it is slightly faster than
the direct method on most datasets. Another advantage is that it works for
continuous attributes as well as for discrete attributes: we do not have to
make special arrangements like those in Section 3.2.1. Just like the direct
algorithm of Section 3.2, this method also needs a completely monotone
dataset. The algorithm presented here for building quasi-monotone decision
trees was proposed by Makino [10] for two class problems and was general-
ized by Potharst[12] to k-class problems. It was tested on arti�cial and real
world data by these authors.

In this section our decision trees will have splits of the form xi < c for
some c 2 Xi; 1 � i � p. Thus, in each node the associated set T � X is split
into the two subsets T` = fx 2 T : xi < cg and Tr = fx 2 T : xi � cg.

We shall now show how we can generate D a quasi-monotone binary
decision tree T from a monotone dataset. As noted above, for such an
algorithm we need a splitting rule S, a stopping rule H and a labeling rule
L. If S;H and L have been speci�ed, then an induction algorithm according
to these rules can be recursively described as in Figure 10.

tree(X;D0):
split(X;D0)

split(T;D):
if H(T;D) then
assign class label L(T;D) to leaf T

else

begin

(T`; Tr) := S(T;D);
D` := update(D; `);
Dr := update(D; r);
split (T`;D`);
split (Tr;Dr)

end

Figure 10: Quasi-monotone Tree Induction Algorithm

In this algorithm outline again an update rule is mentioned. Like in
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update (D; side) :
if side = ` then

begin

D` := (D`; �`);
return D`

end;
if side = r then

begin

Dr := (Dr; �r);
return Dr

end

Figure 11: The update rule

the algorithms of Section 3.2, we shall allow the dataset to be updated at
various moments during tree generation. During this process of updating
we will incorporate in the dataset knowledge that is needed to guarantee
the quasi-monotonicity of the resulting tree. As opposed to the algorithm of
Section 3.1 where we worked with only one global dataset, in this algorithm
we work with local datasets in the following sense: each time we make a split
the dataset is also split into two parts: a left dataset and a right dataset.
To each of these datasets vital information from the other dataset is added
by projecting points from the other side to this side. How this projection is
executed will be described below.

Each time the splitting rule S splits a node T into a left node T` and
a right node Tr, the dataset D = (D;�) must accordingly be split into a
dataset D` = (D`; �`) and a dataset Dr = (Dr; �r). This is done by the
update rule, which is described in Figure 11.

Here D` and Dr are de�ned as

D` = (D \ T`) [ �`((D \ Tr) nDmax);
Dr = (D \ Tr) [ �r((D \ T`) nDmin):

In these formulae the projections �` and �r are de�ned as follows. Suppose
Si;c splits T into T` and Tr. Thus, T` = fx 2 T : xi < cg and Tr = fx 2 T :
xi � cg. Then, for x 2 Tr we de�ne �`(x) = x0 2 T` as

x0j =

�
xj for j 6= i
maxfd 2 D i : d < cg for j = i:

(10)
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On the other hand, for x 2 T` we de�ne �r(x) = x0 2 Tr as

x0j =

�
xj for j 6= i
c for j = i:

(11)

Furthermore, for A � X we de�ne �`(A) =
S

a2A �`(a) and �r(A) =S
a2A �r(a).
The sets Dmin and Dmax are de�ned as Dmin = fx 2 D : �(x) = cming

and Dmax = fx 2 D : �(x) = cmaxg. Finally, the labelings �` and �r are
de�ned as follows:

�`(x) =

�
�(x) for x 2 D \ T`
�Dmin(x) for x 62 D \ T`;

(12)

and

�r(x) =

�
�(x) for x 2 D \ Tr
�Dmax(x) for x 62 D \ Tr:

(13)

The splitting rule S(T;D) must be such that at each node the associated
subset T is split into two nonempty subsets with T` = fx 2 T : xi < cg and
Tr = fx 2 T : xi � cg for some i 2 f1; : : : ; pg, and some c 2 Xi , while

T` and Tr are non-empty. (14)

Furthermore, the splitting rule must satisfy the following requirement: i and
c must be chosen such that

9x;x0 2 D \ T with �(x) 6= �(x0);x 2 T` and x0 2 Tr: (15)

The stopping rule H(T;D) will return true only if the node T is homo-
geneous, i.e. if for all x;x0 2 D we have �(x) = �(x0). In that case node T is
made into a leaf. Finally, the labeling rule L(T;D) will assign this uniform
class to a new leaf.
Now we can formulate the main result of this subsection.

