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Abstract

In this article we consider the diffusion of similar technologies in a single market
composed of many locations. We address the identification of the influential loca-
tions that drive the aggregate sales of these new technologies based on aggregate
sales data and location specific online search data.

In this chapter we put forward a model where aggregate sales are a function
of the online search of potential consumers at many locations. We argue that a
location may be influential because of its power to drive aggregate sales and this
power may be dynamic and evolving in time. Second, the influential locations may
produce spillover effects over their neighbors and hence we may observe clusters
of influence. We apply Bayesian Variable Selection (BVS) techniques and we use
Multivariate Conditional Autoregressive Models (MCAR) to identify influentials
locations and their clustering.

We apply our methodology to the video-game consoles market and to new search
data of Google Insight. More precisely, we study the influential locations that drive
the sales growth of the Nintendo Wii, the Sony PS3 and Microsoft Xbox 360.
Specifically, we study the diffusion of these technologies at four different stages of
their life-cycle. In this way, we can identify the group of influential locations and
its composition in different sub-periods.

Our results indicate that the influential locations and their economic value (mea-
sured by search elasticities) vary over time. Moreover, we find significant geograph-
ical clusters of influential locations and the clusters composition varies during the
life-cycle of the consoles. Finally, we find weak evidence that demographics explain
the probability of a location to be influential. The main managerial implication of
our results is the notion that the group of influential locations and their clustering
varies during the life-cycle of a technology. Hence, managers should aim to identify
the identity plus the locations and the dynamics of influentials.

keywords: diffusion, new products, variable selection, spatial modeling
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1 Introduction

An important topic related to the diffusion of new technologies is the identification of

influentials. Influentials play an important role as opinion leaders and trend setters and

they critically affect the speed of adoption of new technologies (Van den Bulte and Joshi,

2007).

Recent attention is being given to the identification of the location and identities of

these influentials. In the literature, influentials are defined as individuals or groups of

individuals that influence the behavior of others in a significant way. Their influence has

been studied at the individual level (Trusov et al., 2010), at the firm level (Albuquerque

et al., 2007) and at the country level (van Everdingen et al., 2009). Influentials may have

a specific location in a social network (Trusov et al. (2010), Christakis and Fowler (2009),

Cho and Fowler (2007)) or a specific physical location (Choi et al. (2009), Goldenberg

et al. (2009)). Their influence can be limited to a few others (Christakis and Fowler,

2009, page 28) but their impact may also exceed national boundaries (van Everdingen

et al. (2009)).

In this article we study the diffusion of a number of similar and competing technologies

and we address the identification of the influential locations that drive the aggregate sales

of these new technologies. We put forward a model where sales are a function of the online

search registered at many different locations. We will refer to this model as the sales-

search model. We know that consumers search for technologies (or products) online and

we posit that online search should be a good predictor of sales. However, people in many

different locations search for products while only the consumers living in a subset of

these locations may be the key groups driving the sales of new technologies. Moreover,

the influential locations may not always be the same. And, the cross-influence among

locations may be important and time-varying or fixed in time.

We present an approach that is new to the marketing literature and we study new

search data obtained from Google Insight. Our novelty is that we use the sales-search
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model together with Bayesian Variable Selection techniques to select the locations that

are most likely driving the aggregate sales of these three new technologies. We use

this methodology because there are many possible important locations and a straight-

forward choice between them is not possible. In addition, we present a second model

with Multivariate Conditional Autoregressive priors (known as MCAR priors) to study

the cross-location influence, the significance of spatial clustering of influential locations

and the competing relationships between technologies. We will refer to this model as the

spatial model.

Our data consists of the aggregate weekly sales of the Nintendo Wii, the PlaySta-

tion 3 and the Microsoft Xbox 360 for the entire US market and online search data for

each of these products. The online search data were obtained from Google Insight and

these data consist of weekly indicators of online search for each of these technologies in

each US state. The data cover a period from the launch time of each technology up to

February 2010 (approximately four years) for both the sales and the online search data.

This dataset is attractive because it allows us study three very successful technologies

that receive worldwide interest. These three products were marketed simultaneously in

all US states and this fact allows us to discard the explanation that a region may become

influential because its products were available at an earlier introduction date relative to

other regions.1 Moreover, these technologies have unique names and they have kept these

unique names for long periods of time and therefore we can obtain reliable online search

data for all US states.2 The sales data we observe can be easily classified in different

periods of the products’ life-cycle and we will identify the influential locations at these

product life-cycle stages. We base these life-cycle stages on Rogers (2003) who suggests

that innovations are characterized by five periods when different groups of people (inno-

vators, early adopters, early majority, late majority and laggards) adopt an innovation.

In this way we will be able to uncover the location of influential groups of adopters at

1For example, the launch time of the products studied by van Everdingen et al. (2009) differs across
countries.

2Note that it is impossible to obtain state level sales data. We made inquiries at different market
research firms, including NPD group, and to our knowledge there are no firms collecting these data.
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different life-cycle phases of the products. Our results suggest that the influential re-

gions driving aggregate sales differ across the life-cycle of a technology. Moreover, our

approach uncovers geographical clustering of both influential and not influential regions.

Influential regions seem to be close to each other but we find that their influence and

the geographical clustering varies over time. In addition, we find only a weak association

between demographic information and the probability that a region is influential. Finally,

our results indicate that a 10% increase in local online search translates on average into a

1.5% percent increase in global sales but this number varies across regions and diffusion

periods and its range goes from 0 up to 3%.

The plan of the paper is as follows. In Section 2 we discuss previous literature and its

relationship to our work. In Section 3 we present our methodology. Later in Section 4

we give details about our data and some specific details regarding our model. In Section

5 we present our results and finally in Section 6 we conclude the paper. The statistical

methodology that we use is presented in detail in Section A.1 and Section A.2.

2 Literature Review

The literature related to our work can be classified into micro-studies of adoption, like

Choi et al. (2009), Goldenberg et al. (2009), Trusov et al. (2010), Garber et al. (2004)

and Jank and Kannan (2005), and into macro-studies of technology diffusion, like van

Everdingen et al. (2009), Albuquerque et al. (2007) and Putsis et al. (1997).

van Everdingen et al. (2009) examine the global spillover effects of product introduc-

tions and take-offs. They find that the product take-off in a country can help to predict

the take-off of the same product in different countries. In addition, they report asym-

metric patterns of influence and foreign susceptibility. The heterogeneity in the spill-over

effects is significantly explained by economic and demographic characteristics. Moreover,

van Everdingen et al. (2009) discuss briefly the time dimension of influence. Their results

suggest that there are countries that have a large impact on others late in the diffusion
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process, while other countries may have a smaller influence but sooner. Albuquerque

et al. (2007) study the global adoption of two ISO certification standards and their re-

sults indicate that cross-country influence is important and it improves the fit of their

model. They find that the role of culture, geography and trade in the adoption process is

different across the ISO standards. They use a multi-country diffusion model and there-

fore they assume that a firm’s adoption is influenced by previous cumulative number of

adoptions by other firms in different countries. Therefore, the global cumulative adop-

tions of ISO standards foster more adoptions. Albuquerque et al. (2007) also find that

the influence of cumulative past adoptions is stronger among firms close to each other or

between firms in neighboring countries. Finally, Putsis et al. (1997) study cross-country

and inter-country diffusion patterns and they report important cross-country influence

on diffusion. Their findings suggest that each country’s influence varies from product to

product.

The micro diffusion studies have documented the role and economic value of influen-

tial people in a social network (Trusov et al. (2010), Goldenberg et al. (2009)) and the

formation of spatial clusters (Garber et al. (2004), Choi et al. (2009), Jank and Kannan

(2005)). The study of Garber et al. (2004) deals with the spatial distribution of adoption.

They discovered that the spatial pattern at early stages of the diffusion of a technology

is an accurate predictor of new product success. They argue that spatial clustering is

a sign of imitation and therefore if the spatial distribution of adoption shows clusters

it is very likely that the diffusion process will continue and sales will eventually take

off. They compare the spatial distribution of adoption against a uniform distribution of

adoption and they find that successful products show an early spike of divergence be-

tween these two distributions (cross-entropy) while the cross-entropy of product failures

remains relatively constant and low.

More recently, Choi et al. (2009) studied the temporal and spatial patterns of adop-

tion in Pennsylvania and they discovered that the spatial clusters of adoption change over

time and that the cross-region (cross zip code) influence decays over time. In the same
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way, Jank and Kannan (2005) report spatial clusters of customers with the same price

sensitivity and preferences and they use spatial random effects to capture the geographi-

cal variation in preferences. The study of Hofstede et al. (2002) is focused in identifying

spatial country and cross-country segments and they find evidence of contiguous and

spatial clustering of consumer preferences. They argue that the spatial dependence in

preferences should be useful to define distribution and marketing decisions across coun-

tries. Bradlow et al. (2005) provide an overview of spatial models and their relationship

to marketing models. Finally, Trusov et al. (2010) and Goldenberg et al. (2009) suggest

that influentials can have a significant economic value and they may foster the diffusion

of new technologies.

In this paper we explore the time dimension and the spatial structure of influence at

the level between micro and macro, that is at the regional level within a country. The

objective of van Everdingen et al. (2009) and Albuquerque et al. (2007) is to identify the

cross-country influence while our objective is to discover whether a region is influential

and when it is influential. In contrast with previous research, in our study a region may be

influential initially while later it may exert no influence at all or the other way around.

That is, we consider the influence across the life-cycle of the products’ diffusion while

previous research has not focused particularly on this aspect. Moreover, the Bayesian

Variable Selection technique that we use to detect influentials also distinguishes our study

from previous work at a technical level. Finally, the visual inspection of our results

suggests important geographical clusters of influential regions and we study whether

these geographical clusters of influence are statistically relevant. For this latter purpose,

we fit a spatial model with MCAR priors and perform tests to detect spatial clusters. It

is the univariate version of this prior that has recently been applied in some marketing

studies, an example is Duan and Mela (2009). The MCAR prior can incorporate both

the spatial structure of the data as well as the relationship between technologies. To our

knowledge, we are the first to use an MCAR prior on a marketing application while it

must be mentioned that this prior is frequently used in bio-statistics and environmental
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studies.

3 Methodology

The approach we use consists of two main parts. First, in Section 3.1 we describe how

we use Bayesian Variable Selection techniques to identify the regions and the sub-periods

during which each region is likely to drive aggregate sales. The Bayesian Variable Selec-

tion technique will let us compute the posterior probability that a region is influential for

any given sub-period. In Section 3.2 we specify a second model to study these posterior

probabilities and our main objective in this section is to test whether there are important

spatial clusters or demographic variables explaining these inclusion probabilities.

3.1 The Sales-Search Model

We observe the aggregate sales yit of i = 1, . . . , M technologies at time t = 1, . . . , T . We

also observe the online search sijt for each of these i technologies at J different locations

for j = 1, . . . , J and time periods t = 1, . . . , T . In addition, sijtn will refer to the search

observed at location j at a time t that is included in sub-period n, for n = 1, . . . , N . We

define sub-periods of diffusion because we are interested in studying the early, mid and

late diffusion of the technologies.

