CHAPTER 2

In this chapter, I survey some concepts in time series analysis which will
be relevant to the discussions in the next chapters. The first part is
concerned with univariate time series models and the second part deals with
multivariate time series models. I have decided to follow the terminology
of Priestley (1988). For more detailed and sometimes alternative accounts,
the reader 1is referred to, e.g., Anderson (1971), Box and Jenkins (1970),
Fuller (1976), Granger and Newbold (1986), Harvey (1981), and to parts of
Judge et al. (1985).

2.1 UNIVARIATE TIME SERIES

A crucial element in time series modeling is the concept of a white noise
process {&, t = 0,+1,+2,... The definition to be wused in the sequel is
that {&,} is a sequence of uncorrelated random variables with zero mean and

constant variance, or

E'{Et} = O Vt
E{e}} = V¢
F{ee,} = 0 Vs,t, s#t,

where E' denotes the expectation operator.

Consider the class of linear models

00
L hyeo = €, (2.1)
u=0
where {y,} 1is a discrete time series with 2zero mean, ¢t = 1,2,..,n, and
where h is a linear function that transforms the series y, into a white
noise process. The mean of vy, is set equal to zero only for notational

convenience, but (2.1) may be extended to include a mean p. The class of

models in (2.1) can be written as



H(B)y, = &, (2.2)

with

-t 31
H(Z) — E huz 3
u=0

where z can be complex, and where B denotes the backward shift operator,
defined by By, = y,i, for k = 0,1,2,.., with B' = 1. The algebra of the
linear operator B is discussed e.g., in Dhrymes (1981, pp. 19-24). It can
be shown that the algebra of polynomial operators R(B), where R(B) 1s

defined as the set of all finite linear combinations of elements of
{Bk - k£ = 0,1,2,..}, is isomorphic to the algebra of polynomial functions
R(z). This implies for example that 1/(1-6B) can be written as E‘fr_oékBk.

Under certain conditions it is possible to express 7y, as a linear

' function of present and past values of ¢, instead of past values of ;.

Then expression (2.2) can be inverted, or
Ve = H“I(B)E?t* .. (2.3)

If H'l(z) can be expanded as a convergent series for |z| < 1, then 1t can

be written as

and hence (2.3) becomes

Yt = uéogust-—u- (2.4)
This expression is in fact more general than (2.2), a result which is for-
mulated in the Wold decomposition theorem, see e.g., Anderson (1971, p.420).

The requirement |z| < 1 means that H(z) has no 2zeros inside the unit
circle. For example, suppose that H(z) is 1+h;2. The root of this equation
is found by solving 1l+hz = 0, or z = -1/h;, and no zeros inside the unit
circle implies that |Ay| < 1. Another convention is to replace 2z by 1/z, or
to consider H(z) equal to 2+h;. In that case |z|] < 1 means that H(z) has
no roots outside the unit circle. In the sequel I will regularly use the

latter convention.

The models (2.1) and (2.4) involve an infinite number of parameters,



and to fit them to data it is necessary to make additional assumptions. One

such assumption is that H(z) can be approximated by a finite order

polynomial of order p, or that (2.1) reduces to
Ve + O1¥t1 + oo t Ve = &y (2.9)
which is called an autoregressive model of order p, AR(p), or

‘pp(B)‘.Vt = &y, (2.6)

where

$o(B) = 1 + ¢,B + ... + ¢,B".

An assumption implying that (2.4) can be written in a similar concise

manner is that H_l(z) can be approximated by a finite order polynomial of

order g, i.e.

|

Ve = € + 0165 + .. + 08, (2.7)

or

{

O
-
X

)
-

Yt (2.8)

where

6,B) =1+ 6,B + ... + § B,

which is called a moving average model of order ¢, MA(¢g). Another reason-
able assumption is that the polynomial H"l(z) can be approximated by a

rational function 6,(z)/¢,(z), where the elements of this ratio are given

by the expressions above, such that (2.4) can be written as
¢p(8)yt = eg(B)Et: (2.9)

which is called a mixed autoregressive-moving average model of order (p,q),
or ARMA(p,q). It generally applies that, given a certain accuracy of appro-
ximation, the order p and ¢ in (2.9) for a given series 7y, are smaller than
those in (2.6) or (2.8).

In (2.1) it has been assumed that g4 = 0. In case u # 0, y, can be




its mean is substracted before any

replaced by 3y,~4, which implies that
estimate a model with a

modeling analysis. Another possibility 1is to
constant, from which an estimate for u can be calculated. For example, for

an AR(p) model it applies that this constant equals ~p(1)H, where ¢@p,(2) is

defined by (2.6). Henceforth, it will be assumed that all models include a

constant term in the estimation phase, but for notational convenience

continuing use will be made of zero mean variables.

