X chromosome inactivation:

Activation of Silencing

Iris Jonkers
The work presented in this thesis was performed at the department of Cell Biology and the department of Reproduction and Development, at the ErasmusMC in Rotterdam.

The studies described in this thesis were supported by a VIDI grant from NWO, and a grant from the BSIK Innovation programme “Stem Cells in Development and Disease” (SCDD, BSIK 03038). Financial support by the ErasmusMC, SCDD, and J.E. Jurriaanse Stichting for the publication of this thesis is gratefully acknowledged.

This thesis was printed by CPI-Wöhrmann Print Service and designed by Iris.

Cover picture: Enlargement of a tetraploid XXXX$_{MS2}$ cell after 4 days of differentiation. RNA-FISH is performed with an Xist RNA probe in green and a MS2-repeat probe in red. The nucleus is stained with DAPI in blue. Back cover picture: Female XX mouse ES cells targeted with a BAC containing an Xist gene after 3 days of differentiation. RNA-FISH was performed as described above.
X chromosome inactivation: Activation of Silencing

X chromosoom inactivatie: activering van het stilleggen

Proefschrift

Ter verkrijging van de graad van doctor aan de Erasmus Universiteit van Rotterdam op gezag van Rector Magnificus Professor dr. S.W.J. Lamberts en volgens besluit van het College voor Promoties.

De openbare verdediging zal plaatsvinden op Woensdag 13 mei 2009 om 13.45 uur.

door

Iris Hélène Jonkers
geboren te Eindhoven

[Signature]
Promotie commissie

Promotors:
Prof. dr. J.A. Grootegoed
Prof. dr. F. Grosveld

Overige leden:
Prof. dr. B. Oostra
Dr. D. Meijer
Dr. N.J. Galjart

Co-promotor:
Dr. J. Gribnau
Content

Abbreviations 6
Scope of the thesis 8

Chapter 1 9
Introduction

Chapter 2 61
X inactivation counting and choice is a stochastic process:
  evidence for involvement of an X-linked activator

Chapter 3 85
The probability to initiate X chromosome inactivation is determined
  by the X to autosomal ratio and X chromosome specific
  allelic properties

Chapter 4 115
RNF12 is an X-encoded activator of X chromosome inactivation

Chapter 5 133
Xist RNA is confined to the nuclear territory of the silenced X
  chromosome throughout the cell cycle

Chapter 6 161
General discussion

Summary/Samenvatting 189
Curriculum Vitae 194
PhD Portpholio 196
Dankwoord 198
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATRX</td>
<td>alpha thalassemia/mental retardation syndrome X-linked</td>
</tr>
<tr>
<td>BAC</td>
<td>bacterial artificial chromosome</td>
</tr>
<tr>
<td>bp</td>
<td>base pairs</td>
</tr>
<tr>
<td>CBX</td>
<td>chromobox homolog</td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary DNA</td>
</tr>
<tr>
<td>CF</td>
<td>competence factor</td>
</tr>
<tr>
<td>CpG</td>
<td>cytosine-guanine</td>
</tr>
<tr>
<td>CTCF</td>
<td>CCCTC-binding factor</td>
</tr>
<tr>
<td>DCC</td>
<td>dosage compensation complex</td>
</tr>
<tr>
<td>dpc</td>
<td>days post coitum</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>DNMT</td>
<td>DNA methyltransferase</td>
</tr>
<tr>
<td>DPY</td>
<td>dumpy</td>
</tr>
<tr>
<td>E</td>
<td>embryonic</td>
</tr>
<tr>
<td>EED</td>
<td>embryonic ectoderm development</td>
</tr>
<tr>
<td>ES</td>
<td>embryonic stem</td>
</tr>
<tr>
<td>EzH2</td>
<td>enhancer of zeste homolog 2</td>
</tr>
<tr>
<td>FACS</td>
<td>fluorescence activated cell sorting</td>
</tr>
<tr>
<td>FISH</td>
<td>fluorescence in situ hybridization</td>
</tr>
<tr>
<td>Fox1</td>
<td>feminizing gene on X 1</td>
</tr>
<tr>
<td>HDAC</td>
<td>histone deacetylase</td>
</tr>
<tr>
<td>hESC</td>
<td>human embryonic stem cell</td>
</tr>
<tr>
<td>HMTase</td>
<td>histone methyltransferase</td>
</tr>
<tr>
<td>ICM</td>
<td>inner cell mass</td>
</tr>
<tr>
<td>Kb</td>
<td>kilo base</td>
</tr>
<tr>
<td>LDB1</td>
<td>LIM domain binding protein 1</td>
</tr>
<tr>
<td>LIM</td>
<td>Lin11/ISL1/MEC3</td>
</tr>
<tr>
<td>LINE</td>
<td>long interspersed nuclear element</td>
</tr>
<tr>
<td>Mb</td>
<td>mega base</td>
</tr>
<tr>
<td>MCB</td>
<td>macro chromatin body</td>
</tr>
<tr>
<td>MEFS</td>
<td>mouse embryonic fibroblasts</td>
</tr>
<tr>
<td>MHM</td>
<td>male hypermethylated</td>
</tr>
<tr>
<td>MLE</td>
<td>maleless</td>
</tr>
<tr>
<td>MOF</td>
<td>males absent on the first</td>
</tr>
<tr>
<td>MRE</td>
<td>MSL complex recognition sites</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger RNA</td>
</tr>
<tr>
<td>MSCI</td>
<td>meiotic sex chromosome silencing</td>
</tr>
<tr>
<td>MSL</td>
<td>male sex lethal</td>
</tr>
<tr>
<td>ncRNA</td>
<td>non-coding RNA</td>
</tr>
<tr>
<td>NEO</td>
<td>neomycin</td>
</tr>
<tr>
<td>ORF</td>
<td>open reading frame</td>
</tr>
<tr>
<td>PolII</td>
<td>RNA polymerase II</td>
</tr>
<tr>
<td>PRC</td>
<td>polycomb-group repressive complex</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>rex</td>
<td>recognition elements on X</td>
</tr>
<tr>
<td>RLIM</td>
<td>RING finger LIM domain-binding protein</td>
</tr>
<tr>
<td>RING</td>
<td>really interesting new gene</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>RNAi</td>
<td>RNA interference</td>
</tr>
<tr>
<td>RNF12</td>
<td>RING finger protein 12</td>
</tr>
<tr>
<td>roX</td>
<td>RNA on the X</td>
</tr>
<tr>
<td>SAF-A</td>
<td>scaffold attachment factor A</td>
</tr>
<tr>
<td>SDC</td>
<td>sex determination and dosage compensation defect</td>
</tr>
<tr>
<td>Sex1</td>
<td>signal element on X 1</td>
</tr>
<tr>
<td>siRNA</td>
<td>small interfering RNA</td>
</tr>
<tr>
<td>SmcHD1</td>
<td>SMC hinge domain containing 1</td>
</tr>
<tr>
<td>SNP</td>
<td>single nucleotide polymorphism</td>
</tr>
<tr>
<td>SRY</td>
<td>sex determining region Y</td>
</tr>
<tr>
<td>SUZ12</td>
<td>suppressor of zeste 12</td>
</tr>
<tr>
<td>Sxl</td>
<td>sex lethal</td>
</tr>
<tr>
<td>TBP</td>
<td>TATA binding protein</td>
</tr>
<tr>
<td>TF</td>
<td>transcription factor</td>
</tr>
<tr>
<td>Tsix</td>
<td>X inactive specific transcript, antisense</td>
</tr>
<tr>
<td>TSS</td>
<td>transcription start site</td>
</tr>
<tr>
<td>WT</td>
<td>wild type</td>
</tr>
<tr>
<td>Xa</td>
<td>active X chromosome</td>
</tr>
<tr>
<td>Xce</td>
<td>X chromosome choosing element</td>
</tr>
<tr>
<td>XCI</td>
<td>X chromosome inactivation</td>
</tr>
<tr>
<td>Xi</td>
<td>inactive X chromosome</td>
</tr>
<tr>
<td>XIC</td>
<td>X chromosome inactivation center</td>
</tr>
<tr>
<td>Xist</td>
<td>X inactive specific transcript</td>
</tr>
<tr>
<td>Xite</td>
<td>X-inactivation intergenic transcription element</td>
</tr>
<tr>
<td>Xm</td>
<td>maternal X chromosome</td>
</tr>
<tr>
<td>xol1</td>
<td>XO lethal 1</td>
</tr>
<tr>
<td>Xp</td>
<td>paternal X chromosome</td>
</tr>
<tr>
<td>YAC</td>
<td>yeast artificial chromosome</td>
</tr>
<tr>
<td>YY1</td>
<td>yin yang 1</td>
</tr>
</tbody>
</table>
Scope of the thesis

X chromosome inactivation is a process that ensures equal expression of the X chromosomes between males, which have one X and one Y chromosome, and females, which have two X chromosomes, in mammals. Females initiate inactivation of one of their two X chromosomes early during embryogenesis, by expressing an untranslated RNA from the X-encoded Xist gene. Xist RNA coats and silences the X chromosome in cis, after which the silenced state of the inactive X chromosome is propagated through many cell divisions.

Three major research questions dominate the field of XCI. How is a cell able to count the number of X chromosomes present? How is it possible that only one of the two X chromosomes in female diploid cells is inactivated? And how is the X chromosome silenced in cis? Although many researchers have attempted to explain the initiation and regulation of the XCI process with a wide array of models, none of the proposed models is able to explain all observations made with deletion and overexpression studies in mouse ES cell lines and embryos. Therefore, the aim of this thesis is to obtain additional data, and to postulate a comprehensive model for the initiation of XCI in the mouse. This model will encompass how the cell is able to detect the number of X chromosomes and how it can inactivate only one of them without inactivating all X chromosomes present in a cell. The discovery of an important activator of XCI initiation strengthens this model. Furthermore, the mechanism of spreading of Xist RNA, and thus the silencing of the X chromosome in cis, will be addressed. A hypothesis regarding the spreading of Xist RNA over the inactive X, and how Xist RNA is restricted to the Xi, will be formulated. Overall, the most important conundrums in XCI will be addressed in this thesis, and we present a more logical and complete model explaining the regulation of XCI.
Chapter 1
Introduction
1. Introduction

1.1 Evolution of sex chromosomes in mammals

Many living organisms have separate sexes, and the determination of sex within one species can be achieved in many ways. For instance, many reptiles use environmental cues, like the incubation temperature of their eggs, to determine the sex of their offspring. Other species have genetic based sex determination, but no distinguishable sex chromosomes. Finally, many species, for example most birds, mammals, and insects, have sex chromosomes and employ sex chromosome linked genetic cues to achieve sex determination. Two forms of sex chromosome systems exist (based on heterogametic sex), the ZW system present in birds and the XY system employed by mammals [1].

In mammals, males have an X and a Y chromosome and females two X chromosomes. The X chromosome is large, comprising approximately a thousand genes in human and mouse. In contrast, the Y chromosome, the smallest mammalian chromosome, encodes less than thirty different proteins in human. One of these proteins is SRY, which has been characterized as the master regulator in male development. SRY is the testis-determining factor and initiates a cascade of molecular events that turns the indifferent gonads into testis, thereby driving male development. Without SRY, the gonads will develop into ovaries, resulting in female development. Female development is therefore often considered the default state of mammals [2].

What is the origin of sex chromosomes? It has been proposed that sex chromosomes originate from a set of autosomal chromosomes, of which one acquired a sex determining locus in mammals, probably the SRY gene, and then became a male-limited proto-Y chromosome (Fig. 1). This event was quickly followed by accumulation of genes advantageous to males around the sex determining locus due to positive selection. Because this sex determining region on the proto-Y became more and more divergent from the proto-X, recombination events were omitted from this region. This resulted in an increased rate of mutations, inversions, deletions and translocations on the proto-Y, and consequent degradation of the chromosome (Fig. 1).

This evolutionary theory is supported by the classification of different evolutionary chromosome layers on the Y chromosome, of which layer 1, containing the SRY gene, shows most divergence from the homologous X chromosomal region and most likely represents the earliest stage of sex chromosome divergence. The different layers probably arose subsequently during evolution after inversions on the Y and expansion of the pseudoautosomal region on the X and Y chromosomes.
[3,4]. Ultimately, layer 5 is most conserved between the X and Y chromosomes, and this region represents the pseudo-autosomal region, which is still able to pair during meiosis between the X and Y. Furthermore, the ongoing degradation of the Y chromosome becomes visible when Y chromosomes of various species are compared. Some show extensive degradation, whereas others still have high homology with the X chromosome, indicating that divergence of the sex chromosomes is an ongoing process, and might result in the loss of the Y chromosome in some species altogether [1].

**Figure 1. Evolution of mammalian sex chromosomes**
After a mutation resulted to the Sry gene (in red), which drives male development, on one of a pair of autosomes in an early mammalian ancestor (in yellow), a gradual transition of the autosomal pair of chromosomes towards sex chromosomes has taken place. The Y chromosome gradually accumulated mutations and deletions, starting in the region around the Sry gene and spreading from there, as indicated by the spreading of the light and dark blue coloring. Recombination between X and Y is becoming impossible, apart from the pseudo-autosomal region. The pseudo-autosomal region is depicted in yellow. The X chromosome becomes more active to compensate for the loss of genes on the Y chromosome, as indicated by the increasing intensity of the color of the chromosome.

**1.2 Dosage compensation in mammals**
The X chromosome in mammals is protected from degradation because it has the ability to recombine in the female germline, whereas the Y chromosome has gradually degraded due to lack of recombination. As a consequence, the present Y chromosome carries relatively few functional genes, generating an unequal dosage of X chromosomal genes that have no or a non-functional Y chromosomal partner. To equalize the dose of X-linked genes, mammals almost completely inactivate one of the two female X chromosomes in a process named X chromosome inactivation (XCI). XCI is a gene-by-gene adaptation to the degradation of the Y chromosome,
which is supported by the finding that X-linked genes that still have a functional Y chromosomal homologue and even some X-linked genes of which the homologue is lost, are not yet subject to dosage compensation [5]. This is confirmed by the observation that of the 15% of human X-linked genes that escape XCI, nearly all are located in the layers of the X chromosome that only recently diverged from the Y chromosome (X-Y conserved region) [6]. Also, another 20% of the genes on the human X chromosome are heterogeneously expressed, that is, different individual cells display a large variation in expression of these genes [6].

Expression of only one X chromosomal gene copy in both males and females would result in a difference in expression between the X and autosomes. Interestingly, in both males and females, the single active X is two-fold upregulated to compensate for the difference in expression between the X and autosomes [7,8]. Thus, dosage compensation in mammals does not only encompass XCI in females, but also upregulation of the active X to equalize the expression of autosomal and sex chromosomal genes in both sexes.

Is upregulation of the genes located on the active X a result of XCI evolution or did this process evolve independently, thereby initiating XCI evolution? Jegalian et al. [5] state that, before XCI evolved, X-linked genes would compensate for the loss of their Y chromosomal homologues by upregulation of gene expression. As degradation of the Y chromosome progressed, more X-linked genes needed to be upregulated subsequently, resulting in overexpression of the two X chromosomal gene copies in females [5]. Therefore, XCI evolved to counteract the overexpression of X-linked genes in females. Ultimately, XCI was sufficient to ensure equal expression between the sex chromosomal genes in males and females, while the initial upregulation of the X-linked genes also ensured equal expression between sex chromosomes and autosomes. Nevertheless, in haploid cells like secondary spermatocytes, oocytes, and spermatids, the genes on the single X chromosome are not overexpressed compared to autosomal genes, indicating that overexpression of the single X chromosome is not an intrinsic characteristic of the X, but can be regulated depending on the ploidy of the cell. This implies that an active mechanism ensures equalized X:autosome gene expression ratios, and indicates that the upregulation of the active X chromosome evolved as a response to XCI evolution and Y chromosome degradation, to equalize the difference in gene expression of the active X chromosome and autosomes in females and in males [7].

1.3 Mouse X chromosome inactivation in a nutshell
XCI occurs early in the development of the female embryo, in mice already after the 4-cell stage [9,10,11]. Cells in the early embryo always inactivate the paternally
Inherited X chromosome (Xp), and leave the maternally inherited X chromosome (Xm) active, which is referred to as imprinted XCI (Fig. 2A and C)[12,13].

The embryo develops into a blastocyst after 3.5 days post coitum (dpc) in mouse and after 5.5 dpc in human, in which the inner cell mass (ICM) will develop into the embryo proper. In the ICM of gastrulation stage embryos, imprinted XCI is reversed, resulting in reactivation of the Xp and subsequent initiation of random XCI, whereas imprinted XCI is maintained in the extraembryonic tissue (Fig. 2B and C) [9,11,14]. Unlike imprinted XCI, random XCI ensures that both X chromosomes have an equal chance to be inactivated, causing ~50% of the cells to have an active Xp and ~50% of the cells to have an active Xm [15]. Only one of the two X chromosomes should be inactivated, because inactivation of all X’s, or even leaving both X’s active, is lethal to the cell [16,17]. Therefore, the number of X chromosomes in the cell must be determined in the developing embryo. When a female cell has established that two X chromosomes are present, XCI is initiated on one of the two X chromosomes.
Once random XCI is completed, the process is irreversible, and after each cell division the inactivated X (Xi) will be clonally propagated, meaning that the same X remains inactivated in all daughter cells [18]. Silencing of X-linked genes spreads in cis soon after initiation of XCI, repressing transcription of nearly all genes on the Xi [18]. In mice, only a few genes escape XCI and remain transcribed on both X chromosomes [19]. XCI can only take place during an early developmental window of embryogenesis up to 12.5 dpc in mice, after which it can no longer be induced [20].

Obviously, using embryos as a model system is not ideal. Many test animals have to be sacrificed in order to obtain enough embryos for significant results, and studying XCI in embryos is laborious and time consuming. Therefore, much research relating to XCI has used mouse embryonic stem cells (ES cells) as a model system. Female undifferentiated XX ES cells have two active X chromosomes, but upon differentiation of ES cells, random XCI is initiated and one of the X chromosomes is inactivated [21,22]. In contrast, male XY ES cells do not initiate XCI upon differentiation. The developmental window in which XCI can be initiated in ES cells appears to be much shorter compared to the embryo [23]. Nevertheless, comparison of different aspects of XCI in the embryo proper with ES cells has shown that ES cells encompass nearly all aspects of random XCI [24].

1.4 Random XCI in mice

1.4.1 Counting
The first essential step in the initiation phase of XCI is counting. The counting process involves determination of the number of X chromosomes present in the cell. Based on the X:autosome ratio, the cell establishes how many X chromosomes will be turned off to ensure the optimal dosage of X-linked gene expression. Genetic studies have indicated that the counting process is controlled by factors located in the X chromosome inactivation center (XIC). Analysis of two diploid mouse cell lines, the Searle’s translocation cell line and the HD truncation cell line, indicated that the XIC is located within a 10 megabase (Mb) region of the X chromosome. The Searle’s translocation cell line has a wild type X chromosome and an X;16 translocation, that has a substantial part of the telomeric region of the second X chromosome attached to chromosome 16 [25]. The HD truncation cell line is a cell line that has a deletion of the telomeric part of one of the X chromosomes [26]. The HD truncation cell line is able to initiate XCI in all cells, whereas the unbalanced Searle’s translocation cell line is not. Therefore, the 10 Mb region of the X chromosome that is present in the HD truncation cell line, but not in the unbalanced Searle’s translocation cell line can be defined as the XIC. In human, the XIC has been narrowed down to a 2.6 Mb contig
on the X chromosome, and the mouse homologue of this contig maps within the 10 Mb mouse XIC [27].

Studies on human and mouse aneuploid and tetraploid embryos and adults, and cell lines derived from these, reveal that one X chromosome per diploid autosome background remains active (Fig. 3). For instance, tetraploid XXX mouse embryos preferentially inactivate two out of four X chromosomes [28], whereas tetraploid XXY mouse embryos only rarely inactivate an X [29]. Interestingly, in triploid cells the ratio of one active X per diploid autosomal set cannot be obtained, and as a consequence the inactivation pattern in mouse triploid cell cultures and embryos is variable. In triploid XXY mouse embryos one or no X chromosome is inactivated, while in triploid XXX mouse embryos one or two X chromosomes are inactivated. However, the preference seems to be one Xi for XXY embryos and two Xi’s for XXX embryos [30]. The same inactivation pattern is observed in human triploid embryos [31] and human triploid cell cultures [32], but here the preference is shifted towards two active X chromosomes instead of one. The difference between human and mouse triploid cells can be explained by secondary selection process in human cells with two active X chromosomes, as has been shown by a study following human triploid cell lines for ten passages or more [32].

Figure 3. Counting
Cells count the number of X chromosomes by comparing the X to autosome ratio and leaving one X chromosome per diploid genome active. The ploidy of a cell is n.

1.4.2 Choice?
Once female XX cells have established that one X chromosome has to be silenced to obtain the optimal X:autosome ratio, XCI is initiated on one X chromosome, whereas the other X chromosome remains active. Normally, both X chromosomes have an
equal opportunity to become inactivated, so that ~50% of the cells inactivate one X chromosome, and the residual ~50% of the cells inactivate the other X. Until recently, inactivation of either X chromosome was thought to be a result of an active choice process that is mutually exclusive. In this view, either the future active X or the future inactive X is chosen. Both scenarios will have the same result, but are principally different and subject to heavy debate.

Choice of the future active or inactive X chromosome can be influenced by the genetically determined X chromosome controlling element (Xce), and combinations of different Xce’s result in skewed, non-random XCI [33]. In mice, the Xce has been mapped to the XIC and has different strengths, ranging from very strong, Xce\textsuperscript{a}, to very weak, Xce\textsuperscript{c} [34,35]. A female XX ES cell containing an X chromosome with a strong Xce, Xce\textsuperscript{a} for instance, in combination with a weak Xce, like Xce\textsuperscript{c}, will preferentially chose the X chromosome with the strong Xce to be the future Xa, resulting in inactivation of the X chromosome with Xce\textsuperscript{c} in ~70% of the cells, and inactivation of the X chromosome with Xce\textsuperscript{a} in ~30% of the cells [35].

Although a mutually exclusive choice process is theoretically a reasonable hypothesis, it is not always supported by experimental data. Therefore, we propose a stochastic model for XCI, in this thesis. In this model, the inactivation of an X chromosome is not the result of an active and mutually exclusive choice process, but is dependent on the intrinsic chance of the X chromosome to initiate XCI, in combination with selection (Chapters 2 and 3).

1.4.3 Factors involved in XCI
To better understand the counting and choice process, more detailed knowledge about the molecular mechanism underlying XCI is required. The two main regulatory factors involved in XCI are \textit{Xist} and \textit{Tsix} [17,36,37], both located in the XIC on the X chromosome (Fig. 4). \textit{Xist} and \textit{Tsix} are genes coding for functional non-coding-RNAs (ncRNAs). \textit{Xist} expression and spreading of RNA is necessary for XCI to occur on an X chromosome while \textit{Tsix} represses expression of \textit{Xist} in \textit{cis}. \textit{Tsix} is positioned at the 3’ end of the \textit{Xist} gene and is transcribed in an antisense direction through the entire \textit{Xist} locus. Together the two genes determine whether XCI occurs in \textit{cis} on the X chromosome. Other elements, proteins or genes that are involved in regulation of XCI are \textit{DXPas34}, \textit{Xite}, CTCF and YY1, which seem to regulate \textit{Xist} or \textit{Tsix} expression and function, directly or indirectly, as described below.

1.4.3.1 Xist
The \textit{Xist} gene, as mentioned, is located on the X chromosome and is required for XCI to occur in \textit{cis} [17,36]. It is expressed at low levels in undifferentiated XX ES cells,
Introduction

and upregulated at the onset of XCI on the future inactive X chromosome and finally expressed exclusively from the Xi after XCI has been completed (Fig. 5)[28,37,38,39]. Xist RNA coats the entire Xi, attracting many histone modifiers directly or indirectly, which ultimately results in silencing of the Xi [40,41]. Many experiments have proven the importance of Xist in the XCI process. For instance, deletion of Xist from one X chromosome in XX female ES cells causes complete skewing of XCI towards the wild type X chromosome, while XY male ES cells are not affected [36]. This is not a consequence of secondary selection in benefit of the cells inactivating the wild type X chromosome when XCI has been completed, but the wild type X chromosome is always inactivated when Xist is deleted on one allele in female XX embryos (primary non-random XCI) [17,42]. Furthermore, ectopic expression and spreading of Xist is enough to initiate chromosome inactivation, even on an autosome [43,44,45].

Silencing, at least partially, of a chromosome from which Xist is transcribed is irreversible after three days of differentiation in ES cells, as has been shown using an inducible Xist transgene. However, when Xist RNA is removed beforehand, the silenced state of genes is reversed [23]. Importantly, the expression level of Xist is one of the factors that determines skewing of XCI, as has been shown by changing the Xist transcription level on one of two alleles by introducing a mutation or deletion in the Xist promoter [46,47].

Xist consists of 7 exons and Xist RNA is spliced and polyadenylated, does not contain an ORF and is restricted to the nucleus [40,48,49]. Furthermore, Xist is conserved between mouse and human, with an overall homology of more than 70%, but a few repeat regions have a much higher homology of approximately 90%. Indeed, these repeat sequences appear to be functional in the XCI process, as shown by analysis of ectopic XCI with mutated Xist cDNA transgenes [50]. The A-repeat in exon1 is solely necessary for silencing, whereas the tandem repeats downstream of the A-repeat are redundant and needed to localize Xist to the X chromosome in cis [50]. Also, after deletion of the endogenous A-repeat, Xist is not upregulated in ES cells or the embryo, probably because the mutated Xist can no longer silence Tsix and overcome Tsix repression [51].

The primary promoter of Xist (P1) is directly upstream of the gene and contains 7 footprints and 2 DNase I hypersensitive sites (HS sites) (Fig. 4, enlargement of Xist promoter) [52,53]. Footprint V contains a single nucleotide polymorphism (SNP) between Mus musculus and Mus spretus [54]. Footprint II is a putative TATA-box, but does not seem to be a direct TATA-binding-protein (TBP) binding site. Footprint I, which is the transcriptional start site, contains a putative YY1 binding site. Four more footprints have been described further upstream of Xist, but the functional relevance of these sites has not been determined [46,47].
Two additional putative promoters have been described, promoter P0 at approximately -6.5 kb and promoter P2 at +1503 bp of the transcription start site (Fig. 4, enlargement of Xist promoter)[55]. Xist transcripts originating from promoter P2 seem to be more abundantly present in somatic XX cells [55], but do not contain the A-repeat that is crucial for silencing [50]. Moreover, in mouse embryonic fibroblasts (MEFs) RNA polymerase II is mostly present at the P1 promoter, not P2 [56]. Thus, the functional relevance of these P0 and P2 derived Xist transcripts is unclear. Transcripts originating from promoter P0 are associated with unstable Xist transcription prior to XCI initiation [57,58]. However, the discovery of Tsix and the observation that Xist transcripts are stable throughout the XCI process, indicate that promoter P0 is not an Xist promoter and that the unstable Xist transcripts represent Tsix transcription [37,59,60].

1.4.3.2 Tsix and antisense transcription through Xist

Initially, based on non-strand specific analysis of transcription, Tsix was identified as unstable Xist RNA transcribed from P0 in undifferentiated ES cells [57,58]. However, Lee et al. [37] were the first to recognize that Tsix is a gene located 15 kb downstream from Xist and is transcribed in antisense direction of Xist. Tsix encodes a continuous antisense RNA of approximately 40 kb that spans all of Xist. Multiple transcription start sites for Tsix have been identified and approximately 50% of the Tsix transcripts are spliced into various small isoforms of which the 3’ ends have an overlap with the 5’ part of Xist [61,62]. Tsix is transcribed in male and female undifferentiated ES cells in 10 to 100 times excess to Xist, and during establishment of XCI from the allele that is to remain active in male and female differentiating ES cells. After completion of
XCI, $Tsix$ is downregulated (Fig. 5)[37,61].

$Tsix$ is generally regarded as the major inhibitor of $Xist$ and therefore as an important factor in XCI regulation. However, careful examination of the literature shows that overall antisense transcription through the $Xist$ locus determines inhibition of $Xist$. For example, loss of the major promoter of $Tsix$ has no significant effect on counting or initiation processes of XCI [63]. However, deletion of $DXPas34$, a CpG island located downstream of the $Tsix$ TSS from which antisense transcription is also initiated (Fig. 4, enlargement $Tsix$ major promoter), significantly decreases antisense transcription through the $Xist$ locus, and causes primary non-random inactivation of the targeted allele in female XX ES cells [63,64,65] and inappropriate XCI on male XY ES cells [65]. Lee et al. [66] do not observe primary non-random XCI in XY ES cells upon deletion of $DXPas34$ and the promoter of $Tsix$. A possible explanation for this latter result could be that the transgenic male cell line in question contained a neomycin (NEO) cassette integrated at the former $DXPas34$ locus. A NEO cassette introduced by others at the same location influenced XCI similarly, because the NEO cassette probably influences transcription of $Tsix$ [65]. Furthermore, the authors may have missed cells that inactivated the single X chromosome, because these cells might have died before analysis of XCI initiation was performed.

![Figure 5. $Xist$ and $Tsix$ expression during XCI](image)

The upper panels depict a schematic overview of the expression pattern of $Xist$ (in green) and $Tsix$ (in red) during the initiation, establishment, and maintenance phase of XCI. The lower panels show $Tsix$ and $Xist$ pinpoints (arrowhead), and $Xist$ clouds (asterix) during the initiation, establishment, and maintenance phase of XCI in differentiating ES cells. $Xist$ and $Tsix$ are labeled with a double strand cDNA probe in green.
Interestingly, the methylation status of *DXPas34* coincides perfectly with antisense transcription through *Xist*. The CpG island is hypomethylated when actively transcribed and hypermethylated when antisense transcription is downregulated [67,68]. Antisense transcription is also initiated at a region ~10 kb upstream of *Tsix*, called *Xite*. The *Xite* expression and methylation pattern during XCI is similar to the *Tsix* methylation and expression pattern, and deletion of *Xite* results in reduced antisense transcription through the *Xist* locus and skewing of XCI towards inactivation of the targeted allele [68,69,70], implying a similar role for *Xite* in inhibition of *Xist* function as *DXPas34* and *Tsix*. Furthermore, direct inhibition of antisense transcription by insertion of a polyA site between *Xist* and *DXPas34* also causes primary non-random XCI in female ES cells and inappropriate XCI in male ES cells. Even more so, overexpression of antisense transcription on one allele results in primary non-random inactivation of the wild type allele [71]. Finally, a 65 kilobase (kb) deletion encompassing not only *Tsix*, but also *Xite* and *DXPas34*, thus abrogating all antisense transcription, shows not only complete primary non-random XCI of the targeted allele, but also severe cell death in X0 and XY cells containing the deletion, invoked by improper XCI [72,73]. Thus, inhibition of *Xist* seems to correlate with an increase in antisense transcription through the *Xist* locus. For simplicity reasons, I will refer to antisense transcription through the *Xist* locus as *Tsix* transcription.

How does *Tsix* inhibit *Xist* expression? Three hypotheses have been proposed. First, *Tsix* may function by forming a double stranded RNA heteroduplex with *Xist* resulting in repressive siRNA, which functionally silences *Xist* in *cis* [74]. However, overexpression of *Tsix* cDNA, which includes the homologous region with *Xist* on an allele with abrogated endogenous *Tsix* transcription by insertion of a polyA signal, does not restore *Xist* inhibition [75], arguing against RNAi based inhibition of *Xist*. Also, Dicer knockout mice that have an impaired RNAi machinery exhibit correct XCI, although *Xist* is indirectly upregulated due to loss of DNA methylation at the *Xist* promoter [76].

Secondly, *Tsix* and *Xite* might form a three-dimensional chromatin structure via DNA looping that enhances *Tsix* and *Xite* antisense transcription, but excludes the *Xist* promoter and thereby inhibits *Xist* expression in *cis*. A chromosome-conformation-capture (3C) study has shown that *Tsix* and *Xite* interact over a long distance, while the *Xist* promoter seems to co-localize with the *Jpx* promoter when *Xist* is transcribed. *DXPas34* is a likely candidate for looping, because deletion of *DXPas34* causes a severely skewed phenotype in female ES cells and XCI in male ES cells [63,64,65], and it is bound by CTCF, a protein that is often implicated in looping of DNA [77]. However, the *DXPas34* deletion does not significantly change the three-dimensional chromatin structure in male ES cells. Furthermore, it is hard to determine
whether a specific three-dimensional chromatin formation in cis is the cause or the consequence of the transcription profile of that allele [78].

Finally, not Tsix RNA, but antisense transcription through the Xist locus may inhibit Xist upregulation through a transcription interference mechanism. How antisense transcription based inhibition of Xist works mechanistically has not been shown, but one can envision that promoter polymerase initiation complexes (PICs) will have more difficulty forming on a promoter when an elongation complex transcribing in the antisense direction co-exists at the locus. Furthermore, RNA polymerase II complexes of Xist and Tsix may collide during transcription elongation, causing a premature halt of Xist transcription and less Xist accumulation. Alternatively, inhibition of Xist might be caused by alteration of the chromatin state of the Xist locus by antisense transcription. It has been postulated that Tsix transcription induces heterochromatin formation at the Xist promoter by attracting histone modifiers, and thereby silencing it [79,80]. Recently, EED, a component of the PRC2 Polycomb complex, has been shown to work synergistically with Tsix transcription in silencing Xist [81]. Furthermore, loss of antisense transcription through the Xist locus causes reduction of CpG methylation and repressive histone modifications, indicating that transcription from the Xist promoter is enhanced [82]. However, findings of Sun et al. [60] argue against this hypothesis by showing that activation of Xist on the future Xi is characterized by a transient heterochromatic state at the Xist promoter, perhaps induced by the silencing capacity of Xist itself, and thus contradicting a functional role of chromatin modifications in inhibition of Xist by Tsix. In conclusion, most evidence points towards transcription mediated repression of Xist by Tsix, but the exact mechanism has yet to be established.

1.4.3.3 Protein Factors

CTCF is a protein with 11 DNA or protein binding Zinc fingers, which has approximately 14,000 binding sites in the human genome and is implicated in different functions such as transcription regulation, genome organization and insulation of chromatin domains [83,84,85,86]. Furthermore, CTCF has been shown to regulate allele specific expression in imprint controlled regions like the H19/ Igf2 region [87], by binding only the allele with the non-methylated CTCF binding sites [84]. Binding of CTCF has been postulated to prevent promoter-enhancer interactions when located in between the two. Like CTCF, YY1 is a multi zinc finger protein that binds DNA and is associated with imprinted control regions like Peg3 and Nespas [87]. Putative CTCF and YY1 binding sites have been found throughout the XIC, especially in the Xist promoter and at the DXPas34 region (Fig. 4)[53,68,77,87,88,89]. Interestingly, YY1 and CTCF seem to form a complex that binds the DXPas34 region [89].
Although the function of CTCF and YY1 in XCI is not fully understood, several lines of evidence indicate that both are important for expression of Tsix and Xist. First, point mutations in the CTCF binding site of the XIST promoter cause skewed XCI in humans. Point mutations that enhance CTCF binding on one of two X chromosomes result in preferred inactivation of the mutated allele, whereas abrogation of CTCF binding by a point mutation on one allele will keep this allele active [54]. Also, CTCF binds specifically to the inactivated X chromosome in mice [54]. Furthermore, the CTCF binding sites found in the DXPas34 and Xite region show increased de novo methylation during ES cell differentiation [68]. Because CTCF binds methylated sites less efficiently [77], de novo methylation might result in loss of CTCF binding during differentiation, which coincidently corresponds to Tsix downregulation, implicating that CTCF may function as an activator of Tsix.

Nonetheless, most reports attribute an insulator function to CTCF and YY1 bound to the Xi, especially at sites positioned on the DXPas34 locus [54,77,83]. How do the observations described above correlate to an insulator function of CTCF and YY1? Most likely, CTCF forms a boundary between silent and active chromatin [86], as has been shown for CTCF that binds regions adjacent to genes that escape XCI on the Xi [83]. CTCF and YY1 might facilitate an allele-specific 3D chromatin conformation, dependent on the differentiation state of ES cells and thus the methylation status of the alleles. Indeed, DXPas34 and Xite form a DNA loop on the active X that might protect Tsix from being silenced, which coincides with the methylation profile of the X chromosome. Similarly, Xist interacts with an enhancer 5' of the Xist promoter on the Xi [78]. However, deletion of most, but not all, CTCF binding sites in the DXPas34 region does not interfere with the 3D conformation of the XIC, while the deletion does affect XCI regulation. This argues against a role of CTCF and YY1 in regulation of XCI via looping of DNA [78].

Reduction of CTCF or YY1 levels indicates a functional role of both in XCI. Embryos carrying a homozygous deletion of YY1 die shortly after implantation, and analysis of preimplantation YY1+/− embryos shows aberrant Xist expression [89]. Female embryos with reduced YY1 levels are viable, but have a reduced body weight and are born less frequently than their male and female wild type, and transgenic male littermates [89,90]. Some male YY1+/- embryos, as well as male ES cells derived from these embryos have a decreased Tsix transcription level and increased Xist expression [89], and male live-born YY1 knock-down pups display a slight upregulation of Xist [90]. Thus, the reduced body weight and non-mendelian ratios of offspring with decreased YY1 levels may be caused by faulty regulation of XCI, resulting in cell death caused by inappropriate XCI. CTCF knock-down in early mouse embryos reduces litter size, which is caused by embryonic lethality before implantation of the
embryo, but it is unknown if the mendelian ratios of the offspring are affected [91].
In differentiating male ES cells, knock-down of CTCF results in a similar phenotype
as found in YY1 knock-down in male ES cells (hence, increased Xist transcription)
[89]. However, CTCF knock-down in differentiating female XX ES cells gives rise to a
reduced number of Xist clouds compared to wild type cells, while YY1 knock-down in
female ES cells does not [92]. Thus, CTCF knock-down data are conflicting between
male and female ES cells, leaving the exact role of CTCF in XCI unknown.