The sales equation is specified as

yit =
∑

j

∑

n

βijnsijtn + ǫit where ǫit ∼ N(0, σ2
i ). (1)

where both yit and sijtn are in logs; sales are measured in hundred thousands and search

is measured as an “interest indicator” and its range goes from 10 to 110. We give

more details about the data in Section 4. We specify a technology i, sub-period n (for

n = 1, . . . , N) and region j specific coefficient βijn and the error term ǫjt is assumed to

be normal with zero mean and variance σ2
i .
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This specification sums over all sub-periods n and locations j but estimating such a

model may be impossible when the total number of regressors J × N is large relative to

T . Note that in practice J × N can be even much larger than T . Moreover, it is very

likely that many of the βijn = 0 because of the likely correlation among the sijn and

the fact that some locations may simply do not drive sales. Hence, we need to select a

subset location specific regressors that consists of the best set of all possible regressors.

We will call the set of all possible regressors X and we will use Xγ to refer to the subset

of best regressors. We will call qγ to the total number of elements in Xγ and p to the

total number of elements in X. That is, Xγ ⊂ X and X is a set containing sijn for

j = 1, . . . , J and n = 1, . . . , N . The purpose is to select a model that sums only over this

subset. Therefore we specify

yit =
∑

j

∑

n

γijnβijnsijn + ǫit where ǫit ∼ N(0, σ2) (2)

as the sales equation where γijn is a technology and region sub-period specific indicator

that takes the value of 1 if sijn is in the subset Xγ and zero otherwise. Note that JN po-

tential regressors result in 2JN possible subsets and vectors γi where γi = (γi11, . . . , γiJN)′.

One could suggest for equation (2) that we could also sum over i on the right hand

side and not only j and n. That is, the sales of a technology could be a function of

the search for all technologies in the market. However, in our application there are over

2.57 × 1061 (that is 251×4 where 51 is the number of locations and 4 is the number of

sub-periods) possible subsets of regressors and if we were to sum over i there would be

more than 1.69 × 10184 (that is 23×52×4) subsets of models. That is 6.61 × 10122 more

subsets. Therefore, we study the relationship between technologies with a different model

and we discuss this second model later in this section. A second issue is that sales are a

function of search while at the same time search may be a function of sales. We are aware

of this possible endogeneity of sales and search but as we are using local indicators for

search and aggregate measures for sales we believe the endogeneity between them should
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be relatively weak. Finally, the right hand side could contain lags of the search indicators.

However, the inclusion of lags forbids us to compare the inclusion reason across locations.

For example, a location may be selected because it has an important lagged effect while

another location because of its contemporaneous effect on sales. We restrict the model to

a contemporaneous relationship between sales and search to be able to use the probability

of a location regressor to be in Xγ at a later stage in the spatial model.

We use Bayesian Variable Selection (BVS) as presented in George and McCulloch

(1997) and Chipman et al. (2001) to select the best subset of regressors. To use BVS we

need proper priors, we specify π(βi|σi, γi) as in Equation (A-2) and π(σ2
i |γi) as in equation

(A-4); these are the prior distributions of βi coefficients and the variance σ2
i where βi =

(βi11, . . . , βiJN) and we specify the prior distribution of the indicators π(γi). We use

equations (A-6) and (A-7) to define the prior on γ. BVS is an attractive technique because

we can draw inferences on the probability of inclusion for each potential regressor in

model (2). That is, we can draw inferences on the posterior distribution of the indicators

given the data π(γi|yi) where yi = (yit, . . . , yiT )′. We estimate model (2) for each of

the technologies separately and details of our estimation approach are presented in the

Appendix. In the Appendix we drop the sub-index i because we use the same prior

specification for all technologies.

3.2 The Spatial Model

The indicator vector γi is composed of location and sub-period indicators and based on

BVS we can compute for each element of the vector γi the probability that it equals

one. That is, we can compute each region’s posterior probability to be included at any

sub-period and this posterior is available for each of the technologies. We will refer to

the logit transformation3 of this posterior probability as p̄ijn where as before i refers to

the technology, j to the location and n is the sub-period index.

3The function is log(p/(1-p)). A second transformation may be log(-log(p)). We tested both trans-
formations and our results are similar.
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Our objective is to test whether the variation in inclusion probabilities is explained by

demographic variables and whether there are significant spatial effects in these inclusion

probabilities. Hence, we propose a model where the posterior probabilities of inclusion

depend on a set of covariates Zn and their corresponding coefficients δn plus spatial effects

Φn and some noise εn. We propose that

P̄n = Znθn + Φn + εn (3)

where P̄n = (p̄′1n, . . . , p̄′Mn), p̄′in = (p̄i1n, . . . , p̄iJn). That is, P̄n is a J ×M matrix with the

inclusion probabilities of each of the J locations for each technology in M columns. Zn

are covariates available for period n where Zn is a J ×K matrix where K is the number

of covariates. We assume θn = ι⊗ δn is a K ×M matrix with coefficients where ι is a row

vector of ones of size M and δn is a K × 1 vector of coefficients. Φn = (φ′

1n, . . . , φ′

Mn),

φ′

in = (φi1n, . . . , φiJn) and εn = (ε′1n, . . . , ε′Mn) with ε′in = (εi1n, . . . , εiJn). Both Φn and εn

are J × M matrices.

The spatial effects Φ are a function of the relationships between technologies and the

neighborhood structure of the market. The Φ matrix is composed of one spatial effect

for each location and technology. Each spatial effect, in general terms, depends on the

spatial effects of all technologies at neighboring locations. Hence, the spatial effects reflect

spatial clustering but they do not detect the direction of influence between locations. This

property of the spatial effects is specified in a prior distribution that depends on Λ, Ψ and

ρ where Λ is a M ×M matrix with the covariance structure between the technologies, Ψ

is a J × J matrix that measures the neighborhood or the spatial structure of the market

and ρ is a parameter that measures spatial auto-correlation. The element Ψkl is either

a fixed distance between location k and l or an indicator that takes a value of 1 if the

location k is a neighbor of l and zero otherwise. In the Appendix we provide details on

how we draw inference about ρ, Λ, δn and the covariance matrix associated with εn. Note

that Ψ is a fixed matrix with the neighborhood structure and hence we do not estimate
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it. We give more details about Ψ in the next section.

Next, we use this specification to explore if there are significant spatial effects Φ in the

posterior probabilities of inclusion for each region during each sub-period n and if there is

a relationship between the inclusion probabilities between technologies after controlling

for the covariates in Zn. Note that in the equation (3) we are pooling all technologies

i = 1, . . . , M together. The reason we pool technologies together is that their inclusion

probabilities may be related to each other. For example, Texas could be the driver of

growth for one technology but not for all technologies. That is, technologies may be

competing against each other when the sign of the covariance terms in the Λ matrix are

negative.

4 Data and Modeling Details

Weekly search indicators are available online from Google Insight for all US states and the

weekly series of sales data for the video-game consoles were obtained from VGchartz.com.

The data of VGchartz follows very closely the monthly figures of the NPD group. We

use the latest (year 2000) demographic information of the US Census Bureau for all US

states.

In Figure 1 we present a printed screen with the exact keywords that we used to

retrieve the search data from Google Insights for Search (http://www.google.com/

insights/search/). In Table 1 we provide the R code to automatically retrieve the

data from http://www.vgchartz.com/.

To estimate the parameters of equation (2) we used MCMC and the chain ran for 210

thousand iterations and we discarded the first 10 thousand. The equation that we used

includes a spline term that captures the seasonal fluctuation of yi and its overall level.

We fit a smoothing spline of yi as a function of time and we use 10 degrees of freedom as

the smoothing parameter; we refer to Hastie et al. (2001, page 127-137) for mode details

on fitting smoothing splines. Sloot et al. (2006) also use spline terms to capture seasonal
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fluctuations. The spline term is always included on the right-hand side of the model and

we do not use BVS on this term. Finally, note that we used the logs of yi and the sijn

and that yit are the sales of the technology i at the end of week t and sijt is the online

search index for the technology i at state j during the week t.

Next, we use MCMC to estimate the parameters of equation (3) and the chain ran

for 2000 iterations and we discarded the first 1000. We used much less draws than before

because convergence for a linear model is quite fast. We run the estimation for each

sub-period separately and therefore we estimated the parameters of equation (3) for each

period.

We divide the sales data of each consoles in four periods of equal length. These

periods roughly correspond with the first four stages of adoption proposed by Rogers

(2003). It is likely that in practice the length of each period varies per product or

industries. For example, we know that the time to take-off is different across countries

while within a country the take offs tend to occur at a systematic time difference relative to

other countries (van Everdingen et al., 2009; Golder and Tellis, 1997; Tellis et al., 2003).

Additionally, we choose periods of equal length to be able to compare the influential

locations across products for exactly the same period of time. In this way we can naturally

make cross-product comparisons.

We estimate equation (2) and equation (3) separately because we prefer not to impose

any spatial structure on the prior probability of including regressors in the prior for the

indicator variables, that is π(γ). We estimate equation (3) for each life-cycle stage. The

disadvantage of treating equations (2) and (3) separately is that the uncertainty of the

first model is not taken into account in the second model. A technical reason to keep the

estimation of these equations separately is that the posterior probabilities of inclusion

are computed using the full MCMC chain and therefore we know them only at the end of

the estimation. However, the most important reason to keep the estimation in two steps

is not to impose a priori a spatial structure in the inclusion probabilities. In this way,

we leave the task of testing for spatial clustering as a second step and we may be able to
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provide stronger evidence of any spatial structure.

We checked for convergence of the MCMC chains visually. We give more details about

the estimation approach and about the MCAR models in the Appendix.

5 Results

In this section we first discuss the results for the sales-search model in equation (2) and

then for the spatial model in equation (3).

5.1 Sales-Search Model Results

In Figure 2 we report the posterior distribution of the number of regressors included in

the model, that is qγ . The average number of regressors included in the model is around

17 with a minimum near 5 and a maximum of 35 regressors. If the regressors were

uniformly distributed among diffusion periods this would mean an average of 4 regressors

per diffusion period.4

In Figure 3, 4 and 5 we graphically report the posterior means of the inclusion prob-

abilities for all US states and for the Nintendo Wii, the Sony PS3 and the Xbox 360,

respectively. All these probabilities are also reported in Table 2, 3 and 4. In Figures 3,

4 and 5 the lighter (green) colors represent high posterior probabilities while the darker

(red) colors represent low inclusion probabilities. We include a map of the USA including

state names in Figure 17 to facilitate the reading of these figures.

In Figure 3 we can observe that the states with the higher inclusion probabilities

during the first diffusion period of the Nintendo Wii are Washington, Texas, Alabama,

Wyoming, Kansas and New Hampshire. So, this means that these states are more likely

to drive the sales of the Wii at an early stage of the Wii’s life-cycle. It is noticeable

too that the Western states are more likely to be included in the first diffusion period

4Note that we chose υ1 = 7 and a = 50 and b = 100 (the parameters of the distribution of the
prior inclusion probability w, see equations (A-6) and (A-7)) and this set-up results in a relatively small
number of selected regressors qγ .
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while the North-Eastern states have very low probability of inclusion. However, during

the third diffusion period the Western states are not likely to be included in the model

while it is more likely to include states in the center and North-East of the US. In the

last diffusion period we find that very few states have high probabilities and these are

Montana, North Dakota and New Hampshire. That is, there are many locations driving

the growth of the Wii at early life-cycle stages and relatively few engines of growth at

the end.

The geographical pattern for the Sony PS3 is slightly similar to the pattern of the

Nintendo Wii. However, we find that during the first diffusion period there are many more

states (relative to the Wii) with high probability of inclusion. Again, all states in the West

(California, Nevada, Oregon and Washington) have higher inclusion probabilities but for

the PS3 many states in the East and North-East also have high probabilities during this

first period. In fact, there are very few states with low probability of inclusion during

the first period and these are North and South Dakota and Minnesota together with

Kentucky and West Virginia. The opposite happens during the last diffusion period

where many states have low probability of being included in the model. The probability

of the West Coast states is high at the beginning and their influence seems to diminish

in subsequent periods. The maps seem to be revealing a boom bust pattern. That is,

many states may be influential during the first diffusion period but of this first set of

countries very few remain influential in the last diffusion period and other states take the

influential position.