Stationarity

A useful tool for the identification of ARMA models is the autocorrelation
function (ACF). It measures the correlations between current and previous
observations. To facilitate an interpretation of this function, 1t 1is
convenient to assume the stationarity of the time series process y,. The

process Yy, is defined to be covariance stationary, or briefly, stationary,

when for all ¢ and k£ it holds that

E(y;) = p < MEX:
E'(l\’tt'“li)2 = Y0 < X
E(ye-p)(Yex—H) = Y k= 0,1,2,.

The < defines the autocovariance of order k. The 1y, is called strictly
stationary 1if the multivariate distribution of (y,..y,,;) is identical to
that of the time shifted set (y,4-yVe4s4i)- AN example of such a
strictly stationary process is a Gaussian process where the y, are assumed
to be normally distributed.

An example of a nonstationary process is the random walk model

Ve = Ye1 + &g (2.10)

which can be written as

for which it is easy to see that

2
E(ytlve) = E(yenlye) + no’.
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Hence, any new observation causes that the variance of vy, increases with
the order n. Note that in this nonstationary AR(1) case where ¢, = -1 in
(2.6), the inverse of the H(z) in (2.2) can not be expanded as a convergent
series contrary to (2.4). Hence, there does not exist a useful moving
average approximation to this model.

This random walk model belongs to a class of processes which are
called integrated processes. A variable vy, is defined to be integrated of
order d, or briefly I(d), when (1-B )dyt 1S a stationary variable while
(l—B)d_lyt is not. So, one way to transform the vy, into a stationary series
x, is to apply a difference filter d times, or =x, = Aiy,, where A4; 1is
defined by Ay = Yr¥yere For  example, x, = Afyt implies  the
transformation of vy, into y, - 2y,; + y;». A further extension of model
(2.9) is now given by an ARIMA(p.,d,q) model.

The application of the differencing filter A4, assumes that the model

for vy, possesses a unit root. One way to check for such a unit root in the

AR(1) case is to estimate

Ve = U+ 8Ty + 1y + & (2.11)

where T, represents a linear deterministic trend, and to check whether ¢,
is equal to 1. This T, is often included since many economic time series
show upward moving patterns which might be explained by such a trend. It is
common practice to take the equality ¢; = 1 as the null hypothesis, and
|¢,|] < 1 as the alternative. Unfortunately, most standard statistical tech-
niques do not apply under this nonstationary null hypothesis. One implica-
tion of this is that critical values of any test statistics have to be
generated by simulations. Given that y, not only may follow all kinds of
ARMA processes, but that the alternative hypothesis may contain, e.g.,
constant or trend, and that also the distribution of the test statistics
may depend on the starting values and on the ratio of ¢ and o, one can
imagine that the literature on testing for unit roots 1is rather large. A
survey is therefore beyond the scope of this thesis. The testing strategy I
will adopt 1is the regularly applied Dickey and Fuller (1981) approach,

which uses the auxiliary regression

Ay = p+ 8Ty + pyeg + Y1Q1yeg + o + PpdyYep + &y (2.12)

and hence which assumes that 3y, can be approximated by an autoregressive
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model of order p+l. The test statistic of interest for the null hypothesis

p = 0 is 7, which is the t-ratio for the parameter p. Under the alternative
hypothesis p < 0, (2.12) may also be restricted by assuming the absence of
deterministic elements, i.e. (u=0,6=0) and (6=0). The critical values of
several one-sided test statistics are given in Fuller (1976), but for con-

venience some relevant values are displayed in table 2.1.

Table 2.1

Some critical values for Dickey-Fuller test statistics

Deterministic elements Test statistic Sample size 0.05 0.10
none T 25 -1.95 -1.60

100 ~1.95 ~-1.61

constant T, 25 -3.00 ~2.63

100 -2.89 ~-2.98

constant and trend T, 25 -3.60 -3.24
100 -3.45 -3.15

Source: Fuller (1976, pp. 371-373). The test equation is (2.12).

In case the p in (2.12) equals 0, the test statistic np can be used. Since
the simulation results in Dickey, Bell and Miller (1986) indicate that the
power of this statistic is higher than that of 7, it is advised to apply it
when y, can be described by an AR(1) model. Otherwise, this np has to be

corrected for higher order dynamics, see e.g., Said and Dickey (1984).

