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Abstract

The optic nerve head is involved in many ophthalmic disorders, including common diseases such as myopia and open-angle
glaucoma. Two of the most important parameters are the size of the optic disc area and the vertical cup-disc ratio (VCDR).
Both are highly heritable but genetically largely undetermined. We performed a meta-analysis of genome-wide association
(GWA) data to identify genetic variants associated with optic disc area and VCDR. The gene discovery included 7,360
unrelated individuals from the population-based Rotterdam Study I and Rotterdam Study II cohorts. These cohorts revealed
two genome-wide significant loci for optic disc area, rs1192415 on chromosome 1p22 (p = 6.72610219) within 117 kb of the
CDC7 gene and rs1900004 on chromosome 10q21.3-q22.1 (p = 2.67610233) within 10 kb of the ATOH7 gene. They revealed
two genome-wide significant loci for VCDR, rs1063192 on chromosome 9p21 (p = 6.15610211) in the CDKN2B gene and
rs10483727 on chromosome 14q22.3-q23 (p = 2.93610210) within 40 kbp of the SIX1 gene. Findings were replicated in two
independent Dutch cohorts (Rotterdam Study III and Erasmus Rucphen Family study; N = 3,612), and the TwinsUK cohort
(N = 843). Meta-analysis with the replication cohorts confirmed the four loci and revealed a third locus at 16q12.1 associated
with optic disc area, and four other loci at 11q13, 13q13, 17q23 (borderline significant), and 22q12.1 for VCDR. ATOH7 was
also associated with VCDR independent of optic disc area. Three of the loci were marginally associated with open-angle
glaucoma. The protein pathways in which the loci of optic disc area are involved overlap with those identified for VCDR,
suggesting a common genetic origin.
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Introduction

The optic nerve head, or optic disc, is the place where the axons

of the retinal ganglion cells leave the eye and form the optic nerve.

Its morphology, visible by ophthalmoscopy, is important in the

diagnosis and follow-up of patients with (neuro-) ophthalmologic

diseases, such as ischemic and hereditary optic neuropathies, optic

neuritis, papilledema and primary open-angle glaucoma (OAG).
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Optic disc parameters of interest are the surface of the optic nerve

head referred to as the optic disc area (measured in units of mm2),

and the vertical cup-disc ratio (VCDR). The optic disc area is

associated with general characteristics (such as body height) as well

as ocular ones (such as axial length) [1,2]. The relation to axial

length makes the optic disc size directly relevant for nearsighted-

ness (myopia), one of the most common ophthalmic disorders.

Furthermore, it has been suggested that larger optic discs may

suffer more from intraocular pressure-related stress, a strong risk

factor for OAG [3]. However, the association of the size of the

optic disc to OAG is not clear since it has been argued that larger

optic discs may have a larger anatomical reserve for various optic

neuropathies such as OAG due to higher number of nerve fibers

[4]. Effects may even partially counteract each other [4].

The VCDR is a parameter commonly used in the clinical

glaucoma management [5]. The VCDR is determined by comparing

(in a vertical direction) the size of the cup, a region without axons, to

the size of the optic disc. An increase in VCDR may indicate the

occurrence of glaucomatous changes of the optic nerve head, referred

to as glaucomatous optic neuropathy [6]. In addition, an unusual

large VCDR at a single observation is a significant determinant of

glaucoma [7,8]. The heritability of the optic disc area and VCDR are

estimated to be around 52–59% and 48–80%, respectively, [9–12]

suggesting a major role for genetic factors. This prompted us to study

the genes determining the optic disc area and VCDR as

endophenotypes for myopia and OAG.

To identify genetic determinants of optic disc area and VCDR,

we performed a genome-wide association study (GWAS) of optic

disc area and VCDR using data from Caucasian participants of

the Rotterdam Study [RS] (cohort I and II, in which participants

have an identical age distribution and eye assessment) and

replicated our findings in three independent cohorts of Caucasian

ethnicity: the Rotterdam Study III [RS-III, a younger cohort], the

Erasmus Rucphen Family [ERF] study and the TwinsUK cohort

(see Materials and Methods for details of all cohorts). Next, we

examined whether the genome-wide significant Single Nucleotide

Polymorphisms (SNPs) were related to myopia and OAG using

data from patients with (one of) these diseases from the Rotterdam

Study I.