Thus far, CTCF and YY1 are the only trans-acting proteins that are thought to
be involved in the choice and counting mechanism of XCI. In addition, mutagenesis
studies on mice have resulted in two potential autosomal regions that influence
skewing of XCI choice [93]. In contrast, a study of human trisomy embryos has
excluded all autosomes, except parts of chromosome 1 and 19, to encompass a locus
that influences choice and/or counting in XCI [94]. The autosomal regions in mice and
humans that are implied to contain factors influencing XCI counting and choice do
not encompass the CTCF or YY1 genes.

1.4.4 Models for regulation of random XCI
All data at hand has resulted in heavy speculation about how counting and initiation
of XCI is regulated. Many models have been postulated and the most important ones
are described below and in Figure 6.

1.4.4.1 Blocking factor
The blocking factor model states that a limiting factor blocks XCI on one of the two X
chromosomes in female cells and on the single X chromosomes in male cells [25]. The
cell is able to count, because the blocking factor is encoded by an autosomally located
gene, and thus the excess of autosomes over X chromosomes determines whether
enough blocking factor is present in order to inhibit XCI on one X chromosome in a
diploid background. The blocking factor will bind an element in the XIC that prevents
Xist to accumulate on that X chromosome in cis. Therefore, a heterozygous deletion
of this element in female cells will cause primary non-random XCI of the targeted
X chromosome, whereas a homozygous deletion should result in two inactive X
chromosomes or XCI in male cells (Fig. 6).

The phenotype of the Tsix or DXPas34 deletion greatly resembles the
hypothetical counting element deletion [16,63,64,66,72] and is therefore the most
likely candidate to be the counting element, which would suggest that the blocking
factor is the activator of Tsix. A potential candidate to be the blocking factor is YY1,
because it binds the DXPas34 region and knock-down of YY1 by ~50% causes a slight
upregulation of Xist expression and reduced body weight in newborn mouse pups,
which could indicate inappropriate XCI in the embryos, resulting in cell death [89,90]. However, YY1 is not located on the autosomal regions that have been defined by mutagenesis and analysis of human trisomy embryos to potentially contain trans-acting factors involved in XCI [93,94]. Furthermore, YY1 is abundantly present in cells and will not have a limiting protein concentration, which is hypothesized to be a critical aspect of the blocking factor model. In fact, it is difficult to envision that every cell will have exactly the same extremely low concentration of blocking factor at the onset of XCI, so that only one allele will be protected against XCI. Nevertheless, postulating that the blocking factor is a nuclear entity could circumvent this. Another complication of the model in which the Tsix activator would act as the blocking factor, is that Tsix should be upregulated at the onset of XCI on one allele, while
in fact Tsix is not upregulated, but downregulated on the future Xi [37,61]. Finally, with Tsix activator as the blocking factor binding only one of the two alleles, thereby protecting it from XCI, than the other allele should inactivate. If this allele is impaired for XCI, because Xist is deleted for example, than the cell should not be able to inactivate, which should result in death of half the cell population. In contrast, cells with a heterozygous Xist deletion all make the right choice and initiate XCI on the wild type X chromosome, resulting in primary non-random XCI [42]. Therefore, a positive XCI factor was hypothesized, named the competence factor (CF). One model encompassing the blocking factor and a CF postulates that the abundantly present CF can only bind an X chromosome when the blocking factor does not bind, which results in inactivation of all remaining X chromosomes [42]. Another hypothesis states that the autosomally encoded blocking factor determines how many X chromosomes remain active, because it is present in a low dose so that it can bind only one X chromosome. Also, the blocking factor titrates away one ‘copy’ of the X-encoded CF, which corresponds to a single X chromosome. When more than one X chromosome is present in a diploid background, the extra copies of CF will not be titrated by the blocking factor and inactivate the remaining unprotected X chromosome(s) (Fig. 6) [66,95].

Overall, conclusive evidence in favor of the blocking factor model, like a proper dosage dependent trans-acting blocking factor, has yet to be found.

1.4.4.2 Symmetry-breaking
The main problem of the blocking factor model is that a single entity or molecule will be present in a diploid cell, and will always bind only one X chromosome present. However, cell-to-cell variegation is likely to make such a system unstable. A model in which not one factor, but many factors bind only one of two X chromosomes in a female diploid cell overcomes this problem (Fig. 6)[96,97]. This model, dubbed the symmetry-breaking model, states that at the onset of XCI a blocking complex will form on one X chromosome, composed of many autosomally encoded molecules that will bind to the DNA and itself through self-assembly. Computational analysis shows that this self-assembly is energetically more favorable if it takes place on only one X chromosome in the cell and not two. Because each X chromosome initially has an equal chance to be bound, while only one X will be ultimately protected by the blocking complex, this model is similar to the blocking factor model, but circumvents the problem of having a single factor present in a cell. Nevertheless, physical evidence of complex formation on the active X at the onset of XCI has never been presented.
1.4.4.3 Alternate states

Unlike the blocking factor models, the alternate state model postulates that the choice for an X chromosome to be inactivated is intrinsically determined by the chromatin state of the X prior to XCI (Fig. 6)[98]. The nature of this chromatin state is unknown, but can be determined by looking at the fraction of alleles that have replicated DNA strands that remain close together after replication versus the ones that are clearly separated. It seems that the X chromosomes with the connected duplicated DNA strands are more prone to XCI than the ones with separated duplicated DNA strands. These different states of sister chromatid cohesion are transient and are locked in at the onset of XCI, thereby ensuring random XCI. However, cell lines that display primary nonrandom XCI because either the Xist gene or Tsix is deleted on a single X chromosome [36,71] only show a mild shift of bound replicated DNA strands on the allele destined to be inactivated, indicating that not all cells will make the right “choice” to inactivate one X chromosome (see 1.4.2) and will die due to absence of XCI. The fact that both mutated cell lines exhibit primary non-random XCI and that mutated cells are not more likely to die upon XCI than wild type cell lines [17,42,71], argues against this model.

1.4.4.4 Transvection

The final model discussed here is based on the observation that co-localization of the XICs in XX ES cells precedes XCI (Fig. 6). This XIC co-localization or pairing is very transient and can only be observed in a subset of cells, but does occur more frequently than what would be expected from random co-localization [92,99]. Pairing seems to depend on a few locations within the XIC. A Tsix or Xite deletion in female ES cell lines results in loss of pairing [92,99,100]. However, reconstitution of pairing by restoring the Tsix or Xite pairing sites does not regain random XCI [99], or induce XCI in male ES cells [100] indicating that another pairing region is crucial for initiation of XCI. Indeed, a BAC sequence located ~400 kb upstream of Xist was found to pair with other copies of this region and to induce XCI in male ES cells when randomly integrated [101]. It was suggested that the BAC region is essential for sensing the presence of more than one X chromosomal allele and subsequent initiation of XCI, while pairing of the Tsix and Xite region provides a feedback loop to prevent that the second X chromosome will inactivate [101].

Pairing of the X chromosomes at the onset of XCI seems to be mediated by CTCF. Knock-down of CTCF, but not of YY1, causes less pairing and reduced initiation of XCI [100]. Another requirement for pairing is transcriptional activity of Tsix and Xist [100]. When DNA polymerase II transcription is inhibited, pairing of the Tsix and Xist regions is lost [102]. This result might indicate that the pairing events observed
are not the cause of XCI, but a consequence of transcriptional activation of Xist at the onset of XCI, which may result in relocation of the XIC in the nucleus.

1.5 Silencing the X chromosome

1.5.1 Chromatin of the inactive X chromosome

The first step in silencing the X chromosome is the spread of Xist RNA in cis over the X chromosome. Several redundant repeats of Xist are important for the localization of Xist RNA to the Xi [50]. Spreading of Xist causes depletion of RNA polymerase II and other components of the transcription machinery on the Xi within one day, and abrogates transcription of repeat and intergenic sequences, independently of the A-repeat [103]. However, silencing of genes is mediated by the A-repeat within Xist RNA and starts after one to two days, continuing until gene silencing is more or less completed after approximately seven days of differentiation [8,103]. Silencing of genes is hypothesized to be associated with the relocation of active genes at the outer rim of the X chromosome territory towards the silent Xi territory by the A-repeats [103,104].

After depletion of the transcription machinery from the Xi territory, the Xi chromatin is changed drastically (Fig. 7A and B). First, histone 3 lysine 27 trimethylation (H3K27me3) is acquired by transient localization to the Xi of the Polycomb-repressor complex 2 (PRC2), which is comprised of protein subunits EED, EzH2, RbAp47/48 and Suz12, of which EzH2 has histone methyltransferase activity [105,106,107,108,109]. PRC2 binds Xist directly, as has been shown by either deletion of EED or conditional deletion of Xist, which both cause loss of H3K27me3 [107,108,110]. Recently, PRC2 subunit EzH2 has been identified as the protein that targets the PRC2 complex to the A-repeat of Xist RNA [111]. Knock-down of EzH2 or EED caused decreased Xist binding to the Xi and H3K27me3 enrichment. Although PRC2 seems to be important for binding Xist to the Xi, it is not likely to be the only protein complex doing so, because loss of PRC2 does not seem to affect random XCI in the embryo proper [107,108].

Apart from histone methylation, most cells also show accumulation of H2A lysine 119 ubiquitination (ubH2A) on the Xi after the onset of XCI, which is established by the Ring1A/B subunit of Polycomb repressor complex 1 (PRC1) [110,112,113]. Ring1A and Ring1B have redundant functions in ubiquitination [112,114] and only deletion of both Ring1 proteins results in loss of ubH2A on the Xi [112]. PRC1 recruitment to the Xi follows PRC2 recruitment, but is not solely mediated by H3K27me3, as has been shown in EED deficient ES cells, but also by the 3’ end of Xist RNA, either directly through interaction with Xist or by indirect interaction with
an Xist binding protein [110,115]. A potential candidate for targeting of the PRC1 complex to Xist RNA is the Polycomb homolog CBX7, which shows a high affinity for H3K27me3 and for RNA [116], and has been shown to interact with the Ring1 protein [117].

Figure 7. Chromatin of the Xi
A. Chromatin marks of the Xi. On the left, the Xi in interphase is shown and divided into two distinct silent chromatin states, in pink and green. H3K27me3 and ubH2A, amongst others, characterize the pink chromatin state while histone marks such as H3K9me3 characterizes the green chromatin. In the middle, the Xi is depicted in metaphase state, again divided into two distinct pink or green chromatin states that are the same as in interphase. On the right, the histone marks specific for the pink chromatin state are depicted in the upper string of nucleosomes, while the histone marks specific for the green chromatin state are shown in the lower string of nucleosomes.

B. A large number of protein and DNA hallmarks accumulate on the Xi during differentiation. Differentiation is temporally displayed from left to right, at the top bar, while a selection of hallmarks specific for the Xi are added at different time points during differentiation as represented by the bars below the differentiation bar.
Another histone methylation mark associated with silenced chromatin, histone 3 lysine 9 trimethylation (H3K9me3), accumulates on the Xi just after H3K27me3 [118,119,120,121,122]. H3K9me3 is most likely put in place by HMTase Suv39, and maintained by HP1, which is enriched on the Xi [123,124], but other histone methyltransferases (HMTases) might also play a role.

H3K9me3 accumulation appears more or less simultaneous with loss of acetylation of histone H3 and H4 (H3K9Ac and H4K5Ac, H4K8Ac and H4K12Ac, respectively) and trimethylation of histone H3 lysine 4 (H3K4me3) and histone H3 lysine 36 (H3K36me3), which are all hallmarks of euchromatin [21,118,119,124,125,126,127,128]. Probably, a set of histone modifiers, including histone deacetylases (HDACs) and histone demethylases (HDMs), are attracted by H3K27me3 and Xist and co-localize with the Xi to direct the chromatin towards a heterochromatic state. Among the late epigenetic changes are macroH2A incorporation [129,130] and CpG island methylation [131,132]. MacroH2A is a H2A variant with a large C-terminal domain [133] that replaces H2A histones on the Xi after approximately 7 days of differentiation [129,130], forming a macro-chromatin body (MCB) in a significant proportion of the cells [129,134]. Xist expression is sufficient for initiation of H2A replacement by macroH2A and MCB formation [134], and conditional deletion of Xist leads to loss of the MCB [135]. CpG methylation is also a late Xi mark, and is put in place by de novo methyltransferase 3A (DNMT3A) [136] and maintained by DNMT1 [137].

Recently, two other factors have been shown to be involved in the maintenance phase of XCI. First, the DNA binding hinge-domain protein SmcHD1 plays a role in DNA methylation of the Xi. Loss of SmcHD1 results in depletion of DNA methylation at the X-linked CpG islands and reactivation of the Xi [138]. It was postulated that SmcHD1 targets DNMT3A to the Xi, although no direct evidence in that direction was presented. Second, ATRX, encoded by an X-linked gene, has been shown to be involved in XCI. ATRX is a chromatin remodeler and member of the SWI/SNF2 helicase family, which is enriched at the Xi, and accumulation of ATRX can be regarded as a late mark of the Xi [139]. Interestingly, ATRX does not only repress X-linked genes on the Xi, but also pseudo-autosomal genes that have translocated to an autosome, implicating that a (former) X chromosomal sequence is required to attract ATRX to a gene [140]. The recent discovery of these factors indicates that silencing of the Xi is more complex than initially thought and involves multiple factors, of which many are probably not yet revealed.

The first established epigenetic hallmark of the Xi is that it replicates very late during the S phase of the cell cycle, whereas the Xa replicates early [141]. This is caused by the heterochromatic state of the Xi [142,143], and replication timing is not
involved in the initiation of XCI [144].

All these features of the Xi are important to lock-in the silenced state of the X chromosome (Fig. 7). Together, they ensure that the Xi is nearly impossible to reactivate and that the cell contains some kind of memory of which X chromosome is inactivated through many cell cycles. The redundancy of the Xi hallmarks is demonstrated by conditional deletion of Xist after establishment of XCI, which causes loss of the macroH2A [135], but still only leads to minor reactivation of the Xi, even when it is combined with loss of DNA methylation and inhibition of hypoacetylation [145,146]. Furthermore, loss of H3K27me3 in EED/-/ knockout does not appear to influence random XCI [107,108].

1.5.2 Xist spreading, Xi organization and nuclear organization

After Xist is upregulated on one of the two X chromosomes, it starts to spread in cis over the entire chromosome [41,147]. Somehow, Xist RNA is restricted to the inactivated X chromosome and does not localize to neighboring autosomes. Furthermore, X;autosome translocations show that endogenously expressed Xist preferentially binds the X chromosomal part of the chromosome [148,149,150], whereas spreading into the autosome seems to be correlated with the density of LINE repeats [150]. This observation has led to the LINE repeat hypothesis [151], in which it is stated that spreading of Xist is mediated by binding to LINE repeats. Indeed, LINE repeats are twice more abundant on the human X chromosome as on autosomes and the distribution of LINE repeats seems to correlate with the degree of XCI on the X chromosome [152,153,154]. Also, computational studies of the DNA sequence surrounding genes escaping XCI compared to silenced X-chromosomal genes indicate a depletion of LINE repeats around escaping genes [155,156].

Nevertheless, not all computational studies on the DNA sequence of the X chromosome find a clear correlation between LINE repeats and XCI [157,158]. Furthermore, Xist RNA does not spread over the X chromosome homogenously, but appears to have a banded pattern when detected on a metaphase Xi and an open circle shape at the periphery of the Xi in interphase cells (Fig. 7A, left)[123,148,159]. Curiously, this Xist RNA pattern does not seem to correspond to the density of underlying LINE repeats, but rather with the gene density on the X chromosome [104,159]. The banded pattern on the metaphase Xi of Xist RNA and gene rich regions can also be observed with histone markers H3K27me3, macroH2A and ubH2A, while histone markers H4K20me3 and H3K9me3 are enriched on the gene poor regions of the Xi metaphase chromosome (Fig.7)[123,159,160,161].

Together, these data suggest a three dimensional organization of the Xi, in which the gene poor regions enriched by histone marks H4K20me3 and H3K9me3
are more internally located and the gene rich regions, enriched by Xist RNA, H3K27me3, macroH2A and ubH2A are present on the outer rim of the Xi territory [103,104,123]. Overall, the Xi becomes more spherical, but retains a similar volume to the Xa [162]. This Xi organization corresponds to DNA-FISH analysis of escaping and silenced X chromosomal genes, that shows that all analyzed genes are localized at the periphery of the Xi territory, but that active genes seem to ‘loop-out’ of the chromosome territory [103,104,163]. Still, the importance of the DNA sequence in the organization of the Xi remains illusive, as a direct interaction of LINE repeats or another specific DNA motive with histone marks and/or Xist RNA has not yet been reported.

The Xi might not only have an intrinsic three-dimensional organization, but is also specifically positioned within the nucleus. After inactivation, the Xi is preferentially located either at the periphery of the nucleus [164,165] or near the perinucleolar region [165,166]. The specific positioning of the Xi could be mediated by components of the nuclear matrix. For instance, nuclear matrix scaffold protein SAF-A co-localizes with the Xi, which seems to be dependent on the RNA binding domain of the protein [167,168]. Furthermore, cells expressing mutated LaminA show depletion of heterochromatic markers H3K27me3 and H3K9me3 at the Xi, and the peripheral localization of the Xi is lost [169]. These results indicate that the localization of the Xi in the nuclear periphery is either a consequence of its heterochromatic state or affects the heterochromatic state of the Xi [169,170]. However, the perinucleolar localization of the Xi is less easy to comprehend, especially because the Xi seems to preferentially co-localize with the perinucleolar region during S phase [166]. The S phase specific localization is dependent on Xist, as autosomes containing an Xist transgene are also repositioned to the perinucleolar region in S phase, and conditional Xist knockout cells loose the preferential perinucleolar localization of the Xi. Interestingly, heterochromatin replication occurs late during S phase, at which point replication can only be observed around nucleoli and at the periphery of the nucleus [143,171]. Thus, perhaps, heterochromatin characterized by H3K27me3 needs a specialized nuclear compartment for replication and/or maintenance of the silenced state after replication.

1.6 Imprinted XCI
While in random XCI in the mouse embryo the maternal X chromosome (Xm) and the paternal X chromosome (Xp) have equal chances to inactivate, it is always the Xp that is inactivated in the extraembryonic tissues of the mouse, due to imprinted XCI [12,13]. Therefore, embryos with XpXp, XpY or Xp0 (androgenetic embryo’s) always inactivate both or the single Xp, respectively [172,173,174] whereas XmXm
Chapter 1

(parthenogenetic and gynogenetic embryo's display severely delayed XCI, resulting in extensive cell death and embryonic lethality [172,175]. Imprinted XCI initiates in the whole embryo just after fertilization at the 2- to 4-cell stage, but is only maintained in the extraembryonic tissue of the embryo, like the placenta and yolk sac [9,10,11]. Silencing of the X chromosome is acquired in much the same way as in random XCI. Xist spreads over the future inactive Xp chromosome and following spreading of Xist, RNA polII is excluded from the Xp [10] and many chromatin modifications are enriched on the Xi, like H3K27me3, H3K9me3, ubH2A, hypoacetylation and macroH2A incorporation [10,107,109,113,176]. A significant difference between silencing of the X chromosome in imprinted and random XCI is that in imprinted XCI the Xp does not become late-replicating in S phase in contrast to the Xi after random XCI [11]. Similarly, undifferentiated female ES cells ectopically expressing Xist from an X chromosome, display silencing in cis, but no late-replication of the X chromosome, and silencing can be reversed [23]. Also, EED null trophoblast giant cells have the tendency to reactivate the Xi after imprinted XCI [108], in contrast to Xi’s that have been subjected to random XCI, which do not reactivate. Together these results suggest that maintenance of the silenced state of the Xp after imprinted XCI is less profound as after random XCI. This could be a consequence of the fact that the Xp has to be reactivated in the embryo proper after 3.5 days of development [177].

The most important questions relating to imprinted XCI are how the imprint is established and where it is located. The most likely locations are the Tsix promoter and/or enhancers and the Xist promoter (Fig. 4, enlargements). Heterozygous deletions of Tsix on the Xm or of Xist on the Xp both have a severe phenotype, while deletion of Tsix on the Xp or deletion of Xist on the Xm does not show aberrant imprinted XCI (Fig. 8A) [16,17,62,63,82,178]. Heterozygous loss of Tsix transcription on the Xm (which is inherited from a female chimera with a heterozygous deletion of Tsix) causes Xist expression and inactivation of the Xm, which leads to two inactivated X chromosomes and embryonic lethality [16,62,63,82,178], while a severe decrease of Tsix transcription by deletion of DXPas34 on the Xm (∆CpG) reduces the number of viable female offspring severely [63,178]. A cross of heterozygous ∆CpG female mice with hemizygous ∆CpG male mice resulted in less than 5% viable homozygous ∆CpG female offspring, and approximately 10% viable ∆CpG male offspring (Fig. 8A), presumably because too many X chromosomes are inactivated in the embryos with the CpG island deletions [16]. Deletion of Xist on the Xp prohibits the Xp from inactivation and results in two active X chromosomes and embryonic lethality, even though the Xm displays some delayed Xist upregulation and XCI [17]. Combination of the two heterozygous deletions in a single embryo, resulting in an Xp∆Xist/Xm∆Tsix embryo, rescues the embryo to some extent resulting in ~20% viable offspring,
Figure 8. Imprinted XCI

A. Crosses of mice with an \textit{Xist} or a \textit{Tsix} deletion are displayed, followed by the potential genotypes of their offspring and the viability of the offspring. X chromosomes with a \textit{Xist} deletion are depicted in red, and deletions resulting in decreased or loss of \textit{Tsix} transcription are in green. The XΔ\textit{Tsix}/X female used in the depicted crosses is a chimera.

B. Table of embryos with various \textit{Xist} and \textit{Tsix} deletion X chromosomes that are explained by a \textit{Tsix} imprint (first line), or an \textit{Xist} imprint (second line), or a combination of both (third line). An arrow to the right represents \textit{Xist} transcription, an arrow to the left represents \textit{Tsix} transcription, while the size of the arrow is indicative of the level of transcription. Δ represents a deletion resulting in decrease or loss of \textit{Xist} or \textit{Tsix} transcription on an X chromosome, and lollipops represent the imprint that results in down regulation or inhibition of expression from the locus. The red highlighted boxes represent potential imprints that cannot explain the observed phenotype depicted in A. Further explanation can be found in the accompanying text.
presumably because a significant number of cells inactivate the Xm (Fig. 8A)[62].

Assuming that the imprint consists of a methylation mark that prevents transcription of the gene, and that the imprint is either located in the Tsix or Xist promoter regions, we can try to explain the phenotypes of the deletion studies described above with either an Xist imprint or a Tsix imprint or both (Fig. 8B). First, normal imprinted XCI is considered.

In wild type Xp/Xm embryos, a Tsix imprint on the Xp prevents Xist repression and subsequent inactivation of the Xp is initiated before Xist on the Xm can overcome Tsix repression. When Xist is imprinted on the Xm, only Xist on the Xp is upregulated to an extent sufficient to overcome Tsix repression, resulting in inactivation of the Xp. An imprint repressing both Xist on Xm and Tsix on Xp would also result in correct inactivation of the Xp, so based on a WT XX embryo one cannot conclude if imprinted XCI is caused by an imprint of Tsix on the Xp or an imprint of Xist on the Xm.

The lethality of the Xp∆Xist/Xm embryo is more difficult to explain with a Tsix imprint on the Xp, because one would expect that Xist expression on the Xm would eventually overcome Tsix repression, which would rescue the phenotype at least partially. However, an Xist imprint on the Xm would inhibit Xist transcription, so that Xist cannot be upregulated enough to overcome Tsix repression, which will lead to two active X chromosomes and subsequent embryonic lethality. An imprint repressing both Xist on Xm and Tsix on Xp would also result in the observed phenotype. Therefore, an Xist imprint seems to be necessary to explain the phenotype of the Xp∆Xist/Xm embryo.

The lethality of the Xp/Xm∆Tsix is caused by inactivation of both X chromosomes, which can be explained by a Tsix imprint on the Xp, which results in lack of Tsix inhibition and expression of Xist on both X chromosomes. However, if an Xist imprint on the Xm would not completely inhibit Xist transcription, the Xm might still be inactivated if Tsix is deleted. Thus, full Xist expression will be sufficient to overcome Tsix repression on the Xp, while impaired Xist expression would be enough to initiate XCI on the Xm, because Tsix is deleted. If Xist and Tsix are both imprinted in the Xp/XmΔTsix embryo, one would expect initial inactivation of the Xp only, but because Tsix is deleted on the Xm, initiation of XCI will not be inhibited and result in two inactive X chromosomes and embryonic lethality.

For the XpΔXist/XmΔTsix embryo, a Tsix imprint alone cannot explain the phenotype, because Xist transcription on the Xm will not be repressed by Tsix, which should result in inactivation of the Xm and rescue of the phenotype. Inhibition of Xist by a mild maternal Xist imprint would only result in inactivation of the Xm in a number of cells, resulting in partial rescue of the phenotype, as observed. Nevertheless, only ~20% of the XpΔXist/XmΔTsix embryos are viable, which indicates that not all Tsix
deleted Xm’s are able to upregulate Xist, and that many cells will have two active X chromosomes. Therefore, one would expect, based on an Xist imprint that the Xp/XmΔTsix embryos also inactivate one X chromosome instead of two in a number of cells. The Xp/XmΔTsix embryo is nevertheless non-viable and a possible explanation for this is that female cells are better capable of withstanding expression of two X chromosomes than having little to no expression from either X chromosome, so that inactivation of both X chromosomes in the early XmΔTsix/Xp embryo will lead to immediate cell death and embryonic lethality, while two active X chromosomes in the early XmΔTsix/XpΔXist embryo will only lead to growth impairment, but not necessarily embryonic lethality.

Finally, the outcome of XCI in the XΔCpG/XΔCpG embryo, in which the CpG island in the Tsix promoter region is deleted, also implicates that an Xist imprint partially inhibits Xist expression. If an Xist imprint would be absent while the CpG island is deleted on the Xm and the Xp, one would expect that Xist would overcome residual Tsix repression on both X chromosomes, resulting in two Xi’s and 100% cell death. Some XΔCpG/XΔCpG embryos are still viable however, suggesting that Xist upregulation is partially inhibited on the Xm so that only a proportion of the cells inactivate two X chromosomes, while the others inactivate only the Xm. The XΔCpG/XΔCpG embryos are less informative however than the other mutant embryos, because it is difficult to determine how much Tsix expression is still present from the ΔCpG X chromosomes, and therefore what the role of Tsix transcription in the phenotype is. Overall, it appears that an Xist imprint that partially inhibits Xist transcription on the Xm is necessary to explain the observations made with the functional deletion studies of Xist and Tsix. However, a Tsix imprint repressing Tsix transcription on the Xp cannot be excluded and would enhance exclusive inactivation of the Xp.

Other indications on where the XCI imprint might be located come from observations regarding methylation profiles of the XIC. For instance, one report showed that the CTCF sites at the DXPas34 and Xite region are hypermethylated in sperm, but hypomethylated in oocytes, corresponding to the imprinted XCI pattern in embryo’s [68]. However, another report claimed that the methylation profile of the DXPas34 region does not correlate with the imprinted XCI pattern [67]. Xist expression is correlated with the degree of methylation present on the Xist promoter [179] and the promoter is methylated in oocytes, but not in sperm [24,180]. Interestingly, a parthenogenic embryo when an immature oocyte is fused with a fully-grown oocyte, appears to be able to inactivate the Xm of the immature oocyte at the blastocyst stage. This indicates that a maternal imprint that prohibits the Xm from becoming inactivated could be installed on the X chromosome during oocyte growth [181].
Finally, if Tsix plays a role in early imprinted XCI, than it should be expressed at the 2 to 4-cell stage in embryogenesis. Tsix expression has not yet been examined at this stage of development and expression at the 8-cell stage is still debated. Sado et al. [62] could not detect Tsix transcription at the 8-cell stage while another group detected antisense transcription at the 8-cell embryonic stage from the Xm and never from the Xp [64].

Overall, neither the deletion studies of Tsix or Xist, nor the analysis of the methylation profile of the XIC in gametes, provide enough evidence to prove that the imprint represses Xist expression on the Xm or Tsix expression on the Xp or both, to ensure that the Xp is inactivated during imprinted XCI. A Tsix imprint only, however, does not agree with the phenotypes of the XpΔXist/Xm, the XmΔTsix/XpΔXist, or the XΔCpG/XΔCpG embryos, which makes a mild Xist imprint far more likely. Nevertheless, a Tsix imprint together with a mild Xist imprint cannot be excluded and would enhance the accuracy of imprinted XCI.

As mentioned, at the blastocyst stage, imprinted XCI is reversed in the ICM, whereas it is maintained in the extraembryonic tissue. The loss of the imprint in the ICM can be a result from the global passive demethylation that takes place in the early mouse embryo. DNA replication without restoration of the DNA methylation mark dilutes the marks in the embryo until they are gone. This would explain why parthenogenetic embryos are capable of initiating XCI in a delayed fashion [175]. At the blastocyst stage, however, the embryo is reprogrammed, and methylation marks are restored, including the autosomal imprints [182,183]. These imprints are probably established because epigenetic marks other than DNA methylation are still present and recognized by the DNA methylase (probably DNMT3a and 3b) that reinstalls the methylation marks. This occurs normally in the extraembryonic tissue, but for an unknown reason, the X chromosomal imprint is not reinstalled in the ICM. It could be that H3K9me3 and H3K27me3, and other epigenetic marks on the Xi, are lost from the Xp in the ICM, but not from the Xp in the extraembryonic tissue during early embryonic development [9,10]. Indeed, Mak et al. show that in the early blastocyst, Xist and EED association with the Xi is lost in cells that express Nanog, and thus form the ICM [9]. Also, Navarro et al. have shown that Xist is repressed when Nanog is bound to the Xist locus [22]. Perhaps, Xist expression is repressed exclusively in the ICM by Nanog, which results in loss of the PRC2 complex [111] and other histone modifiers from the Xi, and in the gradual loss of epigenetic marks such as H3K27me3 and H3K9me3 during cell division. As a result, no epigenetic marks are present on the X chromosomes in the ICM that can be recognized by the DNA methylase that installs autosomal and extraembryonic imprints, leaving an empty canvas for random XCI to commence.
1.7 Dosage compensation in other species

1.7.1 Humans

Research on human XCI has always been performed with differentiated cell lines, including somatic, cancer or placental cell lines, making investigation into the mechanism of human XCI difficult. The emergence of human stem cell lines (hESC) was a promising development for XCI research, but analysis of these cell lines has shown that in nearly all cases XCI has already been initiated before differentiation [184,185,186]. The hESC cell lines could be in a semi-differentiated state, causing XCI to have commenced already. It is also possible that XCI initiation in the human pre-implantation embryo is not reversed in the embryo proper, in contrast to mouse embryos. Therefore, most data reviewed here are from analysis of cancer, placental or other somatic cell lines.

The molecular mechanism of human XCI is largely in accordance with mouse XCI (Fig. 9). Analysis of the human inactive X chromosome has shown that most hallmarks characteristic of the mouse Xi are also present on the human Xi and that an XIST cloud is formed. Human XIST is approximately 70% homologous to its mouse counterpart Xist and appears functionally similar [187]. Antisense TSIX transcription has also been identified, but seems to have very different characteristics from mouse Tsix. First of all, TSIX/Tsix is far less conserved between human and mouse than XIST/Xist and does not have a distinct CpG island located near the human TSIX promoter [188]. Moreover, human TSIX expression does not extend through the entire XIST locus, but stops near exon7 of XIST [189] and its expression persists well after completion of XCI [190]. Intriguingly, TSIX is expressed from the same allele as XIST, hence from the inactive X chromosome, and does not seem to repress XIST in any way [189,190]. Therefore, the function of human TSIX is unknown and it could be a non-functional evolutionary remnant of an ancestral form of Tsix.

The well-defined genomic background in mice has made early discovery of imprinted XCI possible [12]. Unfortunately, human XX embryos with distinguishable X chromosomes are not at hand, which is the reason that human imprinted XCI is still a topic of debate. Evidence in early human embryos concerning the presence of imprinted XCI is scarce and inconclusive, because only a few embryos have been tested. Initially, analysis of chorionic villi cell cultures determined that both X chromosomes could be expressed in the placenta [191,192], which would be an argument against imprinted XCI. However, the Xi in extraembryonic tissue can be reactivated [193], which could also explain expression from both X chromosomes. Nevertheless, others have shown that the Xm is preferentially expressed in human extraembryonic tissue [194,195,196], and that XIST seems to be expressed from the
Figure 9. Dosage compensation in various species
The sex chromosomes and dosage compensation state of human, marsupials, and *Ellobius lutescens* on the left (in yellow and brown), and *Drosophila, C. elegans* (in green), birds, and platypus (in pink) on the right. A darkening of the color of the sex chromosome depicts dosage compensation by partial or more complete silencing of a sex chromosome. A lightening of the color of the sex chromosome depicts dosage compensation by upregulation of a sex chromosome. For human (as well as for mouse and probably other mammalian species) the two-fold upregulation of the active X chromosome as compared to the autosomes, is not indicated. The sex chromosomes of human, marsupials, and *E. lutescens* are homologous, as indicated by a yellow color, whereas the bird and monotreme sex chromosomes are also homologous, as indicated by a pink color. The sex chromosomes of *Drosophila* and *C. elegans* are not homologous to any other sex chromosome shown in the overview and are depicted in green.
Xm in early male embryos [197,198], which argues against imprinted XCI of the Xp.

1.7.2 Marsupials
Unlike mammalian XCI, XCI in marsupials, such as *Monodelphis domestica* is imprinted in all tissues, showing inactivation of the Xp (Fig. 9)[199]. Many genes escape XCI and the Xi is reactivated in patches of cells in the adult marsupial, implying that marsupial XCI is less stringently regulated as in mammals [200]. Although the marsupial Xi is late-replicating and hypoacetylated [201,202], DNA-methylation has not been detected [203]. Overall, imprinted XCI in marsupials seems to be very similar to imprinted XCI in extraembryonic tissue of mouse with respect to maintenance. However, the mechanism by which imprinted XCI is regulated in marsupials is different from its mammalian counterpart, because an *Xist* orthologue has not been found in marsupials [204,205,206]. How the future Xi attracts chromatin modifiers to the chromosome to spread the silenced state is therefore unknown. The LINE repeat density is not elevated on the *Monodelphis* X chromosome, so that a general role in spreading of silencing of these repeats is unlikely [206]. So far, it is unknown how the imprint in marsupials is set up, because marsupials are thought to lack differentially methylated CpG islands [207], but a possible mechanism could be inheritance of a silenced Xp after meiotic sex chromosome inactivation (MSCI) in the male germline. MSCI is caused by the inability of male sex chromosomes to pair during meiosis, which results in a silent sex body of the X and Y chromosomes in the male germline [208]. The silent state of the Xp of marsupials might persist after fertilization and provide a mechanism for inheritance of imprinted XCI in marsupials.

1.7.3 Birds
Sex chromosomes in birds are non-homologous to mammalian sex chromosomes and are most likely derived from a different set of autosomes. Female birds are heterogametic and have ZW sex chromosomes, while males have two Z chromosomes, potentially resulting in a difference of expression level of the sex chromosomes between males and females. Nevertheless, the existence of active dosage compensation to overcome differential gene expression from sex chromosomes in birds is still debated (Fig. 9). A reason for this is that dosage compensation appears incomplete. Expression of Z-linked genes in males is biallelic [209,210], and not always compensated to the female expression level [211,212,213]. Gene expression varies from gene to gene and the level of compensation is dependent on the tissue and developmental stage in which the gene is expressed [211,212]. This could reflect the absence of a general dosage compensation mechanism, while some genes are dosage compensated intrinsically because of tissue or gene specific requirements.
However, gene expression in a specific region located on the Zp arm in male cells seems to be compensated more than the rest of the male Z chromosome [212,213]. Interestingly, this region contains a female specific non-coding RNA called MHM that accumulates at this region [214], and might be induced in dosage compensation in females by upregulation of gene expression two-fold at this locus. Therefore, a dosage compensation mechanism may be employed at the avian sex chromosomes, but has not yet spread over the entire Z chromosome.

1.7.4 Monotremes
The monotreme taxon only contains two living species, the platypus (*Ornithorhynchus anatinus*) and the echidna (*Tachyglossus aculeatus*). Both species lay eggs, like birds, but lactate like mammals. Also, the platypus has webbed feet and males have venom that is highly similar to that of reptiles. Overall, especially the platypus is a bizarre animal, which is reflected by its genome. The diploid platypus genome is small and consists of 52 chromosomes, of which ten are sex chromosomes. During meiosis, the X chromosomes or Y chromosomes line up in a string to segregate together towards gametes. Interestingly, the platypus X chromosomes resemble the bird Z chromosome more than the mammalian X chromosome [215] and have no region homologous to *Xist* or *Tsix* [205]. Dosage compensation of the X chromosome seems to be regulated by X chromosome inactivation, because X-linked genes are mono-allelically expressed per cell, although XCI appears to be incomplete (Fig. 9). Also, XCI does not seem to be imprinted, as both alleles can be expressed within the same platypus fibroblast cell line [216]. Overall, dosage compensation resembles mammalian XCI, but seems to be incomplete as in chickens.