Autocorrelation function

Stationarity is assumed for the concepts to be discussed below. The func-

tion 7, establishes the autocorrelation function (ACF) by

Pr = Ti/Yo; . (2.13)

for which it applies that p, = 1, that p_, = pk‘ and that -1 < p < 1. From

the definition of the white noise process it is clear that for gy it

applies that pp = 0 for all k # 0. For the AR(1) model y, = P1Ve-1 + € it

. . k . s
1Is easy to derive that p, = ¢, for all k% > 0. This derivation uses the
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result that the covariance of ¢, and vy, equals zero for all ¥ > 0. A
formal proof of this is given in Anderson (1971, p.170). An illustration of
the determination of the autocorrelation coefficients for higher order

autoregressive models is given by considering the AR(2) model,

Vi = Q1Vi-1 — P2Vi-2 = & (2.14)

Multiplying both sides by v, ,, taking expectations, and deviding them by

Yo results in

P1 — PPy ~ P2p1 = 0 (2.15)
Oor

P = @1/(1-0,).

To determine an expression for p,, analogous operations are carried out to

(2.14), yielding

P2 = $1P1 — P200 = 0. (2.16)
Substituting (2.15) into (2.16) gives that
pr = $1/(1-03) + &s. (2.17)

Analogously it can be established that for larger values of k the p, can be

solved recursively using pp = @¢10k1 + P2Px-2-
Partial autocorrelation function
The partial autocorrelation function (PACKF), the elements of which will be

denoted by %xg, can easily be illustrated by considering the AR(p) process,

for which it can be shown that

ox mjﬁlab,-pk..j, (2.18)

for k > 0. The partial autocorrelation of order K, gy, 1s given by the

solution of the set of the linear equations

"
Pi mjzl’plfjpk-ja (2.19)

13



for k = 1,..,K. For an AR(1) process with ¢;#0, and for K is 1, (2.19)

reduces to p, = . For K is 2, this set is given Dby

P1 = Yo + Y22P4
Pa = Yupy + Va2,

and since p, = pf £« 0, it follows that w,, = 0. In general 1t can be shown

that ¥y pex = 0, k£ = 1,2,.., for an AR(p) process. This provides a tool

for the identification of AR time series processes.

The correlation functions are usually unknown in practice and have to

be estimated. The ACF can be estimated by means of

Tk = Ck/co, (2'20)
where

C

n-k _ -
tgl (Ve Y ) (Ve-k—Y ),

where y denotes the sample mean of y,. The sample equivalents of gy, to be

denoted as ayxy, can be obtained by applying ordinary least squares to

VeV = Ggy(Ye1=Y) + oo + Gxx(Vi-g-y) + Vi

The issue of estimation of the time series models themselves will however
not be discussed in detail here. The interested reader is referred to An-
derson (1971, ch.5) and Granger and Newbold (1986, ch.3).

The identification of p of an AR(p) process may be done using the es-

timated PACF. Analogous results apply to the identification of ¢q of MA(q)

processes, where now the ACF turns out to be useful. Consider again (2.7)

for which it can be derived that

2 4%
Tk = 0O, iEO 9i9i+k for k = 0,1,..,q 1 (2.21)
=0 for k > g,

because of the uncorrelated ¢ variates, and where 6,=1.

From (2.3) it can be seen that an implication of stationarity is that
: . -1 :
a certain H(z) has an inverse H(z)", which converges. This means that a

stationary AR model can be written as a moving average model. The concept
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of invertibility of an MA model is dual to this stationarity concept. It is

-1

defined by the existence of a converging inverse G(z)” of an MA polynomial

G(z). For example, consider a first order MA process,

Vi = € + 01€64,, (2.22)

which can be rewritten as

2 3
Ve = 01V + O1Ves = O1yes + .. = &y (2.23)

From this expression it can be seen that for |8;,] > 1 the corresponding
G(z)m1 for the process on the left hand side does not converge. In that
case the MA(l) model is said to be noninvertible. This MA(1) model is
invertible when [6#;| < 1, and it can then be written as an AR(oo) process.

Given that the parameters approach zero at higher lags, the PACF of this MA
model dies out at high lags.

