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A NOTE ON DYNAMIC PROGRAMMING WITH
UNBOUNDED REWARDS*+

J. A.E. E. VAN NUNEN{ anp J. WESSELS$§

In a recent paper, Lippman presents sufficient conditions for Denardo’s N-stage contrac-
tion in discounted semi-Markov decision processes with unbounded rewards. In this note it is
demonstrated that Lippman’s conditions may be replaced by weaker conditions which even
imply 1-stage contraction. The verification of the conditions of this note is somewhat easier.

Lippman [4] considers a discounted semi-Markov decision process with general
state space S and action space A. Generalizing his approach of an earlier paper [3], he
presents sufficient conditions for the existence of a normed Banach space of real
valued functions on S in which Denardo’s N-stage contraction approach [1] may be
used. This approach allows the rewards of the Markov decision process to be
unbounded to a certain extent. This is made possible by the specific choice of the
norm in the Banach space. Lippman uses weighted supremum norms which were later
studied more generally for Markov decision processes by Wessels in [7]. Another
method of handling certain types of unbounded rewards has been introduced by
Harrison [2]. His idea of a shifted space has been combined with the weighted
supremum norm approach by van Nunen in [5].

In Lippman’s notation ¢(- | x, a), r(x, a) denote the transition probability and one
period reward, respectively, for state x € § and action a € 4; a > 0 is the discount
factor; ¢(- | x, a) is the probability distribution function of the time until the next
transition (given state x € S, action a € A4). Also, a policy f maps S into 4.

The conditions in [4] are the following:

A function w on § exists with w(x) > 1, an integer m > 1 exists, a number S
(0 < B < 1) exists, positive numbers b and M exist, such that forall x € S, a € 4:

B(x, a) Efowe""t(d*r | x,a) < B,
[r(x, a)|w(x) "< M,
Lw"(y)q(dy | x,a) <[w(x)+b]" forn=1,...,m.

In this note it will be shown that these conditions may be replaced by somewhat
weaker and simpler conditions:

THEOREM. Under Lippman’s conditions the following holds: A function v on S exists
with v(x) > 0, a number 8 (0 < B < 1) exists, a number p (B < p < 1) exists, a positive
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number M exists, such that for all x € S, a € 4:
B(x,a)=[ e 1(dr | x,a) < B,
0
|r(x, a)lo(x)~"'< M,
B o(1q(dy | x, a) < po(x).

Moreover, the existence of a function v and numbers B, p, M with the properties
mentioned above already guarantees that the operator T defined by

(Tpu)(x) = r(x, f(x)) + B(x, f(x)) fs u(»)q(dy | x, f(x))
is a one-stage contraction on the Banach space of real-valued functions on S with norm
llullo = sup Ju(x)|o(x) ™"
xES
Lippman’s Banach space consists of real valued functions # and S with the
following weighted supremum norm:
el =sup u(x)lw(x)""-

In [4] it is proved that under these conditions there exists an integer J > 1, such that
for any sequence of policies f}, . . ., ]; the operator Tf‘ s Tfj 1s a contraction.
The proof of the theorem follows from the two lemmas below.

LEMMA 1. Under Lippman’s conditions the following holds: for any p > B and any
¢ > bl(p/ B)'/™ — 117! the positive function v on S with

o(x) =[w(x)+¢]”
satisfies

va(y)q(dy | x, a) < pv(x) forallx € S,a € A.
s

Proor. Note that c satisfies b + ¢ < (p/B)"/™c. Hence

fea(@ 1 xa)= [[w()+c]"a@ | x. )

= 3 e [ ey | )

n=0

< § (Mecm " [w(x)+b]"=[w(x)+b+c]"

n=0
<[w(x) + (0/8)"/"e]" < po(x)/8B.
LeMMa 2. Under Lippman’s conditions the following holds: for any p (B <p<1)
there exists a function v on S with v(x) > 0, such that for any policy f
| Tpuy — Tpuao]l, < pliny — tsll s
"rf”o < M’
where r{(x) = r(x, J(x)).
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Proor. Choose ¢ and v as in lemma 1. Then

(T = Ta)(9) < B f () = wa(g(dy | 5 J(3)
< Bl = sl [ 0(2)a(dy | %, f(x)

< plluy — uyf| ,o(x)-
Furthermore: |r(x, a)|o(x)™' < |r(x, a)lw(x)™™ < M.

Lemma 2 proves in fact our theorem, namely, if our conditions are satisfied 7, is a
p-contraction with respect to the norm ||- ||, and ||, < M. Note that this p-
contraction holds with respect to a norm which differs slightly from Lippman’s. In
fact, we replace his weight function w(x)™ by [w(x) + ¢]”. If Lippman’s conditions
hold with b =0, then we may choose ¢ =0 and both norms are identical. The
contraction factor p can be chosen arbitrarily close to B8 by choosing ¢ sufficiently
large. For computational purposes (especially finding upper and lower bounds for the
value function) it is more favorable to have this one-stage p-contraction, than to have
a J-stage contraction with “average” contraction per stage 8(1 + Jb)"/’ for a J with
B7(1 + JbY™ < 1 (see [4]).