1.7.5 Fruit flies
Like mammals, fruit flies (*Drosophila melanogaster*) are heterogametic with XX chromosomes in females and an X and Y chromosome in males. In contrast to mammals, sex determination is based on the X:autosome ratio. Also, instead of inactivating one of two X chromosomes in females, the single male X chromosome is up-regulated two-fold (Fig. 9)[217]. Although this implicates a radically different process from the XCI mechanism employed by mammals, the molecular mechanism used to overexpress the male X chromosome seems to be remarkably similar to the X chromosome silencing mechanism in female mammals. Like in mammals, non-coding RNAs are essential for dosage compensation. In *Drosophila*, two redundant genes, roX1 and roX2, both encoding a non-translated functional mRNA, are located on the X chromosome and are expressed in male cells only [218]. The roX RNA forms a RNA-protein complex with proteins MSL1, MSL2, MSL3, MLE, and MOF, resulting in the male
specific lethal (MSL) complex, which is located mainly on the male X chromosome. The complex has histone acetyltransferase activity and interacts with many histone modifiers to enhance transcription on the X chromosome [219]. Spreading of the MSL complex over the X chromosome is dependent on balancing the concentration of roX RNA and MSL protein components. Overexpression of MSL1 and MSL2 causes localization of the MSL complex around the roX gene, especially when one of the two roX genes is deleted, while overexpression of a roX transgene on an autosome in a roX null background enhances local spreading of the MSL complex over the autosome [220,221,222,223]. Spreading of the MSL complex seems to be dependent on approximately 150 chromosome entry sites located on the X chromosome, that are defined by a specific binding motif [224]. From there on, the MSL complex spreads preferentially onto the 3’ end of transcriptionally active genes [225,226,227]. Overall, the mechanism of spreading by the MSL complex over the male X chromosome in Drosophila could also be hypothesized for Xist mediated spreading during XCI in mammals. For instance, the chromosome entry sites could consist of LINE repeat sequences [151], while the MSL complex proteins could be replaced by putative Xist RNA associating factors like EzH2, ATRX and others [111,139].

Dosage compensation in Drosophila is restricted to male cells by the sex-determining gene sex-lethal (Sxl). When in the early embryo the X:autosome ratio is high like in females, Sxl is turned on. SXL directly inhibits the dosage compensation mechanism by inhibiting translation of msl2 mRNA and transcriptional repression of roX1 and roX2. In males, Sxl is not expressed at the early stages of embryonic development and does not inhibit msl2 translation and roX transcription, thus enabling the DCC to bind the single male X chromosome [228,229].

1.7.6 Worms

Caenorhabditis elegans is a nematode that is commonly used as a model organism to study molecular processes. C. elegans hermaphrodites have two X chromosomes, whereas males have only one X chromosome and no Y chromosome. To resolve differences in gene expression levels between the sexes, gene expression from the sex chromosomes in C. elegans is equalized between males and hermaphrodites by means of dosage compensation [230]. The two hermaphrodite X chromosomes are both downregulated twice by the dosage compensation complex (DCC), which is hermaphrodite specific and binds both X chromosomes (Fig. 9). The DCC consists of at least nine proteins, of which SDC2, SDC3 and DPY30 attract all other components. SDC2 is the component that targets the DCC to the X chromosomes and is controlled by xol1. Xol1 is the primary sex determination signal and is regulated by the X:autosome ratio. A set of X-linked genes including Sex1 and Fox1 are involved in determining
the number of X chromosomes by repressing \textit{xol1} in a dose dependent manner. In males, the X:autosome ratio of 0.5 and single dosage of \textit{Sex1} and \textit{Fox1} leads to \textit{xol1} expression, which in turn causes repression of \textit{Sdc2}, while in hermaphrodites \textit{xol1} is turned off by the double dosage of \textit{Sex1} and \textit{Fox1} and \textit{Sdc2} is expressed, which results in accumulation of the DCC on the X chromosomes and dosage compensation [230]. Spreading of the DCC over the X chromosome is dependent on recruitment-element-on-X (rex) DNA sequences that are not unique to the X chromosome, but occur in condensed repeats at sites on the X [231]. The rex sequences serve as “way-stations” from which DCC spreads onto active genes by binding to the promoter sequences, which suggests that inhibition of transcription is regulated at the initiation phase of transcription [232].

1.7.7 Beyond dosage compensation: \textit{Ellobius lutescens}

What will be the next step in the evolution of sex chromosomes and dosage compensation? As explained at the beginning of this chapter, the Y chromosome has been degrading in time, which might eventually lead to loss of the Y chromosome. If this event takes place, the sex determining gene \textit{Sry}, the pseudo-autosomal region and Y specific genes involved in spermatogenesis have to be relocated to an autosome or replaced by other functionally equivalent genes, in order for a mammalian species to survive this. The autosome pair to which the sex determining gene is relocated to, will replace the X and Y chromosome as the sex determining chromosome pair. After initiation of degradation of the new Y chromosome, a dosage compensation mechanism might evolve for these new sex chromosomes.

Interestingly, two mammalian species have already undergone this drastic alteration, being \textit{Ellobius lutescens} and the Japanese spiny rat or \textit{Tokudaia osimensis}. \textit{Ellobius lutescens} is a rodent that lives in the foothills of the Caucasus mountains, and is unique with regard to its karyotype, which consists of 2n=17, X both in males and females (Fig. 9)[233]. Although the direct chain of events leading to this karyotype is a mystery, it is clear that the Y chromosome is lost, and that the \textit{Sry} gene is not located on one of the autosomes. Due to the absence of \textit{Sry}, another unknown gene must have taken over the function as a sex determining gene.

Because both females and males are X0, gametes with and without an X chromosome will be formed, which in theory will result in XX, X0 and 00 offspring. Naturally, the 00 offspring is non-viable because the X chromosome contains many essential genes. However, XX offspring is also not found. The loss of an XCI mechanism is a likely explanation for the absence of XX offspring. Supporting this theory is the observation that \textit{Xist} does not seem to be conserved between mouse and \textit{E. lutescens}, because a full length \textit{Xist} gene could not be isolated from \textit{E. lutescens}. In fact, \textit{Xist}
is already divergent between *Ellobius* species, indicating that *Xist* might not have a function in *E. lutescens*. Nevertheless, no direct evidence for the absence of XCI in *E. lutescens* has been found [233]. Also, the potential absence of XCI in *E. lutescens* is curious from an evolutionary point of view, because proper XCI would result in viability of the offspring with either a karyotype of XX or X0 (75%), which seems to be a clear advantage over species with only viable X0 offspring (50%). In fact, if a species looses its Y chromosome, it would be best to arrive at XX males and females, giving up XCI. This would guarantee that the X chromosomes turn into a normal pair of autosomes. This is achieved in the species *Ellobius tancrei* and *Ellobius talpinus* (2n = 32,XX and 2n = 54,XX in both males and females, respectively) [233].

Overall, *E. lutescens* exemplifies that degradation followed by the loss of the Y chromosome does not have to equal the loss of males and the extinction of the species. *E. lutescens* and other species have shown that many different routes can determine sex and that an organism can cope with potential gene dosage differences as a consequence of the evolution of sex chromosomes.
Chapter 1

References

15. Lyon MF (1961) Gene action in the X-chromosome of the mouse (Mus musculus


44. Herzing LB, Romer JT, Horn JM, Ashworth A (1997) Xist has properties of the


proteins bind differentially to methylated histone H3 and RNA and are enriched in facultative heterochromatin. Mol Cell Biol 26: 2560-2569.


139. Baumann C, De La Fuente R (2008) ATRX marks the inactive X chromosome (Xi) in somatic cells and during imprinted X chromosome inactivation in trophoblast stem cells. Chromosoma.


Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proc Natl Acad Sci U S A 103: 8703-8708.


epigenetic anomalies in most hESC but identifies sublines that initiate as expected. J Cell Physiol 216: 445-452.
197. Ray PF, Winston RM, Handyside AH (1997) XIST expression from the maternal X chromosome in human male preimplantation embryos at the blastocyst
is less effective in birds than in mammals. J Biol 6: 2.


857.


Chapter 2

X inactivation counting and choice is a stochastic process: evidence for involvement of an X-linked activator

Kim Monkhorst, Iris Jonkers, Eveline Rentmeester, Frank Grosveld and Joost Gribnau

Published in Cell 2008 Feb 8;132(3):410-21.
Summary
Female mammalian cells achieve dosage compensation of X-encoded genes by X-chromosome inactivation (XCI). This process is thought to involve X chromosome counting and choice. To explore how this process is initiated we analyzed XCI in tetraploid XXXX, XXXY and XXYY embryonic stem cells and find that every X chromosome within a single nucleus has an independent probability to initiate XCI. This finding suggests a stochastic mechanism directing XCI counting and choice. The probability is directly proportional to the X chromosome:ploidy ratio, indicating the presence of an X-encoded activator of XCI, that itself is inactivated by the XCI process. Deletion of a region including Xist, Tsix and Xite still results in XCI on the remaining wild type X chromosome in female cells. This result supports a stochastic model in which each X chromosome in a nucleus initiates XCI independently, and positions a X-encoded trans-acting XCI-activator outside the deleted region.

Introduction
In placental mammals, gene dosage of X chromosomal genes is equalized between sexes by inactivation of one of the two X chromosomes in female cells [1]. In mouse and human embryos, XCI is initiated early in development and is random with respect to the parental origin of the X chromosome. Three X-linked non-coding genes, Xist, Tsix, and Xite, located within the X inactivation center (Xic), play a crucial role in the XCI process [2,3,4,5]. At the start of XCI, the cell determines the number of X chromosomes and elects the future inactive and active X chromosomes. Next, Xist RNA accumulates in cis on the future inactive X chromosome (Xi), followed by several epigenetic changes that ‘lock in’ and maintain the inactive state through many cell divisions [6,7]. Tsix and Xite play an essential role in down-regulation of Xist RNA before and during the XCI process

Despite the progress made over the last decades in understanding XCI, the mechanism underlying the counting and choice process remains unclear. X:autosome translocations suggested the presence of a blocking factor that protects one X chromosome from inactivation per diploid nucleus [8]. Different deletions 3’ of the Xist gene resulted in XCI in male cells thus suggesting the location of the blocking factor binding site [9,10]. Other elements are also involved in the counting and choice process. For example, in female cells with a heterozygous Xist mutation (that abolishes Xist function), the mutant allele is never chosen to be inactivated [2,11]. In agreement with this, heterozygous mutations that abolish Tsix transcription result in preferential inactivation of the mutant X chromosome [5,9,12]. To explain the finding that initiation of XCI is absent in a Tsix mutant male cells, an X-linked competence factor was introduced (two copies are required for initiation of XCI) [5].
Interestingly, a homozygous mutation of the Tsix promoter revealed a ‘chaotic’ choice mechanism, in which zero, one or two X chromosomes were chosen for inactivation [13]. However, only cells with a single Xi were capable of contributing to a developing embryo [14].

Besides a blocking factor model, other models have been put forward to explain XCI counting and choice. One model predicts that the fate of an X chromosome is determined prior to the start of the XCI process and is based on differences in sister chromatid cohesion in female ES cells [15]. A different model explains counting and choice through transient cross communication between X chromosomes [16]. This is supported by two studies showing that the X chromosomes in female cells transiently move closer during the initiation phase of XCI in a subset of cells [17,18]. However, it is currently unclear how this model can explain observations made in diploid XXXX and tetraploid XXXX cells, that inactivate three and two X chromosomes respectively, and the XX 65kb deletion line that does not show a counting defect despite the absence of transvection [7,19].

![Figure 1. Double Xist clouds in diploid female cells](image)

(A,B) Xist RNA FISH (FITC) on 3 day differentiated F1 2-1 female diploid ES cells (A) and differentiating ICM cells (B) revealed cells with two Xist clouds (indicated with triangles).

(C,D) Three independent experiments with standard deviation of the relative number of double clouds in female F1 2-1 (C) and single clouds in male (J1, V6.5 and E1) (D) diploid ES cells at different time points after differentiation, determined by RNA FISH.

(E) RNA/DNA FISH with an Xist probe (FITC) and an X chromosome paint probe (Cy3, DNA is DAPI stained, blue), on day 7 differentiated ES cells and differentiated ICM cells. Left panels: cells with no and one Xist cloud, right panels: ES and ICM cells with two Xist clouds.

(F) Quantification of Xist clouds in day 3, 5 and 7 differentiated female F1 2-1 ES cells by RNA/DNA FISH.
Stochastic model systems have been postulated to explain a variety of cellular choice processes, including lineage specification in the haematopoietic system [20], VDJ recombination [21], olfactory receptor choice [22], and the retinal mosaic for color vision [23]. Here we propose a stochastic model for XCI, in which each X chromosome has a probability to be inactivated within a certain time span. To validate such a model, we have analyzed XCI in differentiating diploid and tetraploid ES cells, the latter providing a much wider spectrum of possible outcomes of the XCI process. In addition, we have analyzed XCI in female ES cells with a deletion encompassing all elements that have previously been shown to be involved in XCI counting, including \textit{Xist}, \textit{Tsix} and \textit{Xite}. Our results support a stochastic model for XCI counting and choice, and indicate the presence of a novel X-encoded factor, XCI-activator, involved in initiation of XCI.

**Results**

**Diploid female ES cells with two Xist clouds**

In differentiating diploid female ES cell cultures we observed a reproducible proportion of cells with two Xist RNA FISH clouds in one nucleus (Figure 1A). In ICM-derived cells that were allowed to differentiate \textit{in vitro} (Figure 1B) we also noticed female cells with two Xist clouds. These observations suggest that some of the female cells attempt to inactivate both X chromosomes. Three independent EB differentiation experiments with female ES cells showed that the relative number of cells with two Xist clouds, as determined by RNA FISH, is low but consistent throughout differentiation. The proportion of these double cloud cells seemed to increase up to day 5 of differentiation and then decreased subsequently (Figure 1C). The presence of cells with two Xist clouds could be attributed to leakiness of the XCI mechanism, resulting in inactivation of the future Xa, and would predict the presence of a comparable percentage of Xist clouds in male cells during ES cell differentiation. Analysis of three different male cell lines showed almost no cells initiating XCI on their single X chromosome, indicating that the presence of the female cells with two Xi-s cannot be explained by sporadic leakiness of the XCI mechanism (Figure 1D). To exclude the possibility that cells with two Xist clouds were aneuploid, we performed RNA/DNA FISH on day 3, 5 and 7 EB differentiated female cells, and \textit{in vitro} differentiated female ICM cells. The ploidy status of cells with two Xist clouds was confirmed to be diploid (Figure 1E and F). Thus, cells with two Xist RNA clouds are present in early differentiating female ES and ICM cell populations.
X chromosome counting and choice is a stochastic process

**Generation of tetraploid ES cell lines**

To investigate this observation in more detail, we generated tetraploid ES cell lines. Different combinations of neomycin and puromycin resistant female and male diploid F1 hybrid ES cell lines were fused to generate tetraploid XXXX, XXXY and XXYY cell lines.

(A) Neomycin or puromycin resistant male and female diploid ES cells were targeted and fused in different combinations to generate tetraploid ES cells.

(B) FACS analysis of tetraploid XXXX-8 and XXXY-5 lines shows doubling of DNA content compared to diploid XX ES lines and XY MEFs. Note the decrease diploid MEFs after 1 hour preplating (arrowheads).

(C and D) DNA FISH: X chr., chr. 6 and 7 in FITC (green), Y chr. in Rhodamine (red), DNA is DAPI stained, blue, performed on XXXX-1 (C) and XXXY-1 (D) ES cells.

(E) Metaphase spreads of XXXX-8 and XXXY-5 cells (inverted Dapi image).

(F) X paint analysis of XXXX-8 and XXXY-5 cells (X paint in Cy3, DNA is DAPI stained).

(G) Left panel, shows the number of chromosomes determined in 20 metaphase spreads of undifferentiated tetraploid cell lines. Right panel, shows the number of X chromosomes of 50 metaphase spreads using X chromosome paint.

(H) FACS analysis of XXXX-8 and XXXY-5 tetraploid ES lines after 5 days of differentiation.

(I) Same as G only in day 5 differentiated cells.

---

**Figure 2. Generation of tetraploid ES cell lines**

(A) Neomycin or puromycin resistant male and female diploid ES cells were targeted and fused in different combinations to generate tetraploid ES cells.

(B) FACS analysis of tetraploid XXXX-8 and XXXY-5 lines shows doubling of DNA content compared to diploid XX ES lines and XY MEFs. Note the decrease diploid MEFs after 1 hour preplating (arrowheads).

(C and D) DNA FISH: X chr., chr. 6 and 7 in FITC (green), Y chr. in Rhodamine (red), DNA is DAPI stained, blue, performed on XXXX-1 (C) and XXXY-1 (D) ES cells.

(E) Metaphase spreads of XXXX-8 and XXXY-5 cells (inverted Dapi image).

(F) X paint analysis of XXXX-8 and XXXY-5 cells (X paint in Cy3, DNA is DAPI stained).

(G) Left panel, shows the number of chromosomes determined in 20 metaphase spreads of undifferentiated tetraploid cell lines. Right panel, shows the number of X chromosomes of 50 metaphase spreads using X chromosome paint.

(H) FACS analysis of XXXX-8 and XXXY-5 tetraploid ES lines after 5 days of differentiation.

(I) Same as G only in day 5 differentiated cells.
lines (Figure 2A). Clones were grown under continuous double selection. Withdrawal of double selection or the use of inbred ES cells resulted in accelerated chromosome loss. FACS analysis of different tetraploid ES cell lines showed a doubling in DNA content compared to diploid XX ES cells and male mouse embryonic fibroblasts.

**Figure 3. XCI in tetraploid XXXX ES cells**

(A) Xist RNA FISH (top panels Xist in FITC, bottom panel Xist in FITC and DNA stained with DAPI) for day 5 differentiated XXXX ES cells.

(B) Average distribution and standard deviation of sub-populations of cells with different numbers of Xi-s at different time points after start of differentiation for four different XXXX (1, 2, 8, and 10) ES cell lines, determined by RNA FISH.

(C) RNA/DNA FISH with an Xist probe (FITC) and X chromosome paint (Cy3, DNA is DAPI stained, blue) on 7 day differentiated cells. From left to right panels show cells with two, three and four Xist clouds.

(D) Quantification of cells with different numbers of Xi-s determined by RNA/DNA FISH, plotted next to the distribution found by RNA FISH alone (as presented in B).

(E) Immuno-RNA FISH detecting Xist RNA (FITC) and BrdU (Rhodamine red) for day 7 differentiated XXXX ES cells.

(F) Distribution and standard deviation of Xi-s in BrdU positive day 7 differentiated XXXX (1, 2, and 8) ES cells.
X chromosome counting and choice is a stochastic process

(MEFs, Figure 2B). The 2n peak in our tetraploid samples decreased after one hour of pre-plating on non-gelatinized dishes, indicating that this peak represents male MEFs used for culturing our ES cells. DNA FISH analysis using different autosomal and sex-chromosomal probes confirmed tetraploidy of the cell lines (Figure 2C and D). In addition, extensive karyotyping of two XXXX (8 and 10) lines and two XXY (5 and 11) lines showed that the chromosome number in all the lines was around 80 chromosomes, with the majority of cells retaining 80 chromosomes (Figure 2E, F and G). With DNA FISH analysis using an X paint probe, we found that around 94% of the XXXX cells retain four X chromosomes, and more than 94% of the XXY cells retain three X chromosomes (Figure 2E, F and G). We did not find XXXX cells with more than four X chromosomes, or XXY cells with more than three X chromosomes.

To test whether tetraploid ES cells have a stable karyotype throughout embryoid body (EB) differentiation, we repeated the FACS analysis and karyotyping with day 5 EB differentiated cells from two different XXXX and XXY ES cell lines. We found that our differentiated ES cells maintain a stable karyotype throughout the differentiation process (Figure 2H and I). More importantly, X-paint DNA FISH analysis indicated that a small gain in chromosome number could not be attributed to an increase in the number of X chromosomes. Taken together, these results show that the generated tetraploid ES cell lines have a stable karyotype throughout EB differentiation.

Analysis of X chromosome inactivation in tetraploid cells

To study the XCI process in different XXXX, XXY and XXYY tetraploid ES cell lines, we differentiated and fixed the cells at day 3, 5, 7 and 10 of differentiation. Interestingly, RNA FISH analysis with a Xist probe on XXXX ES cells indicated the presence of cells with zero to four Xi-s (Figure 3A). The populations of cells with different numbers of Xi-s during EB differentiation changed over time (Figure 3B). At day 3 of differentiation most of the cells had no Xist cloud while fewer cells have one, two and three clouds. Later in differentiation (day 5, 7 and 10) cells with two clouds represented the largest population, and this increased over time. Other populations with no, one, or three clouds, declined over time.

In addition to the karyotyping (Figure 2I), we performed RNA/DNA FISH on XXXX line 8 at different time points during differentiation to further exclude the possibility that the analyzed cell lines were aneuploid. We first selected cells with 4 X chromosomes as judged by X chromosome paint signal (day 7 and day 10 samples) or an X chromosome specific BAC signal (day 3 and day 5 samples) and subsequently counted the number of Xist RNA clouds in the nucleus (Figure 3C). We compared these results to the RNA FISH data obtained at different time points and
confirmed the presence of cells with 3 and 4 Xist clouds (Figure 3D). We also found a relative increase in the percentage of cells with two clouds and a relative decrease in the percentage of cells with one cloud in day 5, 7 and 10 differentiated ES cells. These differences can be explained by the fact that RNA/DNA FISH analysis results in the exclusion of XXXO cells (Figure 2I) that show preferential inactivation of one X chromosome (see below).

The distribution of cells over time suggests that cells with the correct Xa:ploidy ratio, are selected for during differentiation. Indeed, BrdU analysis of ES cells at day 7 of differentiation showed that BrdU positive cells with three and four Xi-s are severely reduced compared to the total population of cells, indicating that these cells stop dividing (Figure 3E and F). In contrast, the BrdU positive population consists almost entirely of cells with no, one or two Xi-s indicating that this part of the population remains proliferative (Figure 3F). The small number of BrdU positive cells with three Xi-s may indicate that these cells can still divide, albeit at a slower rate when compared to cells with two or less Xi-s, or perhaps more likely, they represent cells that were BrdU labeled prior to XCI. Interestingly, cells with none or one Xi disappeared during the differentiation process, suggesting that these cells initiate XCI on the remaining Xa-s.

XXXY cells preferably inactivate one X chromosome (Figure 4A, and B) Initiation of XCI was delayed as demonstrated by the percentage of cells with no clouds at day 3 of differentiation, as compared to day 3 differentiated XXXX ES cells (Figure 3B, and 4B). RNA/DNA FISH on XXXY ES line 11, at different time points after differentiation revealed a similar distribution when compared to RNA FISH alone (Figure 4C and D). BrdU incorporation analysis of cells at day 7 of differentiation showed that cells with more than one Xi stop dividing. Cells with no Xi are a large proportion of the BrdU positive cells, but disappear over time, again indicating that these cells are still initiating XCI (Figure 4E and F). XXYY cell lines only sporadically initiate XCI at day 3 and day 7 of differentiation similar to diploid XY cells (<0.3%, data not shown).

The above experiments with tetraploid ES cells show that all cell lines preferably keep one Xa per diploid genome. Nevertheless, a significant number of cells do inactivate an aberrant number of X chromosomes during the XCI process. Cells with less than one Xa per diploid genome stop dividing, and are lost in time in the proliferating cell population.

Calculating a probability to initiate XCI
The existence of cells with an unexpected number of Xist clouds in differentiated ES cells led us to hypothesize that each X chromosome within a cell has a certain
Figure 4. XCI in tetraploid XXXY ES cells
(A) Xist RNA FISH (top panels Xist in FITC, bottom panel Xist in FITC and DNA stained with DAPI) for day 5 differentiated XXXY ES cells. (B) Average distribution and standard deviation of sub-populations of cells with different numbers of Xi-s at different time points after start of differentiation for four different XXXY (1, 2, 5 and 11) ES cell lines, determined by RNA FISH. (C) RNA/DNA FISH with an Xist probe (FITC) and an X chromosome paint probe (Cy3, DNA is DAPI stained, blue). From left to right panels show cells with no, and one Xist cloud. (D) Quantification of cells with different numbers of Xi-s determined by RNA/DNA FISH, plotted next to the distribution found by RNA FISH alone (as presented in B). (E) Immuno-RNA FISH detecting Xist RNA (FITC) and BrdU (Rhodamine red) for day 7 differentiated XXXY ES cells. (F) Distribution and standard deviation of Xi-s in BrdU positive day 7 differentiated XXXX (1, 2 and 11) ES cells.
Figure 5. Comparison of the experimental and predicted distributions

(A) Distribution of sub-populations of cells with different numbers of Xi-s at day 3. The average and standard deviation of four XXXX cell lines (blue bars), and predicted distribution after one choice round based on a 20%, and 30% probability (gray bars) and a 27% probability per X chromosome to be inactivated (orange bar). 

(B) Similar to (A) but for the four XXXY cell lines (blue bars), and the predicted distributions based on a 5%, and 15% probability (gray bars) and 8% probability per X chromosome to be inactivated (orange bar).

probability to initiate XCI. Indeed, for the XXXX cell lines the distribution of cells with different numbers of Xi-s (day 3 of differentiation) can be explained by assuming a 27% probability for each X chromosome to initiate XCI, after subtraction of cells without an Xist cloud (Figure 5A). We excluded this fraction because we cannot distinguish between the cell population that, has not yet initiated XCI and that which has initiated XCI but has not chosen an X chromosome for inactivation. Also, this population is not required to calculate the probability. Day 3 differentiated samples were used to avoid potential influences of cell selection or multiple rounds of inactivation in our calculation. Nonetheless, the calculated probability remains a cumulative probability over the first 3 days of differentiation. For the XXXY cells, a probability of 8% would generate a distribution that matches our experimental observation at day 3 of differentiation (Figure 5B). Based on these calculations, we conclude that the distribution of the different populations could be explained by assuming a probability for each X chromosome in a cell to initiate XCI. In addition, the probability increased with the X:ploidy ratio, indicating the presence of an X linked activator of XCI.

Initiation of XCI in female cells despite deletion of Xist Tsix and Xite

Our results suggest an independent probability for each X chromosome to initiate XCI, followed by selection of cells with the correct number of Xa-s. Therefore,
deletion of the cis acting genes (Xist, Tsix and Xite) and all known elements involved in the counting process should have no effect on the probability to initiate inactivation on the remaining wild type X chromosome in a diploid female cell. To test this hypothesis, we integrated a floxed hygroTK cassette between Tsx and Xite in a previously described (1lox) ∆Xist ES cell line with a conditional Xist deletion [11,24] (Figure 6A). Cre recombinase mediated deletion of the remaining part of Xist, and Tsix and Xite, designated ∆Xist-Tsix-Xite (∆XTX), was confirmed by Southern and PCR analysis (Figure 6B-E). RNA FISH analysis of undifferentiated XX ∆XTX cell lines with an Xist probe detecting Tsix transcription showed a single pinpoint signal (N=100), also confirming that the remaining part of Tsix has been deleted from the ∆Xist allele (Figure 6F).

To explore the pattern of XCI in differentiating XX ∆XTX ES cell lines, we subjected EB differentiated cells to DNA/RNA FISH using an Xist RNA probe in combination with an X chromosome specific Bac probe (day 3) or an X chromosome paint probe (day 7). Since the ∆XTX and ∆Xist cell lines had a tendency to become XO, (reported to occur for many inbred lines) cells with two X chromosomes were selected prior to examination for an Xist signal. Interestingly, ~38% of the cells at day 3 of differentiation and ~87% of the cells at day 7 of differentiation showed an Xist RNA cloud, similar to the percentages obtained with the ∆Xist cell lines. Both at day 7 and, more pronounced at day 3, the percentages of cells which initiated XCI were lower for the ∆XTX and ∆Xist lines than for the wild type control. We attribute this difference to the fact that in both the ∆XTX and ∆Xist cells only one X chromosome has a probability to initiate XCI while wild type female cells have two X chromosomes with a probability to initiate XCI.

To test our findings in vivo, we injected the XX ∆XTX ES cells into blastocysts and generated chimeras. In the second litter of the female founder, two out of nine embryos contained an X ∆XTX chromosome (Figure 6I and J). This was verified by Southern blotting (data not shown). PCR analysis with Sry specific primers indicated that one ∆XTX embryo was male and one female (figure 6K). The XX ∆XTX and X ∆XTX Y embryos did not show any structural abnormalities or growth retardation (Figure 6I). MEFs were derived from all embryos and subjected to DNA/RNA FISH (Xist probe and two BAC probes). We observed Xist RNA clouds in 99% of the XX ∆XTX MEFs and 98% of the wild type MEFs, confirming our finding with the XX ∆XTX ES cell lines (Figure 6L).

These data demonstrate that female diploid cells show XCI despite the XTX-deletion, and confirmed that the probability to initiate XCI is determined independently by each X chromosome. Since XO and XY ES cells do not initiate XCI, these results also indicate the presence of an, as yet unidentified, X-encoded trans-acting factor located outside the deleted region that is required for XCI.
Figure 6. Analysis of XCI in XTX deletion cell lines
(A) Schematic representation of the generation of the XTX deletion ES cell lines.
(B) Southern blot analysis with a 3’ external probe on SpeI digested DNA of different targeted clones.
(C) Southern analysis with DNA of different clones after transient Cre expression. DNA was digested with HpaI and EcoRV, and the 3’ external probe was used for hybridization.
(D,E) Correct loopout was confirmed with PCR analysis using primer set 1 amplifying the original ΔXist deletion (D) and primer set 2 amplifying the correct loopout (ΔXTX, E).
(F) RNA/DNA FISH analysis with an Xist probe (FITC) and X-chromosome paint (Cy3, DNA stained with Dapi) on 7 day differentiated wild type (XX) and mutant ΔXTX and ΔXist cells.
Truncation of $Tsix$ leads to earlier onset of XCI

What factors determine the probability for an X chromosome to inactivate? Studies with $Xist$ promoter driven transgenes show a clear difference in expression between differentiating male and female ES cells, indicating the presence of a sex-linked transcription factor driving $Xist$ expression [25]. In addition, more abundant $Xist$ expression has been correlated with a weaker Xce allele in mice [26], suggesting that the $Xist$ expression level could be a positive parameter correlating with XCI-probability. An additional parameter is $Tsix$, known as a negative regulator of $Xist$. Previous studies have shown that introduction of a stop cassette in $Tsix$ prematurely abrogates $Tsix$ transcription and results in almost exclusive inactivation of the mutated X chromosome [12]. Conversely, if $Tsix$ expression persists upon differentiation, the wild type allele is always selected for inactivation [12]. These observations suggest that $Tsix$ expression reduces the probability by inhibiting $Xist$ expression. Therefore, abolishing $Tsix$ expression greatly increases the probability of that allele to initiate XCI, and implies that XCI initiation should occur faster on the $Tsix$-stop allele compared to the wild type allele.

To test this hypothesis we analyzed $Xist$ cloud formation by RNA FISH in the heterozygous $Tsix$-stop female ES cell line [12] at different time points of differentiation. Indeed, analysis of XCI in wild type and $Tsix$-stop cells showed that the $Tsix$-stop cells initiate XCI much faster compared to wild type cells (Figure 7A-C). Also, the number of cells with two $Xist$ clouds is significantly reduced compared to wild type cells at all time points measured (Figure 7C). Because XCI in $Tsix$-stop cells is skewed towards inactivation of the mutated allele, we conclude that initiation of XCI is initiated faster on the mutated allele than the wild type allele. The reduced number of cells with two Xi-s is most likely due to the fact that the mutated X chromosome generates a probability to initiate XCI well before the wild type allele does, and as a consequence only in a few cells will both X chromosomes have a probability to initiate XCI. Our results showing accelerated initiation of XCI in $Tsix$ stop cells, is consistent with the finding that $Xist$ promoter methylation is detected much earlier in cells with a heterozygous $\Delta$CpG $Tsix$ deletion compared to wild type cells, indicating that the XCI process is accelerated on the mutant X chromosome [25].

(G) $Xist$ RNA FISH analysis (FITC, DNA in DAPI) on $\Delta Xist$ and $\Delta XTX$ 2.5 cells showing pinpoint signals in undifferentiated ES cells.
(H) Quantification of cells with no, one or two $Xist$ clouds at day 3 and day 7 of differentiation using wild type, $\Delta XTX$ cells and $\Delta Xist$ cells, determined by RNA/DNA FISH.
(I) Wild type and $\Delta XTX$ mutant female and male littermates.
(J) PCR analysis of the mice shown in (I) with primer set 2 amplifying the $\Delta XTX$ loopout.
(K) PCR analysis of the mice shown in (I) with a primer set amplifying the $Sry$ gene.
(L) $Xist$ RNA/DNA FISH analysis (FITC) and X chromosome specific BAC probes (Rhodamine red, DNA is DAPI stained, blue) on MEFs isolated from the $\Delta XTX$ mutant female. The panels show three representative cells.
Chapter 2

Discussion
We find that in the course of the XCI process a significant proportion of cells do not comply with the 1Xa/diploid genome rule and have less or more than the expected number of Xi-s. This finding suggests that XCI is a stochastic process with an independent probability for each X chromosome to initiate XCI and that this probability is directly proportional to the X:ploidy ratio. These results also suggest the presence of an X-encoded probability-promoting factor, which is located outside the region we deleted in our female ΔXTX lines.

Comparing different tetraploid studies
Our findings that 10 day differentiated XXXX tetraploid ES cells preferably inactivate two X chromosomes, are in agreement with Webb et al. 1992. Similar to our findings in differentiating ES cells, Webb et al. reported a significant number of cells with zero, one or three Xi-s in 10-day-old tetraploid XXXX embryos, indicating that cells with an aberrant Xi number are also present in vivo (Webb, 1992). A different study analyzing 9 to 12 day differentiated tetraploid XXXX lines, generated by fusion of EC cells with lymphocytes, showed variable results [27]. We attribute the different findings presented in this study to the method used to detect Xi-s; i.e. BrdU incorporation in metaphase spreads, a technique that does not allow detection of cells that stop dividing. Also, ES cell x somatic cell fusion lines have been reported to be karyotypically unstable [28] in contrast to our ES x ES cell fusion lines, that retain a stable karyotype for more than 20 passages.

Each X chromosome has a probability to initiate XCI
Different models have been proposed explaining the XCI counting and choice process. One model explains XCI counting and choice through the presence of a single autosomally encoded blocking factor, which prevents inactivation of one X chromosome per diploid genome. XCI counting and choice could also be explained through transient spatial cross communication between the different X chromosomes, or pre-determined Xic’s prior to the start of XCI [8,17,18]. These deterministic models predict a tightly regulated XCI counting and choice process and do not explain the presence of XXXX cells with three or four Xi-s. Aberrant numbers of Xi-s in XXXY and XXXX ES cells could be an artifact introduced by tetraploidization or an instable karyotype. However, our tetraploid cells maintain a stable karyotype and the expected number of X chromosomes throughout differentiation. Hence, our finding that XCI is properly regulated in XXYY tetraploid cells argues against this possibility. Instead, the distribution of cells with different numbers of Xi-s can be explained by
assuming a stochastic model, in which each X chromosome has a certain probability to be inactivated.

A stochastic model predicts the presence of diploid female cells with two Xi-s. We did observed 2 Xi-s in some differentiating ES and ICM cells and others also reported the presence of diploid cells with two Xi-s [13]. Nonetheless, the number of cells with two Xi-s is lower than would be expected based on a 27% probability we calculated for each X chromosome in the tetraploid XXXX line (same X:ploidy ratio as a diploid cell). Although the differences could be due to potentially different cell volumes, cell division or differentiation characteristics of diploid and tetraploid cells, this discrepancy is most likely based on the fact that there is a strong selection against cells with all X chromosomes inactivated.

Examination of cell division kinetics by BrdU incorporation analysis indicates that cells with one or more Xa per diploid genome keep dividing. Nonetheless, cells with more than one Xa per diploid genome decrease in time, suggesting that these cells keep initiating XCI, or are eliminated due to aberrant dosage compensation, although the latter may only play a role at later stages during differentiation. Cells with less than one Xa per diploid genome stop dividing. Therefore, continued proliferation of the other cells within the population will result in a relative decrease of cells with less than one Xa per diploid genome. Currently, we do not know whether these cells remain in the population, are actively selected against or disassemble their Xist cloud(s) and rejoin the pool of dividing cells.

In vivo evidence supporting cell loss as a consequence of the XCI process comes from studies that show a significant size difference between female and male early implantation diploid embryos before hormonal cues start to influence growth [29]. Interestingly, female mouse XO embryos did not differ in size compared to XY male embryos. The size difference between male and normal female embryos is most pronounced around the time of XCI and decreases later during development. Thus, similar to our in vitro findings with differentiating tetraploid ES, gender specific size differences could very well be related to the loss of XiXi and XaXa cells during development.