The geographical pattern for the Microsoft Xbox 360 is very different from the other

two consoles. The states with higher probabilities at each diffusion period are fewer than

for the other two consoles and the influential states seem to be far from each other.

However, for all regions, with the exception of Washington and Oregon, the states that

seem more likely to be included in the model are in the North and North-East of the US.

An immediate question about these results is whether there is evidence of geographical

clusters. At first glance, influential regions seem to be neighbors of other influential
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regions while not influential regions seem to be clustered together too. However, we may

have some bias when judging probability distributions (Kahneman et al., 1982, page 32)

and therefore we need some formal way to measure spatial association. Two statistics

that can measure spatial association in aereal data are the Moran’s I and the Geary’s C

(Banerjee et al., 2004, page 71).

We computed both the Moran’s I and Geary’s C for all sub-periods and technologies

and we compared these two statistics, computed with the estimated inclusion probabili-

ties, against the distribution of these two statistics when we assume that the probability

of inclusion is uniformly distributed. Garber et al. (2004) also compare the observed spa-

tial distribution of adoption against the uniform distribution. High spatial association is

indicated by high Moran’s I or by low Geary’s C statistics. In Figure 6 we report the

statistics computed with the real inclusion probabilities (in vertical dashed lines) and

the distribution of both statistics (in the histograms) assuming the inclusion probabili-

ties follow a uniform distribution.5 As we can observe in Figure 6, when the inclusion

probabilities are uniformly distributed the chances are very low to obtain the statistics in

the extremes where the Moran’s I and Geary’s C based on the estimated inclusion prob-

abilities appear. In the next section we discuss the results regarding the spatial model

(equation (3)) where we further investigate the significance of the spatial clustering.

In the left panel of Figure 7, 8 and 9 we report the histogram of the posterior mean

of the β coefficients for all sub-periods of the Nintendo Wii, the PS3 and Xbox 360,

respectively. We report the distribution of the β|γ = 1 coefficients. That is, we report

their distribution given that their corresponding regressor was included in the selected

subset of regressors Xγ and we refer to these coefficients simply as β. In the right

hand panel of the same figures we report the distribution of the posterior mean of the

β coefficients divided by their posterior standard deviation. As we can see, the size of

the β coefficients seems to be centered around 0.15 for the Nintendo Wii and the Xbox

5We assume that the inclusion probability of each state is independent and identically distributed
from other states and they follow a uniform with range [0,1]. We draw the probability for every state
from the uniform and then we compute the Moran’s I and Geary’s C for L number of draws to obtain
the probability distribution of these two statistics.
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360 and around 0.12 for the PS3. This means that on average a local (state) increase of

10% in search translates into a 1.5% or 1.2% increase in the global (nation) sales. The

significance of the β coefficients varies from 1 up to 2 and there are approximately 25

regressors with a ratio (posterior mean over posterior standard deviation) higher than 1.5

and this number is quite satisfactory for a model with an average number of 17 regressors

included.

In Figures 3, 4 and 5 we noticed that the probability of inclusion of different regions

varies depending on the time period. In Figures 10, 11 and 12 we draw a scatter plot

between the posterior mean of the search elasticity (the β coefficients) for each state and

their probability of inclusion for the Nintendo Wii, the PS3 and Xbox 360, respectively.

The vertical and horizontal lines correspond with the average inclusion probability and

the average search elasticity, respectively. What we see in all three figures is that the

place where states appear varies not only relative to their inclusion probabilities but

also relative to the search elasticities. For example, in Figure 10 we see that the states

with above average search elasticity and above average inclusion probability (upper right

quadrant) during the first period are Kansas, New Hampshire, Delaware, New Mexico,

Nebraska, Arizona, New Jersey and California. However, the upper right quadrant states

that appear in the following periods are different. For example, during the forth period

the upper-quadrant states are North Dakota, Montana, Maine and New Hampshire. The

Figures 11 and 12 for the PS3 and Xbox 360 confirm the same pattern, different groups

of states appear at each quadrant of the scatter plots at each sub-period. These results

point that some states may be important earlier in the diffusion of a technology while

other states become important during later states of the diffusion. Note that this re-

sult is not explained by different introduction dates as the three consoles were launched

simultaneously in all US states.

The sales-search model takes into account the relationship between aggregate sales

and the online search at many different locations. This provides with interesting inclusion

probabilities and we can rank the states according to their power to drive the aggregate
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sales. If we were to ignore all these details and we run a simple regression between

aggregate sales and aggregate online search we obtain the results reported in Table 13.

The overall sensitivity of sales to aggregate search (an indicator of search for all US) is

larger than the sensitivity of sales to state-specific search. The estimates range from 0.17

up to 0.46, see the coefficient of search in this table. These last results seem intuitive

but we miss the detailed region-specific analysis and a possible spatial story behind the

results of the sales search model.

5.2 Results of the Spatial Model

In Table 5 we report the posterior mean and the posterior standard deviation of the δ

coefficients of the spatial model (3). In the Table we report the δ coefficients for a set of

seven variables. We tested other demographic variables measuring the ethnic origin and

age distribution but we did not find them as significant and they were highly correlated

with the set of seven variables that we kept in the model.

As we can observe, our results indicate that there is not a very strong association

between demographic variables and the inclusion probabilities at each state. The reason

why the posterior standard deviations might be large is because we have only 48 states

in the probability model and therefore we have very few observations to estimate the

coefficients. A second reason may be that we observe a relatively small variation in our

dependent variable. Nonetheless, we find some interesting features in the δn coefficients.

The variables that seem to be relevant are the percentage of the population in college

dorms and the percentage of the population that is married (percentage of households

with married couples). Both of these variables are somewhat significant during the first

and second diffusion periods. The effect of travel time to work is not significant but it is

most of the time negative, as we would expect given than longer commuting time reduces

leisure time to play video games or to search for consoles. Population density and income

per capita seem to be slightly more important in the last diffusion stage while in the first

stages of diffusion they are not. A last important feature to notice is that in many cases
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the size and sign of the δn coefficients may vary according to the diffusion stage of the

products. For example, it may be that students and married couples tend to buy more

video-game consoles at an early stage, as a high proportion of these groups increases

the chance of a state being influential, while these groups may not buy at the end of

the diffusion when we see that other parameters like population density and income per

capita are slightly more important.

We estimate the spatial random effects Φn along side with the δn coefficients and we

report their posterior mean and their posterior mean divided by their posterior standard

deviation in Tables 6, 7, 8 and 9 for the first, second, third and fourth diffusion periods,

respectively. In contrast with the δn coefficients, several of the spatial effects are signifi-

cant. For example, in Table 6 we see that the spatial effect of Texas is significant both for

the Nintendo Wii and the PS3 while it is not for the Xbox 360. This means that Texas is

more likely to be driving the sales of the Wii and PS3 relative to the Xbox 360 during the

first diffusion period. In the same table we notice that Ohio, South Dakota and Wash-

ington are positive and significant for the Xbox 360. The spatial effect of Washington

is significant for all three technologies. Tables 7, 8 and 9 show similar many significant

spatial effects during the rest of the diffusion periods.

In Figures 13, 14, 15 and 16 we report the distribution of the spatial effects for the

Nintendo Wii and the first, second, third and fourth diffusion periods, respectively. In

Figure 13 we can observe that for the first diffusion period the states with higher posterior

spatial effects are Alabama, Delaware, Kentucky, Texas, Washington and Wyoming. The

states with the lowest spatial effects are Georgia, Massachusetts, Missouri and Rhode

Island. Texas and Wyoming continue to have a high spatial effect in the next diffusion

period, see Figure 14 but the other states that had a high spatial effect in the first period

no longer continue to be high in the second. In general, the spatial effect for each state

varies according to the diffusion time of the technologies. For example, according to our

results Texas is very influential for the Nintendo Wii at an early stage of its life-cycle

while this state is not influential at the end of the life-cycle of the Wii.
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We are finding significant spatial random effects for several states and all diffusion

periods. However, a natural concern is whether the δn coefficients may have a different

level of significance if we were to exclude the spatial effects from equation (3). In Table

10 we report the same δn coefficients estimated with ordinary least squares and their level

of significance is relatively the same as before. Again, the population in college dorms

and the percentage of households with married couples seem to be the more important

variables. That is, the spatial effects explain geographical variation without affecting the

inference we draw from the posteriors of the δn coefficients.

In Table 11 we present the posterior distribution of the correlations derived from the

matrix Λ. The matrix Λ is a 3 × 3 covariance matrix and it measures the covariance

between the spatial effects of different technologies. In the first diffusion period, for

example, we find that the correlation of the spatial effects of the Xbox 360 are negatively

correlated with the spatial effects of the PS3. The posterior mean of the correlation is

−0.257 and the association is significant (zero is almost excluded from the 95% highest

posterior density region). This negative correlation implies that if a state is likely to drive

the sales of the Xbox 360 then it is not likely to drive the sales of the PS3. The association

between the spatial effects of the Wii and those of the Xbox and PS3 are not different

from zero (in these cases 0 is almost in the middle of the highest posterior density region)

during the first diffusion period. We find some other significant associations during the

third and fourth periods while in the second period we find no association between the

spatial effects of the different technologies. The variation in correlation structure shows

that at an early stage there is some degree of competition only between the PS3 and

Xbox 360 (because of the negative correlation in their spatial effects) while at later stages

technologies seem to nurture each other (because we find significant positive correlations

in their spatial effects).

Finally, in Table 12 we report the highest posterior density region for the ρ coefficients.

We find roughly the same spatial decay (or spatial correlation) during all diffusion periods.

The posterior mean of the ρn for all n is around 0.82. This number should be between
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0 and 1 and numbers close to 1 indicate high spatial correlation between a state and

its neighbors. The estimate of the ρ coefficient together with the Φn spatial effects are

evidence of significant clusters of spillover effects between states. We do not know the

direction of influence between the states but the model parameters capture significant

spatial dependence among neighboring states.

6 Conclusions

We applied Bayesian variable selection methods to identify the influential locations for the

diffusion of new technologies. We define influential locations as those that are more likely

to drive the aggregate sales of the technologies. For our particular data on game consoles,

we find that the influential locations change over time and that there is geographical

clustering that is significantly captured by the spatial random effects in the probability

model and by different measures of spatial association.

Moreover, we find variation in the groups of influential locations over time and the

size of their associated search elasticity varies over time too. The search elasticity for the

technologies at influential locations is on average 0.15. That is, an increase of 10% in

local (state) search translates into a 1.5% increase in country level sales. Finally, we find

some evidence of time variation in the association between spatial affects. Our results

suggest that the geographical clustering is not driven by demographic heterogeneity and

we find some evidence that suggests that the demographic effects vary over time.