Results

Study samples
The discovery cohorts included 5,312 (RS-I) and 2,048 (RS-II)

participants who were genotyped and had reliable optic disc data,

resulting in a total of 7,360 participants included in the primary

GWAS discovery set. A small fraction (205 from RS-I and 90 from

RS-II), had missing or unreliable baseline data; for these we used the

data available at follow-up. From RS-III, 1,966 participants were

included, and from ERF 1,646, resulting in a total of 10,972 when

combining the discovery and replication cohorts from the Nether-

lands, and 11,815 when also including the 843 participants of

TwinsUK. Table 1 summarizes the general characteristics of the

discovery and replication cohorts. There are significant differences

between the cohorts in terms of age (discovery cohort is older), gender

(TwinsUK includes only women) and optic disc parameters (due to

different disc-assessment techniques [see Materials and Methods]; the

analyses were adjusted for this difference).

Figure S1 and Figure S2 show the Q-Q plots for the observed

versus expected p-values for each individual study and for the

meta-analysis of the discovery and replication cohorts for optic

disc area and VCDR, respectively. Genomic control for all four

cohorts showed low dispersion for optic disc area as well as for

VCDR with inflation factors in the range of 1.024 and 1.061.

Optic disc area
Figure 1A presents the 210log p-plot for the primary discovery

cohort for optic disc area and shows two loci on chromosomes 1

and 10, including 192 SNPs that are beyond the genome-wide

significance threshold of 561028. Exclusion of OAG (N = 188)

and myopia (N = 115) cases did not alter the results. Replication

analyses in two independent cohorts of Dutch origin (RS-III and

ERF study) showed that the findings from all cohorts were

consistent in the direction of the effect with p-values ranging from

Author Summary

Morphologic characteristics of the optic nerve head are
involved in many ophthalmic diseases. Its size, called the
optic disc area, is an important measure and has been
associated with e.g. myopia and open-angle glaucoma
(OAG). Another important and clinical parameter of the
optic disc is the vertical cup-disc ratio (VCDR). Although
studies have shown a high heritability of optic disc area
and VCDR, its genetic determinants are still undetermined.
We therefore conducted a genome-wide association
(GWA) study on these quantitative traits, using data of
over 11,000 Caucasian participants, and related the
findings to myopia and OAG. We found evidence for
association of three loci with optic disc area: CDC7/TGFBR3
region, ATOH7, and SALL1; and six with VCDR: CDKN2B,
SIX1, SCYL1, CHEK2, ATOH7, and DCLK1; and additionally
one borderline significant locus: BCAS3. None of the loci
could be related to myopia. There was marginal evidence
for association of ATOH7, CDKN2B, and SIX1 with OAG,
which remains to be confirmed. The present study reveals
new insights into the physiological development of the
optic nerve and may shed light on the pathophysiological
protein pathways leading to (neuro-) ophthalmologic
diseases such as OAG.

Table 1. Characteristics of the five study populations presented as mean 6 standard deviation (range) unless stated otherwise.

RS-I/RS-II RS-III ERF TwinsUK

Total sample size (N) 7,360 1,966 1,646 843

Age (years) 67.068.4 (55–99) 55.665.5 (45–89) 46.8614.1 (18–84) 56.1612.7 (16–83)

Gender, N(%) female 4,208 (57.2) 1,102 (56.1) 942 (57.2) 818 (97.0)

Disc area (mm2)* 2.4060.48 (0.58–6.20) 1.9260.45 (0.70–7.20) 1.9260.37 (1.07–4.33) 2.5960.65 (0.75–6.96)

Vertical cup-disc ratio* 0.5060.14 (0.00–0.89) 0.4260.17 (0.00–1.00) 0.4660.15 (0.00–0.84) 0.3260.10 (0.07–0.70)

*In RS-I, RS-II and TwinsUK measured with stereoscopic images, in RS-III and ERF with confocal scanning laser ophthalmoscopy.
doi:10.1371/journal.pgen.1000978.t001

A GWA Study of Optic Disc Parameters
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1.6961023 to 2.39610210 (Table 2). The combined analysis of the

discovery and Dutch replication cohorts yielded an overall p-value

1.82610227 for rs1192415 (optic disc area increased by

0.06460.006 mm2 [beta 6 standard error] when comparing

those heterozygous with homozygous persons for the reference

allele), and p-value 2.05610232 for rs1900004 (optic disc area

decreased by 0.06860.006 mm2). Table 2 shows the results of the

top SNPs of all loci with p-values ,1026 observed in the meta-

analysis. The meta-analysis of the four Dutch cohorts revealed a

cluster of 10 SNPs on chromosome 16q12.1 showing borderline

genome-wide significant evidence for association with the optic

disc area (p = 6.4861028). When joining the Dutch data with the

TwinsUK series (Table 3), this region became genome-wide

significant (p = 5.0761029). Table 3 shows that also the chromo-

some 1 and 10 regions were also replicated consistently in the

TwinsUK cohort.