The patterns of the autocorrelation function and of the partial auto-
correlation function of a stationary and invertible ARMA(p,q) model do not

cut off after a certain point. A simple example is an ARMA(1,1) model,

Vi = $1¥Vi1 = € + 016, (2.24)

for which it is relatively straightforward to show that

pr = Or ((1+¢10,)(6,+61))/(1420,0,467). (2.25)

From this expression it can be seen that for distinct choices of ¢, and 6,,
several types of patterns for the ACF can emerge. Together with eventual
biases that camn occur because of estimation, it may be evident that the
identification of an ARMA time series model from the patterns of the (P)ACF
alone may be rather difficult. One suggestion is to tentatively specify a
model, to estimate it, and check the estimated residuals for the eventual
presence of autocorrelation. The type of the detected autocorrelation may
then indicate a possible route for modification. This and several more
suggestions for time series model selection will be discussed in detail in

the next chapter.
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Forecasting

An important use of ARMA models is in forecasting exercises. Denote f,; as

the linear h-step forecast of yp. First, consider an MA(c0) model as in

(2.4) for which this forecast equals

- 2.26
ft,h = E Ju+hCt-us ( )
u==0
with an h-step error
h-1
€th = Yt+h ~ ft,h ”ugo GuCt+h-u- (2*27)
Given the white noise assumption on €, it can be derived that
E(egn) = 0
2 2 Rl o
V(h) = Eleyn) = 0c L 9u: (2.28)
U ==

|
o

From (2.26) one can see that for an MA(q) process it applies that f,,
when A > q.

The forecasts from an ARMA(p,qg) model as in (2.9) are found in a
similar way, see Granger and Newbold (1986, p.133), by

$ =0

fen *jioﬁf’jf thej = )g; 0+ nEt-is . (2.29)

where f,yx = yx for k < 0. For an AR(p) the h-step forecasts can be
derived from (2.29) by setting the 6; equal to zero. The variance of these

point forecasts is established analogous to (2.28). Denoting

N(B) = 6,(B)/éy(B),

then
h-1
V(h) = 0 T M (2.30)

for the general ARMA(p,q) model.
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One extension of univariate time series models is given by multivariate
time series models. Consider an (mxl) zero mean vector ¥y, containing the
observations at time ¢ for m distinct time series. A multiple ARMA model,

or vector autoregressive-moving average model, for this y, is written as

ye = Iy y - oo =y, = €, + 1€, + ... + E €4, (2.31)
or more compactly

I1(B)y, = Z,B)e,, (2.32)
of which a vector autoregressive model of order p, a VAR(p), and a vector

moving average model of order ¢, VMA(q), are special cases. The €, is

defined to be a multivariate white noise process, t = 0,+1,+2, or

E{Etet,} — EE’ Vt
Flee,} = 0 Vs,t, s#t.

The II,(B) and Z,(B) are matrices, the elements of which are polynomials in

the backward shift operator B. For example, consider a simple bivariate
ARMA(1,1) model given by

1“7T1 1 B "'"7r1 2B yl 1 +X 1 1B 0(1 2B 51
, = ' ; (2.33)
B 1-M3B) (V2 (@218 1+oygaB) |&,)

of which the first equation can be written as

Yit = TuYie-1 - T12Y2t-1 = €12 + O1€34-1 + O12€2¢-1-

There are several restrictions on the elements of the matrices II(B) and

E,(B) to ensure the uniqueness of multivariate time series models, see
for details, e.g., Hannan (1970) and Granger and Newbold (1986).

Model (2.32) is called stationary in case the roots of |II(z)] = 0 all
lie outside the unit circle. For (2.33) this implies that the absolute
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values of the roots of

2
1 ~ (M +7g2)z + (T Top — MaMy )2 = 0, (2.34)

should exceed unity. Analogously, model (2.32) is said to be invertible in
case the roots of |Z(z)| = O are all outside the unit circle.

Identification of a stationary multivariate time series model may
proceed along similar lines as for the univariate models. One can define a
measure of multiple autocorrelations E(y,y,.x’), of which it can be shown
to have similar characteristics as its univariate analogue. For example,
for a VMA(¢q) model it applies that E(y,y,,;') =0 for 1 > 0. One can
imagine however that in case of large m, this strategy of 1identification
may not be that easy. Suppose a tentative model is fitted using one of the
estimation methods referenced in Granger and Newbold (1986), then a test

for residual autocorrelation may be a first check on the appropriateness of

the model.

Cointegration

In case the vector 4y, contains nonstationary elements, e.g., some or all of
the y;, are I(1l) wvariables, then one might consider a multiple time series
model for the vector containing all variables in first differences. It is
however conceivable that there may be linear combinations of some or all of
the y;; which are I(0). Such combinations might be viewed as equilibrium
relationships. If there are such equilibria, it can be said that the 1y,
are cointegrated. And when there is cointegration, one can argue that a
model containing only the first differenced variables lacks the information
which is available in the equilibrium relations, see Engle and Yoo (1987).