In summary, our results suggest that influential locations may change over time to-

gether with the relationship between technologies and the relevance of demographics. The

main managerial implications of this research is the notion that the group of influential

locations is not fixed and therefore when a manager is looking to identify influentials,

she or he should expect influentials to play a role at different locations and at different

times. If managers were to ignore the spatial heterogeneity they will miss the valuable

insights of how to allocate their marketing efforts based on the important locations for
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their products. The relevant question is not only who is influential but where and when

and for how long a consumer or a group of consumers is influential.
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7 Tables and Figures

library(RCurl)

library(XML)

wii_sales<-rep(0,416)

week.numbers<-seq((39838)-2184,40358,by=7)

for(i in 1:416)

{

part1<-"http://vgchartz.com/hwtable.php?cons[]=Wii&reg[]=America&start="

part2<-"&end="

week<-week.numbers[i]

url.dir<-paste(part1,week,part2,week,sep="")

url.text <- getURL(url.dir)

doc <- htmlParse(url.text,useInternalNodes=TRUE, error=function(...){})

x = xpathSApply(doc, "//table//td|//table//th", xmlValue)

wii_sales[i]<-as.numeric(gsub(",", ".", x[12]))

}

write.csv(wii_sales,file="wii_data.csv")

Note that the keyword Wii should be changed to PS3 or X360
to retrieve the data for each of these consoles.

Table 1: R Code to Retrieve Data from VGChartz.com
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Posterior Inclusion Probabilities
1st Period 2nd Period 3rd Period 4th Period

Alabama 0.111 0.083 0.080 0.117

Alaska 0.074 0.069 0.091 0.115

Arizona 0.092 0.110 0.070 0.075
Arkansas 0.091 0.093 0.103 0.089
California 0.093 0.093 0.081 0.116

Colorado 0.076 0.069 0.098 0.079
Connecticut 0.074 0.057 0.103 0.071
Delaware 0.105 0.058 0.079 0.103

District of Columbia 0.076 0.108 0.077 0.083
Florida 0.096 0.061 0.090 0.077
Georgia 0.056 0.079 0.089 0.076
Hawaii 0.072 0.096 0.077 0.099
Idaho 0.086 0.082 0.075 0.112

Illinois 0.073 0.092 0.080 0.066
Indiana 0.079 0.059 0.065 0.082
Iowa 0.077 0.077 0.083 0.125

Kansas 0.108 0.085 0.088 0.083
Kentucky 0.075 0.091 0.093 0.099
Louisiana 0.102 0.122 0.081 0.065
Maine 0.079 0.080 0.090 0.137

Maryland 0.059 0.088 0.057 0.079
Massachusetts 0.084 0.119 0.096 0.074
Michigan 0.070 0.079 0.086 0.086
Minnesota 0.078 0.098 0.088 0.074
Mississippi 0.058 0.092 0.105 0.060
Missouri 0.086 0.075 0.088 0.093
Montana 0.095 0.084 0.099 0.173

Nebraska 0.092 0.073 0.093 0.090
Nevada 0.096 0.096 0.068 0.094
New Hampshire 0.105 0.097 0.076 0.154

New Jersey 0.095 0.127 0.103 0.073
New Mexico 0.099 0.096 0.113 0.105

New York 0.078 0.068 0.080 0.054
North Carolina 0.096 0.071 0.083 0.066
North Dakota 0.081 0.086 0.082 0.190

Ohio 0.078 0.090 0.102 0.089
Oklahoma 0.082 0.098 0.081 0.078
Oregon 0.098 0.144 0.063 0.055
Pennsylvania 0.064 0.081 0.065 0.062
Rhode Island 0.086 0.074 0.082 0.101

South Carolina 0.090 0.075 0.083 0.097
South Dakota 0.098 0.079 0.070 0.098
Tennessee 0.092 0.073 0.119 0.068
Texas 0.129 0.075 0.086 0.094
Utah 0.097 0.097 0.089 0.097
Vermont 0.076 0.073 0.136 0.091
Virginia 0.100 0.070 0.079 0.086
Washington 0.126 0.073 0.065 0.095
West Virginia 0.073 0.062 0.108 0.119

Wisconsin 0.072 0.076 0.131 0.060
Wyoming 0.107 0.115 0.107 0.119

Note: In bold probabilities larger than 0.10

Table 2: State Inclusion Probabilities for Each Diffusion Period for the Nintendo Wii
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Posterior Inclusion Probabilities
1st Period 2nd Period 3rd Period 4th Period

Alabama 0.088 0.073 0.094 0.086
Alaska 0.081 0.094 0.084 0.185

Arizona 0.081 0.063 0.091 0.057
Arkansas 0.101 0.090 0.098 0.093
California 0.096 0.096 0.088 0.080
Colorado 0.106 0.092 0.092 0.099
Connecticut 0.104 0.102 0.093 0.076
Delaware 0.086 0.078 0.118 0.090
District of Columbia 0.088 0.099 0.098 0.075
Florida 0.100 0.079 0.091 0.083
Georgia 0.095 0.097 0.103 0.067
Hawaii 0.098 0.080 0.094 0.088
Idaho 0.092 0.085 0.080 0.076
Illinois 0.091 0.107 0.082 0.088
Indiana 0.085 0.081 0.104 0.085
Iowa 0.087 0.102 0.087 0.093
Kansas 0.079 0.094 0.083 0.080
Kentucky 0.070 0.098 0.084 0.085
Louisiana 0.087 0.093 0.091 0.076
Maine 0.086 0.071 0.073 0.115

Maryland 0.095 0.119 0.085 0.093
Massachusetts 0.095 0.093 0.082 0.071
Michigan 0.089 0.109 0.081 0.086
Minnesota 0.073 0.068 0.081 0.086
Mississippi 0.086 0.085 0.087 0.078
Missouri 0.084 0.093 0.087 0.084
Montana 0.091 0.089 0.089 0.103

Nebraska 0.092 0.109 0.089 0.093
Nevada 0.096 0.087 0.090 0.072
New Hampshire 0.091 0.087 0.090 0.140

New Jersey 0.090 0.094 0.072 0.071
New Mexico 0.083 0.097 0.069 0.105

New York 0.096 0.089 0.093 0.064
North Carolina 0.103 0.083 0.082 0.071
North Dakota 0.070 0.076 0.084 0.094
Ohio 0.088 0.097 0.105 0.073
Oklahoma 0.080 0.091 0.091 0.084
Oregon 0.104 0.077 0.101 0.102

Pennsylvania 0.089 0.091 0.079 0.074
Rhode Island 0.081 0.087 0.082 0.130

South Carolina 0.090 0.092 0.076 0.090
South Dakota 0.066 0.068 0.079 0.094
Tennessee 0.089 0.087 0.095 0.091
Texas 0.108 0.093 0.113 0.065
Utah 0.101 0.072 0.109 0.097
Vermont 0.090 0.086 0.100 0.141

Virginia 0.096 0.083 0.062 0.073
Washington 0.101 0.081 0.095 0.069
West Virginia 0.074 0.083 0.106 0.097
Wisconsin 0.089 0.087 0.092 0.095
Wyoming 0.092 0.086 0.094 0.090
Note: In bold probabilities larger than 0.10

Table 3: State Inclusion Probabilities for Each Diffusion Period for the Sony PS3
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Posterior Inclusion Probabilities
1st Period 2nd Period 3rd Period 4th Period

Alabama 0.085 0.091 0.090 0.079
Alaska 0.104 0.188 0.080 0.199

Arizona 0.077 0.074 0.080 0.054
Arkansas 0.098 0.082 0.087 0.075
California 0.099 0.082 0.075 0.074
Colorado 0.078 0.088 0.087 0.084
Connecticut 0.078 0.081 0.091 0.101

Delaware 0.116 0.136 0.075 0.204

District of Columbia 0.091 0.096 0.097 0.071
Florida 0.102 0.066 0.100 0.065
Georgia 0.084 0.073 0.115 0.092
Hawaii 0.089 0.115 0.055 0.076
Idaho 0.087 0.109 0.076 0.137

Illinois 0.086 0.075 0.105 0.100

Indiana 0.086 0.087 0.074 0.064
Iowa 0.097 0.126 0.083 0.100

Kansas 0.114 0.082 0.087 0.081
Kentucky 0.103 0.078 0.101 0.109

Louisiana 0.067 0.074 0.082 0.058
Maine 0.097 0.113 0.097 0.095
Maryland 0.087 0.066 0.085 0.087
Massachusetts 0.095 0.100 0.085 0.079
Michigan 0.092 0.076 0.096 0.082
Minnesota 0.097 0.092 0.073 0.095
Mississippi 0.096 0.062 0.131 0.080
Missouri 0.079 0.087 0.098 0.073
Montana 0.071 0.059 0.087 0.096
Nebraska 0.084 0.067 0.071 0.095
Nevada 0.093 0.074 0.071 0.084
New Hampshire 0.089 0.098 0.089 0.119

New Jersey 0.085 0.110 0.095 0.071
New Mexico 0.091 0.112 0.071 0.100

New York 0.083 0.106 0.101 0.093
North Carolina 0.091 0.103 0.090 0.066
North Dakota 0.129 0.082 0.113 0.113

Ohio 0.099 0.094 0.083 0.079
Oklahoma 0.086 0.085 0.084 0.094
Oregon 0.116 0.081 0.087 0.081
Pennsylvania 0.096 0.087 0.093 0.085
Rhode Island 0.102 0.113 0.092 0.127

South Carolina 0.090 0.081 0.082 0.073
South Dakota 0.132 0.097 0.118 0.102

Tennessee 0.084 0.096 0.134 0.089
Texas 0.093 0.073 0.078 0.063
Utah 0.085 0.088 0.077 0.059
Vermont 0.082 0.110 0.152 0.082
Virginia 0.103 0.074 0.078 0.064
Washington 0.111 0.101 0.100 0.079
West Virginia 0.085 0.065 0.140 0.114

Wisconsin 0.090 0.087 0.093 0.086
Wyoming 0.070 0.125 0.105 0.084
Note: In bold probabilities larger than 0.10

Table 4: State Inclusion Probabilities for Each Diffusion Period for the Microsoft Xbox
360
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MCAR First Diffusion Period
Coefficient St. Dev. t-value

Intercept -2.3684 0.0163 -145.2131
Male Female Ratio 0.0103 0.0326 0.3152
Population Density 0.0042 0.0270 0.1569
Population in College Dorms 0.0337 0.0200 1.6820
Married Couple 0.0236 0.0171 1.3834
Travel Time to Work -0.0015 0.0194 -0.0751
Income per Capita 0.0106 0.0157 0.6723

MCAR Second Diffusion Period
Coefficient St. Dev. t-value

Intercept -2.4029 0.0177 -135.4291
Male Female Ratio 0.0345 0.0361 0.9561
Population Density 0.0357 0.0285 1.2506
Population in College Dorms 0.0304 0.0232 1.3138
Married Couple -0.0208 0.0202 -1.0332
Travel Time to Work -0.0183 0.0221 -0.8307
Income per Capita -0.0185 0.0185 -1.0007

MCAR Third Diffusion Period
Coefficient St. Dev. t-value

Intercept -2.3715 0.0214 -110.8737
Male Female Ratio -0.0192 0.0409 -0.4694
Population Density -0.0294 0.0343 -0.8562
Population in College Dorms -0.0245 0.0251 -0.9758
Married Couple 0.0231 0.0251 0.9208
Travel Time to Work 0.0163 0.0258 0.6329
Income per Capita -0.0103 0.0199 -0.5181

MCAR Fourth Diffusion Period
Coefficient St. Dev. t-value

Intercept -2.3987 0.0283 -84.6213
Male Female Ratio -0.0305 0.0589 -0.5171
Population Density 0.0464 0.0474 0.9795
Population in College Dorms -0.0218 0.0339 -0.6436
Married Couple -0.0013 0.0324 -0.0402
Travel Time to Work -0.0157 0.0352 -0.4457
Income per Capita 0.0191 0.0267 0.7141
Note: The first column reports the posterior mean of the coefficient.
The second column reports the posterior standard deviation and the
third column reports the ratio of the posterior mean over the posterior
standard deviation, called here t-value.