The regions of interest for optic disc area are shown in Figure 2.

The first region on chromosome 1p22 is located between the cell

division cycle 7 (CDC7) and the transforming growth factor beta

receptor 3 (TGFBR3) gene, but the SNPs in the intergenic region

were most significant. The genome-wide significant region on

chromosome 10q21.3-q22.1 was quite large and included several

genes. The region includes the Myopalladin (MYPN) gene, the

heterogeneous nuclear ribonucleoprotein H3 (2H9) (HNRNPH3)

gene, RUN and FYVE domain containing (RUFY2) gene, DNA

replication helicase 2 homolog (yeast) (DNA2) gene, solute carrier

family 25 (mitochondrial carrier; Graves disease autoantigen),

member 16 (SLC25A16) gene. However, the most significant

evidence was found in the region between the atonal homolog 7

(ATOH7) gene and the phenazine biosynthesis-like protein domain

containing (PBLD) gene. The nearest gene in the third region on

chromosome 16q12.1 was the sal-like 1 (SALL1) gene. Together,

the three SNPs associated with optic disc area explained up to

2.7% of the variation in optic disc area.

Next, we evaluated the association of these loci with clinically

relevant ophthalmic outcomes (myopia and OAG; Table S1). None

of the optic disc area loci were associated with myopia-related

outcomes (p-values ranging from 0.09 to 0.80). Of the three loci

associated with optic disc area we found only the 10q21.3-q22.1 locus

to be marginally associated with OAG (p = 0.04 for rs1900004).

Vertical cup-disc ratio
All analyses for VCDR were adjusted for optic disc area.

Figure 1B presents the 210log p-plot for the discovery cohorts

Figure 1. The 210log p-plots for the meta-analyzed RS-I/RS-II genome-wide association study. Plot (A) of disc area and plot (B) of vertical
cup-disc ratio. The upper line represents the genome-wide significance threshold: p = 561028. The middle and bottom line represents the 1025 and
1024 respectively.
doi:10.1371/journal.pgen.1000978.g001

A GWA Study of Optic Disc Parameters
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(meta-analyzed RS-I/RS-II GWAS) for VCDR and shows two

loci reaching genome-wide significance at a threshold of 561028.

Adjustment for the intraocular pressure did not alter the results

nor did exclusion of the OAG cases. The combined analysis of the

discovery and two Dutch replication cohorts yielded an overall p-

value of 1.96610214 for rs1063192 and 9.30610211 for

rs10483727 (Table 4). The regions of interest for VCDR are

shown in Figure 3. The genome-wide significant region on

chromosome 9 included two genes from the same gene family

(cyclin-dependent kinase inhibitor 2A [CDKN2A] and CDKN2B).

For chromosome 14, several genes were included in the region of

interest. The strongest association was found for rs10483727 close

to the sin oculis homeobox homolog 1 (SIX1) gene, but also several

SNPs flanking SIX6 were genome-wide significant as well as one

SNP between RNA-binding motif 8B (RBM8B) and the protein

phosphatase 1A (PPM1A) gene. Furthermore, there were four

other loci that showed consistent evidence for association and

reached genome-wide significance in the combined analysis of all

Dutch cohorts (Table 4). This included the chromosome 10q21.3-

q22.1 region identified for the optic disc area (Table 2). For

chromosome 11q13, the most significant SNPs were found in

between the FERM domain containing 8 (FRMD8) and the SCY1-

like (SCYL1) gene. The region of interest also harboured latent

transforming growth factor beta binding protein 3 (LTBP3). The

genome-wide significant SNPs of these three regions were all in the

same linkage disequilibrium block, hampering determination of

Figure 2. Regional plots of the three loci associated with optic disc area. Plots (A–C) show the loci on on chromosome 1, 10, and 16,
respectively.
doi:10.1371/journal.pgen.1000978.g002
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the most important variant (Figure 3). Of the other two genome-

wide significant loci, the SNPs point to the doublecortin–like

kinase 1 (DCLK1) for chromosome 13q13, and CHK2 checkpoint

homolog (CHEK2) for chromosome 22q12.1 (Figure 3).