To formalize, it is convenient to consider a VAR(p) model

yt —_ I“ + ”lyt'—l + ... + prt-p + et, (2.35)

see Johansen (1988), and to rewrite this model as

Qye = p + NAyey + oo + Ty Ay pyy + Iy, , + €, (2.36)

H=-—I+H1+..+Hp. - (2.37)
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This matrix II is of special interest for it contains information on the
cointegration relations. One can distinguish several cases with respect to
the rank of II, say r. The first is that r is equal to m, which indicates
that the process ¢y, is stationary. The second is that r equals 0, i.e. the
I is the null matrix. Model (2.36) now reduces to a model for the vector
with the variables 1n first differences. The third case in which 0 < r < m
is the most interesting one for it implies the presence of r cointegration
relationships, which in essence is the content of the so-called Granger
representation theorem (cf. Engle and Granger 1987). The matrix II can now
be written as the product of two (mxr) matrices o« and B, or II = of’. The
interpretation of these matrices is that By, is stationary, which in model
(2.36) 1s called an error correction term, and that o contains the
coefficients which measure the adjustment of the elements in 4, to dis-
equilibrium errors. For more extensive treatments of the concepts and al-
ternative representations, I refer the reader to Engle and Granger (1987)
and Hylleberg and Mizon (1989).

Given certain sets of assumptions, there are several methods to
estimate the elements of the matrices o« and B such as those in Stock and
Watson (1989), Engle and Granger (1987), and Boswijk (1991). Most of these
methods assume either the value of r or some type of exogeneity for several
of the 4v;,. The method in Johansen (1988,1989) however necessitates neither
of these assumptions. In fact, this method starts with the estimation of .
An additional advantage is then that a test for integration and
cointegration can be carried out simultaneously. The idea is to choose the
r linear combinations of the elements of 49, which have the largest partial
correlations with the stationary process A4;y, after corrections for lagged
values of A;y, (Johansen 1988) and, additionally for eventual mean and
trend (Johansen and Juselius 1990). One useful statistical technique is
canonical correlation analysis. The partial correlations of interest are
the eigenvalues A;, where A; > A;;;, of the canonical correlation matrix of

B’y, and A;y, after the above corrections. The columns of B are now given

by the corresponding eigenvectors. Johansen (1988,1989) has developed test
statisticc for the number of cointegration relations, one of which is given

by the likelihood ratio test statistic

Ir(r) = -n f: log(l - 3\,-), (2.38)

t=71 +1

for the null hypothesis of r cointegration relations, where log denotes the
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natural logarithm. Another test is given by testing the significance of the

estimated eigenvalues themselves, or

Ev(r) = -nlog(1 - Aryy), (2.39)

which in fact tests r against r+l. Unfortunately, standard distributional

results are not valid since this null hypothesis involves nonstationary
variables, which provides that the critical values of the test statistics

have to be tabulated. This Johansen procedure will often be applied in

later sections, so for convenience several relevant critical values will be

displayed in table 2.2.

Table 2.2

Critical values for the Johansen cointegration test statistics'™

Constant and trend(z) Consta.nt(z)
—— 90% 95% 90% 95%
Maximal eigenvalue, Ev(r)
1 6.691 8.083 7.563 9.094
2 12.783 14.595 13.781 15.752
3 18.959 21.279 19.796 21.894
4 24.917 27.341 25.611 28.167
5 30.818 33.262 31.592 34.397
Trace, Tr(r)

1 6.691 8.083 7.563 9.094
2 15.583 17.844 17.957

3 28.436 31.256 32.093

4 45.248 48.419 49.925 53.347
5

65.956 69.977 71.472 75.328

Source: Johansen and Juselius (1990), Tables A.2 and A.3.

" The statistics are given in (2.38) and (2.39).
(2)

(3)

The deterministic elements assumed for the data gemerating process.

The m is the number of elements in the vector y, r is the number of

cointegration relationships.
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This Johansen procedure is applied in a variety of recent occasions with
apparent success, see Hendry and Mizon (1990) and Kunst and Neusser (1990)
for macroeconomic applications, and Baillie and Bollerslev (1989), and
Vogelvang (1990) for financial studies. In Franses and Kofman (1991) the
method is used for an empirical test of parities between metal prices at
the London Metal Exchange. From simulation evidence reported in Boswijk and
Franses (1991) it emerges that empirical size and power properties of this
cointegration method are quite reasonable assuming that one does not select
too high or too low the order p in (2.35). It appears that in general, too
few lags in the model increases the size, leading to spurious cointegra-
tion, whereas too many lags in the model decreases the power of the tests.
This indicates that there is some optimal lag length. Therefore it seems a

sensible strategy to test for cointegration in a range of candidate models.

21