Theorem 2 If D = (D;�) is a monotone dataset on instance space X and

if the functions S;H;L satisfy (12), (13), (14) and (15), then the algorithm
speci�ed in Figure 10 and Figure 11 will generate a quasi-monotone decision

tree T with fT 2 Q(D).

Again, this theorem actually proves a whole class of algorithms to be
correct: the requirements set by the theorem to the splitting rule are quite
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general. Nothing is said in the requirements about how to select the attribute
Xi and how to calculate the cut-o� point c for a test of the form t = fxi < cg.
As noted above, obvious candidates for attribute-selection and cut-o� point
calculation are the well-known impurity measures like entropy, Gini or the
twoing rule, see [7]. Below, we will give an example that makes use of the
entropy measure.

Before we prove the above theorem we will present the following lemma.

Lemma 8 Let T � X be a subset of X, and let D = (D;�) be a monotone

dataset with D � T . Furthermore, let Si;c be a split of T into T` and Tr,
and let D` and Dr be de�ned by (12) and (13). Then we have

a) D` and Dr are monotone datasets on T` and Tr respectively.

Furthermore, let f : T ! C be a D -granular function on T , let f` = f jT`
(resp. fr = f jTr) be the restriction of f to T` (resp. Tr). Then we have

b) if f` is quasi-monotone with respect to D` and fr is quasi-monotone

with respect to Dr, then f is quasi-monotone with respect to D.

Using this lemma, we easily prove the above theorem.
Proof of the theorem : Lemma 8a guarantees that with each split of

a node T into T` and Tr we get two new datasets D` and Dr that are both
monotone. This guarantees the existence of a quasi-monotone f on T` and
Tr. Since D is �nite, the number of possible splits is �nite, and the tree must
necessarily be �nite. Now, in each leaf T of the �nished tree, we have: DT

is homogeneous. So fT (x) = k, for all x 2 T . This state of a�airs trivially
satis�es the de�nition of quasi-monotonicity: fT is quasi-monotone for DT

on leaf T . Since this is the case for each leaf, from Lemma 8b we infer that
fT must be quasi-monotone on X. 2.

We will now use the presented algorithm to generate a quasi-monotone
decision tree for the dataset of Table 1. As an impurity measure we will use
entropy. Starting in the root of the tree we have T = X = [000; 333). Since
D 1 = f0; 1; 2g, D 2 = f0; 1g, D 3 = f1; 2g we have 3 � 2 � 2 = 12 possible
splits. Of these twelve only four satisfy criteria (14) and (15), namely x1 < 1,
x1 < 2, x2 < 1 and x3 < 2. First, consider the split generated by the test
x1 < 1. Now, D` = f011:0, 002:1, 012:1g. The last element of this dataset
stems from the projection of the element 112 : 2 of the original dataset D,
using the fact that �Dmin(012) = 1. Next, Dr = f102:2, 112:2, 202:2, 212:3g
where the �rst element stems from the projection of 002:1 and the fact that
�Dmax(102) = 2. Note, that the elements 001 and 212 of D are not projected
since they belong to Dmin and Dmax respectively. The entropy of this split
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can be calculated as 3
7 � 0:9183 + 4

7 � 0:8113 = 0:8571; so the decrease in
entropy of the other three splits x1 < 2, x2 < 1 and x3 < 2 can be calculated
as 0.5886, 0.6712 and 1.0647 respectively. Since the �rst and the last split
give the highest decrease in entropy, we pick just one of these, e.g. x1 < 1,
as �rst split of the decision tree.

Proceeding with the left node T = [000; 133) with dataset f001:0, 002:1, 012:1g,
we �rst note that only two possible splits satisfy criteria (14) and (15),
namely x2 < 1 and x3 < 2. The second of these gives the greatest decrease in
entropy and leads to a homogeneous D` and Dr, namely D` = f011:0, 011:0g
and Dr = f002:1, 012:1g. Thus, node T = [000; 133) is split into the leaves
[000; 132) with class 0 and [002; 133) with class 1.