Table 5: Posterior of MCAR δ coefficients
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MCAR First Diffusion Period
Wii t-value PS3 t-value Xbox360 t-value

Alabama 0.260 3.990 0.025 0.380 -0.011 -0.196
Arizona 0.053 0.780 -0.066 -1.203 -0.131 -2.336
Arkansas 0.041 0.770 0.141 2.329 0.110 2.093
California -0.038 -0.481 -0.001 -0.035 0.023 0.356
Colorado -0.164 -2.412 0.154 2.322 -0.141 -2.268
Connecticut -0.213 -2.762 0.135 1.903 -0.155 -2.167
Delaware 0.201 3.464 -0.005 -0.103 0.302 5.033
Florida 0.081 1.306 0.132 2.304 0.150 2.406
Georgia -0.462 -6.174 0.063 1.322 -0.055 -1.172
Idaho -0.243 -3.420 0.053 0.952 -0.034 -0.525
Illinois -0.070 -1.349 -0.007 -0.261 -0.053 -1.149
Indiana -0.232 -4.463 -0.014 -0.237 -0.066 -1.417
Iowa -0.138 -2.370 -0.058 -1.276 -0.051 -0.861
Kansas -0.162 -3.003 -0.037 -0.728 0.074 1.578
Kentucky 0.205 3.492 -0.101 -2.010 0.255 4.228
Louisiana -0.097 -1.705 -0.174 -2.826 0.218 3.517
Maine 0.183 2.815 0.010 0.151 -0.254 -4.285
Maryland -0.099 -1.467 -0.020 -0.460 0.105 1.764
Massachusetts -0.443 -5.272 0.027 0.278 -0.064 -0.882
Michigan -0.078 -1.512 0.041 0.791 0.047 0.952
Minnesota -0.264 -4.806 -0.037 -0.761 0.009 0.107
Mississippi -0.068 -0.913 -0.137 -2.282 0.152 2.150
Missouri -0.409 -5.690 -0.020 -0.524 0.080 1.520
Montana -0.013 -0.253 -0.037 -0.700 -0.095 -1.832
Nebraska 0.069 1.258 0.026 0.548 -0.217 -3.822
Nevada 0.056 0.629 0.055 0.717 -0.030 -0.324
New Hampshire 0.060 0.952 0.060 1.082 0.027 0.455
New Jersey 0.134 1.442 -0.011 -0.131 -0.034 -0.400
New Mexico 0.129 2.338 0.066 1.228 0.012 0.143
New York 0.052 0.622 -0.116 -1.556 -0.029 -0.410
North Carolina -0.160 -3.347 0.046 0.966 -0.099 -1.794
North Dakota 0.089 1.459 0.153 2.331 0.037 0.568
Ohio -0.126 -2.172 -0.266 -3.950 0.342 5.245
Oklahoma -0.125 -2.507 0.003 0.129 0.118 2.365
Oregon -0.065 -1.420 -0.081 -1.685 -0.020 -0.365
Pennsylvania 0.027 0.433 0.075 1.114 0.187 2.729
Rhode Island -0.289 -3.190 0.059 0.587 0.133 1.393
South Carolina 0.035 0.472 0.044 0.780 0.043 0.771
South Dakota 0.108 2.093 -0.276 -4.334 0.409 6.168
Tennessee 0.034 0.688 0.006 0.111 -0.054 -1.247
Texas 0.314 4.926 0.128 2.476 -0.020 -0.262
Utah 0.009 0.147 0.047 0.716 -0.124 -1.475
Vermont -0.139 -2.786 0.037 0.498 -0.057 -1.164
Virginia 0.082 1.547 0.038 0.831 0.109 2.372
Washington 0.353 6.191 0.121 2.318 0.224 4.035
West Virginia -0.160 -2.826 -0.142 -2.508 -0.011 -0.243
Wisconsin -0.242 -4.815 -0.024 -0.626 -0.013 -0.288
Wyoming 0.180 2.908 0.033 0.611 -0.239 -3.781
Note: The numbers correspond to the Φ parameters of the MCAR model for the first
diffusion period. We report the posterior mean of the spatial effects for the Wii, PS3
and X360 and the ratio of the posterior mean over the posterior standard deviation.

Table 6: Posterior of MCAR Spatial Effects
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MCAR Second Diffusion Period
Wii t-value PS3 t-value Xbox360 t-value

Alabama 0.005 0.082 -0.106 -1.394 0.096 1.139
Arizona 0.231 2.843 -0.278 -2.827 -0.148 -1.867
Arkansas 0.096 1.393 0.061 0.972 -0.024 -0.365
California -0.004 -0.039 0.019 0.185 -0.134 -1.459
Colorado -0.211 -2.324 0.053 0.683 0.005 0.091
Connecticut -0.392 -4.157 0.172 1.713 -0.061 -0.599
Delaware -0.365 -4.093 -0.080 -0.950 0.482 5.568
Florida -0.350 -4.939 -0.090 -1.367 -0.284 -3.924
Georgia -0.072 -1.085 0.118 1.746 -0.153 -2.014
Idaho 0.113 1.363 -0.057 -0.792 0.288 3.083
Illinois -0.063 -0.859 -0.020 -0.334 0.217 2.850
Indiana 0.046 0.592 0.180 2.409 -0.152 -2.212
Iowa -0.349 -4.061 -0.047 -0.740 0.017 0.274
Kansas -0.100 -1.419 0.159 2.145 0.382 4.606
Kentucky 0.005 0.129 0.095 1.494 -0.030 -0.495
Louisiana 0.072 0.934 0.127 1.718 -0.089 -1.073
Maine 0.406 5.404 0.123 1.628 -0.104 -1.115
Maryland -0.035 -0.398 -0.140 -1.670 0.305 3.512
Massachusetts -0.054 -0.581 0.232 2.550 -0.321 -3.198
Michigan 0.306 4.063 0.053 0.796 0.129 1.833
Minnesota -0.084 -1.101 0.223 2.738 -0.111 -1.645
Mississippi 0.139 1.745 -0.203 -2.384 0.085 1.070
Missouri 0.082 1.156 0.018 0.254 -0.278 -3.091
Montana -0.163 -2.117 0.044 0.563 -0.017 -0.213
Nebraska -0.020 -0.301 0.034 0.612 -0.351 -3.717
Nevada -0.212 -1.893 0.161 1.571 -0.299 -2.607
New Hampshire 0.176 2.273 0.074 0.955 -0.086 -1.124
New Jersey 0.091 0.830 -0.013 -0.146 0.108 1.013
New Mexico 0.372 4.661 0.069 1.076 0.234 2.975
New York 0.029 0.272 0.032 0.391 0.182 1.950
North Carolina -0.259 -3.558 0.010 0.128 0.177 2.434
North Dakota -0.237 -2.899 -0.075 -1.059 0.134 1.736
Ohio -0.036 -0.403 -0.137 -1.909 -0.087 -1.222
Oklahoma 0.052 0.714 0.102 1.671 0.087 1.135
Oregon 0.128 1.746 0.050 0.816 -0.012 -0.202
Pennsylvania 0.442 4.291 -0.143 -1.726 -0.105 -1.268
Rhode Island -0.139 -1.234 -0.022 -0.172 -0.079 -0.691
South Carolina -0.133 -1.663 0.080 1.223 -0.055 -0.710
South Dakota -0.102 -1.486 -0.216 -2.726 0.096 1.267
Tennessee -0.137 -1.954 0.027 0.502 0.108 1.570
Texas -0.171 -2.121 0.043 0.518 -0.207 -2.642
Utah 0.160 1.554 -0.118 -1.298 0.078 0.766
Vermont -0.137 -1.648 0.025 0.432 0.269 3.278
Virginia -0.181 -2.476 -0.013 -0.137 -0.125 -1.923
Washington -0.156 -1.911 -0.051 -0.760 0.164 1.966
West Virginia -0.251 -2.873 0.018 0.230 -0.211 -2.454
Wisconsin -0.143 -1.858 0.000 -0.016 -0.011 -0.187
Wyoming 0.254 2.904 -0.031 -0.453 0.333 3.692
Note: The numbers correspond to the Φ parameters of the MCAR model for the
second diffusion period. We report the posterior mean of the spatial effects for the
Wii, PS3 and X360 and the ratio of the posterior mean over the posterior standard
deviation.

Table 7: Posterior of MCAR Spatial Effects
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MCAR Third Diffusion Period
Wii t-value PS3 t-value Xbox360 t-value

Alabama -0.155 -2.445 0.003 0.000 -0.045 -0.739
Arizona -0.247 -4.132 0.003 0.112 -0.122 -2.098
Arkansas 0.085 1.788 0.038 0.831 -0.075 -1.489
California -0.016 -0.192 0.060 0.748 -0.093 -1.187
Colorado 0.111 1.571 0.056 0.795 0.002 0.000
Connecticut 0.216 2.797 0.107 1.416 0.093 1.206
Delaware -0.120 -2.013 0.292 4.726 -0.169 -2.349
Florida 0.033 0.730 0.040 0.932 0.141 3.158
Georgia -0.003 -0.161 0.134 2.776 0.256 5.227
Idaho -0.209 -2.808 -0.011 -0.166 -0.548 -5.979
Illinois -0.143 -3.097 -0.077 -1.455 -0.135 -2.773
Indiana -0.104 -2.571 -0.069 -1.580 0.176 3.609
Iowa -0.343 -5.740 0.131 2.517 -0.213 -3.606
Kansas -0.089 -1.768 -0.039 -0.748 -0.090 -1.730
Kentucky -0.055 -1.379 -0.114 -2.935 -0.068 -1.564
Louisiana 0.013 0.159 -0.083 -1.145 0.102 1.350
Maine -0.147 -2.509 -0.026 -0.453 -0.136 -2.225
Maryland 0.029 0.381 -0.183 -2.747 0.101 1.594
Massachusetts -0.336 -3.908 0.069 0.842 0.068 0.830
Michigan 0.107 2.373 -0.049 -1.242 -0.023 -0.579
Minnesota -0.028 -0.632 -0.086 -1.840 0.081 1.874
Mississippi -0.049 -0.737 -0.129 -1.942 -0.244 -3.254
Missouri 0.149 2.612 -0.041 -0.930 0.369 5.740
Montana -0.035 -0.683 -0.039 -0.789 0.084 1.485
Nebraska 0.081 1.574 -0.028 -0.577 -0.045 -0.986
Nevada 0.074 0.727 0.034 0.368 -0.194 -1.727
New Hampshire -0.316 -5.361 -0.027 -0.516 -0.273 -4.767
New Jersey -0.079 -0.704 0.090 0.850 0.074 0.646
New Mexico 0.118 2.261 -0.233 -3.983 0.036 0.626
New York 0.340 3.580 -0.147 -1.705 -0.120 -1.397
North Carolina -0.092 -2.102 0.059 1.387 0.142 3.221
North Dakota -0.079 -1.263 -0.082 -1.350 0.007 0.153
Ohio -0.046 -0.761 -0.010 -0.245 0.280 4.138
Oklahoma 0.106 2.612 0.127 3.062 -0.109 -2.295
Oregon -0.098 -2.227 0.018 0.431 -0.061 -1.229
Pennsylvania -0.286 -3.265 0.176 2.233 0.033 0.389
Rhode Island -0.222 -1.949 -0.023 -0.192 0.144 1.246
South Carolina -0.089 -1.493 -0.176 -2.974 -0.105 -2.070
South Dakota -0.252 -4.378 -0.132 -2.261 0.261 4.083
Tennessee 0.276 5.944 0.047 1.130 0.396 6.843
Texas -0.020 -0.361 0.250 4.013 -0.115 -1.882
Utah -0.094 -0.951 0.098 0.941 -0.242 -2.204
Vermont 0.411 7.663 0.088 1.529 0.530 9.155
Virginia -0.113 -2.047 -0.343 -6.009 -0.124 -2.607
Washington -0.321 -5.615 0.069 1.359 0.119 2.074
West Virginia 0.117 1.873 0.100 1.595 0.386 5.353
Wisconsin 0.404 7.422 0.040 0.977 0.056 1.251
Wyoming 0.180 2.606 0.042 0.677 0.154 2.353
Note: The numbers correspond to the Φ parameters of the MCAR model for the third
diffusion period. We report the posterior mean of the spatial effects for the Wii, PS3
and X360 and the ratio of the posterior mean over the posterior standard deviation.