Finally, when combining all top SNPs from the joint analysis of the

four Dutch cohorts with the TwinsUK, one additional borderline

genome-wide significant region emerged as genome-wide significant.

The region comprises 2 SNPs on chromosome 17q23

(p = 2.8161028; Table 5). The combined effect of the six loci

associated with VCDR explained 2.2% of the variation in the

VCDR. Also for the VCDR none of the loci were associated to

myopia at p,0.05. When we evaluated the association to OAG, four

of the loci associated with VCDR were also found to be marginally

associated with OAG, 9q21 (p = 0.017), 14q22-23 (p = 0.021), 11q13

(p = 0.049), and the overlapping gene ATOH7 discussed earlier.

Discussion

In the present study we identified three genetic loci (10q21.3-

q22.1, 1p22 and 16q12.1) associated with optic disc area, and six

genetic loci (9q21, 14q22-23, 10q21.3-q22.1, 11q13, 13q13, and

22q12.1) associated with VCDR. Of these, one (10q21.3-q22.1)

was associated with both quantitative traits. For these regions, the

evidence for the association was genome-wide significant and our

Figure 3. Regional plots of the six loci associated with vertical cup-disc ratio. Plots (A–F) show the loci on chromosome 9, 10, 11, 13, 14,
and 22, respectively.
doi:10.1371/journal.pgen.1000978.g003
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findings were consistently replicated in the independent replication

cohorts. The SNPs in these loci were common variants with minor

allele frequencies ranging from 0.21 to 0.46. The genome-wide

significant SNPs of the present study were not in linkage

disequilibrium with known missense mutations. The combined

effect of the three SNPs involved in the optic disc area explained

2.7%, while the six loci associated with VCDR explained 2.2% of

the variation.

The region with the strongest statistical evidence for association

was a locus on chromosome 10q21.3-q22.1, which was associated

with both optic disc area and VCDR, and included multiple genes.

Although the genome-wide significant region is very large for the

optic disc area analysis, the ATOH7 gene (also known as Math5)

showed the most significant evidence for association with VCDR.

This gene is expressed in the retina where it controls photorecep-

tor development [13]. In animal studies with mice, ATOH7

expression has been found in the developing optic nerve during

embryogenesis [14]. During retinogenesis, seven different major

classes of cells develop out of the progenitor cells in the eye:

photoreceptors (rods and cones), bipolar cells, horizontal cells,

amacrine cells, retinal ganglion cells (RGC; these are the cells

involved in OAG) and Müller cells. Degeneration of these cells

may lead to blindness [15]. In mutant mice and zebrafish without

ATOH7, optic nerves and RGC are not further developed, while

amacrine cells and cones are formed in excess [16,17].

Overexpression of ATOH7 and interaction with the neuroD gene

in chickens increases the amount of RGC and photoreceptors

[18]. The duration of expression of ATOH7 is regulated by several

proteins, including Growth and Differentiation Factor 11 (GDF11)

[19]. Another factor involved in this genetic pathway is Sonic

hedgehog (SHH), which mediates the direction of growth as the

eye develops from the central part towards the periphery

(including the optic nerve) [20]. Thus the SHH and GDF11

regulate ATOH7, which in turn regulates Brn3b. This gene may

play a role in further differentiation of RGC and is expressed in

post-mitotic RGC precursors. First, RGC differentiate into the

lower retinal epithelium (later becoming the RGC layer). At the

same time, the dendrites reach the bipolar, horizontal, and

amacrine cells in the inner retinal plexiform layer, while their

axons form the optic nerve, optic chiasm, superior colliculus and

lateral geniculate nucleus [20]. Although ATOH7 has been

implicated in retinal development in animals, this gene has not

been linked to the development of the optic nerve pathology in

humans. The analysis of VCDR showed that the ATOH7

(rs1900004) was also significantly associated with VCDR,

independent of optic disc area. This suggests that this gene is

involved in both the optic disc area as in VCDR.

The 1p22 region is second in terms of strength of association

based on the p-values. This region includes the genes CDC7 and

TGFBR3 associated with optic disc area. CDC7 encodes for a cell

division cycle protein with kinase activity. Overexpression of this

gene has been found in neoplastic transformations in some tumors.