Evidence against a single blocking factor
If the probability to initiate XCI is an independent property of the deleted Xist-Tsix-Xite region, and dependent on trans-acting factors located elsewhere in the genome, deletion of this region in female cells should have no effect on the probability of the wild type allele to initiate XCI. Our results with the ΔXTX ES cell lines and mice confirm this hypothesis and show that the deleted area is not required for the counting process in female cells. We find initiation of XCI as expected for a single
allele in ∆XTX cells, indicating that our results are not the consequence of initiation in a few cells followed by a selection process.

These and other findings indicate that a single blocking factor may not be present at all, because of the following arguments. XCI is initiated in male ES cells with a 65kb deletion, a 20 kb bipartite deletion and a smaller 1.2 kb DXPas34 deletion, all located 3' of Xist [9,10,30], placing the putative blocking factor binding site inside this region. Nevertheless, we find robust initiation of XCI despite the deletion of this entire region. This does not exclude the possibility that the blocking factor binding site is located outside the deleted region. However, if this were true an increased number Xist double clouds would be expected in female cells heterozygous for the Tsix-stop insertion. Because in both cell lines half of the wild type X chromosomes are unprotected from XCI. Remained presence of a blocking factor binding site on the mutated allele would therefore have resulted in an increased number of cells with two Xi-s. Neither we nor others have found this [9]. We therefore conclude that our findings preclude a blocking factor model.

Evidence for an X-encoded factor involved in promoting XCI

Our findings that XX_{XTX} cells initiate XCI in contrast to XY cells, provides evidence for the presence of an unidentified X-linked gene encoding a trans-acting factor that is involved in promoting initiation of XCI (XCI-activator). Analysis of the XCI initiation...
X chromosome counting and choice is a stochastic process

frequency at day 3 of differentiation shows that the XXXX ES cells initiate XCI much faster than XXXY ES cells. In addition, the calculated probability to initiate XCI is much lower for XXXY cells than the XXXX cells. Both observations indicate the presence of an X-encoded probability-determining factor that is located outside our XTX-deletion but resides in the genetically defined Xic. The presence of a XCI-activator is supported by studies with Xist promoter driven transgenes that show a clear difference in expression between differentiating male and female ES cells, also indicating the presence of a sex-linked transcription factor [25].

Interestingly, a previous study, which analyzed XCI in a male cell line with a 450kb transgene, encompassing Xist and flanking regions, showed initiation of XCI on the single X chromosome, indicating that the transgene may harbor the gene
encoding this XCI-activator [31]. A different study showed that introduction of a BAC sequence located 5’ to Xist, not including Xist itself, into ES cells also results in initiation of XCI on the single X chromosome in male cells, and on both X chromosomes in female cells [32]. This result was attributed to ectopic pairing between the transgene and the Xic. We think that this study indicates that the sequence encoding the XCI-activator may be located within the transgene. The reported transient pairing could be the consequence of the differentiation process, and related to changes in the expression of genes located within the Xic, resulting in transient changes in the nuclear positioning of these genes.

**A stochastic model for XCI counting and choice**

This study indicates that XCI is a stochastic process, in which each X chromosome has a probability to be inactivated. The outcome of the XCI process is the resultant of; 1) an equal probability for each individual X chromosome to be inactivated (in the same genetic back ground), 2) the probability to initiate XCI is directly proportional to the X:ploidy ratio, 3) selection in favor of cells retaining one Xa per diploid genome.

What factors determine the probability for an X chromosome to be inactivated? Cell line studies indicate that the Xist, Tsix, and Xite genes play a key role in determining the probability of an X chromosome to initiate XCI. Although the molecular factors involved in the regulation of these genes remain elusive so far, studies with Xist promoter driven transgenes indicate the presence of a sex-linked transcription factor, which is supported by our observations [25]. Tsix is transcribed in both male and female cells before the onset of XCI indicating the presence of a, most likely autosomal, factor that drives Tsix transcription in both male and female cells [33]. These observations suggest that the probability to initiate XCI is the resultant of the balance between an X-encoded Xist activator (XCI-activator), that itself is inactivated by XCI, and a Tsix activator (XCI-inhibitor). Upon differentiation, the concentration of the XCI-activator rises (Figure 7D and E). In contrast, the XCI-inhibitor concentration remains stable or may even decrease in time, providing a stable threshold level throughout early differentiation or development, which has to be overcome to generate a probability to initiate XCI. In male cells the maximum XCI-activator concentration is not sufficient to overcome the XCI threshold level. In female cells the concentration of the XCI-activator will be twice as high and sufficient to induce Xist mediated silencing of Tsix with a certain probability in a particular time frame, e.g. one cell division. Because both X chromosomes generate a certain probability, a proportion of the differentiating cells will inactivate two X chromosomes. After XCI has been initiated, the X-encoded XCI-activator gene will be silenced in cis. This results in a drop in the XCI-activator level to a level equal to that
X chromosome counting and choice is a stochastic process

found in male cells, preventing inactivation of the second X chromosome. Cells that have not initiated XCI will start another round of inactivation. \textit{Xist} expression on the future Xi persists because less XCI-activator is required as a result of a lack of \textit{Tsix} inhibition \textit{in cis}. In addition, chromatin modifications or \textit{cis} interactions may fix the \textit{Xist} active state on the future Xi.

For tetraploid cells this model becomes more complicated because of the increased number of possibilities (Figure 7F and G). XXXY tetraploid ES cell lines will have less XCI-activator when compared to the XXXX lines. This explains the decreased probability that was calculated for the XXXY line (8%) compared to the XXXX line (27%).

Important prerequisites for this model are the rapid down-regulation of the XCI-activator level after the initiation of XCI, and \textit{Xist} mediated silencing of \textit{Tsix}. Indeed, studies with cell lines with an inducible \textit{Xist} cDNA transgene showed that inactivation of flanking genes occurs within several hours after \textit{Xist} up-regulation [34]. To date, it is unclear whether \textit{Tsix} is silenced by \textit{Xist}, or whether \textit{Xist} up-regulation is due to autonomous silencing of \textit{Tsix} by developmental cues. Constitutive or inducible expression of \textit{Tsix} shows that persistent expression of \textit{Tsix} results in preferential inactivation of the (other) wild type X chromosome. Conversely, elevated transcription through \textit{Xist}, as a consequence of an integration of a selection cassette upstream of the \textit{Xist} promoter, results in preferential inactivation of the mutated X chromosome [35]. Although we cannot exclude a model in which the probability is solely dependent on autonomous down-regulation of \textit{Tsix}, these findings indicate the presence of a transcriptional balance between \textit{Xist} and \textit{Tsix}, in which both genes have mutual inhibiting properties.

\textbf{Interpretation of the stochastic model}

A stochastic model for XCI predicts that SNPs, mutations or deletions of binding sites for the XCI-activator or -inhibitor will change the probability to inactivate the respective X chromosome and will result in skewed XCI. According to this model, a truncation of \textit{Tsix} or deletions that lead to severe down-regulation of \textit{Tsix} expression, will result in a reduced level of XCI-activator required for initiation of XCI, and would explain ectopic XCI observed in mutant male cells [9]. Similarly, \textit{Xist} transgenes lacking \textit{Tsix} repression will require less XCI-activator, which may lead to ectopic XCI in male cells [36]. In addition, a homozygous mutation of the \textit{Tsix} major promoter that abolishes \textit{Tsix} expression in female cells will lead to increased probabilities for both X chromosomes explaining the high frequency of differentiating cells with two Xi-s [13].

A stochastic model would also explain the sex-ratio distortion found for
Tsix double mutant offspring as a consequence of expression differences of the XCI-activator between male and female cells [14]. These observations indicate that Tsix may not be required for proper XCI to occur, as proposed for humans. As long as the probability to initiate XCI on an X chromosome remains low. This could be accomplished by down-regulation of the XCI-activator activity or Xist promoter activity. Although the factors driving the XCI process remain as yet elusive, the ∆XTX deletion described here locates the X-encoded XCI-activator gene outside the deleted region but within the region delineated by the Searle’s translocation and the HD3 truncation, which originally defined the Xic [37,38]. Future identification of the XCI-activator and -inhibitor will be crucial for our understanding of the XCI process.

Methods
Generation of tetraploid ES cell lines
M. cast /129/Sv F1 female (F1 2-1) and male (F1 2-3) ES cell lines and a male C57Bl/6 /129/Sv (V6.5) ES cells were targeted with neomycin and puromycin resistance cassettes. PEG 1500 (Roche Cat. No. 783 641) fusion was performed according to manufacturers instructions. Tetraploid ES cell lines were grown on male MEFs, under continuous double selection and have not been frozen before analysis.

DNA and RNA FISH
Pre-plated ES cells were transferred to non gelatinized bacterial dishes to start EB differentiation, in IMDM + Glutamax (Gibco), 15% FCS, Asc. Acid 50 µg/µl, NEAA, PenStrep (PS), Monothioglycerol (97%) 37,8 µl/l. One day prior to fixation, EBs were trypsinized and transferred to dishes with gelatin coated cover slips. BrdU (20 µM) was added 16 hours (less then one cell division) prior to harvesting.

For RNA FISH experiments on differentiating ICM cells 3.5dpc blastocysts were flushed out of the uterus, and allowed to attach for two days in DMEM, 15% FCS, NEAA, β-mercapthoeth. 8 µl/l. Expanded ICMs were micro dissected with a mouth pipette and plated on gelatinized slides. ICM cells were allowed to attach and proliferate for two more days before fixation.

DNA and RNA FISH were performed as described [11], Xist RNA and chr. 6, 7 and Y specific probes have been described [11,39]. Criteria for scoring the Xist clouds: first in Dapi a non-overlaid intact nucleus was selected, then in FITC, the number of clouds was counted. Every Xist cloud that was counted was clearly distinguishable from neighboring clouds. If not specifically indicated more than 100 cells were counted per cell line per time point. For combined DNA/RNA FISH, slides were pretreated for 4 min with 0.2% pepsin in 10mM HCl at 37°C, post fixed for 5 minutes in 4% PFA/PBS, washed twice with PBS and dehydrated prior to denaturation. Probes for
hybridization were Xist, a Cy3 labeled X paint probe (Cambio), or a combination of two biotin labeled BACs (CT7-155J2 and CT7-474E4). Slides were washed at 42°C in 2xSSC and 3 washes of 2xSSC / 50% formamide. Detection was as described [11]. For DNA/RNA FISH diploid cells with two and tetraploid cells with four X chromosomes were selected in the red channel, then Xist clouds were counted in the FITC channel.

Karyotyping
Cells were treated with colcemid for 1h, fixed and hybridized with an X paint probe (Cambio). Criteria for scoring painted X chromosomes: first in Dapi a metaphase spread was selected, next in the red channel the number of X chromosomes was counted.

Generation of the ∆XTX ES cell line
An 8.2 kb Xhol-ClaI fragment from BAC 299K20 was subcloned into pBluescript KS, followed by the insertion of a PGK-DTA cassette into the ClaI site. Next, a floxed hygro-TK cassette was cloned into an EcoRV site. The resulting pXite-DTA-hygroTK was targeted to a heterozygous ∆Xist 1lox ES cell line [11]. After transient Cre expression, positive clones were identified by southern analysis (Spel digest) with a 3’ external probe, a 565 bp PCR product (AAGCTTGGGTCCTCCTGT and CCACTCAGACATCCCCAGAT). Cre mediated excision was confirmed by PCR analysis using primer set 1 (A, TTTCTGGTCTTTGAGGGCAC x B, CACTGGCAAGGTGAATAGCA) detecting the original ∆Xist 1lox allele and primer set 2 (A x C, GGACATTTTGTCTGGCAGT) detecting the ∆XTX allele.

Acknowledgements
We thank R. Jaenisch, J.A. Grootegoed, W. Baarends and Elaine Dzierzak for discussions and critical review of the manuscript, R. Jaenisch for Tsix-stop cells, M. Wijgerde, B de Hoon and T. de Wit for technical assistance and J. Ilzermans, R.G. Boers, and B de Hoon for helpful discussions. This work was supported by HFSP CDA and NWO-VIDI grants to J.G., a NWO-AGIKO grant to K.M and a grant from the Dutch government (BSIK programme 03038, SCDD).
References


X chromosome counting and choice is a stochastic process


Chapter 2


Chapter 3

The probability to initiate X chromosome inactivation is determined by the X to autosomal ratio and X chromosome specific allelic properties

Kim Monkhorst#, Bas de Hoon#, Iris Jonkers, Eskeatnaf Mulugeta Achame, Wouter Monkhorst, Jos Hoogerbrugge, Eveline Rentmeester, Hans Westerhoff, Frank Grosveld, J. Anton Grootegoed and Joost Gribnau

#these authors contributed equally

Accepted by PLoS ONE
Abstract

Background:
In female mammalian cells, random X chromosome inactivation (XCI) equalizes the dosage of X-encoded gene products to that in male cells. XCI is a stochastic process, in which each X chromosome has an independent probability to be inactivated. To obtain more insight in the factors setting up this probability, we studied the role of the X to autosome (X:A) ratio in initiation of XCI, and have used the experimental data in a computer simulation model to study the cellular population dynamics of XCI.

Methodology/Principal Findings:
To obtain more insight in the role of the X:A ratio in initiation of XCI, we generated triploid mouse ES cells by fusion of haploid round spermatids with diploid female and male ES cells. These fusion experiments resulted in only XXY triploid ES cells. XYY and XXX ES lines were absent, suggesting cell death related either to insufficient X-chromosomal gene dosage (XYY) or to inheritance of an epigenetically modified X chromosome (XXX). Analysis of active (Xa) and inactive (Xi) X chromosomes in the obtained triploid XXY lines indicated that the initiation frequency of XCI is low, resulting in a mixed population of XaXiY and XaXaY cells, in which the XaXiY cells have a small proliferative advantage. This result, and findings on XCI in diploid and tetraploid ES cell lines with different X:A ratios, provides evidence that the X:A ratio determines the probability for a given X chromosome to be inactivated. Furthermore, we found that the kinetics of the XCI process can be simulated using a given probability, proportional to the X:A ratio, for an X chromosome to be inactivated. These simulation studies re-emphasize our hypothesis that the probability is effectuated by the concentration of an X-encoded activator of XCI, and X chromosome specific allelic properties determining the threshold for this activator.

Conclusions:
The present findings reveal that the probability for an X chromosome to be inactivated is proportional to the X:A ratio. This finding supports the presence of an X-encoded activator of the XCI process.

Introduction
In placental mammals, dosage compensation of X-encoded gene products is achieved by inactivation of either of the two X chromosomes in female cells [1]. Random X chromosome inactivation (XCI) is initiated early during female embryonic development, and results in a transcriptionally inactive X chromosome (Xi). The inactive state of the Xi is clonally propagated through many cell divisions. At the onset of XCI the X-linked non-coding Xist gene is transcriptionally up-regulated on the future Xi, and Xist RNA coats the Xi in cis [2,3,4,5]. Xist RNA is required for XCI and most
likely attracts chromatin modifying enzymes involved in the silencing process [6,7]. The \textit{Tsix} and \textit{Xite} genes play a crucial role in the early stages of XCI by suppression of \textit{Xist} transcription and \textit{Xist} RNA accumulation. Both \textit{Tsix} and \textit{Xite} also are non-coding genes that overlap with \textit{Xist}, but are transcribed in anti-sense direction [8,9].

The first phase of XCI comprises a counting process, followed by initiation of XCI when more than one X chromosome is present per diploid nucleus. We have recently shown that initiation of XCI is directed by a stochastic mechanism, in which all X chromosomes in a nucleus have an independent probability to initiate XCI within a certain time-span [10]. We proposed that this probability is proportional to the X to autosome ratio (X:A), and most likely depends on at least two factors that act through \textit{Xist} and \textit{Tsix}: an X-encoded XCI-activator that stimulates \textit{Xist} expression, and itself is transcriptionally inactivated by the XCI process, and an autosomally encoded XCI-inhibitor that suppresses \textit{Xist} by activating \textit{Tsix}. Although the action of \textit{Tsix} is still not understood, \textit{Tsix} transcription and chromatin modifications in the \textit{Xist} promoter (possibly mediated by \textit{Tsix}) provide a threshold that has to be overcome by the XCI-activator, allowing accumulation of sufficient \textit{Xist} molecules to silence \textit{Tsix} and spread in \textit{cis}. Early in mouse development or upon differentiation of embryonic stem (ES) cells, the XCI-activator concentration in a cell will increase, and in female cells this will drive the initiation of XCI with a specific probability. This probability is the consequence of stochastic transcriptional activation of both \textit{Xist} and \textit{Tsix}. In male cells, the XCI-activator concentration will be too low; therefore, these cells induce XCI only sporadically [10].

Several findings support the presence of an X-linked XCI-activator. Tetraploid \textit{XXXX} ES cells initiate XCI significantly faster than \textit{XXXY} cells [10]. In addition, female ES cells with a heterozygous deletion including \textit{Xist}, \textit{Tsix} and \textit{Xite}, still show initiation of XCI on the wild type X chromosome, indicating a novel \textit{trans} acting activator, encoded by a gene located outside the deleted area [10]. Also, studies in differentiating ES cell lines with stably integrated \textit{Xist} promoter transgenes show significantly more expression of a linked reporter in female cells compared to male cells [11]. The genomic location of the XCI-activator is unknown sofar. However, previous studies which analyzed XCI in male cell lines with YAC transgenes ranging in size from 320 to 460 kb, encompassing \textit{Xist} and flanking regions, revealed initiation of XCI on the single X chromosome [12,13]. In addition, a smaller BAC sequence covering a region upstream of \textit{Xist} also induces ectopic XCI in transgenic male and female cells [14]. These studies indicate that the sequence encoding the XCI-activator is likely to be located within the sequence covered by these transgenes.

In diploid and tetraploid cells, one X chromosome will remain active per diploid genome. However, in triploid cells this ratio of one active X chromosome per
diploid autosomal set cannot be achieved. Therefore, triploid cells provide a unique situation for studying the mechanism of XCI counting and choice and gene dosage related cell selection. Several studies have been conducted with human and mouse XXY and XXX triploid embryos and embryo-derived cell lines, to try to determine the pattern of X inactivation. In these experiments cultured differentiated cells were examined which had completed the XCI process [15], and indicated that the majority of cell lines derived from human live born XXX triploids predominantly show two active X chromosomes [16,17,18]. In contrast, analysis of 10-day-old XXY and XXX mouse triploid embryos showed that most cells had one active X chromosome [19]. Unfortunately, both studies did not discriminate between primary choice in XCI and cell selection processes.

To explore the mechanism determining the probability of an X chromosome to be inactivated, we have generated XXY triploid mouse ES cells. Analysis of XCI in these cells allowed us to determine the influence of the X:A ratio on the initiation of XCI, and to discriminate between XCI initiation and cell selection. In addition, we have used stochastic and mathematical simulation studies to follow the kinetics of XCI in a population of developing or differentiating cells.

**Results**

**Generation of triploid ES cells**

Our previous studies with tetraploid XXXX, XXXY and XXYY mouse ES cell lines have indicated that the probability for an X chromosome to be inactivated is directly related to the X:A ratio [10]. To further explore this finding we aimed to generate triploid ES cell lines with XYY and XXY karyotypes, having an X:A ratio of 1:3 and 2:3, respectively, for which XCI has not been studied before. To generate triploid ES cell lines we decided to fuse puromycin resistant female and male ES cells with round spermatids or spermatozoa containing a neomycin resistance (neo) gene targeted to either the autosomal Ube2b gene or the X-chromosomal Ube2a gene. Both Ube2a and Ube2b encode ubiquitin-conjugating enzymes involved in DNA replicative damage bypass [20]. The encoded proteins have at least partially overlapping functions, and two functional alleles of either Ube2a or Ube2b per cell are sufficient to generate viable diploid mice. Also, spermatogenesis is not dysregulated in Ube2a knockout and Ube2b heterozygous mutant mice [21,22]. Therefore, it was expected that loss-of-function of one targeted Ube2a or Ube2b allele, in the Ube2a<sup>-/-</sup> and Ube2a<sup>y/y</sup> mice, respectively, will not have an effect on the viability of hybrid fusion products. In the present study, the targeted mutant alleles serve the function of selection for fused cells.

All PEG mediated fusion experiments were conducted twice. Fusion of the
The probability to initiate X chromosome inactivation

neomycin resistant $Ube2a\text{-neo}$ round spermatids and spermatozoa with female or male ES cells did not result in double resistant colonies (Figure 1A). In addition, fusions of $Ube2b\text{-neo}$ round spermatids with male ES cells, and fusions of $Ube2b\text{-neo}$ spermatozoa with either female or male ES cells, also did not result in double resistant colonies. In contrast, double resistant colonies were obtained by fusion of $Ube2b\text{-neo}$ round spermatids with female ES cells, and these colonies were picked and expanded for further analysis. PCR analysis of genomic DNA indicated the presence of the $Ube2b\text{-neo}$ allele in all the ES clones picked, confirming the fusion of a round spermatid containing the $Ube2b\text{-neo}$ allele (Figure 1B). FACS analysis, using propidium

Figure 1. Generation of triploid ES cells
A) The different fusion experiments performed; (-) no clones present, (+) clones present which could be picked and expanded. Fusion of Y-bearing spermatids and spermatoza for $Ube2a$ knockout mice was not examined, since the neo selection marker localizes to the X (gray boxes).
B) PCR with genomic DNA detecting the wild type and mutated $Ube2b\text{-neo}$ allele. Clone numbers are indicated, and control DNA was isolated from wild type, $Ube2b$-/- and +/- mice.
C) FACS analysis detecting the DNA content of diploid ES cells, and four different triploid ES cell lines analyzed in (B).
D) Karyotyping of 9 triploid ES cell lines, shown in (B); indicated are chromosome counts of individual metaphase spreads. Right panels show representative examples of metaphase spreads.
E) Y chromosome paint analysis; shown is the number of metaphase spreads with 0, 1, and 2 Y chromosomes. Right panels show representative examples of metaphase spreads subjected to DNA FISH using a Y paint probe (red, DNA is blue).
F) X chromosome paint analysis, shown is the number of metaphase spreads with 1, 2, 3, and 4 X chromosomes. Right panels show representative examples of metaphase spreads subjected to DNA FISH using an X paint probe (Red, DNA is blue).
iodide to determine the DNA content, indicated that all our cell lines were triploid (Figure 1C). The small 2n population we attribute to contamination of the triploid cells with diploid male feeders that we used to grow the ES cells on. Karyotyping also indicated that, in all cell lines, the majority of cells had 60 chromosomes, which are stably maintained through many passages (Figure 1D, and data not shown). Interestingly, X and Y chromosome paint analysis showed that all cell lines had an XXY 3n karyotype (N=18) although the haploid round spermatids that were used for fusion can be expected to contain either an X chromosome or a Y chromosome in a 50/50 ratio (Figure 1E and 1F).

These results suggest that XYY cells are absent due to an insufficient dosage of X-encoded genes. In addition, the lack of XXX 3n karyotypes suggests that introduction of an X chromosome through a round spermatid leads to a non-viable triploid ES cell. The absence of triploid XXX ES cell lines can not be explained by a dosage problem, but might be due to the presence of an epigenetically modified X chromosome present in spermatids. During spermatogenesis, the largely unpaired X and Y chromosomes are transcriptionally inactivated, forming the XY body or sex body in a process called meiotic sex chromosome inactivation (MSCI) [23]. Chromatin modifications present on the XY body may be partly maintained in post-meiotic round spermatids. Such modifications, particularly relevant for the X chromosome with a large gene content, may explain lethality of the triploid XXX ES cells.

To test whether the spermatid derived X was reactivated after cell fusion, we fused round spermatids of males containing an X-linked GFP transgene [24] with male and female ES cells. Analysis of diploid ES cells containing the X-linked GFP transgene shows robust GFP expression, indicating that the transgene is properly expressed in ES cells. In contrast, after fusion of GFP round spermatids with ES cells, we did not see reactivation of the transgene (data not shown). Selection for reactivation of the transgene by applying puromycin selection, at days 0, 3 and 5 after fusion, did not result in clones resistant to both selection reagents. Therefore, we conclude that ES cells are incapable of reactivating the X from spermatids. This is in contrast to ES fusions with female somatic cells, which lead to reactivation of the Xi [25].

**X chromosome inactivation in triploid XXY ES cells**

To study XCI in the obtained XXY triploid ES cells, we differentiated 9 of these cell lines into embryoid bodies (EB). Cells were fixed and subjected to RNA-FISH after 3, 5, 7, and 10 days of differentiation, using an Xist specific probe to stain the Xist coated Xi’s. After a three-day differentiation period, we mainly found cells with zero or one Xi, indicating that the triploid XXY cells are capable to initiate XCI (Figure 2A). At this timepoint only ~2.5% of cells had one Xi (XaXiY) and we sporadically (<0.1%) found
The probability to initiate X chromosome inactivation

cells with two Xi’s (XiXiY). During the differentiation process, the relative number of cells with one Xi increased, to ~40% at day 10 of differentiation (Figure 2B).

To exclude the possibility that our triploid XXY ES cells lost or gained X chromosomes over the differentiation process, we performed DNA-FISH with an X chromosome specific BAC probe on cells differentiated for seven days. To obtain a reliable measurement, at least 100 nuclei were scored for every cell line. We found that over 93% of the XXY cells still contained two X chromosomes, and only 3% of the cells were found to have three X chromosomes, suggesting that the karyotype of these triploid XXY ES cells is stable throughout differentiation (Figure 2C).

We further examined whether the increase in time of the percentage of XiXiY cells (Figure 2B) might be caused by cell selection. We therefore added BrdU 24 hours prior to cell fixation of day 7 differentiated ES cells, and performed immuno/RNA FISH, detecting BrdU positive cells and Xist RNA. Comparison of BrdU positive

Figure 2. Analysis of XCI in differentiating triploid XXY ES cells
A) RNA FISH analysis with an Xist probe (FITC, DNA in blue) on day 3 differentiated triploid ES cells, shows cells with no (left panels), one (right panels) Xist cloud.
B) The distribution of cells with different numbers of Xist clouds throughout differentiation.
C) DNA FISH analysis on day 7 differentiated triploid ES cells. Shown is the relative number of cells with 0, 1, 2 and 3 X chromosomes.
D) Combined Xist RNA-BrdU detection (Xist in FITC, BrdU in Rhodamine red, DNA in DAPI blue), indicating the presence of cells with negative and positive BrdU staining (from left to right).
E) Quantification of the Xist RNA-BrdU detection, shown are the relative number of BrdU positive cells with 0, 1 and 2 Xist clouds.
F) The relative number of cells that have initiated XCI (at least one Xi), per cell line at day 3 of differentiation.
cells with one or no $Xist$ cloud(s) shows that there are significantly more cells with one cloud, indicating that $Xix\alpha Y$ cells indeed have a small proliferative advantage ($p<0.001$; Figure 2D and 2E).

Previously, we have proposed that the probability for an $X$ chromosome to be inactivated is proportional to the $X:A$ ratio [10]. To further explore this finding we compared the percentage of cells that had initiated XCI at day 3 of differentiation, for our $XXY$ triploid ES cell lines (with an $X:A$ ratio of 0.67) and cells with different $X:A$ ratios (4n $XXXX$ cells with $X:A=1$; 4n $XXXY$ cells with $X:A=0.75$; 4n $XXYY$ cells with $X:A=0.5$; 2n $XX$ cells with $X:A=1$; and 2n $XY$ cells with $X:A=0.5$). ES cell lines were differentiated through EB differentiation and subjected to RNA FISH to detect $Xist$ RNA. For each line with a different $X:A$ ratio or a different ploidy number, we performed three independent differentiation experiments.

The results (Figure 2F) confirm our previous findings [10] that, at day 3 of differentiation, $XXXX$ cells have initiated XCI in significantly more cells (58%) than $XXXY$ cells (20%). Furthermore, tetraploid $XXYY$ and diploid $XY$ cells initiated XCI in less than 0.3% of the cells, whereas diploid $XX$ ES cells initiated XCI in 50% of the cells (Figure 2F). At day 3, triploid $XXY$ cells had initiated XCI in 3-4% of the cells (Figure 2F). This percentage falls between that found for $XXXY$ and $XXYY$ cells. From these results we conclude that the probability to initiate XCI depends on the $X:A$ ratio, and that this relationship appears not to be linear (Figure 2F).

**Parameters required for computer simulated XCI**

To better understand the kinetics of XCI in a developing female embryo or a differentiating population of female ES cells we decided to simulate the XCI process. There are four important parameters required to simulate XCI, based on a stochastic model for XCI: 1) the probability for an $X$ to initiate XCI, 2) the time window required for one choice round, 3) the rate of cell division, and 4) cell selection.

As indicated by our findings, the probability for an $X$ to initiate XCI is proportional to the $X:A$ ratio, and XCI is most likely triggered by a threshold nuclear concentration of an $X$-encoded XCI-activator. Although the nuclear concentration of XCI-activator will be the same for both $X$ chromosomes present in a female cell, specific allelic properties of the individual $X$ chromosomes can result in different probabilities. Previous studies with female ES cell lines harboring deletions of either $Xist$, $Tsix$ or $Xite$ have indicated that this probability positively correlates with $Xist$ transcription rate and negatively with transcription rate of $Tsix$ and $Xite$ [6,7,8,9,26]. Therefore, transcription initiated by the $Tsix$ and $Xite$ promoters provides a threshold for $Xist$ to accumulate in cis. Also, $Xist$ promoter related modifications could restrict the action of the XCI-activator and may therefore be involved in setting up the threshold. Only
The probability to initiate X chromosome inactivation

when sufficient XCI-activator is present in the nucleus enough Xist transcription is initiated to overcome Tsix mediated repression, thereby effectuating a probability to initiate XCI. Xist transcription initiation is a stochastic process itself, and depending on the nuclear XCI-activator concentration, bursts of Xist transcription will generate a continuum of small probabilities to initiate XCI in time. This probability will drop after inactivation of an X chromosome with the decline in the XCI-activator concentration that depends on the nuclear half life of the XCI-activator. In our simulations we have used a time window with a specified probability, which represents the integrated probability within that time window.

To test whether XCI is dependent on cell division, we first analyzed the number of cell divisions during a 10 day period of embryoid body (EB) differentiation, for ES cells with different X:A ratios. To determine the increase in cell number we differentiated 10^5 cells, and isolated DNA before and after differentiation. OD measurements of two independent differentiation experiments indicated that the different ES lines divided between 4 and 7 times in the 10 day differentiation period (Figure 3A). Next, female diploid ES cells were EB differentiated for one or two days, and then subjected to γ-irradiation-, mimosine- or colcemid-mediated cell cycle arrests for one day. Initiation of XCI in treated and untreated cells was compared by counting the number of cells with or without an Xi, using RNA FISH with an Xist probe. We found no significant increase or decrease in the number of cells with an Xi after cell cycle arrest, although the cells that had been γ-irradiated at day 1 showed a slight decrease in cells that initiated XCI (Figure 3B). This result suggests that cell division is not required, or perhaps plays a minor role in the initiation of XCI. Nevertheless, cell division...
division characteristics are important in the XCI process, because previous studies have shown that cells that inactivate too many X chromosomes stop dividing or slow down the cell division rate, which allows the cycling population of cells to outgrow the cells that inactivated too many X chromosomes [10,27].

Cell selection also plays an important role in the XCI process, as male cells that inactivate their single X chromosome will die. Studies with inducible Xist cDNA transgenes integrated on the single X chromosome in male cells showed that Xist mediated silencing manifests within 24 hours, and that cell death becomes imminent within three days of Xist induction [27]. Also, diploid female cells inactivating two X chromosomes or incapable of initiating XCI are prone to die [6,28].

Computer simulated XCI
To comprehend the kinetics of XCI, we have applied a stochastic simulation model to determine the populations of cells with a different number of Xa’s and Xi’s. In this approach, the distribution of different cell populations is derived using a simulation program with an implemented randomizer to assign the Xi’s, based on a stochastic principle, thereby mimicking the choice process. With a small starting population of cells, as present in the female mouse embryo around the time XCI is induced, a stochastic principle may result in different outcomes of the choice process, which is different from mathematically calculated cell populations. However, an increased starting population of cells, or several repetitive experiments in a stochastic simulation model will result in an outcome similar to a mathematical approach. The stochastic simulation of the XCI process was performed in a three-dimensional matrix, in which each Z stack represents one choice round (Figure 4A). For our simulations we used a fixed or changing probability per choice round per X chromosome, and specific cell cycle characteristics depending on the X:A ratio.

We started by simulating the XCI process in XX diploid female ES cells through a 10 day differentiation period, using a fixed probability in time to run the simulations, and compared the resulting distributions with experimental data obtained with differentiating XX female ES cells. We used a cell division rate for cells with an X:A ratio ≥ 0.5 of once every two days, based on our cell division analysis (described above). In addition, the simulation included that cells with all X chromosomes inactivated stop dividing, which is based on previous studies [29]. To be able to compare the simulations with available experimental data, we have set the time window to 1 day, representing the integrated probability for cells choosing the X to be inactivated over 1 day. In the calculations we have excluded the option that, in XaXi cells that just have inactivated an X chromosome, the active second X chromosome may still have a probability to be inactivated. We performed the simulations with 100 cells, which
The probability to initiate X chromosome inactivation mimics the number of cells present in the female mouse embryo around the time XCI is initiated. A number of 5 independent stochastic simulations generated the data for statistical analysis of the average and standard deviation. The graphs in the figures only show the average value for each time point. Comparison of the simulations, using an increasing range of fixed probabilities from 5% to 40% for both X-chromosomes, with previously obtained experimental results for differentiated XX female ES cells indicate that a fixed probability between 10% and 20% fits our experimental data best (Figure 4A; Supplementary Table 1A and 1B) [10]. To validate the simulation results we also compared these with data obtained using a mathematical approach were fixed probabilities were used to calculate the different XaXa, XaXi and XaXa populations, which showed similar population dynamics (Supplementary Data and Supplementary Figure 1). The fluctuation in the percentage of XiXi cells in time is the consequence of applying two choice rounds (1 per day) within one round of one cell division (once every two days for XaXa and XaXi cells). Because cell division is synchronized in the simulations, XiXi cells are diluted out after every cell division.

From previous experimental data it appears that the probability to initiate XCI is lower in the beginning than later during the XCI process, and we proposed that the probability is dependent on the concentration of XCI-activator in the nucleus [10]. The XCI-activator is produced at a rate \( v_{synthesis} \) that is proportional to the number of active X chromosomes. The half-life of XCI-activator is considered constant, and this leads to the following differential equation for the concentration of the XCI-activator:

\[
\frac{d[XCI - \text{activator}]}{dt} = v_{synthesis}(t) - k_d \cdot [XCI - \text{activator}]
\]

The concentration of the XCI-activator will change in time according to the above differential equation with:

\[
v_{synthesis}(t) = k_s \cdot [m_{active}(t)]
\]

Here, \( k_s \) is the rate constant for synthesis (in \( \mu \)Molar per second per active promoter), and \( m_{active} \) is the number of active X chromosomes per haploid genome, which can be substituted by the X:A ratio. Before XCI, at the start of the simulation, all X chromosomes are active, and the above equation integrates as:

\[
[XCI - \text{activator}](m,t) = \frac{m \cdot k_s}{k_d} \cdot \left(1 - e^{-k_d \cdot t}\right) = \frac{m \cdot k_s}{k_d} \cdot \left(1 - \left(\frac{1}{2}\right)^{t/t}\right)
\]

where:
Figure 4. Computer simulation of XCI

(A) Left upper panel shows a schematic representation of the stochastic simulation which is executed in a three dimensional matrix. Cells (boxes) go through consecutive choice rounds (numbers) interrupted by cell divisions (triangle). The three different cell types are represented by XaXa = yellow, XiXa = green, XiXi = gray boxes. The dashed lines indicate the origin of progeny of one XiXa and one XiXi cell after cell division (not all lines are shown, and note that the XiXi cells do not divide). The right panels show the experimental data from differentiated 2n female XX ES cells (exp.), and the stochastic simulation of XCI with a 5%, 10%, 20%, 30%, and 40% fixed probability per X chromosome (sim.). The different bar-graphs show the relative distribution of the three different cell types (XaXa = yellow, XiXa = green, XiXi = gray). Numbers below the bar graphs indicate days of differentiation (1-10), and cell division is indicated with a triangle. For time points represented by light gray bars no data is available.

(B) Probability curves representing the increase of the probability y in time based on equation [6], with m=1, for XX 2n and XXXX 4n cells (purple), and m=0.75 for XXXY 4n cells (orange). The probability at a given time point is the integrated probability over a time frame of one day. A negative value for y results in a probability of 0, and is represented by a faint line.