Table 8: Posterior of MCAR Spatial Effects
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MCAR Fourth Diffusion Period
Wii t-value PS3 t-value Xbox360 t-value

Alabama 0.311 3.294 -0.008 -0.171 -0.092 -1.108
Arizona -0.092 -1.076 -0.367 -4.305 -0.412 -4.807
Arkansas 0.044 0.613 0.078 1.217 -0.123 -1.864
California 0.377 3.187 -0.005 -0.083 -0.080 -0.759
Colorado -0.040 -0.449 0.178 1.738 0.022 0.201
Connecticut -0.386 -3.484 -0.306 -2.844 -0.017 -0.144
Delaware 0.079 0.999 -0.045 -0.631 0.806 9.027
Florida -0.136 -2.313 -0.065 -1.059 -0.313 -5.411
Georgia -0.103 -1.827 -0.228 -3.586 0.088 1.323
Idaho 0.197 1.842 0.072 0.719 -0.077 -0.745
Illinois 0.277 4.295 -0.109 -1.978 0.485 7.363
Indiana -0.258 -4.541 0.022 0.413 0.158 3.015
Iowa -0.063 -0.839 -0.021 -0.271 -0.293 -4.108
Kansas 0.395 6.189 0.079 1.320 0.156 2.558
Kentucky -0.027 -0.567 -0.062 -1.127 -0.049 -0.780
Louisiana 0.155 1.626 -0.006 -0.162 0.254 2.682
Maine -0.307 -3.621 -0.149 -1.864 -0.412 -4.844
Maryland 0.372 3.837 0.191 2.154 0.002 -0.065
Massachusetts -0.233 -2.048 -0.065 -0.597 -0.140 -1.277
Michigan -0.155 -2.323 -0.191 -3.465 -0.089 -1.414
Minnesota 0.006 0.061 0.007 0.110 -0.038 -0.671
Mississippi -0.137 -1.491 0.007 -0.006 0.113 1.163
Missouri -0.374 -4.820 -0.103 -1.523 -0.076 -1.138
Montana 0.118 1.436 0.006 0.001 -0.132 -1.815
Nebraska 0.729 8.505 0.187 2.936 0.118 1.865
Nevada 0.132 0.819 0.160 1.043 0.180 1.101
New Hampshire 0.066 0.846 -0.196 -2.587 -0.054 -0.703
New Jersey 0.394 2.581 0.285 1.962 0.124 0.840
New Mexico -0.151 -2.031 -0.168 -2.577 -0.181 -2.489
New York 0.219 1.758 0.203 1.710 0.162 1.303
North Carolina -0.462 -7.091 -0.277 -4.951 0.081 1.415
North Dakota -0.247 -3.025 -0.166 -1.989 -0.251 -3.191
Ohio 0.805 8.115 0.075 0.965 0.260 3.472
Oklahoma 0.050 1.012 -0.146 -2.722 -0.071 -1.272
Oregon -0.073 -1.372 -0.004 -0.084 0.109 1.615
Pennsylvania -0.443 -3.824 0.165 1.630 -0.056 -0.544
Rhode Island -0.566 -3.806 -0.380 -2.586 -0.243 -1.660
South Carolina 0.121 1.680 0.038 0.472 -0.175 -2.585
South Dakota 0.149 2.292 0.100 1.566 0.191 2.710
Tennessee -0.235 -3.317 0.053 0.929 0.029 0.457
Texas 0.163 1.913 -0.198 -2.502 -0.239 -3.037
Utah 0.178 1.235 0.169 1.186 -0.324 -2.171
Vermont 0.052 0.736 0.489 6.011 -0.060 -0.965
Virginia -0.011 -0.171 -0.166 -2.960 -0.304 -5.075
Washington 0.133 1.688 -0.188 -2.728 -0.060 -0.839
West Virginia 0.355 3.908 0.144 1.711 0.302 3.604
Wisconsin -0.351 -5.133 0.099 1.862 0.008 0.121
Wyoming 0.375 3.677 0.088 0.941 0.018 0.213
Note: The numbers correspond to the Φ parameters of the MCAR model for the
fourth diffusion period. We report the posterior mean of the spatial effects for the
Wii, PS3 and X360 and the ratio of the posterior mean over the posterior standard
deviation.

Table 9: Posterior of MCAR Spatial Effects
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OLS First Diffusion Period
Coefficient St. Dev. t-value

Intercept -2.3730 0.0131 -180.7930
Male Female Ratio 0.0185 0.0195 0.9480
Population Density 0.0039 0.0228 0.1720
Population in College Dorms 0.0263 0.0164 1.6040
Married Couple 0.0198 0.0161 1.2250
Travel Time to Work 0.0131 0.0194 0.6740
Income per Capita -0.0028 0.0217 -0.1300

OLS Second Diffusion Period
Coefficient St. Dev. t-value

Intercept -2.4053 0.0159 -151.0310
Male Female Ratio 0.0218 0.0237 0.9230
Population Density 0.0239 0.0277 0.8620
Population in College Dorms 0.0257 0.0199 1.2910
Married Couple -0.0092 0.0196 -0.4710
Travel Time to Work -0.0136 0.0235 -0.5780
Income per Capita -0.0194 0.0263 -0.7390

OLS Third Diffusion Period
Coefficient St. Dev. t-value

Intercept -2.3730 0.0131 -180.7930
Male Female Ratio 0.0185 0.0195 0.9480
Population Density 0.0039 0.0228 0.1720
Population in College Dorms 0.0263 0.0164 1.6040
Married Couple 0.0198 0.0161 1.2250
Travel Time to Work 0.0131 0.0194 0.6740
Income per Capita -0.0028 0.0217 -0.1300

OLS Fourth Diffusion Period
Coefficient St. Dev. t-value

Intercept -2.4008 0.0203 -118.0540
Male Female Ratio -0.0197 0.0302 -0.6520
Population Density 0.0355 0.0354 1.0030
Population in College Dorms -0.0237 0.0254 -0.9310
Married Couple 0.0210 0.0250 0.8400
Travel Time to Work 0.0189 0.0300 0.6290
Income per Capita 0.0182 0.0336 0.5410
Note: These are parameter estimates of the model in equation (3)
obtained by OLS and with no spatial effects.

Table 10: OLS δ coefficients
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MCAR First Period
Mean 5% 95%

Λ12 (Wii-PS3) 0.075 -0.185 0.337
Λ13 (Wii-Xbox) 0.115 -0.139 0.352
Λ23 (PS3-Xbox) -0.257 -0.488 0.036

MCAR Second Period
Mean 5% 95%

Λ12 (Wii-PS3) -0.082 -0.344 0.210
Λ13 (Wii-Xbox) 0.096 -0.156 0.354
Λ23 (PS3-Xbox) -0.103 -0.377 0.179

MCAR Third Period
Mean 5% 95%

Λ12 (Wii-PS3) 0.061 -0.204 0.302
Λ13 (Wii-Xbox) 0.401 0.145 0.600
Λ23 (PS3-Xbox) 0.117 -0.137 0.368

MCAR Fourth Period
Mean 5% 95%

Λ12 (Wii-PS3) 0.409 0.156 0.601
Λ13 (Wii-Xbox) 0.349 0.090 0.552
Λ23 (PS3-Xbox) 0.311 0.058 0.534
Note: We present the posterior mean and the
posterior 95% highest density region of the cor-
relation matrix obtained from the Λ matrix.
The Λ matrix measures the covariance between
the spatial effects of the three products.

Table 11: Posterior of MCAR Λ correlations
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HPDR
95% 50% 5%

MCAR 1st period ρ 0.975 0.805 0.150
MCAR 2nd period ρ 0.975 0.825 0.150
MCAR 3rd period ρ 0.975 0.825 0.150
MCAR 4th period ρ 0.975 0.815 0.200
Note:

Table 12: Highest Posterior Density Region (HPDR) for the ρ coefficient.
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Aggregate Sales Model for the Wii
Variable Estimate Std. Error t-value
spline 0.663 0.088 7.554
Search Wii 0.468 0.121 3.862

Aggregate Sales Model for the PS3
Variable Estimate Std. Error t-value
spline 0.862 0.108 7.974
Search PS3 0.171 0.133 1.287

Aggregate Sales Model for the X360
Variable Estimate Std. Error t-value
spline 0.722 0.122 5.916
Search X360 0.375 0.163 2.304
Note: The dependent variable is aggregate sales for
each of the consoles (in logs). The right hand side
includes a spline term and the logs of the search index
for the console. The R2 is higher than 0.95 for all
three regressions.

Table 13: OLS Regressions between Aggregate Sales Data and Aggregate Online Search
Data
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Figure 1: Google Insights for Search
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Figure 2: Model Size: Posterior Distribution of the Number of Regressors Included in
the Model for the Nintendo Wii
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Figure 3: State Inclusion Probabilities for Each Diffusion Period of the Nintendo Wii

37



Probability of Inclusion for First Period

0.07

0.09

0.11

Probability of Inclusion for Second Period

0.06

0.09

0.12

Probability of Inclusion for Third Period

0.06

0.09

0.12

Probability of Inclusion for Fourth Period

0.06

0.10

0.14

Figure 4: State Inclusion Probabilities for Each Diffusion Period of the Sony PS3
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Figure 5: State Inclusion Probabilities for Each Diffusion Period of the Microsoft Xbox 360
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Figure 6: Moran’s I and Geary’s C for Uniform Probabilities (Histogram) and Moran’s I
and Geary’s C for all Diffusion Periods and Technologies (Vertical Lines)
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Figure 7: Nintendo Wii Model: Histogram of the Posterior Mean of the Regression
Coefficient for all US States and All Time Periods (Left Panel) and Posterior Mean Over
Posterior Standard Deviation (Right Panel)
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Figure 8: Sony PS3 Model: Histogram of the Posterior Mean of the Regression Coefficient
for all US States and All Time Periods (Left Panel) and Posterior Mean Over Posterior
Standard Deviation (Right Panel)
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Figure 9: Microsoft Xbox Model: Histogram of the Posterior Mean of the Regression
Coefficient for all US States and All Time Periods (Left Panel) and Posterior Mean Over
Posterior Standard Deviation (Right Panel)
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Figure 10: Scatter Plots between Inclusion Probabilities for Each Diffusion Period and Search Elasticity (Nintendo Wii)
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Figure 11: Scatter Plots between Inclusion Probabilities for Each Diffusion Period and Search Elasticity (Sony PS3)
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Figure 12: Scatter Plots between Inclusion Probabilities for Each Diffusion Period and Search Elasticity (Xbox 360)
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Figure 13: Distribution of the Spatial Effects of the Nintendo Wii during First Diffusion Period
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Figure 14: Distribution of the Spatial Effects of the Nintendo Wii during Second Diffusion Period
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Figure 15: Distribution of the Spatial Effects of the Nintendo Wii during Third Diffusion Period
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Figure 16: Distribution of the Spatial Effects of the Nintendo Wii during Fourth Diffusion Period
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Figure 17: US State Map (Source: Wikipedia)
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A Methodology

In this appendix we discuss the BVS method and the MCAR model estimation we use

to study the probabilities of inclusion of the different regions and locations.