Although this region is associated with the optic disc area, the

protein that CDC7 encodes for interacts with the CDKN2A protein

associated with VCDR. However, also the TGFBR3 is of interest

because of the interaction of ATOH7 with GDF11, a member of

the bone morphogenetic protein (BMP) and the TGFbeta

superfamily. The genes therefore point to the same signaling

pathway. GDF11 interacts with the latent transforming growth

factor beta binding protein 3 (LTBP3). In our analyses targeting

VCDR, we found genome-wide significant evidence for a relation

of LTBP3 to VCDR (see below). While CDKN2A is not known to

be involved in TGFbeta signaling, CDKN2B has been implicated in

this pathway. As in the VCDR analysis, the most significant SNPs
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on chromosome 9p21 were located within the CDKN2B gene. This

gene (also known as p15Ink4b) lies adjacent to the tumor suppressor

gene CDKN2A and encodes a cyclin-dependent kinase. The protein

encoded by CDKN2B is thought to play a role in cell growth

regulation and is induced by transforming growth factor beta

(TGFB) [21]. The p15ink4b protein phosphorylates and inactivates

the retinoblastoma tumor suppressor (pRb) protein [22]. Deletions

of this gene and of the retinoblastoma 1 gene are often found in

malignant gliomas and melanomas [23]. A recent study in mice

found that p15Ink4b was ectopically expressed in both zinc finger

E-box binding homeobox 1(Zeb1) mutant cells and neuroectoder-

mally derived cells, including the developing retina, optic nerve

and muscles surrounding the eye [24]. Taken together, our

findings point to a central role of TGFbeta in the development of

the optic disc and VCDR. TGFbeta is a multifunctional cytokine

that modulates developmental and repair processes in several

tissues. TGFbeta signaling has been implicated in a wide variety of

diseases including inflammation, autoimmune disorders, fibrosis,

cancer and cataracts. The region has recently also been associated

with myocardial infarction and type 2 diabetes mellitus [25]. The

CDKN2B/CDKN2A and CDC7/TGFBR3 loci influence the VCDR

independently of optic disc area as these genes were not

significantly associated with the optic disc area (p.0.05).

However, TGFBR3 appears to be involved in VCDR through its

role in optic disc area, as the effect of this gene on VCDR

increased two fold when we did not adjust for optic disc area (RS-

I: unadjusted beta = 0.015, standard error = 0.004, p = 2.4561025

compared to beta = 0.007, standard error = 0.003 in the adjusted

analysis).

Regarding the optic disc area, we found one additional region

genome-wide significantly associated when pooling the data of the

Dutch and TwinUK. Although the chromosome 16q12.1 region

concerns a gene desert, the closest gene in the third locus

associated with optic disc area is SALL1. Defects in this gene are a

cause of Townes-Brocks syndrome and the bronchio-oto-renal

syndrome, two autosomal dominant disorders [26]. Only rare

variants have been implicated in Townes-Brocks syndrome and

bronchio-oto-renal syndrome, while the association we report here

is with common variants. One of the traits involved in the latter

syndrome is myopia [27]. However, in our analyses we could not

find evidence for an association of the common SNPs in the SALL1

region to myopia (rs1362756; p = 0.802). SALL1 encodes a zinc

finger transcriptional repressor. When considering the protein

pathway, SALL1 interacts with SIX1 [28]. Rare variants in SIX1

are involved in the bronchio-oto-renal syndrome [29]. We found

that common variants in SIX1 were genome-wide significantly

associated with VCDR.

Regarding VCDR, chromosome 14q22-23 was genome-wide

significant in the discovery cohorts and was replicated consistently

in the other cohorts. The region includes two genes which are

obvious candidates SIX1 and SIX6 (the latter also known as Optx2

and about 94kb distance from rs10483727). This gene is involved

in eye development and has been related to congenital glaucoma.

Defects in this gene have been associated with anophtalmia in

mice [30] and in humans [31,32]. Embryological studies have

shown expression in the ventral optic stalk, which later becomes

the optic nerve [33]. In the adult mouse retina, Optx2 mRNA has

been found in cells within the ganglion cell layer and inner nuclear

layer [34]. This gene is expressed in the developing retina, optic

nerve and other brain structures [31].

There were three more genome-wide significant loci on

chromosomes 11q13, 13q13 and 22q12.1 associated with VCDR

(Table 2). On 11q13 most SNPs were found close to SCYL1,

which has been associated with optic nerve atrophy in mice [35].