(C) Upper left panel shows simulation of XCI in XX diploid cells based on probabilities determined using
The probability to initiate X chromosome inactivation

We expect that the probability for initiation of XCI is proportional to the nuclear concentration of y. Here, y represents molecules or chromosome modifications that effectuate Xist promoter activation. The function of y most likely involves enzymatic activity that depends on the concentration of XCI-activator through a Michaelis-Menten relationship, with $V_{ys}$ and $K_{Ma}$ as maximum rate and Michaelis constant, respectively. Degradation or removal of y will be mediated by another enzymatic process, which depends on the concentration of y through a Michaelis Menten relationship, with $V_{yd}$ and $K_{My}$ as maximum rate and Michaelis constants, respectively. We anticipate that $K_{My}$ is very small, so that the loss of y will occur at a constant rate. Also, we expect that the degradation of y represents a first order process, with a rate constant $k_{dy}$:

$$
\frac{dy}{dt} = \frac{[XCI - activator](t) \cdot V_{ys}}{K_{Ma} + [XCI - activator](t)} - \frac{y \cdot V_{yd}}{K_{My} + y} - k_{dy} \cdot y
$$

These molecular processes will reach a quasi steady state. By equation of dy/dt to zero, and assuming that $K_{My}$ is much smaller than any relevant concentration of y, the concentration of y is given by:

$$
y = \left( \frac{[XCI - activator](t)}{K_{Ma} + [XCI - activator](t)} \cdot \frac{V_{ys}}{k_{dy}} - \frac{V_{yd}}{k_{dy}} \right)
$$

or y will be zero if this yields a negative number. At the threshold level, y will be zero, resulting in:

different probabilities in time indicated in the curve, shown in (B). Upper middle panel shows the experimental percentages of 4n XXXX cells with a different number of Xi’s throughout EB differentiation. The upper right panel shows the simulation of XCI using the same parameters as used for the XX diploid simulation (XaXaXaXa = yellow, XaXaXaXi = green, XaXaXiXi = grey, XaXiXiXi = red, XIXIXIXI, blue). Bottom left panel shows the experimentally determined percentages of 4n XXY cells with a different number of Xi’s throughout EB differentiation. Bottom right panel shows the XCI simulation of 4n XXY cells using the different probabilities in time indicated in the curve presented in (B) (XaXaXaY = yellow, XaXaXiY = green, XaXIXiY = grey, XIXIXiY = red).

(D) Curves representing the probability y in time using equation [6] for cells with a different X:A ratio, ranging from 0.5 to 1.5.

(F) Left panel shows the experimentally determined percentages of 3n XXY cells with a different number of Xi’s throughout EB differentiation. Middle panel shows the XCI simulation of 3n XXY cells using different probabilities indicated in the curve presented in (D) (XaXaY = yellow, XaXiY = green, XIXiY = grey). Right panel shows the simulation of XCI in XXX 2n cells (XaXaXa = yellow, XaXaXi = green, XIXiXa = grey, XIXiXi, red)
Above the threshold level its value will increase with an increase in [XCI-activator] towards a maximum. We assume the probability of initiation of XCI to be proportional to $y$. By plotting $y$ in time we generated a probability curve, which in the simulations represents the integrated probability over a time frame of 1 day. The values for $y$ at different days from 0-10 were imported in the simulation program to assign the different Xi’s with a specific probability per choice round. After XCI has started on one or more X chromosomes, the concentration of the XCI-activator will drop, according to the half-life of the XCI-activator protein (Supplementary Data). For cells that started XCI in one choice round the probability will drop according to the m value reached after that choice round.

We started with training our stochastic simulation, to establish the final values for variables to be applied throughout the stochastic simulations reported here. In this training, the outcome of the simulation, using graded preset values for variables, was compared with experimental data sets that were obtained by differentiation of diploid XX ($m=1$) and tetraploid XXXX ($m=1$) and XXXY ($m=0.75$) cells (Monkhorst et al., 2009). This approach allowed us to obtain the final values for the variables, and we also could determine the $K_{Ma}$ value, which represents the XCI-activator concentration at which half the binding sites are filled, and is a measure for saturation of the XCI-activator. We obtained the best results with a $K_{Ma}$ of 3.3 µM, equal to the maximum XCI-activator concentration in diploid XX and tetraploid XXXX cells, and values for $k_s$, $k_d$, $k_{dy}$, $V_{ys}$ and $V_{yd}$ of 2µM, 0.6µM, 1.5 µM, 3 µM and 1.15 µM respectively. Probability curves for $m=1$ (2n XX and 4n XXXX) and $m=0.75$ (4n XXXY) were derived (Supplementary Table 2A, B and C, and Figure 4B), which resulted in simulated populations with different Xa’s and Xi’s in time that matched our experimental data with diploid XX and tetraploid XXXX, XXXY cells (Figure 4C, and Supplementary Table 3A and B). In a different approach, we used the same probabilities in time for diploid female XX cells in a mathematical model, and obtained distributions of different cell populations that supported our findings with the stochastic simulations (Supplementary Data, and Supplementary Figure 1).

To validate the findings, we introduced two different m values of 0.67 found in XXY triploid cells, and 0.5 found in diploid XY and tetraploid XXYY cells, keeping all other variables constant. The probability curves obtained with these m values resulted in a negative probability (is equal to 0) for diploid XY and tetraploid XXYY cells, as expected (Figure 4D). For XXY cells with a $m=0.67$ we obtained a positive value for $y$, predicting initiation of XCI, albeit at an even lower level than found in
The probability to initiate X chromosome inactivation

XXXY tetraploid cells (Figure 4D). Using the probabilities derived with m=0.67 we obtained simulated distributions that match well with our experimental data (Figure 4E, and Supplementary Table 4). Raising m to 1.5, as found in females with an 47,XXX aneuploid karyotype, increases the probability to a maximum of 44% (Supplementary Table 2C and Figure 4D). Simulations using this probability curve result in a majority of cells that inactivate two X chromosomes (Figure 4E, and Supplementary Table 4), as reported for 47,XXX human individuals. Interestingly, simulation of XXX diploid (aneuploid) cells only resulted in a 29% cell loss. This percentage is well below the 50% cell loss obtained for human individuals and viable mice with X:autosome translocations [30,31], and does explain why mice and humans with one or more additional X chromosomes are viable. Taken together, the results show that the XCI process can be simulated using a probability curve representing the effective XCI-activator concentration in combination with a threshold level required to initiate XCI.

Allele specific activation levels for the XCI-activator

A stochastic model implies that different X chromosomes within one nucleus can have different probabilities to be inactivated, because X chromosome specific thresholds are determined independently. In inbred mice, the X chromosomes are genetically identical and XCI will therefore result in two evenly distributed populations of XiXa cells with one of the parental X chromosomes inactivated. However, in several F1 hybrid mice XCI has been reported to be skewed towards one of the parental alleles. For mouse, skewing of XCI has been attributed to differences in the X controlling element (Xce), a region overlapping and extending 3’ of Xist [32,33]. In cells were two X chromosomes are present with different Xce alleles, a strong Xce is associated with a lower probability to initiate XCI compared to the X chromosome harboring the weaker Xce. These reported differences in probabilities could be explained as allele specific thresholds for the XCI-activator. A more sensitive allele (weak Xce) for the XCI-activator will result in a higher probability for XCI at a certain XCI-activator concentration than a less sensitive allele (strong Xce). As a consequence, one XCI-activator concentration can result in different probabilities for different alleles in the same nucleus. *Mus musculus castaneus* (Cast/Ei) mice harbor a strong Xce in contrast to *Mus musculus* 129/ SV (129/Sv) mice, which harbor a weak Xce, and in somatic tissues of Cast/Ei-129/Sv F1 female mice and differentiated F1 female ES cells, the 129/Sv X chromosome is inactivated in ~70% of the cells (Figure 5H). Allele specific sequence differences in *Xist, Tsix*, and *Xite* will lead to different values for $V_{ys}$ and/or $V_{yt}$.

As indicated above, y represents molecules or chromatin modifications (as targets
A, B) XCI skewing can be simulated by attributing different probabilities to the two X chromosomes in female XX cells. To simulate the 30%:70% skewing of XCI observed in Cast/Ei – 129/Sv F1 mice and differentiating F1 ES cells different allele specific probabilities were applied. The experimentally obtained XCI data with differentiating XX Cast/Ei – 129/Sv F1 ES cells does not discriminate between inactivation of the Cast/Ei or 129/Sv X chromosome.

C) Almost complete skewing of XCI towards the Tsix-stop containing 129/Sv X chromosome was simulated using allele specific probabilities for the Cast/Ei and mutated 129/Sv X chromosomes.

D) Left panel shows the experimentally obtained XCI data with 2n XX heterozygous Tsix-stop female cells. In this experiment no discrimination was made between inactivation of the Cast/Ei and 129/Sv X chromosomes. The right panel shows simulated XCI experiments using the probability y presented in (C).

E) Predicted probabilities in time for a Tsix-stop X chromosome in male and female ES cells.

F) Left panel shows simulation experiments with homozygous female Tsix-stop cells. Right panel shows
The probability to initiate X chromosome inactivation

for XCI-activator), for which \( V_{ys} \) and \( V_{yd} \) reflect the composition and breakdown, respectively, of the complex involved in \( Xist \) transcriptional activation and/or \( Xist \) RNA mediated silencing. The values for \( V_{ys} \) and \( V_{yd} \) will depend on allelic properties of different X chromosomes, such as SNPs in the Xce region associated with allelic threshold levels to initiate XCI. We have investigated both options, using different allele specific values for \( V_{ys} \) or \( V_{yd} \). By training the stochastic simulation program, we found allele specific \( V_{ys} \) values for the 129/Sv X and Cast/Ei X alleles of 3.19 and 2.87, respectively, or \( V_{yd} \) values for the 129/Sv X and Cast/Ei X alleles of 1.05 and 1.20, respectively (Supplementary Table 2D and E). Keeping all other variables constant, these obtained values resulted in probability curves that, in stochastic simulations of XCI, generated a relative distribution of 129/Sv : Cast/Ei of 70% : 30% (Figure 5A and 5B, and Supplementary Table 5).

Completely skewed XCI has been reported in female mice and ES cells, in which \( Tsix \) transcription is abrogated by deletion of \( Tsix \) regulatory elements or a block of \( Tsix \) transcription through insertion of poly-adenylation sequences. These mice and ES cells show almost completely skewed XCI towards inactivation of the \( Tsix \) mutant X chromosome. We have recently shown that XCI starts earlier in differentiating \( Tsix \) mutant ES cells compared to wild type female cells, and that by day one of differentiation already 50% of the mutant cells have initiated XCI, compared to ~10% of the wild type cells. In the stochastic simulation, a raise in the probability for the 129/Sv X chromosome harboring the \( Tsix \) stop by increasing \( V_y \) to 4.60 \( \mu \)M, results in an outcome that matched the experimental findings (Figure 5C and 5D, and Supplementary Table 2F and 5A). This simulation also shows that in this case only few cells inactivate both X chromosomes, as we previously reported [10], because early during differentiation the mutant X chromosome is subject to a high probability to undergo XCI compared to the wild type X, meaning that the XCI-activator level will drop well before the second X might become a target. Using the same parameters in a simulation of homozygous female \( Tsix \)-stop cells we found a very high number of cells inactivating both X chromosomes (Figure 5F and Supplementary Table 5B), as was reported for differentiating female ES cells with a homozygous mutation of \( Tsix \) [28]. Interestingly, in wild type male cells with \( m=0.5 \) we still find that \( y \) can eventually, over a period of time, reach a value above zero, suggesting that the single X in these male cells will still have a probability to undergo initiation of XCI upon initiation of XCI occurring in simulation experiments with \( Tsix \)-stop male cells.

G) Predicted probability curves for Cast/Ei and 129/Sv X chromosomes in 3n XXY ES cells.
H) Schematic presentation of the \( Xist \) locus and the localization of the PCR primers used to determine skewing of \( Xist \) expression. RT PCR was performed with cDNA of 7 day differentiated 2n XX cells and 3n XXY cells, with \( Xist \) primers spanning intron 6, amplifying a length polymorphism present in exon 7. The average percentage, and standard deviation, of \( Xist \) emanating from the Cast/Ei X chromosomes relative to the total amount of \( Xist \) is shown in the right graph.
differentiation or development. Indeed this has been reported in differentiating male ES cells with this Tsix-stop mutation [34,35].

Although the thresholds for both Cast/Ei and 129/Sv X chromosomes are similar in F1 2-1 diploid XX cells and the triploid XXY cells that we generated for this study, the putative X-encoded XCI-activator concentration in the nucleus will be different. In the 3n XXY cells, the XCI-activator concentration will be lower than in 2n XX cells, related to the larger volume of the nucleus of triploid cells as compared to diploid cells. Hence, the allele specific threshold for the strong Xce of the Cast/Ei X chromosome in 3n XXY cells may be too high to generate a probability to start XCI (Figure 5G). To test whether this is true, we differentiated 2n XX and 3n XXY lines for 7 days (in triplo), and performed RT-PCR analysis with an Xist specific primer set. As predicted, we found that skewing of XCI is enhanced towards the weak Xce of the 129/Sv X chromosome in the 3n XXY cell lines (Figure 5H). We conclude that the stochastic simulation studies support our hypothesis that the probability for an X chromosome to undergo initiation of XCI is effectuated by an X-encoded activator of XCI, above a nuclear threshold level. This level is dependent on the number of X chromosomes per nucleus as well as the nuclear volume related to ploidy, and differential thresholds for specific Xce alleles.

Discussion
We have analyzed XCI in differentiating triploid mouse ES cells, and found that XXY cells with an X:A ratio of 0.67 initiate XCI less frequently compared to cells with a higher X:A ratio. Cells that do initiate XCI (XaXiY) proliferate slightly faster than XaXaY cells, and slowly accumulate in time. Simulation studies of XCI, based on a stochastic principle, indicate that XCI counting and choice can be mimicked when using a probability for an X chromosome to be inactivated, in which the probability is dependent on a nuclear XCI-activator concentration acting at differential threshold levels for X chromosomes with specific Xce alleles.

Triploid ES cells and the need for speed
In this study, we have generated triploid mouse ES cells by PEG mediated fusion of diploid ES cells with haploid round spermatids. Interestingly, we could only generate triploid ES cells with a XXY karyotype, in which the Y chromosome was donated by the round spermatid. The fact that we could not generate an ES cell line with the same XXY karyotype by fusion of a male ES cell with a round spermatid donating an X chromosome indicates that the presence of a spermatid derived X chromosome results in a triploid cell that is not viable. This difference could be the consequence of epigenetic interference with transcription of the X chromosome from spermatids,
The probability to initiate X chromosome inactivation which hampered the viability of our triploid cells. However, such an effect has never been reported in mice [36]. Epigenetic modification of the X in spermatids might be a consequence of meiotic sex chromosome inactivation (MSCI) [23], that is overcome in normal sperm development and fertilization, but cannot be reversed by the ES cell. Indeed, fusion experiments with round spermatids harboring an X-linked \textit{GFP} transgene indicate that the spermatidal X chromosome is not reactivated by the ES cell. In contrast, fusion of ES cells with somatic XaXi diploid cells results in proper reactivation of the inactive X chromosome [25]. Therefore, the apparent absence of spermatidal X reactivation in our triploid XXY and XXX ES cells indicates the presence of epigenetic differences laid down on an Xi during the MSCI and the XCI processes. The Y chromosome is also subject to MSCI, but fusion of XX diploid ES cells with a round spermatid containing a Y chromosome does result in viable 3n ES cell lines. This shows that the spermatidal autosome does not affect the viability. The Y chromosome has little gene content, compared to the large X chromosome, such that possible epigenetic modification of the Y chromosomes by MSCI may not impact on the outcome of the fusion process.

The absence of triploid XYY ES cells can be attributed to these cells having an X:A ratio of 0.33, which is probably lower than required for normal viability and growth for ES cells. Lethality due to an elevated level of Y chromosome transcripts is not likely, in view of the viability of 47,XYY aneuploid male individuals. Although XYY triploid embryos have been observed to occur in mouse and human, the observed frequencies are much lower than expected [37,38]. Interestingly, for differentiating mouse triploid XXY ES cells we find many cells with a single Xa, indicating that an X chromosome under-dosage problem, of one active X per triploid genome, plays a role in particular in undifferentiated ES cells or during early embryonic development. Moreover, after 10 days of EB differentiation of these XXY triploid ES cells, we found an increase in the relative number of XaXiY cells, making up 41% of the total cell population. This indicates that XaXiY is the inactivation pattern that results in a cell with the preferred dosage of X-linked genes. This observation is supported by previous \textit{in vivo} experiments, examining XCI in mouse XXY and XXX triploid 10 dpc (days \textit{post coitum}) embryos, which showed that 83% of the cells were XaXiY, and 92% of the cells were XaXiXi, respectively [19]. Therefore, we conclude that mouse triploid cells preferably keep only one of their X chromosomes active.

Our previous studies have indicated that the probability to inactivate an X chromosome is proportional to the X:A ratio [10]. Based on this observation, we proposed the presence of an X-linked gene encoding an XCI-activator, which itself is transcriptionally inactivated during the XCI process. During differentiation or development, the nuclear concentration of this XCI-activator will increase and reach
a threshold level required to generate a probability to initiate XCI. In cells with a relatively high X:A ratio, the XCI-activator concentration will reach the threshold level at an earlier time point and will plateau at a higher level, and therefore generate a higher probability, compared to cells with a lower X:A. This model assumes that the nuclear volume is directly proportional to the ploidy, which in mice is indeed the case [39,40]. We found that triploid XXY ES cells, and tetraploid XXXY and XXXX ES cells showed a significant difference in the number of cells that initiated XCI after three days of differentiation, supporting the presence of an XCI-activator. Moreover, tetraploid XXXX cells have initiated XCI after three days of differentiation more effectively than diploid XX cells, despite a similar XCI-activator concentration (number of X chromosomes per nuclear volume). We attribute this difference to the different number of X chromosomes, that each have a probability to initiate XCI. This is supported by our simulations, that also show a faster increase of tetraploid XXXX cells with one or more Xi’s than the rate of appearance of diploid XX cells with an Xi.

The present observation that after three days of ES cell differentiation 3-4% of XXY triploid ES cells have started XCI provides additional evidence for the hypothesis that the X:A ratio indeed determines the probability to initiate XCI. Our studies also show that the XCI initiation rate for the differentiating XXY triploid ES cells is too low to allow all cells to inactivate one X chromosome within the time span where XCI can be initiated. These cells cannot meet the need for speed.

Cellular population dynamics of XCI
The present simulation studies of XCI indicate that the XCI counting and initiation process can be simulated by inclusion of relatively few variable parameters. First, there is a probability to initiate XCI for any individual X chromosome. Second, specific Xce alleles respond to different nuclear threshold levels of an XCI-activator. This is all that is required to explain the initiation of XCI. The simulations only tested whether a stochastic model for XCI could explain the available and new experimental data. Other models explaining the initiation phase of XCI, including the blocking factor, symmetry breaking, and transvection models, hypothesize that XCI is directed by a mutual exclusive choice process [41]. Unfortunately, this situation could not be simulated in our program. Nevertheless, the simulations based on a stochastic model make predictions, some of which we have thoroughly tested and other predictions that await further analysis.

In the computer simulations, we have used ten XCI choice rounds over a 10 day differentiation period. However, in vivo the number of choice rounds may be less than ten, resulting in more cells with too many Xa’s, which would be selected against. This is supported by observations made in female embryos that show a significant
The probability to initiate X chromosome inactivation

number of cells with two Xa’s after completion of the X inactivation process [19,42]. Our simulations also predict less cells with too many Xi’s than we detected in vivo, especially for the 4n XXXX and XXXY cells. This can be explained, if initiation of XCI on the right number of X chromosomes does not result in an immediate drop of the XCI-activator level below the threshold, so that XCI can still be initiated on additional chromosomes until turnover of the XCI-activator has resulted in a drop below the threshold level. We have not incorporated this possibility in our simulation program.

With regard to embryo development, it is interesting that simulations with 2n XX ES cells indicate that the cell number in female diploid XX embryos will be significantly reduced by about 12% when compared to male diploid XY embryos (Supplementary Table 4, blue box). This is in the range of reported size differences between female and male embryos around the time XCI has been completed, and before hormonal cues start to influence growth of the embryo [43]. Therefore, this reported in vivo size difference could be explained by female specific cell loss as a by-product of the X inactivation process. Furthermore, for female homozygous Tsix-stop cells, our simulation showed that almost all the cells are lost during the XCI process. In male ES cells the reduction in expected cell number is 88%. This may explain the reported sex-ratio distortion in homozygous ΔCpG Tsix knockout mice [44]. However, the high loss of cells in our simulations of male and female embryos with a homo/hemizygous Tsix-stop mutation indicates that these mice will most likely not be viable. Interestingly, viable mice, albeit at a lower mendelian ratio, have been reported with a homo/hemizygous ΔCpG Tsix knockout allele suggesting that the probability to initiate XCI for this allele is lower than for the Tsix-stop allele used in our simulations [44]. This indicates that the ΔCpG Tsix allele is a partial knockout of Tsix, which is supported by in vivo studies showing that a heterozygous Tsix-stop allele results in a non-viable phenotype, in contrast to the heterozygous ΔCpG Tsix mice that are viable and breed [44,45]. Also, two other mutations of Tsix result in activation of Xist in male cells upon ES cell differentiation, in contrast to male cells with a ΔCpG Tsix mutation that do not show initiation of XCI [34,35].

The XCI-activator has not been identified yet. However, several lines of evidence indicate that it acts through Xist, and could be a protein or RNA involved in activation and/or stabilization of Xist [10]. Studies with different Tsix mutant cell lines suggest that, in mice, Tsix plays a crucial role in determining the XCI-activator level required for generating a probability to initiate XCI by suppression of Xist. In addition, chromatin modifications of the Xist promoter may also play a role in determining the threshold, which might be even more relevant in human were the presence and function of Tsix are still speculative. Identification and characterization
of the XCI-activator, and factors involved in setting up the threshold, will be of crucial importance for a better understanding of the initiation phase of XCI.

**Materials and Methods**

**Culture and differentiation of ES cells**

ES cells were cultured in DMEM supplemented with 15% heat inactivated foetal calf serum, 100 U ml⁻¹ penicillin, 100 mg ml⁻¹ streptomycin, non-essential amino acids, 1000 U/ml leukaemia inhibitory factor (LIF) and 0.1 mM β-mercaptoethanol. ES cells were grown on a layer of male mouse embryonic fibroblast (MEF) feeder cells. To induce differentiation into EBs, ES cells were pre-plated for 60 minutes and non-adherent ES cells were transferred to non-gelatinized bacterial culture dishes without feeder cells in differentiation medium, IMDM Glutamax, 15% heat inactivated foetal calf serum, 50 μg/ml ascorbic acid, 100 U ml⁻¹ penicillin, 100 mg ml⁻¹ streptomycin, 37.8 μl/l monothioglycerol.

**Mice and snaput isolation of round spermatids**

All animals were treated in accordance with guidelines of the Erasmus MC, Rotterdam, the Netherlands. Testes from two Ube2α homozygous mutant mice and two Ube2b heterozygous mutant mice were excised and decapsulated to remove the tunica albuginea. Decapsulated testes were pooled in 20 ml PBS (140 mM NaCl, 3 mM KCl, 1.5 mM KH₂PO₄, 8 mM NaH₂PO₄) / 1.1 mM Ca²⁺/ 0.5 mM Mg²⁺/ 12 mM lactate (Sigma-Aldrich) of 34°C, containing 10mg hyaluronidase (from ovine testes, Roche-Diagnostics), 20mg trypsin (from bovine pancreas, Roche-Diagnostics) and 20 mg collagenase A (Roche-Diagnostics). Testes were shaken for 20 minutes at 90 rpm with 10 mm amplitude to release seminiferous tubuli from interstitial cells. Tubuli were collected by centrifugation for 3 minutes at 2000 rpm and resuspended in 34°C PBS/ 12 mM lactate. After shaking 10 minutes at 120 rpm with 10 mm amplitude to release germinal cells from the tubuli, tubuli remnants were removed. Germinal cells were collected by centrifugation and resuspended in 34°C PBS/ 1.1 mM Ca²⁺/ 0.5 mM Mg²⁺/ 12 mM lactate. The cell suspension was filtrated using a 60 μm filtration cloth. Germinal cells were collected by centrifugation and resuspended in 50 ml PBS/ 1.1 mM Ca²⁺/ 0.5 mM Mg²⁺/ 12 mM lactate/ 0.5% w/v BSA. Cells were separated by sedimentation velocity at unit gravity in a 1-4% w/v BSA gradient at room temperature. First 20 ml PBS/ 1.1 mM Ca²⁺/ 0.5 mM Mg²⁺/ 12 mM lactate was bottom-loaded in a chamber, followed by 50 ml cell suspension. A BSA gradient was created by loading a total of 500 ml of 1%, 2% and 4% w/v BSA in PBS. Cells were allowed to sediment for 2 hours. The chamber was emptied in 8 ml fractions using a fraction collector, and fractions containing peak amounts of cells were identified.
using a 340 nm UV light source. Fractions containing round spermatids were pooled, collected by centrifugation and resuspended in PBS/ 1.1 mM Ca\(^{2+}\)/ 0.5 mM Mg\(^{2+}\)/ 12 mM lactate. Purity of round spermatid preparations derived by this procedure were shown to be >90%, as determined by microscopic analysis of an aliquot of purified cells fixed in Bouins' fixative on glass slides [46].

**Fusion experiments**

*Mus musculus* castaneus/ 129/Sv F1 (F1-2 1) female and C57Bl6/ 129/Sv (V6.5) male ES cell-lines were separated from MEF feeder cells by trypsinizing and preplating for 45 minutes on uncoated culture dishes. PEG1500 fusion was performed according to the manufacturer’s instructions (Invitrogen). Briefly, 4·10\(^6\) cells were combined with 4·10\(^6\) round spermatids in DMEM. After centrifugation cells were resuspended in 300\(\mu\)l 50% v/v PEG1500 and incubated for 2 minutes at 37ºC under continuous stirring. The mixture was gradually diluted with serum containing medium and plated on drug-resistant MEF feeder cells. After 24 hours medium was replaced with medium containing 0.3 μg/ml neomycin and 2 μg/ml puromycin. After nine days, individual ES cell colonies were picked, trypsinized and plated on individual culture dishes in neomycin and puromycin containing medium.

**Cell cycle block**

ES cells were EB differentiated for one or two days and then blocked in the cell cycle by adding 0.75 mM mimosine, 12\(\mu\)l/ml colcemid (KaryoMax, Gibco) or 2100 centiGray \(\gamma\)-irradiation. Cells were fixed one day after applying the cell cycle block.

**Karyotyping**

ES cells were blocked in metaphase by incubation in medium containing 0.12 μg/ml colcemid for 1 hour. Cells were trypsinized and resuspended in 5 ml 0.075 M KCl at 37ºC, collected and resuspended in 0.0625M KCl/ 12.5% methanol/ 4.17% acetic acid. Cells were fixed by washing three times in 75% methanol/ 25% acetic acid and stored in 200\(\mu\)l at 4ºC. The fixed cell suspension was spotted on ethanol cleaned slides and air dried. For determining the total number of chromosomes slides were mounted with 20 \(\mu\)l Dapi vectashield.

To determine the number of X chromosomes, slides were denatured by a three minute incubation at 80ºC in 100 \(\mu\)l 50% formamide/ 2x SSC/ 10 mM phosphate buffer. Subsequently slides were dehydrated, and hybridised overnight at 37ºC with a Cy3 labelled X-paint probe (Cambio). After hybridisation, slides were washed once with 2xSSC at 45ºC, three times with 2xSSC/ 50% formamide at 45ºC and two times with PBS. Slides were dehydrated through ethanol steps (70%, 90%
and 100%) air-dried and mounted with 20 μl dapi vectashield. For determining the number of Y chromosomes, Y-chromosome paint (Cambio) was applied, following the same protocol as for the X chromosome paint.

**RNA FISH analysis**

One day prior to fixation, non-adherent EBs were trypsinized and differentiated ES cells were grown on gelatin-coated cover slips. Cells were rinsed once with PBS and permeabilized by successive incubation in cytoskeletal buffer (100 mM NaCl, 300 mM sucrose, 3 μM MgCl₂, 10 mM PIPES pH 6.8 in H₂O) for 30 seconds, cytoskeletal buffer containing detergent (0.5% triton X-100, 100 mM NaCl, 300 mM sucrose, 3 μM MgCl₂, 10 mM PIPES pH 6.8 in H₂O) for 2 minutes and cytoskeletal buffer for 30 seconds. Cells were fixed in 4% paraformaldehyde/PBS for 10 minutes, rinsed three times with 70% ethanol and stored in 70% ethanol at 4ºC.

The *Xist* probe was a digoxygenin labelled 5.5 kb cDNA sequence [10]. To suppress repetitive sequences 25 μg/ml mouse Cot1 DNA was added and probe mixture was incubated at 95ºC for 5 minutes and at 37ºC for 45 minutes. After overnight hybridisation at 37ºC, slides were washed in 2xSSC at 37ºC for 5 minutes, and three times in 50% formamide/ 2xSSC at 37ºC for 10 minutes. Probe detection was performed at room temperature. Detection was with a sheep anti-digoxigenin antibody (Roche diagnostics), followed by a FITC labelled rabbit anti-sheep antibody (Jackson labs) and a FITC labelled goat anti-rabbit antibody (Jackson labs), each for 30 minutes, in 100 mM Tris pH 7.5/ saline/ Tween, BSA. After detection cover slips were dehydrated and mounted on a slide in Vectashield and DAPI to counter stain DNA. To determine the number of inactive X chromosomes in a cell, a non-overlapped intact nucleus was selected, and the number of *Xist* clouds were scored.

**BrdU analysis**

For BrdU analysis, differentiated ES cells of trypsinized non-adherent EBs were grown on gelatin-coated cover slips in the presence of 20 μM BrdU, and fixed as described in the RNA FISH section. Cover slips were dehydrated, air-dried and denatured in 70% formamid/ 2x SSC/ 50 mM phosphate for 3 minutes at 85ºC. Coverslips were washed in ice cold 70% ethanol and through 70%, 90% and 100% ethanol washes and air dried after which the *Xist* probe was applied. Detection of *Xist* RNA was as described in the previous section, detection of BrdU was performed with a mouse monoclonal BrdU antibody (DAKO), followed by a rhodamin labelled donkey anti-mouse antibody (Jackson labs), 30 minutes incubation each.

To determine the number of BrdU labelled cells for the XaXaY and XaXiY cell populations, first a microscope field was selected, containing one or more intact
nuclei with an $X_{ist}$ cloud. Within this field, the number of cells containing an $X_{ist}$ cloud with negative, intermediate and highly positive BrdU staining was determined. Subsequently this was also done for all cells without an $X_{ist}$ cloud in the same microscopic field.

**DNA FISH analysis**

For DNA FISH, cells were fixed as for RNA FISH, and pretreated for 4 min with 0.5% pepsin in 10mM HCl at 37°C, post fixed for 5 minutes in 4% paraformaldehyde/PBS, washed twice with PBS, and dehydrated prior to denaturation. Denaturation of target sequences was as described in the BrdU analysis section. Cover slips were incubated with a combination of two biotin-labelled BACs (CT7-155J2 and CT7-474E4) at 37°C overnight. BACs were detected using mouse anti-biotin (Roche diagnostics) and donkey anti-mouse antibodies (Jackson labs) as described for RNA FISH. To determine the number of X chromosomes, non-overlapping nuclei were selected and the number of signals per nucleus was determined.

**Genotyping and RT PCR analysis**

For genotyping the mutant Ube2b allele was amplified with primers CTTTACGGTATCGCCGCTCCCGAT, TTGAAATCCCGCATGAGC, and CGGAGGGAGACGTCATTG. For RT-PCR RNA was isolated with Trizol reagent, treated with RNAse free DNAs and reverse transcribed (all Invitrogen). $X_{ist}$ RNA was amplified with primers ACTGGGTCTTCAGCGTGA, and GGGAATAGGTAAGACACACTG spanning intron 6, which amplify a length polymorphism in exon 7 (129/Sv fragment is 888 bp, Cast/Ei fragment is 845 bp).

**Stochastic simulations**

Stochastic simulations were performed in a SQL based program (the source code can be found in the supplementary data), using 10 Z-stacks, and 100 starting cells. The program allows the use of different probabilities in time, a different number of X chromosomes per cell, and a different rate of cell division depending on the number of Xi’s.

**Acknowledgements**

We would like to thank all department members for helpful discussions. This work was supported by HFSP CDA and NWO-VIDI grants to J.G., a NWO-AGIKO grant to K.M. and a grant from the Dutch government (BSIK programme 03038, SCDD).

All Supplementary Figures and Tables are available at request with J. Gribnau.
References

The probability to initiate X chromosome inactivation

triggered during ES cell differentiation. Mol Cell 5: 695-705.


Supplementary Figure 1

A) The panels show the mathematical computation the XaXa, XaXi and XiXi populations with a 5%, 10%, 20%, 30%, and 40% fixed probability per X chromosome. The different bar-graphs show the relative distribution of the three different cell types (XaXa = green, XiXa = red, XiXi = blue).

B) This panel shows the mathematical computation the XaXa, XaXi and XiXi populations with a changing probability for m=1 presented in figure 4B.
Chapter 4

RNF12 is an X-encoded activator of X chromosome inactivation

Iris Jonkers*, Tahsin Stefan Barakat*, Eskeatnaf Mulugeta Achame, Kim Monkhorst, Eveline Rentmeester, Frank Grosveld, J. Anton Grootegoed and Joost Gribnau

* These authors contributed equally

Submitted to Science
Abstract
In somatic cells of female placental mammals, one X chromosome is inactivated to minimize sex-related dosage differences of X-encoded genes. X chromosome inactivation (XCI) is a stochastic process, in which each X has an independent probability to initiate XCI [1]. This probability is determined by the nuclear concentration of an X-linked XCI-activator [1]. Here, we identify RNF12 as an activator. Additional copies of Rnf12/RNF12 result in initiation of XCI in male mouse ES cells, and in initiation of XCI on both X chromosomes in a substantial percentage of female ES cells. This activity depends on an intact open reading frame, providing evidence that RNF12 protein is required for XCI. Rnf12 transcription is subject to XCI, supporting a role for RNF12 in the XCI counting process.

Results and Discussion
In the mouse embryo proper, XCI is random with respect to the parental origin of the inactivated X chromosome [2], and is initiated around 5 days post coitum in the mouse embryo, or upon ES cell differentiation in vitro. Initiation of XCI is marked by transcriptional up-regulation of the X-encoded Xist gene on the future inactive X chromosome (Xi). Xist is a non-coding spliced and poly-adenylated RNA, which spreads over the Xi while attracting protein complexes required for the silencing process [3,4,5]. Tsix and Xite gene sequences overlap with Xist, but are transcribed in anti-sense direction, and play an important role in suppression of Xist transcription during the XCI process [6,7].

XCI starts with counting of the number of X chromosomes and selection of the future active X (Xa) and Xi. This process is stochastic, and the independent probability for any X chromosome to be inactivated increases with an increased X to autosome ratio, suggesting involvement of an X-encoded activator in counting and the XCI process [1]. In female cells, but not in male cells, the concentration of the XCI-activator is sufficient to initiate XCI with a certain probability per time frame. Inactivation of both X chromosomes in female cells is prevented by cis inactivation of the gene encoding the XCI-activator and the stochastic nature of the XCI process. Our previous finding that female cells with a heterozygous deletion of a region including Xist, Tsix, and Xite still initiate XCI upon differentiation [1], also supports the involvement of an additional factor in counting and XCI.

Studies with mouse cell lines harboring truncated and translocated X chromosomes have indicated that the gene encoding this XCI-activator is most likely located within a region of 10 megabases (Mb) surrounding the Xist locus [8,9,10,11]. To identify the XCI-activator, we generated transgenic male and female ES cell lines with stably integrated BAC transgenes covering this 10 Mb region. Our working
hypothesis predicts that initiation of XCI upon differentiation in male ES cells on the single X, or initiation of XCI on both X chromosomes in a substantial percentage of female ES cells, indicates the presence of additional copies of the gene encoding the XCI-activator.

Previous studies with autosomally integrated mouse or human \textit{xist/xist} transgenes in mouse ES cells indicated that autosomal integration of these transgenes results in activation of the endogenous \textit{xist} gene \cite{12,13}. This suggests that these transgenes include sequences encoding the XCI-activator. We therefore started our screen with a BAC covering mouse \textit{xist}, excluding the transcription start sites of \textit{tsix} and \textit{xite}. BAC RP24-180B23 was stably transfected into male ES cells. Clones were expanded under neomycin selection and differentiated for 3 days before analysis. Besides wild type ES cells, we also made use of a male ES cell line 1.3 which contains 16 copies of a ms2 repeat integrated in exon 7 of \textit{xist} (Figure 1A). This tag does not interfere with XCI, and allows discrimination between endogenous \textit{xist-ms2 and transgenic xist} \cite{14}. BAC integration and copy number were determined by DNA-FISH and qPCR. The percentage of cells with accumulated \textit{xist} covering the Xi (\textit{xist} cloud) was determined by RNA-FISH using an \textit{xist} cDNA probe. In most cell lines with an autosomal integration of the transgene we found a significant percentage (>5%) of male cells with single \textit{xist} clouds (Figure 1B, Supplementary Table 1A), confirming previous findings \cite{13}. The pinpoint signal represents basal \textit{tsix/xist} transcription. RNA-FISH using \textit{xist} (FITC) and ms2 (rhodamine red) probes performed on five different transgenic 1.3 ES cell lines which were differentiated for 3 days revealed no ms2 positive clouds (Figure 1C), indicating that the endogenous \textit{xist} gene was never up-regulated leading to conversion of the pinpoint signal to a cloud, excluding this region as a candidate region harboring the XCI-activator. Male ES cells transgenic for a BAC sequence CTD2183M22 covering human \textit{xist} (Figure 2C) did not show significant induction of murine \textit{xist} in male cells (Figure 1D, and Supplementary Table 1A), also excluding this region from playing a role in activation of XCI.