A.1 Bayesian Variable Selection

In what follows we follow closely the presentation of George and McCulloch (1997) section

4. In Section 4 they discuss the specification of conjugate priors for β and σ. We chose to

use conjugate priors because it facilitates the integration of β and σ out of the posterior

distribution of the indicators γ and hence the computation of the posterior of γ becomes

simple and fast.

The likelihood is specified as

f(Y |β, σ) = φ(Y ; Xγβγ , σ
2I) (A-1)

where Y = yi = (yi1, . . . , yiT ), Xγ is a subset of potential regressors for which γ = 1, I is

an identity and φ(y; x, Σ) is the Normal distribution density with mean x and variance

Σ evaluated at y. The prior for β is

π(β|σ, γ) = φ(β; 0, σ2DγRDγ), (A-2)

where Dγ is a diagonal matrix with elements

Dkk
γ =











υ0 when γk = 0

υ1 when γk = 1,
(A-3)

and R is a correlation matrix. R ∝ I or R ∝ (X ′

γXγ)
−1 are attractive choices when

υ0 = 0. The scalars υ0 and υ1 are chosen according to the objectives of the modeler.

The choice of υ0 and υ1 affect the number of regressors included in the subset Xγ and

the threshold after which an element of β is distinguished from zero. See George and
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McCulloch (1997, page 346-347) for more details.

George and McCulloch (1997) discuss how different choices of υ0 and υ1 affect the

selection of variables and the size of the β coefficients that are included in the model.

The suggestion is to set υ0 small and υ1 large such that when the posterior supports that

γk = 0 then the prior specification is narrow enough to keep βk close to zero. A popular

choice in the literature is to set υ0 = 0 and to specify π(β|γ) = π(βγ|γ) × π(βγ̄|γ) where

π(βγ|γ) = φ(βγ ; 0, σ
2Σγ) and π(βγ̄ |γ) = 1 being βγ and βγ̄ the coefficients included and

excluded in the model, respectively. The attractiveness of this last specification is that

we can select βk depending on how significantly they are different from zero rather than

selecting them depending on their relative size when υ0 6= 0.

The prior for σ2 is

π(σ2) = IG(ν/2, νλ/2) (A-4)

where ν are the degrees of freedom and λ is the scale of the inverse gamma (IG) distribu-

tion. What is left to specify is the prior for the indicators γ. They are usually specified

as

π(γ) =
∏

k

wγk

k (1 − wk)
1−γk , (A-5)

where wk is the probability of including the k regressor in the model. A popular choice

in the literature is to use wk = w and therefore

π(γ) = wqγ(1 − w)p−qγ , (A-6)

where qγ is the number of regressors included out of a total set of size p. This last prior

can be combined with a conjugate prior on w and set w ∼ Beta(a, b) and the prior

becomes

π(γ) =
B(a + qγ , b + p − qγ)

B(a, b)
, (A-7)

where B(x, y) is the beta function with x and y parameters. See Chipman et al. (2001)

for other choices of π(γ). Careful selection should be given to the scalars υ1 and w (or a
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and b) as they directly affect model size. Large υ1 and small w concentrate the prior on

parsimonious models with large coefficients while large w and small υ1 concentrate the

prior on saturated models with small coefficients (Clyde and George, 2004, page 86).

The joint density π(Y, β, σ2|γ) = π(Y |β, σ2, γ)π(β|σ, γ)π(σ2|γ) has a closed form ex-

pression when υ0 = 0 and after integrating over β and σ2 and that is

π(Y |γ) ∝ |X ′

γXγ + Σ−1
γ |−1/2|Σγ |

−1/2(νλ + S2
γ)

−(T+ν)/2, (A-8)

where

S2
γ = Y ′Y − Y ′Xγ(X

′

γXγ + Σ−1
γ )X ′

γY, (A-9)

and Σγ = DγRDγ. The posterior of the indicators is straightforward to compute as

π(γ|Y ) ∝ π(Y |γ)π(γ) and the Metropolis-Gibbs sampler is straightforward and it pro-

ceeds by sampling π(γ|Y ), π(βγ|Y, σ2, γ) and π(σ2|Y, β, γ) sequentially.

We use a = 50 and b = 100 for the prior on w (in equation (A-7)). The prior of σ2

has ν = 1000 and λ = 0.30. We follow the recommendation of George and McCulloch

(1997, page 341) who suggest to set λ such that the posterior of σ2 assigns substantial

probability to an interval close to the sample variance of Y and the variance of the residual

of a saturated model. The prior on β in equation (A-2) and (A-3) has υ0 = 0 and υ1 = 7

and we use R = (X ′

γXγ)
−1.

A.2 A short review of aereal data models

Aereal data usually refers to cross sectional or panel data collected across different regions

or areas with well defined boundaries. Therefore aereal data consists of aggregate or

summary measures at different locations. The CAR and SAR models are among the

most popular models applied to aereal data but there are many other popular approaches

like kriging or spatial interpolation. In this review we focus on the CAR model and its

multivariate extensions.

CAR stands for Conditional Autoregressors and SAR stands for Simultaneous Au-
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toregressors and hence CAR models are usually referred as Conditionally Autoregressive

models and the SAR as Simultaneous Autoregressive models.

The CAR and SAR models are discussed in several sources. A basic reference is

Cressie (1992). Cressie covers topics that range from model specification, classical and

Bayesian estimation to the theoretical foundations of the CAR and SAR models. Many

other topics in spatial analysis are discussed in Cressie (1992). Banerjee et al. (2004) focus

on Bayesian analysis and estimation of spatial models. Held and Rue (2002) review many

of the computational methods and sampling techniques usually applied to the Bayesian

analysis of CAR models and to more general spatial models referred to as Gaussian

Markov Random Fields.

Wall (2004) compares the CAR and SAR models and offers some insights about the

different correlation between locations implied by these two models. The CAR and SAR

models might be equivalent under certain conditions, for example see Assunçao (2003) or

Banerjee et al. (2004, page 86). We intend to apply spatial priors to the distribution of

model parameters. Therefore, in what follows we focus on the CAR model as it is better

suited than the SAR both as a hierarchical prior specification on a model’s parameters

and for Bayesian modeling (Banerjee et al., 2004, page 86).

The main assumption of the CAR model is that a measurement at a location has

a conditional distribution with a mean that is proportional to a weighted sum of the

measurement at neighboring locations. Both the joint distribution and the conditional

distribution of the spatial effects given all other spatial parameters can be derived in closed

form and they are presented in Banerjee et al. (2004, page 79) and in the references

therein. However, there are alternative specifications to the joint distribution of the

spatial effects and a common approach is to use the pairwise difference specification

(Besag et al., 1991). Haran et al. (2003) present how to use block updating when some

of the coefficients in a linear regression follow the pairwise difference prior.

The CAR is suited for univariate aereal data and Mardia (1988) presents an extension

to the multivariate case, usually referred to as multivariate CAR or simply as MCAR. It
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is common to have more than one measurement at each location and the MCAR allows to

model both the correlation among measurements of neighboring sites and the correlation

among the different measures across sites. Gelfand and Vounatsou (2003) and Carlin

and Banerjee (2003) apply Bayesian analysis to the MCAR of Mardia (1988) and present

applications with two and up to five dimensional data. On the other hand, Gamerman

et al. (2003) present a multivariate version of the pairwise difference specification (used

as a prior) and its sampling schemes.

Other extensions of the CAR model incorporate dynamics into its spatial coefficients.

Waller et al. (1997), Nobre et al. (2005) and Gelfand et al. (2005) propose models that

use a random walk specification for the mean or for the variance of the spatial effects.

Gelfand et al. (2005) provide a review of spatio-temporal models.

A.2.1 Linear Model with CAR Prior

Next we work out the specification and sampling for the model

yi = xiβ + φi + ǫi, (A-10)

where yi is measured at i locations for i = 1, . . . , p, xi is a set of k covariates at i and β

is a coefficient column vector k × 1 while ǫi and φi are random effects meant to capture

overall variability and spatial heterogeneity, respectively. We define y
′

= (y1, . . . , yp),

φ
′

= (φ1, . . . , φp) and X = (x1, . . . , xk). The distribution of ǫi is

ǫ ∼ N(0, Σ), (A-11)

where ǫ
′

= (ǫ1, . . . , ǫp), Σ = σ2I and σ2 is the variance of ǫ. N(µ, Σ) refers to a normal

distribution with mean µ and covariance matrix Σ. We define λǫ = 1/σ2. The prior
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distribution of the spatial effects φi follows

φi|φj∼i ∼ N
(

∑

j∼i

cijφj, τ
2
i

)

. (A-12)

This form states that the distribution of φi given its j neighbors, denoted as j ∼ i, has

a normal distribution with a mean that is a weighted sum (using weights cij) of the

neighboring values and variance τ 2
i . Besag (1974) shows that the joint distribution of the

spatial effects in (A-12) can we written in the form

φ ∼ N(0, Ω), (A-13)

where φ = (φ1, . . . , φp) and Ω is a p × p symmetric and positive semi-definite or positive

definite matrix. In the literature it is common to define the elements of Ω−1 directly

instead of specifying Ω. For example, Banerjee et al. (2004, page 79) assume that τ 2
i =

τ 2/wi+ and that cij = wij/wi+ where wij takes the value of 1 if j ∼ i and zero otherwise

and where wi+ is the total number of neighbors of i. Given these assumptions Ω−1 =

T−1(I−C) and given that T is a diagonal matrix with elements Tii = τ 2/wi+ and Cij = cij

then Ω−1 can be written as

Ω−1 =
1

τ 2
(Iwi+

− W ), (A-14)

where Iwi+
is a diagonal matrix with elements wi+ and Wij = wij. This last specification

for Ω results in an improper distribution given that the rows of (Iwi+
− W ) sum to zero.

A solution to this issue is to specify Ω as

Ω−1 =
1

τ 2
(Iwi+

− ρW ), (A-15)

where ρ takes a value (between 0 and 1) that makes Ω−1 positive definite and consequently

the distribution of φ becomes proper. For a discussion on the impropriety of the CAR

distribution and the role of the ρ parameter see Banerjee et al. (2004, page 163), Eberly
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and Carlin (2000), Sahu and Gelfand (1999) or Best et al. (1999). This latter form implies

that

φi|φj∼i ∼ N
(

ρ
∑

j∼i

cijφj , τ
2
i

)

. (A-16)

The distribution of φ is usually referred as CAR(τ 2) when the conditional distributions

of the spatial effects are defined as in equation (A-12) and it is referred as CAR(ρ, τ 2)

when its conditional distribution follows (A-16). In what follows we use Ω−1 = λφQ with

Q = Iwi+
− ρW and λφ = 1/τ 2. To carry out Bayesian inference and to complete the

model specification we need to define the priors for β, λy, λφ and ρ. We specify them as

p(β) ∝ 1

p(λy) ∝ λy
aye−byλy

p(λφ) ∝ λ
aφ

φ e−bφλφ

p(ρ) ∝ discretized prior

(A-17)

We use p(·) generically to denote a probability density. That is, the prior for β is non-

informative, the priors for λy and λφ have the form of a Gamma distribution. Finally,

for ρ we give probability mass to a discrete set of values with a high proportion of them

near 1. Gelfand and Vounatsou (2003) suggest the use of discretized priors for ρ. The

model specification is now complete and next we describe the sampling steps to estimate

equation (A-10).