However, also the presence LTBP3 in this region is of interest, as

this protein binds to TGFB1, TGFB2, and TGFB3, and is thus

involved in the same signalling pathway as CDKN2B. LTBP3 is

further of interest because of its homology to LTBP2, which has

been implicated in primary congenital glaucoma [36,37]. The

DCLK1 gene on 13q13 is expressed in the optic tectum [38]. This

is a probable kinase that may be involved in a calcium signaling

pathway controlling neuronal migration in the developing and

mature brain. Finally, the CHEK2 gene has been associated with

several types of cancer, including breast cancer [39]. A literature

search did not show a direct link between CHEK2 and the eye,

however one study reported mapping of a locus on chromosome

22q12.1–q13.1 (OPA5) to autosomal dominant optic atrophy [40]

and one case-report described an association of chromosome

22q11.2 deletion syndrome with optic disc swelling, which is

probably caused by the resulting hypocalcaemia [41]. Regarding

the association of CHEK2 with breast cancer, it is of interest that

also one borderline significant SNP is located in a gene breast

carcinoma amplified sequence 3 (BCAS3) involved in this

pathway.

Although our study has convincingly identified SNPs involved

in optic disc area and VCDR, there are also a number of

limitations. At this point, we cannot pinpoint the two endophe-

notypes to a single clinical outcome. There was some marginal

evidence suggesting that four of the genes involved in the

development of the optic disc area and VCDR are relevant for

OAG. However, the findings were far from genome-wide

significance and remain to be confirmed. Another limitation

concerns the differences in methodology. Two of the four

replication cohorts, RS-III and ERF, used confocal scanning

laser ophthalmoscopy to determine the optic disc area, while the

other studies, RS-I, RS-II and TwinsUK, used digitized

stereoscopic images. Although this may be considered a

drawback, we do not think this distorted our results, since,

several studies compared both methods and found high

correlations for all stereometric parameters [42–44]. Moreover,

since our findings replicated in all cohorts differences across

measurements are probably small and unlikely to influence our

results, beyond that the estimation of the effects (beta-coefficients)

may differ across studies. Finally, the TwinsUK study served as a

replication cohort in this study, but is also involved as a

replication cohort for a GWAS based on a discovery cohort

from Australia (Macgregor, et al. unpublished data). Both, Dutch

and Australian cohorts independently implicated ATOH7 as

playing a role in optic disc phenotypes and both utilize the

TwinsUK data to replicate their findings. Although the

association of ATOH7 was genome-wide significant in the Dutch

validation cohorts, this overlap in replication samples should be

taken into account.

In conclusion, by conducting GWA analyses, we found

genome-wide significant evidence for the association of three

genetic loci associated with optic disc area, and another six with

VCDR. Although multiple genes were included in the regions of

interest, the most interesting ones for optic disc area were

TGFBR3 on chromosome 1p22, ATOH7 on chromosome

10q21.3-22.1 (also for VCDR) and SALL1 on chromosome

16q12. Regions of interest for VCDR were CDKN2B on

chromosome 9p21, SIX1 on chromosome 14q22-23, SCYL1 on

chromosome 11q13, CHEK2 on chromosome 22q12.1, DCLK1

on chromosome 13q13, and BCAS3 on chromosome 17q23.

There are several pathways implicated but the most interesting is

the TGFbeta signaling pathway that appears to play a key role.

Further research is needed to implicate these finding to pathology

of the eye.
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Materials and Methods

Study populations
The Rotterdam Study I (RS-I) is a prospective population-based

cohort study of 7,983 residents aged 55 years and older living in

Ommoord, a suburb of Rotterdam, the Netherlands [45]. Baseline

examinations for the ophthalmic part took place between 1991

and 1993; follow-up examinations were performed from 1997 to

1999 and from 2002 to 2006.

The RS-II and RS-III are two other prospective population-

based cohort studies of 3,011 residents aged 55 years and older

and 3,392 residents aged 45 years and older respectively. The

rationale and study design are similar to those of the RS-I [45].

The baseline examinations of RS-II took place between 2000 and

2002; follow-up examinations were performed from 2004 to 2005.

Baseline examinations of RS-III took place between 2006 and

2009.

The Erasmus Rucphen Family (ERF) Study is a family-based

cohort in a genetically isolated population in the southwest of the

Netherlands with over 3,000 participants aged between 18 and 86

years. Cross-sectional examination took place between 2002 and

2005. The rationale and study design of this study have been

described elsewhere [46,47]. All measurements in these studies

were conducted after the Medical Ethics Committee of the

Erasmus University had approved the study protocols and all

participants had given a written informed consent in accordance

with the Declaration of Helsinki.

Finally, the TwinsUK adult twin registry is a volunteer cohort of

over 10,000 healthy twins based at St Thomas’ Hospital in

London. Participants were recruited and examined between 1998

and 2008. A total of 843 had complete data, all of whom were

Caucasian. This cohort is predominantly female, as only 3% of

included participants were male.