REMARKS. (1) As demonstrated in [7], the discounting requirement is not essential
in our analysis: if we replace B(x, a)q(- | x, a) by p(: | x, a) then our conditions
become:

Ir(x, a)lo(x) "' < M < oo,
fsv(y)p(dy | x, a) < pv(x) withp<L

These conditions allow the situation « = 0 in certain cases and give some weakening
for a > 0.

(2) In [4] it is essential that w(x) > & for some positive §. This implies for v(x) in
lemma 1: v(x) > (8 + ¢)”. However, in order to make T, contracting with respect to
Il - |, such a condition is not required for v. It suffices if v(x) >0 for all x. For
treating unbounded rewards, the possibility of having v-values approaching zero is not
essential. However, for finding v-values satisfying the second requirement in Remark
1, it may be of help to have this extra possibility.

(3) In this paper we showed for a special situation in Markov decision processes
that J-stage contraction with respect to some weighted supremum norm for the
relevant operator implies one-stage contraction with respect to some other weighted
supremum norm. In fact this can be proved more generally (see e.g. [S]), although the
general form of the new weight function is less simple. In Markov decision processes
the most important operator is Uu = sup,T;u and the contraction properties of 7, are
used for proving contraction of U. However, any operator U that is J-stage contract-
ing with respect to some norm p in a metric space is one-stage contracting with
respect to another norm in a larger metric space (both norms need not be weighted
supremum norms and even if p is a weighted supremum norm, the new one can be of
a different type). This fact has been proved by Walter in [6] by choosing for the new
metric

o(uy, up) = p(uy, wy) + a” p(Uuy, Uny) + - - - + a~ Y= Dp(U/ " Muy, U7 wy),

if U is J-stage contracting with contraction factor a’.
In a personal communication B. L. Fox has suggested another choice for a new
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metric:
Auy, uy) = max[p(ul, uy), o~ 'p(Uny, Uny), ..., ™Y Dp(U7 "y, U"'uz)],

which guarantees 1-stage contraction if U is J-stage contracting. The idea of Fox can
be used for a still more general result:

LemMa 3. Suppose U is an operator in some metric space with metric p. Suppose that
for some o > 0 and all u,, u,

sup  a "p(U"u;, U'uy) < oo.
n=0,1,...

Then U is a one-stage contraction with contraction factor o with respect to the metric

p(up )= sup o "p(Uwy, Uuy).
n=0,1,2,...

(4) Our third condition involves only one inequality instead of m inequalities as
Lippman requires. On the other hand, it seems that our third condition lacks the extra
degree of freedom that Lippman’s constant b might provide. However, it is easily
verified that with each weighting function v(x) also v(x) +d (with d any positive
constant) satisfies the inequality.

(5) In order to show how the weighting function v(x) can be determined in a
realistic problem we consider as in Lippman [4] the M /G /1 queue with removable
server in which the system is controlled by turning the server on or off. The arriving
rate is A > 0 and the service times are nonnegative random variables with distribution
function G, and mean p, where 0 < p < 1/A. The cost structure includes four types of
costs: a holding cost 2(n) depending on the number of customers in the system, a
running cost r per unit of time the server is on and a fixed cost R, [R,] for turning the
server on [off]. As in Lippman [4] the states of the system are (n, i), where n is the
number of customers (n=0,1,2,...) and i/ is 0 or 1 when the server is off or on
respectively. The law of motion is given by the mass function g where

g({(n+1,0) | {(n,i),0)=1
and
M g!
g((n+j =8, 1y | (n i), 1)= f ( s

with §g=0and §,=1forn > L.
For the case of linear holding costs we choose v({n, i)) = n + ¢, where ¢ should be

chosen such that
(n+14+c)g((n+1,0)](ni),0)<p(n+c)/B forn=0,1,...
and
o0
20[" +j=8,+clgn+j~8,1)|(ni)1)
=
<p(n+c)/B forn=0,1,..

Noting that the greatest lower bound for ¢ occurs when n =0 in the first inequality

above, we have ¢ > (p/8 - 1)~
For the case of quadratic holding costs we choose v({n, i))=n?+c, where ¢

should be chosen such that
((n+ 1)+ c)g((n+ 1,0y | (n,i),0) < p(n*+c)/B forn=0,1,...
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and

§0[<n Fj= 8+ clgn =8, 1) | (m i, 1)
2

<p(n*+c)/B forn=0,1,...

These requirements lead easily to the condition

2-p/B N+
(e/B~1)* " p/B—1

¢ ? max

’

where p, is the second moment of G. In both inequalities » = 0 yields the critical
value.

In an inventory problem with backlogging our conditions give a nice condition for

the tails of the demand distribution and for the backlogging costs. It appears that
exponential weight functions can be used for a large class of demand distributions
and for strongly increasing costs (see [5] for details).!

! The authors wish to thank an anonymous associate editor and a referee for some helpful remarks. They

are grateful to the area editor Professor B. L. Fox for several comments, especially for calling Walter's
paper to their attention and for the suggestion of A in remark 3.
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