We continued our search for the XCI-activator gene by generating transgenic male ES lines with BACs covering \textit{tsix} including a region 100kb centromeric to \textit{tsix} (RP23-447O10), and BACs covering a region 300 kb telomeric to \textit{xist} (CT7-474E4, RP24-224E13, and RP23-100E1). RNA FISH analysis only revealed pinpoint \textit{tsix/xist} signals at day 3 of differentiation, indicating the absence of XCI initiation on the wild type X chromosome (Figure 1E, 1F, and Supplementary Table 1B). BACs CT7-474E4 and RP23-224E13 include the \textit{xpr} region, which recently was implicated in pairing and counting of X chromosomes at the onset of XCI \cite{15}. Surprisingly, we did not observe XCI in transgenic male cells harboring at least one additional copy of these transgenes, nor did we observe an increased percentage of female cells with two Xi’s.
Figure 1. BAC contig covering the X inactivation center

A) Map showing part of the mouse X chromosome, the location of the BAC sequences used in this study, and the position of ms2 repeats within Xist. RNA-FISH probes are indicated in green and red, and non-annotated genes in grey.

B) RNA-FISH with an Xist probe (FITC) on day 3 differentiated male ES cells with an integration of BAC RP24-180B23, showing cells with Xist clouds (arrows), and pinpoint signals (star). DNA is stained with DAPI.

C) RNA-FISH with Xist (FITC) and ms2 (rhodamine red) probes on day 3 differentiated 1.3 male ES cells with an integration of BAC RP24-180B23, showing that Xist clouds are associated with autosomes, and ms2 positive Tsix/Xist pinpoint signals (star). DNA is stained with DAPI.

D) RNA-FISH detecting mouse Xist (rhodamine red) and human Xist (FITC) on day 3 differentiated male cells transgenic for human CTD2183M22 (Figure 2C) shows that human Xist (clouds) does not induce XCI on the endogenous mouse X chromosome (Xist pinpoints). DNA is stained with DAPI.

E) Similar to B), but with BACs RP23-447O10, CT7-474E4, and RP24-224E13. Only pinpoint signals, no clouds are seen.

F) Percentage of CT7-474E4 transgenic cells with Xist clouds (green), and BAC copy number as determined
RNF12 is an X-encoded activator

(Supplementary Table 1C), excluding the Xpr region from playing a role in activation of XCI.

We next analyzed transgenic cells with an integration of BAC RP24-240J16, which covers an area from 410 kb to 570 kb telomeric to Xist (Figure 1A). We established transgenic male ES cell lines using three different ES cell lines (F1 2-3, J1, and 1.3), and confirmed the BAC integration (Figure 1H, and Supplementary Figure 1A, B). Interestingly, RNA-FISH analysis of day 3 differentiated BAC transgenic ES cell lines showed several lines with a significant number (>5%) of cells with Xist clouds, which we never observed with control male cell lines (≤1%; Figure 1G, 1H, and Supplementary Figure 1A). DNA/RNA-FISH analysis detecting both the X chromosome and Xist RNA confirmed that these male ES cells initiated XCI on the single X chromosome (Figure 2A). In transgenic female cell lines we also obtained an increased percentage of cells with two Xist clouds, which positively correlated with the BAC copy number (Figure 1G, 1I). RNA-FISH analysis on two different day 3 differentiated RP24-240J16 transgenic female lines, heterozygous for the ms2 tag, showed that female cells with two Xist clouds only had one ms2 positive cloud (Figure 2B). Because aneuploidy would have resulted in a significant proportion of cells with two ms2 positive or negative clouds, this finding confirms that the transgenic female cells contained two X chromosomes. Our results therefore suggest that BAC RP24-240J16 harbors a gene encoding an XCI-activator. RP24-240J16 transgenic cells did not initiate XCI on all X chromosomes, which could be attributed to the fact that additional copies of this BAC will only lead to an increased probability to initiate XCI, and death of cells that initiated XCI on all X chromosomes. In addition, expression of the transgenes may be variegated, or more than one different X-encoded XCI-activator is involved in initiation of the XCI process.

To test whether the XCI-activator is conserved between mouse and human, we generated transgenic mouse ES cells with human BAC CTD2530-H13 (Figure 2C), which covers an area that is homologous to the region covered by mouse RP24-240J16 (Figure 1A). Upon differentiation of these CTD2530-H13 transgenic cells, XCI is induced in a significant proportion of the male cells, and on both X chromosomes in an increased percentage of the female cells, indicating that indeed the XCI-activator is functionally conserved between mouse and human (Figure 2D, 2E, 2F). We fine-mapped the area required for induction of XCI in male cells using mouse by qPCR (additional BAC copies in grey, endogenous copies in black, n>100 per cell line).

G) Similar to B), but with BAC RP24-240J16, showing male cells with Xist clouds (arrows) or pinpoint signals (star), and female cells with two Xist clouds (arrows).

H, I) Percentage of male cells with single Xist clouds (H) and female cells with two Xist clouds (I), and copy number of the region covered by the BACs determined by qPCR (additional BAC copies in grey, endogenous copies in black, n>100 per cell line).
BAC sequences covering part of BAC RP24-240J16 (Figure 3A). With this strategy we reduced the minimal region required for ectopic XCI to 10 kb (Figure 3A, 3B, and Supplementary Table 2). Expression analysis using total RNA of day 3 differentiated female ES cells hybridized to a tiling array covering BAC RP24-240J16 indicated that \( \text{Rnf12} \) is the only transcribed sequence and that the 10 kb region overlaps with the promoter and exons 1 and 2 of \( \text{Rnf12} \) (Figure 3C). In addition, alignment of BACs RP24-240J16 and CTD2530-H13 revealed a high sequence homology in the 10 kb area and the rest of \( \text{Rnf12} \), suggesting that mouse \( \text{Rnf12} \) and human \( \text{RNF12} \) both encode a conserved XCI-activator.

Attempts to over-express \( \text{Rnf12} \) cDNA resulted in extensive cell death. Also, the RP24-240J16 ES cell lines did not survive freeze-thawing. To establish the role of \( \text{RNF12} \) in XCI, we inserted a neomycin/kanamycin resistance cassette in two orientations into exon 5 of \( \text{Rnf12} \), disrupting most of the open reading frame, but leaving the 10 kb minimal region required for ectopic XCI intact. This allowed us to test whether the induction of XCI is evoked by either \( \text{Rnf12} \)-encoded protein or...
Figure 3. Fine-mapping the area required for XCI counting

A) Position of BAC Contigs used for the fine-mapping. BAC RP23-25P18, covering part of BAC RP24-240J16, was truncated (the part shown as a solid line was shown to be present using PCR analysis).

B) RNA-FISH detecting Xist (FITC) on day 3 differentiated male ES cells with different BAC transgenes, showing that the 10 kb region depicted in A) is required for initiation of XCI in male cells. DNA is stained with DAPI.

C) Tiling array expression analysis with total RNA of day 3 differentiated female ES cells (top panel, moving average in red, raw data in blue), and alignment of mouse (RP24-240J16) and human (CTD2530-H13) BAC sequences (bottom panel), shown is the region surrounding the Rnf12 / RNF12 gene.
**Figure 4. RNF12 is an XCI-activator**

**A)** A map of part of the X chromosome covered by BAC RP24-240J16, and the modified BAC RP24-240J16ΔRnf12 with a neomycin resistance cassette inserted in two orientations (only sense orientation is shown). Right panels show confirmation of homologous recombination by PCR using different primer combinations as indicated.

**B)** RNA-FISH detecting Xist (FITC) on day 3 differentiated BAC RP24-240J16 (left panels) and RP24-240J16ΔRnf12 (right panels). Transgenic male ES cells show initiation of XCI (clouds) in RP24-240J16 male cells only.

**C, D)** Copy number determination and quantification of the percentage of cells that initiated XCI in 8 different RP24-240J16 and RP24-240J16ΔRnf12 (sense) lines (C). Right table (D) shows a summary of the results obtained with all RP24-240J16 and RP24-240J16ΔRnf12 cell lines. Not all positive clones with BAC integrations could be analyzed.

**E)** RT-PCR expression analysis of Rnf12 with RNA isolated from undifferentiated and day 7 differentiated 129/Sv Cast/Ei Tsix-stop ES cells using a NheI cleavage of the PCR product at an RFLP present in the 129/Sv allele. The left two lanes show control 129/Sv and Cast/Ei samples.

**F)** Western blot analysis detecting RNF12 (green) and GAPDH (red) in undifferentiated and day 3, 5, and 7 differentiated female ES cells.

**G)** A model for XCI. Before XCI is initiated, the nuclear RNF12 concentration is twice as high in female
RNF12 is an X-encoded activator by a DNA element within the 10 kb region (Figure 4A). Analysis of different day 3 differentiated male ES cell lines transgenic for BAC RP24-240J16ΔRnf12 (sense and antisense) containing the mutated Rnf12 gene, revealed no significant induction of XCI (≤1%), in contrast to control transgenic male ES lines which showed induction of XCI (>5%) in most cell lines (Figure 4B, 4C, 4D, and Supplementary Table 3A). This result was confirmed with transgenic 30Δ1 female ES cells, were only integration of the unmodified BAC RP24-240J16 resulted in an increased percentage of cells with two Xi’s (Supplementary Table 3B), indicating that Rnf12 encodes an XCI-activator.

Rnf12 is ubiquitously expressed in embryos around the onset of XCI [16] and encodes a 67 kD E3 ubiquitin ligase with one known target, LDB1, that is involved in the regulation of LIM-homeodomain transcription factors [17]. Hence, it is likely that RNF12 has functions also outside the context of XCI.

In three reported girls carrying a ring X chromosome, which is associated with short stature and developmental delay, there is lack of expression of Xist from the ring X chromosome [18,19]. Despite the presence of Xist, these ring chromosomes are not inactivated, and it appears that the ring X chromosomes in these cases also lack RNF12. This implies that the 46,X,r(X) cells in these girls carry only one functional RNF12 gene, and reinforces a dose-dependent role of RNF12 in XCI. Allele specific RT-PCR analysis with RNA of undifferentiated and day 7 differentiated heterozygous Tsix mutant ES cells, which exclusively inactivate the mutant 129/Sv X [20], showed that Rnf12 expression is subject to XCI (Figure 4E). X-linkage of the gene encoding XCI-activator guarantees a role in counting, as the XCI-activator concentration will be twice as high in female compared to male cells. In addition, stochastic initiation of XCI and XCI mediated silencing of Rnf12 in cis prohibits the inactivation machinery from silencing all X chromosomes.

Whether RNF12 is the only XCI-activator regulating initiation of XCI remains to be determined. Protein expression analysis of differentiating female ES cells indicated that RNF12 expression is not up-regulated around the time XCI is initiated (Figure 4F). This would imply that an additional factor, acting as target or modifier of RNF12 action and not necessarily X-encoded, is up-regulated upon differentiation. Potentiation of RNF12 action by this unknown factor in female cells would result in activation of Xist transcription with a certain probability (Figure 4G). The conservation compared to male ES cells. Upon differentiation of the ES cells, the concentration of an unknown target or modifier of RNF12 increases, which potentiates the action of RNF12. This leads to up-regulation of Xist transcription, resulting in a probability to initiate XCI, to silence Tsix and to accumulate along the X. Spreading of Xist RNA leads to silencing of Rnf12 transcription in cis, resulting in a drop of the nuclear RNF12 concentration, prohibiting inactivation of the second X. In male cells, the RNF12 concentration does not reach the threshold required to start this sequence of events.
of RNF12 activity between mouse and human, and the absence of an established role for Tsix in human X inactivation, suggests that RNF12 acts through activation of Xist / Xist transcription. This is supported by studies with Xist promoter transgenes which showed higher expression in female cells compared to male cells [21]. Identification and characterization of the direct target or modifier of RNF12 will be the next step, to further elucidate the XCI process.

Methods
Modification of BACs
BACs were acquired from BACPAC (C57/B6 libraries) or Resgen (129/Sv library), and a kanamycin/neomycin resistance cassette was introduced by in vitro lox recombination (NEB). This cassette was generated by introduction of a lox sequence and Scel site BglII-NotI into pEGFP-N1 (Clontech). RP24-240J16ΔRnf12 was generated by homologous recombination in bacteria [22]. The targeting cassette was PCR amplified using primers (GCCTTCGAACATCTCTGAGC, GAGCCGGACTAATCCAAACA), cloned into pCR-BluntII-TOPO (Invitrogen), and linearized with NheI to introduce a kanamycin/neomycin cassette AflII-EcoO109I excised from EGFP-N1. Homologous recombination was confirmed by PCR with primers 1, GGCAGAGAGCCACTTTCATC, 2, CTGGCACTCTGTCGATACCC, 3, TTCCACAGCTGGTTCTTTCC, and gel electrophoresis. BACs were Scel linearized and electroporated into ES cells.

Cell lines
Transgenic ES cell lines were generated using wild type male J1 (129/Sv), F1 2-3 (129/Sv-Cast/Ei) ES lines or a wild type female line F1 2-1 (129/Sv-Cast/Ei). For determination of the origin of Xist a male line 1.3 and female line 30Δ1 were used, which both contain one Xist allele with 16 ms2 repeats integrated in exon 7[14]. ES cells were grown and differentiated as described[1].

RNA and RNA/DNA FISH
RNA-FISH and RNA/DNA FISH were performed as described [1,14,23]. For detection of the region surrounding Xist a cocktail of biotin labeled BAC sequences was used (CT7-474E4, CT7-45N16, CT7-155J2 and CT7-211B4).

Expression analysis
For Rnf12 RT-PCR analysis, RNA was reverse transcribed (Invitrogen Superscript III) and amplified with primers TAAAGAGGGTCCACCACCAC and GGCGAGAGCCACTTTCATC. PCR products were purified and digested with Nhel, which digests the 129/Sv but not the Cast/Ei PCR product. RNF12 was detected with a rabbit anti RNF12 antibody
RNF12 is an X-encoded activator (Abcam), GAPDH was detected with a mouse anti GAPDH antibody (Chemicon). For expression analysis of the region covered by RP24-240J16 total RNA was isolated from two day 3 differentiated wild type female ES lines, labeled and hybridized to Niblegene tiling arrays, covering the X chromosome with 30 bp intervals, excluding repetitive and non annotated sequences.

**BAC copy number determination**

BAC copy number was determined with real time PCR using primers; GTTCTTACCACCAATTGAAAACG, CAAAACAGACTCCAAATTCATCC, for RP24-180B23, ACCATGACCAAAGCAACTCC, CTCCTCCAGTACCATGTCTGC, for RP23-447010 CCGCTGAAGATAGCTCTTGG, GCCACAACCAACAAGAAATCC for RP24-224E13 and CT7-474E4, ATCTCACCGTACCCATGAGC, CCTCTGGTACGACCTCTTGC, for RP23-100E1, AGCCCCGATGAAAAATAGAGG, GGCAATTCGATAATCTTTGG for RP24-240J16, RP23-7K14, RP23-138O4, RP23-288K24, RP23-463H23 and RP23-36C20, AGTCATTGGCTGGTCACTCC, ATCAACCAGACACCAAACC, for RP23-25P18, GATAGCAGTCTGGCATCCTCC, ACGCAAAAGCTCTAACAAGC, for CTD-2183M22, CTCTAAAACTCTTCTGCT, ACCACATTTGGCTCAGATCC, for CTD-2530H13 and GCACCCATATCCGCATCCAC, GCATTTCTTCCGCTTTTG, for Zfp-42 as an autosomal normalization control.

**Acknowledgements**

We would like to thank Nilhan Gunhanlar, Akiko Inagaki, Bas de Hoon, Annegien Kenter and Maureen Eijpe for their help with some of the experiments. We also thank all department members for helpful discussions. This work was supported by HFSP CDA, NWO-VIDI and TOP grants to J.G., and a grant from the Dutch government (BSIK programme 03038, SCDD).
References
RNF12 is an X-encoded activator


**Supplementary Data**

**A**

<table>
<thead>
<tr>
<th>line</th>
<th>copy nr</th>
<th>% Xist</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>3</td>
<td>4%</td>
<td>204</td>
</tr>
<tr>
<td>17</td>
<td>4</td>
<td>9%</td>
<td>156</td>
</tr>
</tbody>
</table>

**B**

Supplementary Figure 1. XCI in RP24-240J16 transgenic male ES cell lines

A) Copy number determination and quantification of the percentage of cells that initiated XCI at day 3 of differentiation in 1.3 male ES cell lines transgenic for RP24-240J16.

B) DNA FISH analysis with a RP24-240J16 BAC probe (FITC) and an X chromosome paint probe (Cy3), showing the autosomal integration of the BAC in J1 transgenic lines 6 and 8. DNA is stained with DAPI.
RNF12 is an X-encoded activator

![Image of a person and a table]

**Supplementary Table 1. XCI in BAC transgenic male and female ES cell lines**

**A)** Copy number determination and quantification of the percentage of cells that show accumulated Xist and/or Xist at day 3 of differentiation in male ES cell lines transgenic for RP24-180B23 and CTD2183M22. (+), Integration confirmed by DNA FISH only.

<table>
<thead>
<tr>
<th>Line</th>
<th>Copy nr</th>
<th>Autosomal</th>
<th>% Xist</th>
<th>% Xist</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP24-180B23, male ES 1.3</td>
<td>1</td>
<td>+</td>
<td>8%</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>+</td>
<td>10%</td>
<td>455</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>+</td>
<td>3%</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>+</td>
<td>12%</td>
<td>112</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>+</td>
<td>16%</td>
<td>272</td>
<td></td>
</tr>
<tr>
<td>CTD2183M22, male ES 1.3</td>
<td>1</td>
<td>2</td>
<td>0%</td>
<td>0%</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2</td>
<td>0%</td>
<td>1%</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2</td>
<td>40%</td>
<td>0%</td>
<td>192</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2</td>
<td>14%</td>
<td>0%</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>3</td>
<td>0%</td>
<td>2%</td>
<td>124</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1</td>
<td>38%</td>
<td>0%</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1</td>
<td>31%</td>
<td>0%</td>
<td>189</td>
</tr>
</tbody>
</table>

**B)** Copy number determination and quantification of the percentage of cells that initiated XCI at day 3 of differentiation in male ES cell lines transgenic for RP23-447O10, RP23-100E1, CT7-474E4, and RP24-224E13.

<table>
<thead>
<tr>
<th>Line</th>
<th>Copy nr</th>
<th>Autosomal</th>
<th>% Xist</th>
<th>% Xist</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP23-447O10, male ES J1</td>
<td>10</td>
<td>2</td>
<td>0%</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>5</td>
<td>0%</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>RP23-100E1, male ES J1</td>
<td>2</td>
<td>2</td>
<td>0%</td>
<td>&gt;100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2</td>
<td>0%</td>
<td>&gt;100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2</td>
<td>0%</td>
<td>&gt;100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>3</td>
<td>0%</td>
<td>112</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>3</td>
<td>0%</td>
<td>143</td>
<td></td>
</tr>
<tr>
<td>CT7-474E4, male ES 1.3</td>
<td>2</td>
<td>2</td>
<td>0%</td>
<td>&gt;100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2</td>
<td>0%</td>
<td>&gt;100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2</td>
<td>0%</td>
<td>&gt;100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>2</td>
<td>0%</td>
<td>&gt;100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>2</td>
<td>0%</td>
<td>&gt;100</td>
<td></td>
</tr>
<tr>
<td>RP24-224E13, male ES J1</td>
<td>4</td>
<td>3</td>
<td>0%</td>
<td>&gt;100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>2</td>
<td>0%</td>
<td>&gt;100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>2</td>
<td>0%</td>
<td>&gt;100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>2</td>
<td>0%</td>
<td>&gt;100</td>
<td></td>
</tr>
</tbody>
</table>

**C)** Copy number determination and quantification of the percentage of cells that initiated XCI on two X chromosomes at day 3 of differentiation in female ES cell lines transgenic for RP23-447O10, CT7-474E4, and RP24-224E13. (+), Integration confirmed by DNA FISH only.

<table>
<thead>
<tr>
<th>Line</th>
<th>Copy nr</th>
<th>% 2Xist</th>
<th>% 2Xist</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP23-100E1, female ES F1 2-1</td>
<td>5</td>
<td>3</td>
<td>0%</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>12</td>
<td>0%</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>2</td>
<td>1%</td>
<td>177</td>
</tr>
<tr>
<td>CT7-474E4, female ES F1 2-1</td>
<td>2</td>
<td>+</td>
<td>1%</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>+</td>
<td>2%</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>+</td>
<td>0%</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>+</td>
<td>1%</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>+</td>
<td>1%</td>
<td>133</td>
</tr>
<tr>
<td>RP24-224E13, female ES F1 2-1</td>
<td>1</td>
<td>+</td>
<td>2%</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>+</td>
<td>2%</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>+</td>
<td>0%</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>+</td>
<td>0%</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>+</td>
<td>0%</td>
<td>40</td>
</tr>
</tbody>
</table>
Supplementary Table 2. XCI in BAC transgenic male ES cell lines covering part of BAC RP24-240J16

Copy number determination and quantification of the percentage of cells that initiated XCI at day 3 of differentiation in J1 male transgenic RP23-7K14, RP23-138O4, RP23-25P18, RP23-288K24, RP23-463H23 and RP23-36C20 ES cell lines.
RNF12 is an X-encoded activator

Supplementary Table 3. XCI in BAC transgenic RP24-240J16 and RP24-240J16ΔRnf12 male ES cell lines
A) Copy number determination and quantification of the percentage of cells that initiated XCI at day 3 of differentiation in 1.3 male transgenic RP24-240J16, RP24-240J16ΔRnf12(sense), and RP24-240J16ΔRnf12(antisense) ES cell lines.

<table>
<thead>
<tr>
<th>RP24-240J16, male ES 1.3 line copy nr</th>
<th>% Xist</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-16</td>
<td>2</td>
<td>0%</td>
</tr>
<tr>
<td>2-21</td>
<td>2</td>
<td>9%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RP24-240J16ΔRnf12(sense), male ES 1.3 line copy nr</th>
<th>% Xist</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>2</td>
<td>0%</td>
</tr>
<tr>
<td>19</td>
<td>2</td>
<td>0%</td>
</tr>
<tr>
<td>20</td>
<td>13</td>
<td>0%</td>
</tr>
<tr>
<td>21</td>
<td>2</td>
<td>0%</td>
</tr>
<tr>
<td>23</td>
<td>4</td>
<td>1%</td>
</tr>
<tr>
<td>24</td>
<td>3</td>
<td>0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RP24-240J16ΔRnf12(antisense), male ES 1.3 line copy nr</th>
<th>% Xist</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>0%</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>0%</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0%</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>0%</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>1%</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>0%</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>0%</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>0%</td>
</tr>
<tr>
<td>16</td>
<td>5</td>
<td>0%</td>
</tr>
<tr>
<td>17</td>
<td>2</td>
<td>0%</td>
</tr>
<tr>
<td>19</td>
<td>5</td>
<td>1%</td>
</tr>
<tr>
<td>22</td>
<td>3</td>
<td>1%</td>
</tr>
</tbody>
</table>

B) Copy number determination and quantification of the percentage of cells that initiated XCI at day 3 of differentiation in 30Δ1 female transgenic RP24-240J16, RP24-240J16ΔRnf12(sense), and RP24-240J16ΔRnf12(antisense) ES cell lines.

<table>
<thead>
<tr>
<th>RP24-240J16, ♀ ES 30Δ1 line copy nr</th>
<th>% 2xXist</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-2</td>
<td>3</td>
<td>2%</td>
</tr>
<tr>
<td>2-3</td>
<td>3</td>
<td>8%</td>
</tr>
<tr>
<td>2-5</td>
<td>3</td>
<td>4%</td>
</tr>
<tr>
<td>2-6</td>
<td>5</td>
<td>7%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RP24-240J16ΔRnf12(sense), ♀ ES 30Δ1 line copy nr</th>
<th>% 2xXist</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>0%</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0%</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RP24-240J16ΔRnf12(antisense), ♀ ES 30Δ1 line copy nr</th>
<th>% 2xXist</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>1%</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0%</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0%</td>
</tr>
</tbody>
</table>
Chapter 5

*Xist* RNA is confined to the nuclear territory of the silenced X chromosome throughout the cell cycle

*Iris Jonkers, Kim Monkhorst, Eveline Rentmeester, J. Anton Grootegoed, Frank Grosveld and Joost Gribnau*

Published in Mol Cell Biol. 2008 Sep;28(18):5583-94.
Abstract
In mammalian female cells one X chromosome is inactivated, to prevent a dose difference in expression of X-encoded proteins between males and females. $Xist$ RNA, required for X chromosome inactivation (XCI), is transcribed from the future inactivated X chromosome (Xi) where it spreads in cis, to initiate silencing. We have analyzed $Xist$ RNA transcription and localization throughout the cell cycle. It was found that $Xist$ transcription is constant and that the mature RNA remains attached to the Xi, throughout mitosis. Diploid and tetraploid cell lines with an MS2-tagged $Xist$ gene were used to investigate spreading of $Xist$. Most XXXX$_{MS2}$ tetraploid mouse ES cells inactivate the X$_{MS2}$ chromosome and one other X chromosome. Analysis of cells with two Xi’s indicates that $Xist$ RNA is retained by the Xi of its origin, and does not spread in trans. Also in XX$_{MS2}$ diploid mouse ES cells with an autosomal $Xist$ transgene, there is no trans exchange of $Xist$ RNA from the Xi to the autosome. We propose that $Xist$ RNA does not dissociate from the Xi of its origin, which precludes a model of diffusion-mediated trans spreading of $Xist$ RNA.

Introduction
During embryonic development of female mammals, one of the two X chromosomes is silenced in all somatic cell lineages. X chromosome inactivation (XCI) is a mechanism to compensate for the difference in gene expression from sex chromosomes between males and females. In mice, XCI is initiated at 5.5 dpc, after which the proliferating cells clonally propagate the inactivated X (Xi) through many cell cycles. A single locus on the X chromosome, the X chromosome inactivation centre (XIC), is essential for XCI and is home to the $Xist$ gene, one of the main regulators in the process. $Xist$ does not encode a protein, but is transcribed into a functional RNA that is sufficient for, and necessary to silencing. $Xist$ RNA spreads in cis over the X chromosome upon the onset of X inactivation. This RNA contains eight different repeat domains, most of which play a redundant role in the localization of the $Xist$ RNA on the Xi, although the exact mechanism of its association with the Xi is not known. One repeat domain of $Xist$ RNA, the A-repeat transcribed from exon1, is required exclusively for X chromosome silencing. Deletion studies show that loss of this repeat does not interfere with localization of the $Xist$ RNA, but completely abolishes the silencing process [1].

After establishment of XCI, the silenced state of the Xi is fixed by DNA methylation and many chromatin modifications, including tri-methylation of H3K27 (H3K27me3), ubiquitylation of H2A, hypoacetylation of histones, and accumulation of macroH2A. The Xi also starts DNA replication in late S phase and its silenced state is propagated after every cell cycle. This phase of XCI is referred to as the maintenance phase [2,3,4].
Despite many studies on the function of \textit{Xist} RNA, it is still not clear how \textit{Xist} RNA is restricted to the Xi. Thus far, no proteins involved in recruitment of \textit{Xist} RNA to DNA have been identified. It has been hypothesized that \textit{Xist} RNA is targeted to the Xi through LINE1 repeats, which are more abundant on the X chromosome than on autosomes [5,6,7]. This would be in agreement with the observation that \textit{Xist} RNA spreading into an autosomal region that has a low density of LINE1 repeats, in cases of X-autosomal translocations, is hampered [8,9]. For silencing of the Xi, sufficient amounts of \textit{Xist} RNA have to be bound to the Xi only, and after initiation of XCI the \textit{Xist} RNA cloud is remarkably stable. Interestingly, when the nucleus of a cell with completed X inactivation is depleted of DNA and chromatin by DNase I treatment and salt extraction, \textit{Xist} RNA still remains in place, suggesting that \textit{Xist} RNA localization is facilitated by the nuclear matrix [10]. This hypothesis is underlined by the observations that the Xi co-localizes with the well-known nuclear scaffold component SAF-A and that deletion of the RNA binding domain of SAF-A abolishes this co-localization [11,12]. It is unclear, however, whether loss of RNA binding activity of SAF-A also results in loss of \textit{Xist} RNA from the Xi. Furthermore, Zhang et al. [13] have shown that, during S phase of the cell cycle, the nuclear position of the Xi shifts from perinuclear to perinucleolar, indicating that Xi interacts with structural components of the nucleus, potentially in the form of interaction with a nuclear matrix and through the action of \textit{Xist} RNA. Although \textit{Xist} RNA is confined to the Xi which is stably propagated to daughter cells, several reports have indicated that \textit{Xist} RNA dissociates from the Xi around telophase of mitosis. The \textit{Xist} cloud, as visualized by fluorescent in situ hybridisation (FISH), persists into metaphase of mitosis [9] but is eventually lost from the Xi at telophase, after which it can be seen as distinct spots floating in the nucleoplasm [9,14,15]. This would indicate that \textit{Xist} RNA is absent during some time from the Xi and diffuses through the cell. We aimed to reinvestigate these dynamic aspects of \textit{Xist} RNA, using new methods.

\textbf{Materials and Methods}

\textbf{Generation of the F1 2-1 MS2 cell line}

The MS2 lox-neo-lox targeting vector was created by insertion of a lox-neo-lox resistance cassette into the unique HindIII site in \textit{Xist} exon7 of pBlII5k [16], of which \textit{Xist} exons 3-6 were removed with a PstI/ClaI digest. Sixteen MS2 repeats, which were
generated by duplication of two tandem repeats of 8 MS2 hairpin sequences [17],
were inserted in sense orientation in the unique BamHI site present in the polylinker
of the neo resistance cassette. For targeting we used the polymorphic *Mus musculus/
Mus castaneus* F1 2-1 ES cell line [18] and the resistance cassette was removed by
transient Cre-expression.

**Cell culture**

ES cells were differentiated into embryoid bodies with EB medium (Iscoves’s
modified Dulbecco’s medium (IMDM)-glutamax supplemented with 15% v/v fetal
calf serum, 1% v/v penicillin/streptomycin, 1% v/v non-essential amino acids, 0.5
mg/ml ascorbic acid, and 0.038 μl/ml monothioglycerol) on non-gelatinised bacterial
dishes. For FISH analysis, the differentiated cells were trypsinised and plated onto
gelatinised glass cover slips one day before fixation. For 5-bromo-2’-deoxyuridine
(BrdU) incorporation, the cells were grown overnight in the presence of 10 μM BrdU
(Sigma).

**Generation of tetraploid ES cells**

10^6 cells of an F1 2-1 cell line with a randomly integrated puromycin resistance gene
and 10^6 cells of the F1 2-1 MS2 cell line containing a randomly integrated neomycin
resistance gene were mixed and washed twice with serum-free Dulbecco’s modified
Eagle’s medium (DMEM). We used polyethylene glycol 1500 (PEG1500, Roche) as a
cell fusion agent. Cells were fused as described by the manufacturer. After fusion,
the cells were seeded in ES medium with 1 μg/ml puromycin and 250 μg/ml G418,
and selected for approximately 10 days until clones could be picked. Clones were
tested for tetraploidy by measuring the DNA content with FACS analysis and by
karyotyping.

**Generation of cell lines ectopically expressing Xist RNA**

A kanamycin/neomycin resistance cassette was integrated in BAC RP24-180B23,
which contains the *Xist* gene and not Tsix, by lox recombination. Female 30Δ1 XX<sub>MS2</sub>
ES cells were transfected with the BAC that was linearized with Sce-I, followed by
selection with neomycin. The autosomal integration site of the BAC was verified with
DNA-FISH and the copy number was estimated by performing Q-PCR with primers for
*Xist* and *Zfp42* on genomic DNA of the clones.

**Karyotyping**

Cells were grown in ES medium and blocked in metaphase by addition of 12 μl/ml
Karyomax (Gibco) 1 hr before harvesting. The cells were trypsinised, resuspended
Xist RNA is confined

in 0.075 M KCl at 37 °C, centrifuged and fixed in 5 volumes of 0.075 M KCl and 1 volume of fixative (methanol/acetic acid 3:1). After centrifuging the cells, the pellet was washed three times in fixative, and stored. The cells were spotted onto slides, air-dried, stained with DAPI and analysed.

**Cell cycle synchronisation**

F1 2-1 cells were synchronised with mimosine according to Krude et al. [19], with slight modifications. Cells were differentiated as described above, trypsinised at day 3 of differentiation, and plated onto gelatin-coated plates for the RNA and FACS samples and on gelatin-coated coverslips for the RNA-FISH samples. Cells were blocked for ~16 hrs with 1 mM mimosine, and released in EB medium after washing twice with PBS. Every two hours, samples were taken for FACS analysis, RNA isolation and RNA-FISH over a period of 16 hrs. We analysed day 4 differentiated ES cells, because ES cells become insensitive to mimosine later during EB differentiation.

**FACS analysis**

Synchronised cells were trypsinised, washed once with PBS, and fixed for two hours in 100 μl PBS and 900 μl 70% EtOH at 4 °C. After fixation, the cells were washed with PBS and incubated 3 hrs in detection buffer (0.1% Triton X-100; 20 mg/L propidium iodide; 0.2 g/L RNase). The DNA content was measured on a FACScan (Becton Dickinson).

**Allele-specific and quantitative PCR**

RNA was isolated with Trizol (Invitrogen), and 2 µg RNA was DNase treated and reverse-transcribed with Superscript III (Invitrogen).

Allele-specific RT-PCR was performed with primers spanning a length polymorphism identifying the 129 and *M. castaneus* Xist RNA (forward 5’-ACTGGGTCTTCAGCGTGA-3’, reverse 5’-GCAACAACGAATTAGACAAACAC-3’).

Quantitative PCR was performed with primers detecting *Xist* mRNA spanning an exon-exon junction (forward 5’-TACTTCAAGATGCATGCTACCC-3’, reverse 5’-CTTTGGGGAAGGTTATATTGG-3’), *Xist* primary RNA spanning an intron-exon junction (forward 5’-GTTCTTACCACCAATTGAAAACG-3’, reverse 5’-CAAAACAGACTCCAAATTCATCC), and primers detecting beta-actin mRNA as amplification control (forward 5’-ACTATTTGCAACGAGCGTTC-3’, reverse 5’-AGAGGTCTTTACCGATGTCAACG).

The copy number of the B23 BAC was determined with Q-PCR on gDNA of the targeted cell lines compared to WT gDNA of a diploid XX cell line with the *Xist* primary RNA primerset and control primerset over the autosomal Zpf42 gene.
(forward 5’- GCACCATATCGATCCAC- 3’, reverse 5’-GCATTCTTCCGCGGCTTG-3’).

**DNA and RNA-FISH**

Coverslips with cells obtained during cell synchronisation were fixed 10’ with 4% PFA/PBS and washed with 70% EtOH. Cells were made permeable by washing twice with PBS and by 5’ treatment with 25 µg/ml ProteinaseK/PBS at room temperature (RT) or 4’ with 0.2% pepsin at 37˚C. Postfixation was performed for 5’ with 4% PFA/PBS. The coverslips were washed twice with PBS and dehydrated by sequential addition of 70%, 90% and 100% EtOH. Nick-translated DNA probes were dissolved in a hybridisation mixture containing 50% formamide, 2x SSC, 50 mM phosphate buffer, pH 7.0, 10% dextran sulfate, and 100 ng/µl mouse Cot DNA to a final concentration of 1 ng/µl. The probe mix was denatured for 5 min, pre-hybridised for 45 min at 37 °C, and then applied to the slide. Slides were incubated overnight in a humid chamber at 37°C.

After hybridisation, coverslips were washed once in 2x SSC and three times in 50% formamide/2x SSC, both at 37 °C, and twice in TST (0.1 M Tris, 0.15 M NaCl, and 0.05% Tween 20) at RT. Then the coverslips were incubated for 30 minutes in blocking buffer (2 mg/ml BSA in 0.1 M Tris and 0.15 M NaCl) in a humidified chamber at RT. Detection was done with subsequent incubation steps of anti-digoxigenin (Boehringer), anti–sheep (FITC; Jackson ImmunoResearch Laboratories) and anti-rabbit (FITC; Jackson ImmunoResearch Laboratories), or anti–biotin (Roche), anti-mouse (rhodamine red; Jackson ImmunoResearch Laboratories) and anti-donkey (rhodamine red; Jackson ImmunoResearch Laboratories) antibodies in blocking buffer for 30 minutes at RT. Slides were washed twice between each detection step with TST. After the last detection step, the coverslips were washed twice with TST and once with TS (0.1 M Tris, 0.15 M NaCl) and dehydrated after which they were mounted on slides with Vectashield (Vector Laboratories), and stored at 4°C.

Coverslips with cells differentiated normally as described above were washed twice with PBS and then treated for 30 seconds with cytoskeletal buffer (100 mM NaCl; 300 mM sucrose; 3mM MgCl2; 10 mM PIPES, pH 6.8), 2 minutes with cytoskeletal buffer with detergent (100 mM NaCl; 300 mM sucrose; 3mM MgCl2; 10 mM PIPES, pH 6.8; 0.5% TritonX-100) and 30 seconds with cytoskeletal buffer. The cells were fixed for 10 minutes in 4% PFA/PBS and stored in 70% EtOH. Hybridisation and detection were performed as described above.

Coverslips with BrdU-labelled cells were either pretreated and fixed with cytoskeletal buffer and detergent, as described above. Then, the cells were dehydrated by sequential EtOH steps. To make the BrdU accessible for the anti-BrdU antibody (Abcam) the cells were denatured. For this, 100 µl denaturing buffer
was added (70% formamide; 2x SSC; 10 mM phosphate buffer, pH7) and cells were incubated on a hotplate for 3 minutes at 85 °C, followed by 5' incubation in ice-cold 70% ethanol. Cells were again dehydrated and hybridised over night and detection was done as described above. The anti-BrdU (Abcam) and anti-rat (AMCA; Jackson ImmunoResearch Laboratories) antibodies were used for detection.