Ophthalmic examination
The ophthalmic assessment in RS-I and RS-II, both for baseline

and follow-up, included a medical history, autorefraction,

keratometry, visual field testing and optic nerve head imaging

with Topcon ImageNet System of both eyes after mydriasis with

topical tropicamide 0.5% and phenylephrine 2.5%. RS-III was

similar to RS-I except for optic nerve head imaging with confocal

scanning laser ophthalmoscopy (Heidelberg Retina Tomograph 2

[HRT]). The ophthalmic assessment in ERF included a medical

history, autorefraction, keratometry and optic nerve head imaging

with HRT of both eyes after pharmacologic mydriasis. In the

TwinsUK optic disc parameters were measured from stereo disc

photographs using the Nidek-3DX stereo camera, with digitized

images scanned from Polaroid images and StereoDx stereoscopic

planimetric software (StereoDx) using a Z-screen (StereoGraphics

Corp) and software obtained from James Morgan from Cardiff

University software, Wales, UK [48].

Optic nerve head assessment
ImageNet, which was used in RS-I and RS-II, takes

simultaneous stereoscopic images of the optic disc at a fixed angle

of 20u, using a simultaneous stereoscopic fundus camera (Topcon

TRC-SS2; Tokyo Optical Co., Tokyo, Japan). Images were

analyzed using the ImageNet retinal nerve fiber layer height

module. On each stereoscopic pair of optic disc images four points

were marked on the disc margin, defined as the inner border of the

peripapillary ring or the outer border of the neural rim, if a scleral

ring was visible. Next, the software drew an ellipse using these

points to outline the disc margin and to determine the cup. The

amount of correspondence between the marked points on the two

images of the stereoscopic pair is expressed as a ‘‘bad points’’

percentage, which indicates the percentage of points lacking

correspondence. This percentage can be used as an indicator of

image quality. Images with 25% or more bad points were excluded

[49].

HRT 2, used in RS-III and ERF, uses a focused 670-nm diode

laser light beam to acquire scans of the optic nerve head region,

using the confocal principle. The HRT obtains, during one scan,

three series of 16 to 64 confocal frontal slices. From each of these

series, a 3-dimensional image of the optic nerve head is

reconstructed, from which the software calculates several optic

disc parameters. To define the cup, the HRT places a reference

plane 50 mm below the peripapillary retinal surface in the region

of the papillomacular bundle.

Imaging was performed after entering the participant’s

keratometry data into the software and after adjusting the settings

in accordance with the refractive error. In RS-III all HRT 2 data

was converted to HRT 3. As an indicator of image quality we used

the topographic standard deviation of the scan, which is a measure

of the variability among the three series of a single HRT scan.

Scans with a topographic standard deviation exceeding 50 mm

were excluded. The inter-observer variability and agreement for

both systems have been described elsewhere [44]. Details of the

optic disc measurements in TwinsUK are described elsewhere

[50].

Myopia and open-angle glaucoma assessment
Myopia was defined as a spherical equivalent of 26.00D or

lower. For each eye the spherical equivalent was calculated using

the standard formula: spherical equivalent = spherical compo-

nent+(cylindrical value/2). The mean spherical equivalent of both

eyes was included. Those eyes with a history of cataract surgery

were excluded from this analysis.

OAG diagnosis was primarily based on glaucomatous visual

field loss (VFL). The visual field of each eye was screened with a

Humphrey Field Analyzer (HFA II 740; Zeiss, Oberkochen,

Germany) using a 52-point threshold-related supra-threshold test

that covered the central field with a radius of 24u. This test was

modified from a standard 76-point screening test [51,52]. VFL was

defined as non-response in at least three contiguous test points (or

four including the blind spot). If the first test was unreliable (.33%

false-positive or false-negative catch trials) or a reliable test showed

VFL in at least one eye, a second supra-threshold test was

performed on that eye. If the second supra-threshold test was

reliable and showed VFL, a full-threshold HFA 24-2 test (second

follow-up) or Goldmann perimetry (Haag Streit, Bern, Switzer-

land; baseline and first follow-up) was performed on both eyes.