Proceeding in this manner we end up with the decision tree in Figure 12.
This decision tree is in fact not only quasi-monotone but even monotone.
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Figure 12: (Quasi-)monotone Decision Tree for the Bank Loan dataset

Furthermore, it represents the same allocation rule as the decision tree
of Figure 5.

4 Methods for non-monotone data

The algorithms discussed so far work for monotone datasets. Even if the true
underlying relation is monotone, the observed data may, as a consequence of
noise, not be. Furthermore, sometimes we simply require that the allocation
rule be monotone, even if we believe that the underlying relation is not.
In that case the task is to �nd a monotone model with good predictive
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performance.
In this section we look at two approaches that can handle non-monotone

and inconsistent datasets.

4.1 The Weighted Sum Method

Ben-David [2], proposes a tree induction algorithm that is similar to well-
known algorithms such as C4.5 and CART. The important di�erence with
those algorithms is that the splitting rule includes a measure of the degree
of monotonicity of the tree in addition to the usual impurity measure.

To this end a k � k symmetric non-monotonicity matrix M is de�ned,
where k equals the number of leaves of the tree constructed so far. The mij

element of M equals 1 if leaf Ti is non-monotonic with respect to leaf Tj and
0 otherwise. Clearly, the diagonal elements of M are 0. A non-monotonicity
index I is de�ned as follows

I =
W

k2 � k
;

whereW denotes the sum ofM 's entries, and k2�k is the maximum possible
value of W for any tree with k leaves [2]. Note however that this maximum
can only be achieved if there are at least k distinct classes.

Based on this non-monotonicity index the order-ambiguity-score of a
decision tree is de�ned as follows

A =

�
0 if I = 0
�(log2 I)

�1 otherwise

Finally the splitting rule is rede�ned to include the order- ambiguity-
score

S = E + �A;

where S denotes the total-ambiguity-score to be minimized, E is the well-
known entropy measure, and � is a parameter that expresses the importance
of monotonicity relative to inductive accuracy. The quality of each split is
determined by computing its total-ambiguity-score, where A is the order-
ambiguity-score of the tree that results from the split.

Note thatW is a rather crude measure of the degree of non-monotonicity
of a tree, since each non-monotonic leaf pair has equal weight. A possible
improvement would be to weight the di�erent leaves according to their prob-
ability of occurrence. The matrix M 0 could now be de�ned as follows. The
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mij element of M 0 equals p(Ti) � p(Tj) if leaf Ti is non-monotonic with re-
spect to leaf Tj and 0 otherwise, where p(Ti) denotes the proportion of cases
in leaf Ti. The non-monotonicity index becomes

I 0 =
W 0

(k2 � k)=k2
=

W 0

1� 1=k
;

whereW 0 is again the sum of the entries ofM 0, and the maximum is attained
when all possible leaves are non-monotonic with respect to each other and
occur with equal probability 1=k. W 0 is an estimate of the probability that
if we draw two points at random from the feature space, these points turn
out to lie in two leaves that are non-monotonic with respect to each other.
Note that p(Ti)�p(Tj) is an upperbound for the degree of non-monotonicity
between node Ti and Tj because not all elements of Ti and Tj have to be
non-monotonic with respect to each other.

The most straightforward way to measure the degree of non-monotonicity
of a tree would be to use it to label all data, and simply count the number
of non-monotonic pairs created by the labeling. This is however computa-
tionally rather demanding since this should be performed for the collection
of trees that results from applying each possible split.

4.2 A Generate-and-Test Approach

The use of a measure of monotonicity in determining the best split, as
discussed in the previous section, has certain drawbacks. Monotonicity is
a global property, i.e. it involves a relation between di�erent leaf nodes of
a tree. If the degree of monotonicity is measured for each possible split
during tree construction, the order in which nodes are expanded becomes
important. For example, a depth-�rst search strategy will generally lead
to a di�erent tree then a breadth-�rst search. Also, and perhaps more
importantly, a non-monotonic tree may become monotone after additional
splits.