To determine the integration site of the RP24-180B23 BAC, DNA-FISH was performed. Cells were treated with Karyomax (Gibco) and fixed with methanol/acetic acid as described for karyotyping. Permeabilization was done by treating the cells 4' with 0.5% pepsin at 37°C. After dehydration of the cells, they were denatured as described for 3' at 85°C, followed by 5' incubation in ice-cold 70% ethanol. Cells were again dehydrated, and hybridisation and detection were done with the anti-biotin (Roche) and goat-anti-mouse (FITC; Jackson ImmunoResearch Laboratories).

Five different probes were used for the various experiments. Xist mRNA was detected with the 5.5 kb cDNA Xist probe which is previously described by Gribnau et al. [20]. The probe was labelled with DIG by nick translation (Roche). The probe used to identify the MS2-tagged Xist RNA is a 0.5 kb BamHI-HindIII fragment of pBluescript8xMS2 consisting 8 times the MS2-repeats and was labelled with biotin by nick translation (Roche). The probe to detect the primary transcript of Xist RNA was a combination of 6 PCR products from the primer sets intron1P1 (forward 5'-GTACGCCAAGGGTAGCAAGA-3', reverse 5'-CGTACAAAAGGCCAAATGCAA-3'), intron1P2 (forward 5'-TTGCATTTGCTTTTTGTGACG-3', reverse 5'-GGGGCAAGTCAATAAAGCAC-3'), intron1P3 (forward 5'-GGGGCGTTGGAGAGTGAAC-3', reverse 5'-GGATTTGCTTGGTGGAGAG-3'), intron5 (forward 5'-AGCTATTTACGAGTACACTGTTGC-3', reverse 5'-CAGTATTTACGAGTACACTGTTGC-3'), intron6 (forward 5'-GGATTTGCATTTGCTGGAAG-3', reverse 5'-GGACACACCCGTCAACTCTT-3'). The PCR products were labelled with biotin by nick translation (Roche).

The RP24-180B23 BAC was labelled as a whole with biotin by nick translation (Roche). The X chromosome was detected with X chromosome paint directly labelled with Cy3 (Cambio).

Counting and imaging of cells
In the cell-synchronisation experiment, only cells with a single Xist RNA cloud were counted. We assumed that these cells had established XCI, whereas cells still containing a pinpoint Tsix/Xist signal together with a cloud had not yet completed XCI. At least 100 cells were counted at each time point for at least 2 separate experiments. The tetraploid XXXX MS2 cells were counted similarly. Per separate experiment,
the number of Xist clouds in tetraploid XXXX\textsubscript{MS2} cells was counted in at least 100 cells per cell line. The analysis of the fluorescent intensity of the Xist RNA and MS2 repeats RNA-FISH signal was measured with the ImageJ programme.

Results

Xist RNA expression throughout the cell cycle

One crucial question in understanding how Xist RNA is restricted to the Xi during progression through the cell cycle, is whether the Xi of the daughter cells is re-coated by Xist RNA still present in the nucleoplasm or by newly synthesized Xist RNA, after loss of Xist RNA during mitosis. For the latter, one would expect that the Xist transcription rate is increased in G1 to compensate for the loss of Xist RNA during each mitotic cell cycle. Moreover, DNA replication itself will reduce the concentration of Xist RNA per Xi during the mid to late S phase. Therefore, we studied if the transcription of Xist is regulated during the cell cycle, by analysis of the ratio primary/mature Xist transcripts. The expression profile of Xist was analysed, using F1 2-1 ES cells after 3 days of EB differentiation, that were synchronised in the cell cycle by treatment with mimosine for 16 hours, which blocks the cells in the G1/S transition. The cells were released from the block at day 4 of EB differentiation [19]. Samples for FACS analysis, RNA-FISH and quantitative PCR were taken every two hours for the period of approximately one cell cycle.

FACS analysis, determining the DNA content, indicated that the vast majority of the cells was synchronised in G1 and went through the cell cycle simultaneously (Fig 1A). RNA-FISH was performed with intronic and exonic Xist probes to visualise primary and mature transcripts. The intensity of the intronic FISH signal was taken as a measure of Xist expression in cells and was classified as no signal, weak, moderate, or high (Fig 1B). Only cells with an Xist cloud and without Xist/Tsix pinpoints were counted, because these cells have finished the XCI initiation phase and have established an inactive X [21]. Cells from four separate experiments showed no significant difference in the abundance of Xist primary transcripts between the different time points of the cell cycle (Fig 1C).

This was confirmed by quantitative PCR, in which the amount of primary Xist RNA and spliced Xist RNA was compared to \(\beta\)-actin mRNA at sequential time points after release from the cell cycle block (Fig 1D). At all time points, there was no significant change in the ratio of primary to mature Xist RNA amounts. We therefore conclude that the Xist transcription rate is stable during the cell cycle.
Xist RNA is confined

Figure 1. Xist gene transcription during the cell cycle
A) FACS analysis measuring the DNA content of day 4 differentiated diploid XX ES cells after release from late G1 phase block. Samples were taken every two hours.
B) RNA-FISH on day 4 differentiated diploid XX ES cells after release from late G1 phase block. DNA was stained with DAPI (blue), mature Xist RNA was stained with an exon probe (green with FITC), and primary Xist RNA transcripts with an intron probe (rhodamin red). Primary Xist RNA transcript signals were categorised as none, weak, moderate, and high.
C) Percentage of 4 day differentiated diploid XX ES cells having no, weak, moderate, or high primary Xist RNA transcript signals at different time points after release from late G1 phase block.
D) Quantitative PCR on day 4 differentiated diploid XX ES cells after release from late G1 phase block. The ΔCt of primary and mature Xist RNAs normalized with the β-actin control was taken at different time points.
Xist RNA associates with the Xi throughout mitosis

From our finding that Xist transcription is not up-regulated at specific time points during the cell cycle, and the reported loss of Xist during mitosis [9,14,15], one would expect that Xist RNA clouds will be absent in early G1 phase of the cell cycle. This prompted us to analyze Xist RNA clouds in female Mefs, which were expanded in vitro. After Xist RNA FISH we detected only a very small number, less than 2% of the cells (5 out of 292 cells), without Xist cloud, and no cells with small pinpoint signals indicative for Xist accumulation just after mitosis (data not shown). These results indicate that Xist may not dissociate from the Xi during mitosis. Previously reported dissociation of Xist [9,14,15] might be the result of pre-treatment of the cells prior to RNA FISH. We therefore fixed 4 day differentiated female F1 2-1 cells in 4% paraformaldehyde in the absence of detergent or acetic acid. In this experiment, Xist RNA-FISH confirmed the presence of Xist clouds at telophase of mitosis (Fig 2A). The percentage of cells with an Xist cloud is decreased at metaphase and telophase, but ~60% of the cells still contained a specific Xist RNA signal (Fig 2B). We attribute the smaller number of Xist clouds to the pepsin treatment used to permeabilize the cells. Based on these results, we conclude that Xist most likely does not dissociate from the Xi at any phase during progression through the mitotic cell cycle.

![Figure 2. Xist clouds in 4 day differentiated F1 2-1 cells throughout the cell cycle](image)

A) Xist cloud in green in an interphase and metaphase cell, followed by two clouds at telophase. B) Percentage of F1 2-1 cells that have Xist cloud(s) in interphase, metaphase, or telophase cells.
Xist RNA is confined

**Generation of a cell line expressing tagged Xist RNA**

The finding that Xist does not dissociate from the Xi at any phase of the cell cycle would make redundant a diffusion mediated reassembly of Xist to the Xi after completion of mitosis. Nonetheless, it is unclear if diffusion has any role in the establishment of the Xist cloud.

To test whether newly synthesized Xist spreading along the X chromosome is diffusion mediated, or if Xist is retained within its own chromosomal territory, we have generated tetraploid XXXX cell lines with one X chromosome harbouring a modified Xist gene which is transcribed into a marked Xist RNA, allowing us to determine the origin of the Xist molecules. We started by creating a diploid XX ES line with a marked Xist gene, which was later used to generate tetraploid ES cells. The Xist gene

**Figure 3. Construction of ES cells expressing Xist<sub>MS2</sub> RNA**

A) A construct containing 16 repeats of the MS2 sequence next to a neomycin selection marker enclosed by lox sites was integrated into exon7 of the Xist gene. Positive clones were selected by Southern hybridization with the 5' external probe for a BamHI digest. Loop out of the neomycin resistance cassette was detected by Southern hybridization with the same digest and probe.

B) Allele-specific RT-PCR on Xist RNA isolated from 7 day differentiated ES cells using a length polymorphism to distinguish whether Xist RNA originated from the X<sub>CAST/EI</sub> or the X<sub>129/Sv</sub> allele.

C) RNA-FISH on 10 day differentiated XXMS2 cells. Xist RNA is in green (FITC), MS2-repeats are in red (rhodamin) and DNA is stained with DAPI.

D) Quantification of the number of cells containing either an Xist cloud or an Xist<sub>MS2</sub> cloud after 10 days of differentiation was determined.

<table>
<thead>
<tr>
<th></th>
<th>Xist cloud</th>
<th>Xist&lt;sub&gt;MS2&lt;/sub&gt; cloud</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell number</td>
<td>96</td>
<td>291</td>
<td>387</td>
</tr>
<tr>
<td>Percentage</td>
<td>25</td>
<td>75</td>
<td>100</td>
</tr>
</tbody>
</table>
was labeled on one allele, by the integration of MS2 repeats in the gene. The phage-specific MS2 sequence was chosen [22], because this sequence is nonfunctional in mammalian cells and therefore not likely to interfere with XCI. Sixteen tandem MS2
Xist RNA is confined to repeats were inserted into exon7 of the Xist gene on the 129/Sv allele of an F1 2-1 Mus musculus / Mus castaneus (129/Sv / Cast/Ei) ES cell line. After verification of the right insertion, the neomycin resistance cassette was excised with transient Cre-recombinase expression (Fig 3A).

XCI was analyzed in the mutated XX MS2 cell line by differentiation of the cells into embryoid bodies (EBs). No increased cell death of the XX MS2 cell line was observed after EB differentiation (data not shown), indicating that XCI was functional. RNA-FISH with Xist and MS2 probes on XX MS2 cells that were differentiated for 10 days showed that these cells either had an Xist or an Xist MS2 cloud (Fig 3C).

We tested whether insertion of the MS2-repeat had any effect on XCI by measuring the ratio of tagged and WT Xi’s. The X Cast/Ei allele and X 129/Sv allele of the F1 2-1 cell line are not equally inactivated, because both X chromosomes harbour different X chromosome controlling elements (Xce). Since the X Cast/Ei allele in the F1 2-1 cell line contains a strong Xce and the targeted X 129/Sv allele a weak Xce, the X 129/Sv allele is inactivated in 70% of the cells [23]. Allele-specific RT-PCR on Xist using a length polymorphism to distinguish the X Cast/Ei and the X 129/Sv alleles indicated that skewing of XCI was not affected by insertion of the repeats (Fig. 3B). Determination of the number and origin of Xi’s in day 10 differentiated cells confirmed skewing towards the X 129/SvMS2 allele (Fig 3D).

**XCI in tetraploid XXXX MS2 cells**

To study the dynamics of the intra-nuclear localization of Xist RNA throughout the cell cycle, a tetraploid XXXX MS2 cell line was generated. These cells preferentially inactivate two X chromosomes instead of one [24], so Xist RNA is transcribed from two different Xi’s. The MS2-tagged allele allows distinction of the origin of Xist RNA in an Xist cloud.

To obtain the tetraploid cell line, a neomycin resistance cassette was randomly integrated into the XX MS2 cell line and fused with an XX ES cell line containing...
a puromycin resistance cassette. After PEG1500 mediated fusion, XXXX<sub>MS2</sub> tetraploid ES cells were selected with puromycin and neomycin double selection (Fig 4A). The DNA content of the double resistant XXXX<sub>MS2</sub> tetraploid cell lines was verified by FACS analysis before and after differentiation, and this analysis indicated that our cell lines were 4n and stable throughout differentiation (Fig 4B). This was confirmed by karyotyping, in which we counted the number of chromosomes in metaphase spreads (data not shown). To test if the tetraploid XXXX<sub>MS2</sub> cell lines initiated XCI normally, we differentiated the cells for 7 days and determined the number of Xist and Xist<sub>MS2</sub> clouds. We found that almost 60% of the cells had two Xist clouds at day 7, which is in agreement with previous data for tetraploid ES cells without MS2 repeats [24]. The fact that not all cells have a XaXaXiXi pattern can be attributed to stochastic XCI and loss of X chromosomes [24]. There is, however, no indication that the total number of X chromosomes within one nucleus has any effect on binding and spreading of Xist RNA during mitosis or interphase.

**Xist spreading is not diffusion mediated**

Examination of Xist and Xist<sub>MS2</sub> clouds of the XXXX<sub>MS2</sub> tetraploid cell lines in cells with clearly distinguishable Xi’s, by RNA-FISH using Xist and MS2 specific probes, indicated that Xist clouds from wild type Xi’s never contain Xist<sub>MS2</sub> RNA from the targeted Xi (Fig 5A). After labelling of our cells with BrdU 24 hours prior to fixation, we found that the same holds true for XaXaXiXi<sub>MS2</sub> cells that went through mitosis, as determined by immuno-RNA-FISH detecting Xist, MS2, and BrdU (Fig 4D). This suggests that Xist RNA is directly retained to the Xi from which it is transcribed, and does not diffuse through the nucleus to bind to other Xi’s. Thus, Xist RNA is present on an Xi not because it is the only entity in the cell capable of binding Xist RNA, due to epigenetic modifications of the Xi chromatin, but because it does not dissociate from the Xi.

In some cells, Xist clouds were located close together and could only be distinguished as two separate clouds because one was tagged with MS2 repeats (Fig 5B, C). This was the case in 8% of the cells that had two or more clouds of which one Xist cloud was MS2-tagged (Fig 5D). To see if this result may point to a targeted and functional association between the two clouds, as opposed to random non-functional association, we performed a simplified mathematical calculation based on literature derived data showing that the probability of two Xi’s being in close proximity to each other is also 8% (Supplementary data I). Therefore, our results are feasible and seem to reflect a random positioning of the Xi’s in the periphery of the nucleus.

Intriguingly, in about half the cells that had clouds located in close proximity, the Xist<sub>MS2</sub> RNA cloud of the targeted Xi seemed to overlap the Xist cloud of the wild type Xi, as can be judged by merging the Xist signal and the MS2 signal from
**Figure 5. Xist and Xist<sub>MS2</sub> clouds in close proximity**

A, B, C) The left panels show RNA-FISH on day 7 differentiated tetraploid XXXX<sub>MS2</sub> ES cells showing DNA (blue with DAPI), Xist RNA (green with FITC) and Xist<sub>MS2</sub> RNA (rhodamin red). The right panels show the intensity of the Xist and Xist<sub>MS2</sub> signals, measured along the indicated white line across both Xist clouds.

A) a cell with two separate Xist clouds;

B) a cell with two Xist clouds in close proximity to each other but without overlap;

C) a cell with three Xist clouds, two of which are adjacent to each other and have overlapping Xist clouds;

D) Percentage of cells that have separate Xist clouds (in light grey bars) or Xist clouds in close proximity to each other (in dark grey bars);

E) Percentage of the cells with Xist clouds in close proximity to each other that have non-overlapping or overlapping Xist clouds.
RNA-FISH experiments (Fig 5C, 5E). This result might suggest that Xist RNA is able to spread in trans when nuclear territories of two Xi’s are in close proximity to each other. However, two Xi’s and their respective Xist clouds may share the same nuclear territory without any inter-chromosomal exchange of Xist RNA. Indeed, no cells were found with two MS2-labeled Xist clouds, and only cells with two Xi’s in close proximity to each other show overlap of Xist clouds, which supports the hypothesis that Xist RNA does not leave the Xi of its origin.

**Ectopic Xist expression on autosomes**

From the above, we conclude that Xist RNA is directly bound to the Xi from which it is transcribed. To study whether this retention of Xist to the X chromosome requires specific X-chromosomal Xist binding sites which are not abundant on autosomes, we generated transgenic XX\textsubscript{MS2} ES cells with an autosomal BAC transgene containing the Xist gene, but not Tsix. These cell lines allow us to compare Xist retention on an X chromosome and an autosome within the same cell. A kanamycin/neomycin resistance cassette was integrated in the Xist containing BAC by lox recombination, and female XX\textsubscript{MS2} ES cells were transfected followed by selection with neomycin. The autosomal integration site of the BAC was verified with DNA-FISH (Fig S1A) and the copy number was estimated by performing Q-PCR with primers for Xist and the autosomal Zfp42 gene as a normalization control for diploidy on genomic DNA of the clones (Fig S1B).

High copy transgenic cell lines (30Δ1 4, 8, 9 and 10) were differentiated for 4 days and subjected to RNA-FISH with Xist and MS2 specific probes which allow discrimination between the transgene (Xist only) and endogenous Xist (Xist only for Xist originating from the Cast/Ei chromosome, and Xist and MS2 positive for Xist originating from the 129/SV chromosome). The number of Xist clouds in cells was counted for each cell line, in which an extra cloud would most likely result from the autosome with the transgenic Xist gene. All cell lines showed a significant percentage of cells with double clouds from ~50% (30Δ1 9) up to ~80% (30Δ1 8) (Fig S1C). As expected, we found that most cells of line 30Δ1 8 had inactivated the X\textsubscript{MS2} chromosome and an autosome (Fig 6A, 6B). The wild type and transgenic Xist clouds are indistinguishable in nearly all interphase cells. In metaphase cells the autosomal Xist cloud is of different size than wild type Xist clouds, and seems to cover the entire chromosome in most cases, showing that the Xist clouds are of either endogenous or ectopic origin (Fig S1D, S1E, 6E). Cells with two Xist\textsubscript{MS2} clouds are never observed. Similar to the present findings with tetraploid XXXX\textsubscript{MS2} cells, we find a small but significant proportion of the Xist clouds in close proximity of each other. Again, approximately 50% of the clouds seemed to overlap, whereas the rest did not (Fig S2A, S2B).

Next, we analyzed binding of the transgenic Xist RNA to its autosome in
Xist RNA is confined

mitosis of day 4 differentiated 30Δ1 8 ES cells. Similar to the observed localization of endogenous Xist to the Xi, we found that the transgenic Xist RNA is present on the autosome throughout mitosis, including telophase (Fig 6C). At telophase, we found less autosomal Xist clouds relative to Xist clouds on the Xi. This difference is less pronounced in interphase or metaphase cells (Fig 6D). Increased loss of autosomally located Xist at telophase could represent a real loss of Xist during mitosis, but more likely is a consequence of removal of less stringently bound RNA in the RNA-FISH procedure (Fig 6D). Since Xist RNA is less tightly bound to the Xi at telophase, small

Figure 6. Transgenic Xist RNA expression in 30Δ1 8 cell line
A) Interphase cells with either Xist<sub>MS2</sub> (in red) and autosomal Xist (green) clouds (left panel), or endogenous Xist and autosomal Xist clouds (both in green) (right panel).
B) Percentage of cells with one cloud of either Xist or Xist<sub>MS2</sub>, two clouds of either Xist<sub>MS2</sub> or autosomal Xist, or two clouds of either endogenous Xist or autosomal Xist.
C) Cells in telophase with Xist<sub>MS2</sub> (red) or autosomal Xist (green) still attached (left panel), or with Xist RNA detached and floating in the nucleoplasm (right panel).
D) Percentage of cells with Xist<sub>MS2</sub> cloud only, or both Xist<sub>MS2</sub> and autosomal Xist clouds, at interphase, metaphase, or telophase.
E) Three metaphase cells showing Xist<sub>MS2</sub> (in red) and autosomal Xist (green) clouds.
changes in affinity of \( Xist \) to the autosome compared to the Xi are likely to present itself at this stage of the cell cycle. Therefore, this finding indicates that the Xi specific chromatin state or DNA sequence do increase the binding affinity of \( Xist \) to the chromosome, but are not a necessity.

Taken together, \( Xist \) RNA expressed from an autosome can form a cloud, that is tightly bound, over the entire chromosome. This cloud is almost indistinguishable in appearance from a wild type \( Xist \) cloud. Only during telophase the transgenic \( Xist \) RNA is more prone to detach from the autosome, compared to detachment of endogenous \( Xist \) RNA from the X chromosome, indicating that an autosome is capable of binding \( Xist \) RNA, but with slightly lower affinity than the X chromosome.

**Discussion**

In this study, the behaviour of \( Xist \) RNA on the Xi was investigated during different phases of the mitotic cell cycle, in mouse ES cells that have established XCI. We found that \( Xist \) is retained at the Xi at all phases during mitosis, and that \( Xist \) transcription is constant throughout the cell cycle. For \( \text{XXXX}_{\text{MS2}} \) tetraploid cells and \( Xist \) transgenic \( \text{XX}_{\text{MS2}} \) cells, where one of the X chromosomes transcribes a tagged \( Xist_{\text{MS2}} \) RNA, it was found that \( Xist_{\text{MS2}} \) RNA is associated with only one \( Xist \) cloud, indicating that \( Xist \) RNA is retained by the Xi of its origin. In other words, \( Xist \) RNA does not leave the territory of the Xi.

**\( Xist \) RNA is present on the Xi throughout mitosis**

Previous reports have indicated that during mitotic telophase of mouse ES cells, \( Xist \) RNA dissociates from the Xi [14,15] and can be detected as punctate spots floating around in the nucleoplasm. In contrast, we observed mitotic cells in telophase with \( Xist \) clouds present on the Xi or autosomes. We attribute this difference to the variation in procedures used to fix cells prior to RNA-FISH analysis. In previous studies [14,15] cells were pretreated with a hypotonic solution and fixed with a combination of formaldehyde and acetic acid. The \( Xist \) interaction with the Xi may be weakened by the chromatin compaction during mitosis, and the absence of a nuclear membrane may have facilitated loss of the \( Xist \) cloud during the fixation procedure. In the present study the cells were fixed with paraformaldehyde without any pretreatment, which most likely allowed \( Xist \) to stay attached to the Xi. Nevertheless, also in our analysis we find a decrease in the number of \( Xist \) clouds upon progression through mitosis, which we attribute to weakened interactions of \( Xist \) with either DNA or chromatin. The finding that \( Xist \) is more readily lost from an autosome than from Xi, in the experiments with transgenic female ES cells, suggests that this interaction is DNA mediated, since DNA sequence is the most apparent difference between
Xist RNA is confined

the observed autosomal versus X-chromosomal spreading of Xist RNA, at least at telophase. Nonetheless, we can not exclude a role for histone modifications, present specifically at the X chromosome prior to and after XCI, in the more efficient spreading of Xist RNA over the Xi [25].

Xist RNA retention at the Xi
The present analysis of tetraploid XXXX ES cells and cells with autosomal Xist transgenes indicates that Xist RNA is retained at its own Xi or at its autosomal origin, and spreads only in cis, also when more than one Xi is present in the same nucleus. This result suggests that endogenous Xist RNA is restricted to the nuclear territory of its own Xi, rather than binding the Xi in cis or trans as a result of free diffusion and recognition of specific epigenetic modifications on the Xi. However, in about half of the cases when two Xi’s are located close together, we found an overlap between the Xist clouds. A plausible explanation for this is that Xist RNA may spread in trans when the nuclear territories of two Xi’s are in very close proximity to each other and stay together continuously. Indeed, separate Xist clouds containing Xist_{MS2} RNA were not found. Still, we find it more likely that the chromosome territories of Xi’s sometimes intermingle but without any trans exchange of Xist RNA. Intermingling of chromosome territories has previously been described as a common feature of chromosomes in interphase cells [26].

Taken together, there is consensus that Xist RNA can spread in cis on the Xi or autosomal regions. However, as discussed above, we find that Xist RNA does not migrate to an adjacent Xi. In addition, Xist RNA does not spread to autosomal regions in trans, not even when there is very close proximity with the Xi. How can this be explained?

A possible model for this conundrum is that Xist RNA remains on the Xi in cis because of the high local concentration of binding sites, possibly LINE1 repeats, other DNA sequences specific for the X chromosome or specific X-chromosomal chromatin marks that are present before and after initiation of XCI [25]. The Xist binding sites may fold towards the Xist gene, binding the Xist RNA while it is transcribed to prevent diffusion to the (future) active X. Utilization of LINE1 repeats by the inactivation machinery is supported by studies with X:autosomal translocations, which showed that Xist RNA is capable of spreading in cis into the autosomal region, but less efficiently [8,9,27,28,29]. The efficiency with which Xist RNA spreads into the autosomal region seems to be correlated with the density of LINE1 repeats [6], which are good candidates for binding Xist RNA, because they are 1) enriched twice as much on the X chromosome as on autosomes; 2) less abundant in the pseudoautosomal region of the X chromosome and near X-linked genes that escape XCI; and 3) increased in
abundance around the XIC [5,7]. However, for Xist transgenes inserted at autosomal positions, we and others have shown that Xist RNA spreads in cis [28,29], showing that even though DNA binding sites might play a role, they are not the only factor in binding the Xist to DNA.

In a different model, Xist RNA is self-interacting, forming a web of RNA molecules that remain located on the Xi and interact either with LINE1 repeats, other specific DNA sequences or chromatin marks. Xist-to-Xist interactions could already form during transcription of Xist on the template, because roughly 8 Xist molecules are simultaneously transcribed from the gene at any time during the cell cycle, thereby preventing diffusion of Xist away from the Xi (Supplementary data II).

Finally, lack of trans spreading of Xist RNA could also depend on the amount of Xist RNA transcribed, which might be limited in relation to the abundance of a putative protein that ties Xist RNA to the Xi, acting in synergy with the Xist binding sites. In this model, similar to Drosophila where association of Rox1 and Rox2 RNAs with

---

**Figure 7. Schematic models for Xist RNA spreading in Mus musculus**

A) Xist-to-DNA; Xist RNA binds the DNA sequence directly, and the DNA folds to capture Xist.

B) Xist-to-Xist; Xist RNA binds to itself, creating Xist RNA clouds that are tethered to the Xi by a DNA sequence.

C) Xist-to-protein-to-DNA; a protein, present in excess, captures Xist RNA during transcription and binds it to DNA.
the hyper-activated X in male cells requires the MSL complex [30,31,32], a putative mammalian protein involved in binding the few hundred copies of Xist RNA to the X chromosome would be present in excess. Such a protein would quickly immobilise Xist RNA, allowing spreading across an X chromosome in cis, but not in trans. The reports that Xist remains present on the Xi after removal of DNA from the nucleus [10] and that Xist is more loosely bound to the Xi in mitosis, when a nuclear matrix is no longer present, support the hypothesis that protein-RNA interactions are involved in Xist localization to the Xi. If the amount of Xist RNA per nucleus is quite low, some 300 transcripts per nucleus, it is feasible that the highest affinity Xist binding sites on the X chromosome will not be saturated. This may result in preferential association of Xist RNA with the binding sites of the X chromosome, usually excluding autosomal regions in X:autosomal translocations in which the autosomal region is not enriched in these or comparable Xist binding sites. However, when Xist is expressed at a higher level, as is the case for most autosomal Xist transgenes, Xist RNA will be forced to spread in cis onto the autosomal region with Xist binding sites with less affinity, because the putative Xist binding protein will prevent Xist from going elsewhere.

Acknowledgements
The authors would like to thank Ken Kosik for kindly providing the MS2 repeat sequence, Thasin Stefan Barakat for technical assistance. This work was supported by HFSP-CDA, and NWO-VIDI grants.
Chapter 5

References

Xist RNA is confined

including uH2A on the human and mouse inactive X chromosome:


Supplementary Data and Figures

I. Calculation of the probability of two Xi’s to be in close proximity

In order to calculate the chance that two Xi’s are found in close proximity in the nucleus we made the following assumptions based on previous results. It is known that the Xi’s are preferably localised at the periphery of the nucleus [1,2]. Furthermore, there is no correlation between the positions of two Xi’s when they are together in a nucleus [1]. Also, although the Xi is rounder and smoother than the active X, they have approximately the same volume [3]. Therefore, we assumed that the Xi’s in the tetraploid XXXX<sub>MS2</sub> cell line are spherical entities that are randomly distributed in the periphery of the nucleus.

Next, we started by calculating the volume of a diploid cell according to the following formula: \[ V = \frac{4\pi r^3}{3} \]
in which \( r = 5 \mu m \) resulting in a volume of 523 \( \mu m^3 \). Tetraploid nuclei have twice this volume, 1046 \( \mu m^3 \), resulting in an \( r \) of 6.3 \( \mu m \). The volume of an X chromosome is roughly (167 megabases/5.2 gigabases) \( \times 523 = 168 \mu m^3 \), which results in an \( r \) of 1.6 \( \mu m \). The chance of finding an Xi in close proximity to another X chromosome will be equal to the volume of a torus surrounding one Xi divided by the total volume of the tetraploid cell. The volume of a torus can be calculated according to the following formula: \[ V = 2\pi^2 Rr^2 \]
in which the radius was taken equal to the distance to the center (because the Xi is located in the periphery of the nucleus). So \( R=r=1.6 \mu m \), resulting in a volume for the torus of 81 \( \mu m^3 \) in a volume of 1046 \( \mu m^3 \) of a tetraploid nucleus, indicating that the chance that two inactive X chromosomes will be found in close proximity is roughly 8% (81 \( \mu m^3 \)/1046 \( \mu m^3 \)).

II. Calculation of the in Xist RNA in time

To calculate the initiation time of Xist used the following formula to iterate to 300 Xist transcripts that have been reported by [4] to be present in a cell:

\[ X_t = X_{t-1} \cdot \frac{1}{2^{t/t_{1/2}}} + i_t \]
in which

\( t \) is time interval
\( X_{t-1} \) is the number of transcripts at \( t-1 \)
\( X_t \) is the number of transcripts after \( t \)
\( t_{1/2} \) is the half life of Xist
\( i_t \) is the number of transcripts initiated in \( t \)

For our iteration we used steps of 60 minutes (\( t=60 \)), a half life of 6 hours (\( t_{1/2}=360 \)) and found that Xist has to be initiated once every 78 seconds to maintain 300 Xist
molecules in the nucleus. The transcription velocity is 1500 bp per minute, and it takes 15.3 minutes to finish an \textit{Xist} transcript (the size of \textit{Xist} is 23 kb). Therefore \( \frac{15.3 \text{ minutes}}{78 \text{ seconds}} = \sim 12 \) \textit{Xist} transcripts are present on the transcribed template.


**Figure S1. Overview of X<sub>Cast/Ei</sub>X<sub>129/Sv</sub> cell lines with a BAC containing the Xist gene which was randomly integrated.**

A) DNA-FISH on the XX<sub>MS2</sub> BAC cell lines. The BAC sequence is detected in green (FITC) and the X chromosome in red (Cy3). Autosomal integration sites are indicated with a white arrowhead.

B) Q-PCR with an Xist and the autosomal Zfp42 gene primerset. The wild type XX F1 2-1 cell line was taken as two, so that 30Δ1 1 does not contain an extra Xist copy, 30Δ1 4, 30Δ1 8, 30Δ1 9 have 2 extra Xist copies and 30Δ1 10 has 3 extra Xist copies.

C) Percentage of cells of the XX<sub>MS2</sub> BAC cell lines containing one or two Xist clouds.

D) RNA-FISH of a 30Δ1 4 cell in metaphase, Xist in green, MS2 in red.

E) RNA-FISH of a 30Δ1 9 cell in metaphase, Xist in green, MS2 in red.
Figure S2. **Cells with Xist clouds close together in cell line 30Δ18.**

A) $Xist_{\text{MS2}}$ and autosomal $Xist$ clouds in close proximity in interphase cells. $Xist$ is labeled in green (FITC) and MS2 in red (rhodamin). The left panel shows a cell with overlapping clouds, the right panel a cell with non-overlapping clouds.

B) Percentage of cells with $Xist_{\text{MS2}}$ and autosomal $Xist$ clouds separate, in close proximity without overlapping $Xist$ or close together with overlapping $Xist$. 

[Diagrams and images of cells with and without overlapping Xist clouds]
Chapter 6

General discussion
6. General discussion

6.1 A new model for initiation of XCI

A number of models regarding the XCI counting and choice process have been postulated over the years, some of which are put forward in the Introduction (Chapter 1). However, none of these models manage to explain all the experimental evidence coming from numerous deletion and overexpression studies, and a comprehensive model encompassing all experimental data is dearly needed.

In Chapter 2, we propose a stochastic model for XCI, based on outcomes of XCI that could not be explained by a deterministic model (Chapter 2). We observed that a low but consistent number of XX ES cells display two Xi’s after 3 days of differentiation. All previous models depend on the assumption that the choice process is mutually exclusive, which does not fit with inactivation of both X chromosomes.

To explore this finding further, we generated XXXX tetraploid ES cells to increase the number of the XCI outcomes after 3 days of differentiation. Intriguingly, all potential outcomes were observed, from no inactivated X chromosomes to all X chromosomes inactivated in a single XXXX tetraploid cell, making a deterministic model highly unlikely. Therefore, we propose a stochastic model, in which each X chromosome has a probability to become inactivated during the onset of XCI. This probability is determined by the X:autosome ratio, which ensures the ability of a cell to “count” the number of X chromosomes. How can a cell sense the X:autosome ratio? For this, an X-linked XCI-factor is needed, which acts in a dose-dependent manner to activate XCI. Because the dose of an X-linked factor will be twice as high in female XX ES cells as in male XY ES cells, the cells will have a measure of the number of X chromosomes compared to the nuclear volume, which is related to the number of autosomes. We think the X-linked factor is an activator of XCI, because a reporter gene under control of the Xist promoter is more highly expressed in female as in male ES cells [1]. Also, we propose the presence of an XCI repressor, most likely encoded by an autosome, providing a constant repression (threshold) of XCI in both male and female cells, which can only be overcome by a sufficient level of XCI-activator in female cells (Fig. 1A).

At a molecular level, the X-linked XCI-activator will drive the expression of Xist directly or indirectly, whereas the autosomal XCI repressor will regulate Tsix (Fig.
Upon differentiation, the XCI-activator is upregulated or activated in female cells, which results in increasingly frequent initiation of $Xist$ transcription. In male cells, an increase in $Xist$ transcription may also occur, but this will not be enough to overcome $Tsix$ repression (it is unknown how $Tsix$ represses $Xist$ transcription in cis at the molecular level, which has been discussed in the Introduction). $Xist$ RNA will spread on the X chromosome, and once it has reached the $Tsix$ promoter $Tsix$ will be repressed, resulting in further upregulation of $Xist$ and ultimately, in the silencing of the gene encoding the X-linked XCI-activator. Once the XCI-activator is silenced on one allele, $Xist$ transcription will be downregulated while $Tsix$ transcription remains constant, and the cell will stop initiation of XCI on other X chromosomes, providing a break on further XCI. So, the interplay of $Xist$ and $Tsix$ transcription on a single allele, regulated by an X-linked activator and an autosomal repressor respectively, will determine the probability of an X chromosome to be inactivated (Fig. 1B).

The interplay of $Xist$ and $Tsix$ expression can be different on each individual X chromosome, so that the probability of each X chromosome to be inactivated is an intrinsic allelic property. For instance, a SNP or mutation in the $Xist$ promoter can alter the binding affinity of a transcription factor for that site, which may change the expression rate of $Xist$ and subsequently the probability of the X chromosome to be inactivated. A SNP or point mutation in the sequence regulating $Tsix$ expression may change the probability in a similar way. Therefore, SNPs in sequences that regulate $Xist$ and $Tsix$ transcription, or even a mutation in the RNA itself, may appear as a particular X-controlling-element (Xce). Indeed, a SNP in the $Xist$ promoter was found when sequences of an Xce$^{a}$ allele were compared to sequences of an Xce$^{c}$ X chromosome (Fig. 1C, 1D and 1E, and data not shown). Furthermore, following the definition of the stochastic model, an X chromosome with a $Tsix$ deletion could be defined as an X chromosome with an extremely weak Xce (Fig 1F and 1G).

The validity of the stochastic model was tested further by quantifying the extent of XCI and the speed at which XCI is initiated in cell lines with a variety of X:autosome ratios.

So, if the X:autosome ratio is 1.0 as in female cells, XCI will initiate, whereas it will not in male cells, which have an X:autosome ratio of 0.5 (Fig 1H). As expected, XXXX tetraploid cells initiate XCI just as fast or even faster as XX diploid cells, because they also have an X:autosome ratio of 1.0. Based on the stochastic model, however, cells with a ratio between 1.0 and 0.5 might still initiate XCI, but at a slower rate, because the concentration of the X-linked XCI-activator will be lower and it will take longer for XCI-activator to build up and overcome the autosomal threshold. To test this, initiation of XCI in XXXY tetraploid ES cells (X:autosome ratio of 0.75), and XXY triploid cells (X:autosome ratio of 0.66) was measured by counting the number of Xi’s at different
Figure 1. Schematic overview of the stochastic model

A. Schematic graph of accumulation of XCI-activator (on the Y-axis) during differentiation (on the X-axis), and initiation of XCI (arrowhead). The level of XCI-activator in female cells is represented by the red line, and the level of XCI-activator in male cells by a green line. The blue line represents the autosomally encoded repression, which is the same in female and male cells. The combination of the XCI-activator level and the autosomally encoded repressor determine the probability of an X chromosome to inactivate. Thus, in female cells the level of XCI-activator overcomes the autosomally encoded repression, resulting in a high probability to initiate XCI, while in male cells the level XCI-activator does not overcome the autosomally encoded repression, and therefore a very low probability to inactivate an X chromosome.