The classification process of the Goldmann perimetry test results

[51] and the full-threshold HFA 24-2 test results [Czudowska, et

al. unpublished data] have been described before. In short, VFL

was considered to be glaucomatous VFL only if reproducible and

after excluding all other possible causes. For the present study,

participants were considered as having glaucomatous VFL if they

had glaucomatous VFL in at least one eye during either follow-up

round. Cases had to have an open anterior chamber angle and no

history or signs of angle closure or secondary glaucoma were

allowed [52]. Criteria for glaucomatous optic neuropathy, such as

VCDR, were not included in the criteria for OAG.

Genotyping
In the RS-I, RS-II and RS-III cohorts, DNA was genotyped by

using the Illumina Infinium II HumanHap550chip v3.0 array

according to the manufacturer’s protocols. Details are described

elsewhere [53]. After exclusion of participants for reasons of low-
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quality DNA, a total of 5,974 participants were available with

genotyping data from RS-I, 2,157 participants from RS-II and

2,082 from RS-III. In ERF, DNA was genotyped on four different

platforms (Illumina 6k, Illumina 318K, Illumina 370K and

Affymetrix 250K), which were then merged. After exclusion of

participants for whom genotyping data were unavailable, 2,385

had genotyping data. As we did not use the same microarray for

the various study populations we imputed our genotype data using

HapMap CEU as reference population, resulting in over 2.5

million SNPs. Extensive quality control analyses have been

performed in each cohort. Finally, the genotyping of the TwinsUK

cohort took place in stages; in the first stage participants were

genotyped by using Illumina’s HumanHap 300K duo chip,

whereas in the second stage participants were genotyped with

Illumina’s HumanHap610 Quad.

Statistical analysis
Statistical analysis within studies. If we had data on both

eyes then we chose a random eye. In cases of missing or unreliable

baseline data on both eyes, we used follow-up data where

available. Results from the RS-I and RS-II cohorts were

combined, because both studies were identical in population

structure. Within each study, linear regression models were used to

examine the associations between SNPs and optic disc area

adjusted for age and gender. The analyses of VCDR were further

adjusted for optic disc area. Using these linear regression models,

we calculated regression coefficients with corresponding 95%

confidence intervals (CI). To adjust for multiple testing a p-value of

561028 or less was considered statistically significant. As a

secondary analysis we performed the analyses of VCDR with the

same additive models but with further adjustment for intraocular

pressure and its treatment.

All statistical analyses were performed using SPSS version

15.0.0 for Windows (SPSS inc., Chicago, IL, USA; 2006),

MACH2 QTL as implemented in GRIMP [54] and R statistical

package version 2.8.1 for Linux (www.r-project.org). For the

analysis of the family based data we used the GenABEL package

to adjust for relationships [55].
Meta-analysis. First, we replicated the top SNPs of the

discovery cohorts in the two Dutch replication cohorts (RS-III and

ERF). To adjust for familial relationships of participants in ERF we

used the score test described by Chen and Abecasis which is

implemented in the GenABEL package [56]. Meta-analyses were

performed with Metal for Linux (www.sph.umich.edu/csg/abecasis/

metal) to summarize the global effect through the four cohorts. To

obtain optimal and unbiased results we used genomic control and the

inverse variance method of each effect size estimate [57]. This was

only done for the SNPs that were genotyped or imputed in all four

cohorts. SNPs which deviated significantly from Hardy-Weinberg

equilibrium (p,0.0001) or if they had a minor allele frequency ,0.05

were excluded in the present study. Next, we replicated all top SNPs

from the joint analysis of the four Dutch cohorts in a combined

analysis with the TwinsUK.

Finally, we tested in RS-I whether the identified loci were

associated with other ophthalmic traits such as myopia by using

the spherical equivalent of the refractive error, and OAG based on

optic nerve head appearance and glaucomatous visual field loss.

This was done by using logistic regression analyses adjusted for age

and gender.

Supporting Information

Figure S1 Optic disc area Q-Q plots for the observed versus

expected p-values for the discovery cohorts (A), the individual

replication cohorts (B,C), and for the meta-analysis (D).

Found at: doi:10.1371/journal.pgen.1000978.s001 (0.20 MB TIF)

Figure S2 Vertical cup-disc ratio Q-Q plots for the observed

versus expected p-values for the discovery cohorts (A), the

individual replication cohorts (B,C), and for the meta-analysis (D).

Found at: doi:10.1371/journal.pgen.1000978.s002 (0.19 MB TIF)

Table S1 Characteristics of the open-angle glaucoma patients

presented as mean 6 standard deviation (range) unless stated

otherwise.

Found at: doi:10.1371/journal.pgen.1000978.s003 (0.04 MB

DOC)
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