In view of these drawbacks, we consider an alternative approach in this
section. Rather than enforcing monotonicity during tree construction, we
generate many di�erent trees and check if they are monotonic. The col-
lection of trees may be obtained by drawing bootstrap samples from the
training data, or making di�erent random partitions of the data in a train-
ing and test set. This approach allows the use of a standard tree algorithm
except that the minimum and maximum elements of the nodes have to be
recorded during tree construction, in order to be able to check whether the
�nal tree is monotone. This approach has the additional advantage that
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one can estimate to what extent the assumption of monotonicity is correct,
by looking at the proportion of monotone trees versus non-monotone trees
obtained.

The tree algorithm used is in many respects similar to the CART pro-
gram as described in [7]. The program makes binary splits and uses the
gini-index as splitting criterion. Furthermore it uses cost-complexity prun-
ing [7] to generate a nested sequence of trees from which the best one is
selected on the basis of test set performance. During tree construction,
the algorithm records the minimum and maximum element for each node.
These are used to check the whether a tree is monotone. In Figure 13 we
give pseudo-code for the tree construction algorithm with recording of the
corner elements of each node.
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growtree(X ,D : training sample):
T0 := X
for i 2 f1; : : : ; pg

mini(T0) := �1
maxi(T0) := +1

split(T0;min(T0); max(T0);D)

split(T; min(T ); max(T );D):
if leaf(T;D) then
assign class label L(T;D) to T

else

S := allsplits(T;D)
(j�; c�) := argmax(j;c)2S quality(j; c; T;D)
T` := fx 2 T : xj� < c�g
Tr := fx 2 T : xj� � c�g
for i 2 f1; : : : ; pg

mini(T`) := mini(T )
maxi(Tr) := maxi(T )
if i = j�

maxi(T`) := c�

mini(Tr) := c�

else

maxi(T`) := maxi(T )
mini(Tr) := mini(T )

split (T`; min(T`); max(T`);D)
split (Tr; min(Tr); max(Tr);D)

Figure 13: Tree Induction Algorithm with recording of node corners

The function leaf determines whether a node should be turned into a
leaf. This is the case when the node is homogeneous, all examples in the
node have identical attribute values, or the node contains too few examples
to be split any further. A class label is assigned to the leaf, by default based
on the majority rule.

The minimum and maximum element of root node T0 are set to �1
and 1 respectively. The updating of corner elements proceeds as follows.
The minimum of T` is identical to that of T , and the same goes for the
maximum of Tr. For the maximum of T` and the minimum of Tr, xj� (the
split attribute) is set to c� (the split value) and for all other attributes they
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are the same as the maximum and minimum of T respectively.
Determining the non-monotonic pairs of leaf nodes is straightforward:

take any pair (T; T 0) with fT (T ) > fT (T
0) and check if min(T ) < max(T 0).

If this is the case, then add (T; T 0) to the list of non-monotonic leaf-pairs.
In the next section we illustrate this algorithm by applying it to an

economic dataset concerning house prices.

Symbol De�nition

DISTR type of district, four categories ranked from bad to good
SURF total area including garden
RM number of bedrooms
TYPE 1. apartment

2. row house
3. corner house
4. semidetached house
5. detached house
6. villa

VOL volume of the house
STOR number of storeys
GARD type of garden, four categories ranked from bad to good
GARG 1. no garage

2. normal garage
3. large garage

Table 2: De�nition of attributes for house pricing example

4.3 Application to House Pricing

In this section we illustrate the resampling approach described in the previ-
ous section. We discuss its application to the prediction of the price-category
of a house in the city of Den Bosch (a medium sized Dutch city with ap-
proximately 120,000 inhabitants).

The attributes x1; x2; : : : ; xp are characteristics of the house. They have
been selected on the basis of interviews with experts of local house brokers,
and advertisements o�ering real estate in local magazines. The monotonicity
constraint makes sense for this application, since the better the characteris-
tics of a house, the higher the asking price. The most important attributes
are listed in Table 2.
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It is a relatively small data set with only 119 observations used for il-
lustrative purposes only. Of all 7021 distinct pairs of observations, 2217 are
comparable, and 78 are non-monotonic. For the purpose of this study we
have discretized the dependent variable (asking price) into the classes below
median (euro 157,955) and above median. After this discretization of the
dependent variable 9 pairs of observations are non-monotonic.