A.2.2 Sampling Steps for the CAR

To sample the parameters of the model in equation (A-10) we can apply the Gibbs sampler

and MCMC. To derive the posterior of β we can write the likelihood of equation (A-10)

as

L(y|β, λy) ∝ |M |−1/2e−
1
2
(y−Xβ)′M−1(y−Xβ), (A-18)
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where M = ( 1
λφ

Q−1 + 1
λǫ

I). The posterior of β is then

p(β|y, λy, λφ) ∝ |M |−1/2e−
1
2
(β−b)

′

(X′M−1X)−1(β−b), (A-19)

with b = (X ′M−1X)−1X ′M−1y. Therefore β can be sampled from N(b, (X ′M−1X)−1).

Next we derive the posterior distribution of the spatial effects φ. To do so we write

the density of y conditional on β. That is

L(y|β, φ, λy) ∝ λp/2
y e−

λy

2
(ỹ−φ)

′

(ỹ−φ), (A-20)

with ỹ = y − Xβ. Therefore, the posterior of φ is

p(φ|ỹ, λy, λφ) ∝ λp/2
y e−

1
2
((φ−a)

′

R−1(φ−a)), (A-21)

where a = (λyI + λφQ)−1λy ỹ and R−1 = (λyI + λφQ). That is φ can be sampled form

N(a, R).

The posterior of λy and λφ are

p(λφ|ỹ, φ, λy) ∝ λ
p/2+aφ

φ e−λφ( 1
2
φ
′

Qφ+bφ)

p(λy|ỹ, φ, λφ) ∝ λ
p/2+ay
y e−λy( 1

2
(ỹ−φ)

′

(ỹ−φ)+by).
(A-22)

That is λφ ∼ Γ(p/2 + ay, by + 1/2φ
′

Qφ) and λy ∼ Γ(p/2 + aφ, bφ + 1/2(ỹ − φ)
′

(ỹ − φ)).

Finally we need to sample the ρ in the Q matrix. We know that

p(ρ|φ, y, λy, λφ) ∝ |Q|1/2e−
1
2
φ
′

Qφp(ρ). (A-23)

A common method to sample ρ is to assume that p(ρ) is a uniform distribution with

range (0, 1) and to sample it with the Metropolis-Hastings algorithm. A second popular

choice is to discretize ρ in a set of values and to draw them proportional to their posterior

probability. We use the following set 0.01, 0.10, 0.20, 0.30, . . . , 0.70, 0.71, 0.72, . . . , 0.99.
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In summary we use the next steps in the Gibbs sampler

1. β ∼ N((X ′M−1X)−1X ′M−1y, (X ′M−1X)−1)

2. φ ∼ N((λyI + λφQ)−1λyỹ, (λyI + λφQ))

3. λy ∼ Γ(p/2 + ay, by + 1/2φ
′

Qφ)

4. λφ ∼ Γ(p/2 + aφ, bφ + 1/2(ỹ − φ)
′

(ỹ − φ))

5. ρ ∼ p(ρ|φ, y, λy, λφ)

where x ∼ Γ(a, b) means that x follows a Gamma distribution with the form cxae−bx

where c is a constant. At the end of the sampling step 2 we center the φ vector around

its own mean following Eberly and Carlin (2000) and Best et al. (1999). The re-centering

is equivalent to sampling with the restriction
∑

φi = 0. Rue and Held (2005) show a

general form to sample with linear restrictions and that is equivalent to centering around

a mean.

A.2.3 Multivariate Linear Model with MCAR Prior

Next we expand the linear model of Section A.2.1 to a multivariate setting. The exposition

follows Carlin and Banerjee (2003) and Gelfand and Vounatsou (2003).

In this setting we observe J different measurements at each location. That is we use

the notation yji to refer to the jth measurement at location i. We use the notation yj

for (yj1, . . . , yjp)
′

and Y is a p × J matrix with columns (y1, . . . , yJ). The same notation

is used for the spatial effects φij and the error terms ǫij . That is φj = (φj1, . . . , φjp)
′

,

Φ = (φ1, . . . , φJ) and finally ǫj = (ǫj1, . . . , ǫjp)
′

, E = (ǫ1, . . . , ǫJ). We observe a common

group of N covariates X where X = (x1, . . . , xN ) and xi = (xi1, . . . , xip)
′

. Hence we can

write

Y
(p×J)

= X
(p×N)

· B
(N×J)

+ Φ
p×J

+ E
(p×J)

(A-24)
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To carry out Bayesian inference we define the following priors

p(B) ∝ 1

p(Σ) ∝ |Σ|−
v
2 e−

1
2
trΣ−1VΣ

p(Φ|Λ, Ψ) ∝ |Ψ|−J/2|Λ|−p/2e−
1
2
tr(ΨΦΛΦ

′

)

p(Λ) ∝ |Λ|−
v0
2 e−

1
2
trΛVΛ

(A-25)

Above Σ is a J×J covariance matrix of E and vec(E) ∼ N(0, Σ⊗I); Λ is J×J and it

is the inverse of the covariance matrix between the columns of Φ while Ψ is p×p and it is

the inverse covariance matrix between the rows of Φ. That is, vec(Φ) ∼ N(0, Λ−1⊗Ψ−1).

The form of Ψ might be identical to the form of the Q matrix in the CAR prior. That

is Ψ = (Iwi+
−ρW ) where W and Iwi+

are defined as before. A second choice for Ψ might

be Ψ = (Iwi+
− W ). Carlin and Banerjee (2003) and Gelfand and Vounatsou (2003) use

the first form while Gamerman et al. (2003) use the second. A third choice is to define a

general form for Λ⊗Ψ as Gelfand and Vounatsou (2003) propose. Gelfand and Vounatsou

(2003) propose a form of Q that allows an item (J items) specific ρ parameters. They

first define Qj = (Iwi+
−ρjW ) and its Choleski factorization Qj = P

′

jPj . Then they define

Λ ⊗ Ψ = P
′

(Λ ⊗ Ip×p)P, (A-26)

where P is a diagonal matrix with Pj blocks. This last form may allow for a more flexible

correlation structure of the Φ parameters. In the application we assume ρj = ρ for all j.

A.2.4 Sampling the Multivariate Linear Model with MCAR Prior

If we condition on Φ and define Ȳ = Y − Φ we obtain the traditional multivariate

regression model

Ȳ = X · B + E. (A-27)
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Given this last expression we can write the density of the model as

p(Ȳ |X, B, Σ) ∝ |Σ|−p/2e−
1
2
tr(Ȳ −XB)′(Ȳ −XB)Σ−1

. (A-28)

The joint posterior of B and Σ can be written as

p(B, Σ|X, Y ) = p(Y |X, B, Σ)p(B)p(Σ)

∝ |Σ|−
p+v
2 e−

1
2
trΣ−1G,

(A-29)

where G = (Ȳ − XB)′(Ȳ − XB) + VΣ. Furthermore, we can write G = S + V + (B −

B̃)
′

(X
′

X)(B−B̃) where S = (Ȳ −XB̃)′(Ȳ −XB̃) and B̃ = (X
′

X)−1X
′

Ȳ . This last form

of G allows us to easily integrate out either B or Σ in the last equation and to obtain the

posteriors of B and Σ respectively. Therefore

p(B|X, Y, Σ) ∝ |Σ|−
p+v
2 eΣ−1(B−B̃)

′

(X
′

X)(B−B̃)

p(Σ|X, Y ) ∝ |Σ|−
p+v

2 e−
1
2
trΣ−1(VΣ+S),

(A-30)

and we can sample B and Σ using these last forms for a matric-variate normal for B and

a Inverse Wishart for Σ.

If we condition equation (A-24) on B and we take Ỹ = Y − XB then we have a

multivariate regression model

Ỹ
(p×J)

= Φ
(p×J)

+ E
(p×J)

, (A-31)

and given equation (A-31) we can write the density of Ỹ as

p(Ỹ |Φ, Σ) ∝ |Σ|−p/2e−
1
2
tr(Ỹ −Φ)′(Ỹ −Φ)Σ−1

. (A-32)

If we use φ = vec(Φ), y = vec(Ỹ ) then equation (A-32) can be expressed as

p(y|φ, Σ) ∝ |Σ|−p/2e−
1
2
(y−φ)

′

(Σ−1⊗Ip×p)(y−φ). (A-33)
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In the same way the prior for Φ can be expressed in vectorized form as

p(φ) ∝ |Ψ|−J/2|Λ|−p/2e−
1
2
φ′(Ψ⊗Λ)φ. (A-34)

We use the vectorized forms to derive the posterior of φ. That is p(φ|y, Σ, Ψ) ∝ p(y|φ, Σ)×

p(φ) and therefore

p(φ|y, Σ, Ψ) ∝ |Λ|−
(2p+v0)

2 |Σ|−p/2e−
1
2
((φ−a)′M−1(φ−a)+Sφ) (A-35)

where Sφ = y′Hy + a′M−1a, M−1 = (H + F ), H = Σ−1 × I, F = Ψ ⊗ Λ and a = MHy.

The posterior of Λ can be derived from the third and fourth line of equation (A-25)

as follows

p(Λ|Φ, Y, Σ, Ψ) ∝ |Λ|−
(p+v0)

2 e−
1
2
trΛ(VΛ+Φ

′

ΨΦ). (A-36)

If the form of Ψ contains a ρ or ρj parameters Gelfand and Vounatsou (2003) suggest to

sample them from a discretized prior. The posterior of the ρ parameters is

p(ρ|Φ, Y, Σ, Λ) ∝ |Ψ|−J/2e−
1
2
tr(ΨΦ

′

ΛΦ). (A-37)

In summary we use the following Gibbs steps

1. β|X, Ȳ , Φ, Λ, Ψ ∼ N(vec((X ′X)−1X ′Ȳ ), Σ ⊗ (X ′X)−1)

2. φ|B, X, Y, Λ, Ψ ∼ N((Σ−1 ⊗ I + Ψ ⊗ Λ)−1(Σ−1 ⊗ I)y, (Σ−1 ⊗ I + Ψ ⊗ Λ))

3. Σ|Y, B, Φ, Λ, Ψ ∼ IW ((p + v)/2, VΣ + S)

4. Λ|Ψ, B, X, Y, Σ ∼ IW ((p + v0)/2, VΛ + Φ
′

ΨΦ)

5. ρ|Φ, Λ, B, X, Y, Σ ∼ p(ρ|Φ, Y, Σ, Λ)

In the paper we set VΣ = I3 and VΛ = I3 and υ0 = 5 while υ = 3 and p = 48. We

use 48 states because we leave out Hawaii and Alaska. The matrix Ψ is defined based
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on the neighborhood structure of the US states where the element Ψkj takes the value of

one when the state k is neighbor of the state j and zero otherwise. We further assume

that ρj = ρ and we sample this parameter based on the discretized prior described above.

Finally, we assume that Σ = σ2I and the β coefficients are equal across technologies.
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