In order to determine the e�ect of application of the monotonicity con-
straint we repeated the following experiment 100 times. The dataset was
randomly partitioned (within classes) into a training set (60 observations)
and test set (59 observations). The training set was used to construct a se-
quence of trees using cost-complexity pruning. From this sequence the best
tree was selected on the basis of error rate on the test set (in case of a tie,
the smallest tree was chosen). Finally, it was checked whether the tree was
monotone and if not, the upperboundW 0 for the degree of monotonicity (as
de�ned in Section 4.1) was computed.

Out of the 100 trees thus constructed, 57 turned out to be monotone
and 43 not. The average misclassi�cation rate of the monotonic trees was
14.93% against 14.94% for the non-monotonic trees. Thus, the predicitive
accuracy was virtually identical.

vol

vol

surf

rm

surf

rm surf

< 400 � 400

1

< 330 � 330

0

< 150

0

� 150

< 3 � 3

1

< 208 � 208

< 6 � 6

0 1

< 427 � 427

1 0

1

2

3

4 5 6 7

8

surf

vol0

0 1

< 156 � 156

< 375 � 375

Figure 14: Example of non-monotonic (left) and monotonic tree
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Figure 14 depicts one of the 43 non-montonic trees (left part of the �gure)
and one of the 57 monotonic trees (right part of the �gure) obtained in the
experiment. Class label 0 corresponds to prices below the median and label
1 to prices above median. The number of a leaf is given directly below it. It
is easily veri�ed that the leaf-pairs (3,4), (3,7), (5,7) and (6,7) of the left tree
are non-monotone. The degree of non-monotonicity W 0 (see Section 4.1) of
this tree is only about 1%. The right tree is monotone and has only 3 leaf
nodes. The estimated error of the non-monotonic tree shown is 15.3%, and
the estimated error of the monotonic tree 13.6%.

The average degree of non-monotonicity W 0 of the non-monotonic trees
was about 1.6%, which is quite low, the more if we take into consideration
that this is an upper bound. Another interesting comparison is between the
average sizes of the trees. On average, the monotonic trees had about 3.19
leaf nodes, against 6.95 for the non-monotonic trees. Thus, the monotonic
trees are considerably smaller and therefore easier to understand. The vari-
ability around the mean number of leaf nodes can be used as a measure of
the stability of the trees generated. For the monotone trees, the variance of
the number of leaf nodes was 0.91 against 5.05 for the non-monotone trees.
Clearly then the monotone trees are more stable upon repeated sampling
than there non-monotone counterparts.

5 Discussion

Monotonicity is a common type of constraint on models in data mining. Fur-
thermore, monotonicity may be an important requirement for explaining and
justifying model outcomes. We have investigated the use of monotonicity
constraints in classi�cation tree algorithms.

We have presented algorithms that work on monotone data only, as well
as algorithms that work on both monotone and non-monotone data. The
former could be made more widely applicable by developing sensible methods
to make a non-monotone data set monotone by making as few adjustments
to the data as possible.

For non-monotone data we have presented two algorithms, the weighted-
sum method and a generate-and-test algorithm. In preliminary experiments
with the generate-and-test algorithm on house pricing data, we have found
that the predictive performance of monotone trees was comparable to the
performance of the non-monotone trees. However, the monotone trees were
much simpler and therefore more insightful and easier to explain. Further-
more, the monotone trees proved to be more stable upon repeated sampling.
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This provides interesting prospects for applications where monotonicity is
an absolute requirement, such as in many selection decision models.

An interesting, as yet unexplored, approach for non-monotone data would
be to use a pruning method that prunes towards monotone subtrees of the
initially grown tree. One could create a nested sequence of monotone sub-
trees of the initial tree, and select from this sequence the tree with the best
predictive accuracy on a test set. Another interesting extension of the work
surveyed in this paper is to consider multivariate classi�cation trees, where
each split may be based on more than one attribute.
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