B. Rate of transcription of Xist and Tsix at the XIC, with Xist in dark grey and Tsix in light grey. In red, green or blue blocks, transcription activity is represented as bursts of polymerase activity over the gene. In red, Xist transcription in female cells; in green, Xist transcription in male cells; in blue, Tsix transcription.

C. Graph of the probabilities of X chromosomes with either an Xce\textsuperscript{a} or Xce\textsuperscript{c}. The strength of the Xce of each X chromosome can be determined by the expression of Xist (in red, top line represents Xce\textsuperscript{a} Xist expression level, bottom line represents Xce\textsuperscript{c} Xist expression level) or by the repression of Tsix (in blue, top line represents Xce\textsuperscript{a} Tsix repression level, bottom line represents Xce\textsuperscript{c} Tsix repression level).

D. Representation of Xist (red) and Tsix (blue) expression at the molecular level for an Xce\textsuperscript{a} or Xce\textsuperscript{c} X chromosome, when Xist expression is variable and determines skewing.

E. Representation of Xist (red) and Tsix (blue) expression at the molecular level for an Xce\textsuperscript{a} or Xce\textsuperscript{c} X chromosome, when Tsix expression is variable and determines skewing.

F. Graph of the probabilities of a wild type X chromosome (top blue line) and an X chromosome with a Tsix deletion (bottom blue line). The red line represents accumulation of the XCI-activator and subsequent differentiation.
timepoints during differentiation. As expected, XCI was initiated, but at a slower rate as in cells with an X:autosome ratio of 1.0, resulting in a single Xi in XXXY tetraploid cells and thus one active X chromosome per diploid genome (Chapters 2 and 3). Also, XCI was initiated to some extent in XXY triploid cells, even though the optimal ratio of one active X per diploid genome cannot be achieved. The initiation speed in XXY triploid cells was very slow, and XCI is incomplete, leading to the inactivation of a single X chromosome in ~40% of the cells and no inactivation in ~60% of the cells after 10 days of differentiation (Chapter 3). These experiments confirm that the X:autosome ratio in cells is the most critical factor to ensure counting and initiation of XCI.

6.2 The stochastic model versus other models

Previous models, such as the blocking factor model and transvection model, can only partly explain established experimental data and experimental observations put forward in this thesis. The stochastic model proposed in this provides more reasonable explanations for observations and experimental outcomes of others and our own, as will be argued in the following paragraphs.

6.2.1 The blocking factor and symmetry breaking models

The blocking factor model states that a single factor or nuclear entity protects a single X chromosome per diploid genome from being inactivated, so that XCI is initiated in XX females but not in XY males (see also paragraph 1.4.4.1 and Fig. 6 of the Introduction). The most important argument that can be made against the blocking factor model is that differentiation of female XX ES cells or development of embryos with a heterozygous *Xist* deletion results in primary non-random XCI, which means that all cells correctly inactivate the wild type X chromosome [2]. The blocking factor model predicts, however, that the blocking factor would protect the wild type X chromosome just as well as the *Xist* deleted X chromosome, so that half the cells would be unable to initiate XCI on either X chromosome, resulting in cell death of half the cell population. In contrast, the stochastic model predicts that the probability of the *Xist* deleted X chromosome to become inactivated drops to zero, so that only the wild type X chromosome becomes inactivated, leading to the observed primary non-random XCI.

*Xist* expression.

G. Representation of the expression of *Xist* and *Tsix* at the molecular level in a female *Tsix* deleted cell line. *Xist* expression is in red and *Tsix* expression is in blue.

H. Probability of an X chromosome to inactivate based on XCI-activator concentration and subsequent *Xist* expression, which is determined on the X:autosome ratio. In red, an X:autosome ratio of 1; in purple, an X:autosome ratio of 0.75; in orange, an X:autosome ratio of 0.66; and in green, an X:autosome ratio of 0.5.
The observation that some diploid male and female ES cells and tetraploid XXXX, XXXY, and XXYY ES cells inactivate all their X chromosomes is also an argument against the blocking factor model. These cells apparently did not have sufficient blocking factor activity to protect one X chromosome from being inactivated, although their autosomal genomic background should encode for enough blocking factor to prevent one X chromosome per diploid genome from initiating XCI. Again, a stochastic model provides a reasonable explanation for cells that inactivate all X chromosomes, because each X chromosome has an independent chance of initiating XCI. If all X chromosomes will take that chance to initiate XCI simultaneously, the cell will not have any active X chromosomes left, resulting in cell death. In Chapters 2 and 3 the chance of each X chromosome to initiate XCI was predicted in a model, and from that the number of cells that inactivate all X chromosomes could be quantified. The percentage of cells that are estimated to die because all X chromosomes are inactivated is remarkably similar to the experimentally obtained percentage of tetraploid XXXX ES cells found to inactivate all X chromosomes after differentiation was started. Furthermore, Burgoyne et al. [3] observed that female mouse embryos of 7.5 dpc are significantly smaller than their male counterparts. Intriguingly, the weight difference between female and male mouse embryos is within the same range as would be estimated based on the assumed percentage of female cells that die due to incorrect inactivation of both X chromosomes in a female cell population. Thus, a stochastic model not only explains the occurrence of cells with less than one active X chromosome per diploid genome, but also predicts the percentage of cells that will have a certain outcome of XCI.

Also, the phenotype of female cells with a heterozygous Tsix deletion poses a problem for the blocking factor model. Reduction or loss of Tsix transcription in female XX ES cells leads to primary non-random XCI of the targeted allele [4,5,6]. This can be expected based on the blocking factor model by assuming that the blocking factor binds in the Tsix region. Loss of Tsix would therefore prevent the blocking factor from protecting the targeted X chromosome, and thus the wild type X chromosome is always bound by the blocking factor and will never be inactivated. However, in Chapter 3 it was observed that a female cell line with a heterozygous Tsix deletion not only inactivates the wild type X chromosome in all cells, but also that the initiation speed of XCI is enhanced. While the blocking factor model is unable to explain this, the stochastic model provides a reasonable explanation. It predicts that both X chromosomes will upregulate Xist equally, but that the overall Xist expression will be much higher on the targeted X chromosome, because Tsix expression is gone (Fig 1F and 1G). This will lead to an increased probability of the targeted allele to be inactivated, and thus to primary non-random XCI. Moreover, the initiation of
XCI will be faster, because the threshold to start XCI will be lowered greatly and is overcome rapidly by the X-linked XCI-activator (Fig 1F and 1G). In Chapters 2 and 3 both predictions of the stochastic model regarding cells with a heterozygous Tsix deletion were tested and shown to be correct.

Moreover, a few observations regarding differences in XCI initiation between male and female cells and embryos can be made that indicate that a single blocking factor is not sufficient to explain the regulation of XCI counting and choice completely. Male and female embryos homozygous for a deletion decreasing Tsix transcription (XΔCpG/ XΔCpG and XΔCpG/Y) are born less frequently as their heterozygous or wild type littermates [7]. This is expected based on the blocking factor model, because no X chromosome is protected from XCI as the blocking factor cannot bind the targeted X chromosomes in males and females anymore. However, more male than female offspring is born with the homozygous ΔCpG, while the severity of the ΔCpG should be equal for male and female cells, based on the blocking factor model. Also, male ES cells without Tsix transcription do not initiate XCI on the targeted X chromosome in all cells, while the same targeted X chromosome is inactivated in all female cells [6]. Finally, a luciferase reporter gene under control of the Xist promoter is activated more efficiently in female than in male cells [1]. These results all implicate that female cells and embryos are more efficient at initiation of XCI than male cells and embryos. This cannot be explained by the blocking factor model, whereas a stochastic model can. The blocking factor model, postulates that unprotected X chromosomes are inactivated by default, which implicates that XCI is a passive process that is initiated regardless of the genomic background of a cell. The stochastic model predicts a higher concentration of X-linked XCI-activator in female cells, resulting in higher Xist transcription and a higher probability of an X chromosome to initiate XCI in a female cell.

Finally, the blocking factor model postulates that a counting element within the XIC enables cells to count the number of X chromosomes in a cell and to decide how many X chromosomes should be inactivated. By definition, the XIC encompasses all factors necessary for XCI, which were thought to be Xist, Tsix and Xite. Therefore, deletion of Xist, Tsix and Xite in a female diploid cell on one X chromosome should trick the cell into counting of only one X chromosome and no XCI should take place. In Chapter 2 it was demonstrated that female cells and embryos heterozygous for the deletion of Xist, Tsix and Xite correctly execute XCI on the wild type X chromosome. This result provides further evidence that each X chromosome has an independent probability to initiate XCI, which is in favor of the stochastic model. Furthermore, it indicates that an additional factor involved in counting is located elsewhere on the X chromosome.
The symmetry breaking model is very similar to the blocking factor model, but hypothesizes that an autosomally encoded and dose dependent protein preferably forms a blocking aggregate of proteins on a single X chromosome per diploid background [8,9] (see also paragraph 1.4.4.2 and Fig. 6 of the Introduction). The symmetry breaking model circumvents the problem of a single blocking factor regulating XCI, which would make the XCI process slow and prone to errors. However, many of the arguments made against the blocking factor model can also be used against the symmetry breaking model. For instance, the blocking factor model and symmetry breaking model predict the same phenotype when considering a female cell line or embryo with a heterozygous Xist, Tsix or Xist-Tsix-Xite deletion, which have been shown to be incorrect in this thesis and by others [2,6](previous paragraph).

However, another argument can be made against the symmetry breaking model based on the experiments with XXY triploid cell lines described in Chapter 3 of this thesis. The symmetry breaking model postulates that the concentration of blocking factor encoded by an autosome in a diploid cell ensures the protection of one X chromosome in that cell. Subsequently, if more than one X chromosome is present in the cell, it will be inactivated by default. The concentration of autosomally encoded factors in the XXY triploid cells is the same as in diploid cells, because the volume of the nucleus is related to the DNA content, so that the increased volume eliminates the extra autosomal dose of a third blocking factor gene. Therefore, enough blocking factor should be at hand to protect one of two X chromosomes, which would result in a homogeneous XaXiY cell population after XCI has completed. However, the experimental data clearly show that in many cells both X chromosomes are active and fail to undergo XCI, which provides a strong argument against the symmetry breaking model.

6.2.2 The blocking factor model complemented with the competence factor

As mentioned, the blocking factor model cannot explain why primary non-random XCI takes place in female cells with a heterozygous Xist deletion. Therefore, a competence factor (CF) was introduced as an XCI initiation factor. The CF activates XCI on the X chromosomes that are not protected by the transiently binding blocking factor, and the CF and blocking factor bind an X chromosome in a mutually exclusive fashion. Now, XCI is not initiated in a female cell with a heterozygous Xist deletion until the blocking factor binds the targeted X chromosome and the CF binds the wild type X chromosome, resulting in primary non-random XCI. The CF is postulated to be X-encoded and present in an extremely low concentration or as a nuclear entity, like the autosomally encoded blocking factor. The CF is thought to be titrated away by the blocking factor when only one copy of the X-encoded CF is present, as in
male ES cells, while in female cells one dose of untitrated CF would still be present after titration of the autosomal blocking factor, resulting in XCI initiation on one X chromosome \([5,10]\) (see also paragraph 1.4.4.1 and Fig. 6 of the introduction).

Interestingly, this model is able to explain the XCI profile of the XXY triploid cells presented in Chapter 3. It is to be expected that in these triploid cells the optimal ratio of CF and blocking factor cannot be achieved, which results in XCI initiation in a subset of cells only. However, the observation that XCI is initiated in a percentage of male ES cells that have a Tsix or DXPas34 deletion cannot be explained by the blocking factor model complemented with the CF \([6,11]\). The CF is thought to be titrated away by the blocking factor when only one copy of the X-encoded CF is present as in male ES cells. Therefore, no CF to initiate XCI on the single Tsix deleted X chromosome should be present, resulting in absence of XCI initiation in male cells. The stochastic model does provide a logical explanation for initiation of XCI in male ES cells that have a Tsix or DXPas34 deletion \([4,6,11]\). The threshold put in place by the autosomal repressor on the single Tsix-deleted X chromosome in male cells will be lowered, increasing the probability of that X chromosome to be inactivated. Therefore, upregulation of Xist will lead to initiation of XCI, even in male cells.

Decrease of Tsix transcription on both X chromosomes, resulting from the ∆CpG on both alleles, leads to increased cell death, because both X chromosomes are inactivated in a substantial proportion of the cell population, while random XCI still takes place \([7]\). These results are contradictory to the blocking factor model and symmetry breaking model, which would predict that both ∆CpG X chromosomes in all cells would be inactivated because of the inability of the autosomal blocking factor(s) to bind an X chromosome and protect it from XCI. Even if the CF is taken into account, the phenotype of the female ES cells with homozygous ∆CpG cannot be explained, because the single remaining dose of CF that has not been titrated away by the blocking factor, should still be able to bind and initiate XCI on a single unprotected X chromosome, subsequently resulting in inactivation of one of two X chromosomes and correct XCI. In contrast, the stochastic model postulates that both X chromosomes will have a greatly enhanced probability to become inactivated, resulting in many cells with two Xi’s, and subsequent cell death. Moreover, the random nature of XCI will not be affected, as observed in the experimental data.

6.2.4 The alternate states and transvection models
The alternate states model postulates that X chromosomes adopt a transient chromatin state that is mutually exclusive in female cells before XCI is initiated. Upon differentiation of the cells, the chromatin states of the X chromosomes is ‘locked in’ and the X chromosome with the chromatin state that is most prone for XCI will be
inactivated [12] (see paragraph 1.4.4.3 and Fig. 6 of the introduction). Reduction of Tsix transcription on an X chromosome will enhance the chance that the targeted X chromosome adopts an XCI-prone chromatin state before XCI commences so that the targeted X chromosome is always inactivated, thereby ensuring primary non-random XCI in female cells. However, in male cells with a Tsix deleted allele inactivation of the single X chromosome is not always observed [6,11], indicating that the Tsix deleted X chromosome is treated differently in male and female cells, which is an observation that the alternate states model cannot account for. Another experimental result that conflicts with the alternate states model, is the XCI pattern observed in triploid XXY cells. Two X chromosomes that should be able to adopt transient mutually exclusive chromatin states are present in these cells, which should result in inactivation of one the two X chromosomes. The results presented in Chapter 3 show however that many cells do not undergo XCI. Taken together, the alternate states model is unlikely to fully represent the XCI process.

The transvection model hypothesizes that prior to XCI both X chromosomes in female cells have similar chromatin states, but come in close proximity, after which one of the X chromosomes is chosen to be inactivated. In male cells the X chromosome is unable to colocalize with another X chromosome and therefore cannot initiate XCI, which provides a counting mechanism independent of the genomic background [13,14,15] (see paragraph 1.4.4.4 and Fig. 6 of the Introduction). The Tsix gene and an X chromosomal region approximately 350 kb upstream of Xist called the Xpr region are thought to come together during initiation of XCI, and CTCF is postulated to be the autosomally encoded mediator of colocalization [14,16,17]. The colocalization of the Xpr region provides a counting mechanism, and colocalization subsequently activates Xist on one of the X chromosomes to activate XCI. The colocalization of Tsix provides a feedback loop that inhibits Xist activation of the other X chromosome. XCI can still take place in the female heterozygous XIC deletion cell line (Chapter 2), because the Xpr region that ensures counting is located outside the deleted region. Also, integration of extra copies of the Xpr region in a male cell line induces XCI on the X chromosome.

A few observations made previously conflict with the transvection model. First, male cells with a Tsix deletion should not inactivate the single X chromosome, because the Xpr region, which is thought to be the counting element, is present in only one copy. Furthermore, triploid XXY ES cells have two X chromosomes and the same concentration of CTCF or any other autosomal factor as in diploid XX ES cells, so X chromosome pairing and subsequent XCI should take place as in diploid XX ES cells. However, the results presented in Chapter 3 show that XCI is initiated in less than 50% of triploid XXY ES cells. Finally, if pairing is a prerequisite for XCI, than differentiated
diploid XX cells and differentiated tetraploid XXXX cells with all X chromosomes inactivated should never be observed. Nevertheless, a small but significant fraction of cells does inactivate all its X chromosomes, as demonstrated in Chapter 2.

Molecularly, the transvection model raises a few questions too. First of all, the close proximity that is mentioned in the studies on transvection is approximately a micron, which is a considerable distance in a nucleus with a 15 micron diameter [13,15]. Furthermore, the percentage of cells that show close proximity between the two X chromosomes is less than 20% at any given time point during the initiation of XCI [13,15]. This is a low percentage considering that nearly all cells undergo XCI in a few days after the start of differentiation. It implicates that the interaction of the X chromosomes that is needed to initiate XCI is either very transient, or that it is not a functional, but random and sporadic colocalization of two identical loci that are active simultaneously. Finally, the molecular mechanism that enables a cell to count the number of X chromosomes present in a cell by interacting with each other is hard to envision. What factor(s) would be able to distinguish the presence of two X chromosomes within close proximity of each other and than decide to only initiate XCI on one of the two X chromosomes present and subsequently repress XCI on the other?

The ultimate proof that the transvection model is not required for, or merely a consequence of random XCI initiation, would be the identification of an X-linked gene encoding a trans-acting protein factor functioning as an XCI-activator, which would indicate that X chromosome pairing is not the cause, but merely a consequence of XCI initiation.

6.3 The XCI-activator

6.3.1 Is Xist the XCI-activator?

The stochastic model proposes that a dose-dependent trans-acting factor, most likely a protein but possibly an RNA molecule, that is encoded by an X-linked gene activates XCI. In female cells, the dose of the XCI-activator is high enough to increase the probability of the X chromosomes to initiate XCI, which will result in a chance for each X chromosome to become inactivated within a time frame. A few reports have postulated that this activator is Xist itself. Transgenic cell lines with multi-copy Xist cDNA cosm id integrations or multi-copy integrations of YACs of 450 to 550 kb containing Xist, Tsix and Xite, were reported to not only initiate XCI on the autosome on which the constructs were integrated, but also on the endogenous X chromosome [18,19,20,21,22]. However, we found that transgenic male cell lines with one or multiple BACs containing the complete Xist gene integrated onto an
autosomal (which allowed us to trace the endogenous Xist) only displayed ectopic Xist expression (Chapter 4).

Furthermore, a heterozygous deletion of Xist or the Xist-Tsix-Xite region in female cells does not affect XCI initiation, showing that Xist alone is not the dose-dependent XCI-activator [2] (Chapter 2).

Endogenous Xist expression in the male cell lines with the Xist cosmid transgenes was confirmed by RT-PCR on the exonic non-spliced sequence, which however does not exclude the possibility that the male cell lines were unstable, resulting in aneuploidy and possible XCI of superfluous X chromosomes. Nevertheless, the ploidy and number of X chromosomes of transgenic male cell lines containing the YACs were confirmed, which implicates that the YACs of 450 to 550 kb not only encode Xist, Tsix and Xite, but also the XCI-activator. Indeed, the Xpr region defined by Augui et al. [16] to be the pairing region needed for counting and initiation of XCI, could also be a candidate region for the location of the XCI-activator, and seems to border the region mapped to the YAC described by Lee et al. [19]. The Xpr region does not appear to map to the YAC described by Heard et al. [21]. Moreover, endogenous XCI activation in the transgenic male cell lines described by Lee et al. is much more extensive as in the transgenic male cell lines of Heard et al., which implies that the YAC used by Heard et al. does not contain the complete XCI activating region. Nevertheless, even the YAC used by Lee et al. integrated into transgenic male cell lines could only induce endogenous XCI if they were integrated in multi-copy repeats, indicating that other sequences outside the YAC region might be important for XCI initiation. Also, mapping of a YAC without sequencing as performed by Heard et al. [20] and Lee et al. [19] is not very precise, and deletions, duplications and integrations of additional DNA sequences in the YAC may have occurred without being detected.

6.3.2 RNF12, an XCI-regulator

As described in Chapter 4 of this thesis, we tried to determine the location of the XCI-activator on the X chromosome by integrating BAC sequences into male ES cell lines. Initiation of XCI on the single male X chromosome would indicate that the dose-dependent trans-acting XCI-activator is located on the BAC integrated in the male cell line. The borders of the region were the XCI-activator might be located were defined by the unbalanced Searle’s translocation cell line and the HD3 truncation cell line [23,24], which leave a substantial candidate region of 10 Mb. Examining the Xpr region, which also met the criteria of the location of the XCI-activator, surprisingly showed that this region did not induce XCI on the male X chromosome. In contrast, a BAC mapped to a region approximately 475 Mb upstream of Xist did. Fine mapping, together with transcription analysis of the region, indicated that Rnf12 encoded the XCI-activator (Chapter 4). To exclude that the region containing Rnf12 functioned as
a pairing region necessary to induce XCI, as postulated by the transvection model, we disrupted the *Rnf12* gene in the BAC by integrating a Neomycin resistance cassette, without interfering with the putative pairing region. As expected, BACs with a disrupted *Rnf12* ORF could not induce XCI in transgenic male ES cells, proving that the gene product of *Rnf12* is an XCI-activator instead of the *Rnf12* genomic DNA sequence.

Moreover, the human BAC region homologous to the mouse region containing *Rnf12* also induced XCI when it was integrated into male mouse ES cells, indicating that the function of *Rnf12* is conserved between mouse and human. Interestingly, some females with a tiny ring X chromosome (46, X, (r)X) instead of a complete X chromosome do not initiate XCI. Breakpoint analysis shows that some of these ring X chromosomes still contain *XIST*, but seem to have lost *RNF12*, indicating that *RNF12* is needed to initiate XCI [25,26]. Some 46, X, (r)X females that include *XIST* but do not initiate XCI however, do contain *RNF12*, suggesting either that ring X chromosome analysis is not conclusive due to the mosaic nature of the females, or that another XCI-activator located further upstream of *RNF12* is lost [25].

The finding that *Rnf12* is an XCI-activator is supported by the recently obtained female ES cell line targeted with the *Rnf12* disrupted BAC sequence, which yielded a heterozygous *Rnf12* knockout ES cell line. Although XCI was not completely abolished, a 20 to 30% decrease in XCI initiation in female cells was observed (data not shown).

*Rnf12* is expressed ubiquitously in the early embryo at 7 dpc and encodes an E3 ubiquitin ligase called RNF12 or RLIM, which binds LIM domain transcription factors and LDB1 [27,28,29]. RNF12 contains a RING-H2 zinc-finger domain, which is common for ubiquitin ligases and needed for ubiquitination, and a basic domain that mediates interaction with LDB1 [29]. RNF12 ubiquitinates and targets LDB1 and other LIM domain transcription factors (TFs) to the proteasome in a dose dependent way, so that a high concentration of RNF12 causes increased degradation of LDB1 and other LIM domain TFs [29,30]. It was postulated that RNF12, LIM domain TFs and LDB1 (and LDB1 interacting proteins [31]) together convey a tissue and developmental specific regulatory system that is dependent on the concentration of the individual components [32,33].

How RNF12 activates XCI is unknown. Until now, RNF12 has mostly been described as a transcriptional repressor. Not only does it target TFs towards proteasomal degradation, but it also interacts with SIN3A, a histone deacetylase [27]. It is unlikely that RNF12 regulates XCI through LDB1, the most described interaction partner of RNF12, because LDB1 does not seem to be functional in XCI. The heterozygous LDB1 knockout embryos do not have a phenotype, and homozygous
knockout embryos die at E9.5-10 due to severe embryonic patterning defects [34]. Neither the heterozygous or homozygous LDB1 knockout phenotype are what would be expected if LDB1 would play a dose dependent role in XCI, because the heterozygous knockout should give rise to offspring in non-mendelian ratios, while the homozygous knockout should result in earlier embryonic lethality. Nevertheless, other factors than LDB1 and LIM domain TFs might interact with RNF12 to regulate the XCI process. RNF12 might ubiquitinate an \textit{Xist} repressor or a \textit{Tsix} activator and target it for proteasomal degradation. Furthermore, RNF12 action or incorporation of RNF12 might facilitate the formation of a silencing complex that associates with \textit{Xist} RNA. For example, RING1, a PRC1 component that has a RING-H2 zinc-finger domain similar to that of RNF12, acts in the XCI process in such a way. At present, not enough information is at hand to provide a complete molecular model on RNF12 function in XCI. First, more interaction partners of RNF12 that might have a potential role in XCI need to be found.

\subsection*{6.3.3 Other XCI regulators?}
Although RNF12 clearly plays a role in regulation of XCI, it is not likely that it is the only dose dependent factor important in XCI. As described above, it is difficult to envision that RNF12 is a direct transcriptional activator or repressor, but probably functions through other factors. These factors may also act dose dependently and could be equally important for the regulation of XCI. Furthermore, transgenic male \textit{Rnf12} ES cells do not initiate XCI in all cells after differentiation, even when multiple copies of \textit{Rnf12} are integrated. If \textit{Rnf12} was the only XCI-activator, one extra copy of \textit{Rnf12} should have been enough to initiate XCI in all male ES cells. Also, female ES cells heterozygous for \textit{Rnf12} are still able to initiate XCI to some extent (data not shown). Another indication that more dose dependent XCI regulators exist, is that female ES cells seem to respond more to extra copies of \textit{Rnf12} than male ES cells, i.e. extra copies of \textit{Rnf12/RNF12} induce XCI more efficiently in female ES cells than in male ES cells (Chapter 4, Fig. 1H and 1I, and Fig. 2E and 2F). Thus, female ES cells appear to have a cellular background that is more prone for XCI as male ES cells, which can be achieved by other X-linked XCI regulators. Moreover, a few ring X chromosome found in human 46, X, (r)X females, contain \textit{RNF12} and \textit{XIST} but do not initiate XCI, indicating that perhaps another gene located telomeric of \textit{XIST} and \textit{RNF12} might be important for XCI in humans [25]. Finally, none of the YACs that were used to obtain transgenic male cell lines that initiated endogenous XCI contain \textit{Rnf12} [19,20,21]. As mentioned, mapping of large genomic DNA sequences without sequencing may be imprecise and deletions, duplications and integrations may have taken place without being observed. Nevertheless, other XCI-activators that have not been detected by
our analysis might be located in the YACs.

If RNF12 would be the only XCI-activator, Rnf12 expression or RNF12 stability should be increased upon differentiation in female ES cells to initiate XCI. Furthermore, XCI would stop when one X chromosome, and therefore one copy of Rnf12, is transcriptionally silenced in female cells, which would reduce the Rnf12 mRNA concentration to the level in male cells. This assumption was tested by qPCR analysis on Rnf12 mRNA in various male and female ES cell lines (data not shown). Preliminary data suggest that the transcription of Rnf12 is downregulated in male and female cells upon differentiation. After 10 days of differentiation, the Rnf12 mRNA level is maximally 2.5 times lower when compared to the level in undifferentiated male and female ES cells. However, none of the male and female cell lines displayed an increase in Rnf12 mRNA, indicating that other changes during differentiation help activating XCI in female ES cells. Detection of a two-fold decrease in Rnf12 expression in female cells during differentiation, or a two-fold difference in Rnf12 levels between male and female cells appears to be difficult, in particular because the differences in

<table>
<thead>
<tr>
<th>Gene</th>
<th>Location (in kb)</th>
<th>(putative) function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xist</td>
<td>100,666-100,679 rev</td>
<td>essential for XCI, coats and silences Xi in cis</td>
</tr>
<tr>
<td>Tsix</td>
<td>100,627-100,680 for</td>
<td>negative regulator of Xist transcription</td>
</tr>
<tr>
<td>Rnf12</td>
<td>101,153-101,177 rev</td>
<td>E3 ubiquitin ligase, induces XCI</td>
</tr>
<tr>
<td>Atrx</td>
<td>102,993-103,125 rev</td>
<td>SWI/SNF related, role in DNA methylation, colocalizes to Xi</td>
</tr>
<tr>
<td>Suv39H1</td>
<td>7,638-7,652 rev</td>
<td>H3K9 methyltransferase</td>
</tr>
<tr>
<td>Jarid1C</td>
<td>148,688-148,709 for</td>
<td>H3K4 demethylase, escapes XCI, interacts with CTCF</td>
</tr>
<tr>
<td>Brcc3</td>
<td>72,662-72,699 for</td>
<td>component BRCA1/BRCA2 complex, potential colocalization Xi</td>
</tr>
<tr>
<td>Mecp2</td>
<td>71,272-71,331 rev</td>
<td>methyl-CpG-binding protein, maintenance CpG-methylation</td>
</tr>
<tr>
<td>SuhW3</td>
<td>45,895-45,948 rev</td>
<td>Zinc-finger containing, DNA-binding transcription factor</td>
</tr>
<tr>
<td>Smarca1</td>
<td>45,163-45,246 rev</td>
<td>SWI-SNF related, matrix associating protein, regulated by actin</td>
</tr>
<tr>
<td>Phf16</td>
<td>20,003-20,097 for</td>
<td>PHD Zinc-finger containing transcription factor</td>
</tr>
<tr>
<td>Fhl1</td>
<td>53,985-54,047 for</td>
<td>LIM-domain transcription factor</td>
</tr>
<tr>
<td>Zfp185</td>
<td>70,233-70,277 for</td>
<td>LIM-domain transcription factor, actin-binding</td>
</tr>
</tbody>
</table>

Table 1 Putative XCI-regulatory genes
Overview of putative X-linked XCI-regulators, including their position and established function.

Figure 2. Putative XCI-regulatory genes
Location of putative XCI-regulatory genes from table 1 on the X chromosome.
mRNA levels between the various cell lines are probably larger than the differences between male and female cell lines.

6.4 Spreading of Xist

In this thesis, it has been shown that Xist RNA does not leave the nuclear territory of the X chromosome but is locally confined (Chapter 5). This was demonstrated by examining tetraploid XXXX mouse ES cells that preferentially inactivate two out of four X chromosomes after differentiation, and contain an X chromosome with an Xist gene that was homologously targeted with ms2 repeats. These ms2 repeats allowed us to determine the origin of Xist transcripts after XCI had completed. It was found that Xist originating from one Xi was not found at the other Xi, thus indicating that the Xist RNAs were immediately restricted at the X chromosome from which they were transcribed (Chapter 5).

How is it possible that an Xist RNA molecule does not diffuse into the nucleus, but stays in one location? Xist itself is a large molecule of 17 kb, but probably folds into a smaller tertiary structure, so that it should be able to diffuse through the nucleus relatively freely. Therefore, it appears that Xist RNA is restricted to the X chromosome during or just after transcription. Localization of Xist could be mediated by (1) DNA-RNA interactions, (2) RNA-RNA interactions, or (3) protein-RNA-DNA interactions. Mediation of Xist binding by DNA-RNA interactions suggests that the X chromosome would have to fold around the Xist locus to ‘catch’ all transcribed RNA before it can diffuse. However, the Xist locus is located at the outer rim of the X chromosomal territory, so folding of the X chromosome around the Xist gene is unlikely [35,36]. RNA-RNA interactions might also prohibit Xist RNA from floating into the nucleus. Xist RNA molecules could bind each other while being transcribed and form a lattice of RNA molecules over the Xi that excludes RNA polII and attracts histone and DNA modifying protein complexes. Such a lattice of RNA molecules would not be very specific, however, and would not enable some genes to escape XCI, like Xist itself and others [37]. Also, autosomes close to the Xi might get covered with the ‘Xist web’, resulting in inappropriate autosomal silencing. Therefore, a sequence specific interaction with X chromosomal DNA seems likely. This leaves the postulation that proteins bind Xist RNA while it is transcribed and that the subsequent protein-RNA complex is targeted to the X chromosome in a sequence specific manner. Proteins that might interact directly with Xist RNA are EzH2, a component of PRC2 [38], CBX7, a polycomb protein of the PRC1 complex containing a putative RNA binding chromodomain [39,40], SAF-A, a nuclear scaffold component containing a putative RNA binding domain [41,42], and ATRX, a protein that co-localizes with the Xi and contains a putative RNA/DNA helicase domain [43].
To explain how spreading of $Xist$ RNA in *cis* might take place in eutherians, spreading of the dosage compensation complex (MSL complex) over the male X chromosome in *Drosophila melanogaster* may be taken as an example. The dosage compensation process in *Drosophila* is mediated by the MSL complex, which consists of the proteins MSL1, MSL2, MSL3, MLE and MOF together with X-linked ncRNAs *roX1* and *roX2*. MSL2 and *roX1* and *roX2* are male specific, so that MSL complex only binds the single male X chromosome, which results in a twofold upregulation of X chromosomal genes in *Drosophila* males. Interestingly, spreading of the MSL complex seems to be controlled by the balance between expression of the *roX* genes and the abundance of MSL protein components. Overexpression of MSL protein complex components enhances local spreading, while spreading over longer distances is perturbed [44]. Also, when expression of *roX* ncRNA becomes limiting, spreading of the MSL complex is localized around the *roX* (trans)gene and spreading in *trans* is inhibited, as experimentally demonstrated by lowering expression of autosomal *roX* transgenes [45] or expression of an autosomal *roX* transgene in a *roX1* and *roX2* deleted background [46]. Thus, the concentration of MSL complex proteins and *roX* ncRNA determines the local spreading of MSL complex. Furthermore, the MSL complex binds the MSL recognition elements (MRE), which is a sequence that is not specific to and only slightly enriched on the X chromosome. The high affinity of X-linked MRE sites for the MSL complex seems to be mediated by their location on the X chromosome, which is mostly in the nucleosome poor 3’ region of actively transcribed genes [47]. So, the expression of the X-linked *roX* genes and MSL complex components, in combination with DNA binding elements that have a higher affinity on the X chromosome than on autosomes, ensures spreading of MSL complex over the X chromosome in *cis*.

When the observations made in *Drosophila* regarding spreading of the MSL complex are conveyed to spreading of $Xist$ RNA, a similar process can be envisioned. An abundantly present protein complex encompassing one or several of the putative $Xist$ associating proteins might facilitate localization of the $Xist$ RNA. Furthermore, the well titrated levels of $Xist$ RNA expression could also ensure that $Xist$ RNA only spreads locally over the X chromosome, and does not diffuse onto an autosome. Finally, X-chromosomal binding sites, that might be enriched or positioned in such a way that their binding affinity is enhanced on the X chromosome, could also facilitate preferential binding of $Xist$ RNA to the X chromosome.

This hypothesis for $Xist$ spreading is supported by several observations. For instance, $Xist$ RNA expressed from the endogenous $Xist$ gene of an X;autosome translocation chromosome readily spreads over the X chromosomal part, but displays attenuated spread into the autosomal part of the translocated chromosome.
which is an indication that the affinity of \textit{Xist} RNA for X chromosomal DNA binding sites is much higher than for autosomal DNA binding sites under endogenous expression levels of \textit{Xist}. Furthermore, \textit{Xist} RNA does not spread over the X chromosome evenly, but seems to prefer gene rich regions that are located at the periphery of the Xi [35, 36, 51, 52, 53, 54], indicating that putative \textit{Xist} binding sites are specifically enriched or have a higher affinity for \textit{Xist} RNA in the gene rich regions of the X chromosome, like the MRE sites on the \textit{Drosophila} X chromosome. Nevertheless, the putative \textit{Xist} binding sites are not likely to be exclusive to the X chromosome. Overexpression of \textit{Xist} transgenes on an autosome in male and female cells can also result in spreading over the autosome (this thesis) and subsequent silencing in \textit{cis} [18, 55], as has been found in \textit{Drosophila} when a roX1 transgene was overexpressed from an autosome in a roX deleted background [46].

Thus, the putative \textit{Xist} binding sites located on the X chromosome should have a higher affinity for \textit{Xist} than \textit{Xist} binding sites on an autosome or around X-linked genes escaping XCI. However, the high affinity of the X chromosome for \textit{Xist} RNA does not have to be related to the relative abundance or exclusiveness of X-chromosomal \textit{Xist} binding sites. MRE sites in \textit{Drosophila} are only mildly enriched on the X chromosome, and their X-specific binding affinity by the MSL complex is mostly based on their 3’ positioning at active genes [47]. Also, the two DNA motifs of the recruitment-element-on-X (rex) sequences that bind the dosage compensation complex of \textit{C.elegans} to the X chromosome are not enriched on the X chromosome, but have a high affinity when both motifs are clustered locally [56]. LINE1 repeats have previously been hypothesized as potential \textit{Xist} binding sites [57]. The most important observation in favor of the LINE1 repeat hypothesis is that the repeats are enriched twofold on the X chromosome [58, 59, 60], although as mentioned, MRE sites in \textit{Drosophila} and rex sequences in \textit{C. elegans} show that abundancy does not determine the affinity of binding sites [47, 56]. Furthermore, enrichment of LINE1 repeats does not seem to correlate with gene rich regions of the X chromosome, even though \textit{Xist} RNA seems to preferentially bind to those regions [36, 51], which weakens the argument of abundance in favor of LINE1 repeats. Also, computational studies of LINE1 repeat sequences around genes escaping XCI have not been conclusive [61, 62, 63, 64]. Therefore, LINE1 repeats may facilitate preferential \textit{Xist} binding to the X chromosome, but evidence supporting this hypothesis is incomplete at best.

Overall, a balance between the concentration of a functional ncRNA, the concentration of protein complex components and DNA binding sites with varying affinity may regulate spreading of the dosage compensation machinery over the X chromosome. However, of these three components important for spreading, only the
ncRNA, being Xist, is known in mammals, whereas the other components still need to be unraveled. Also, the model should be tested further by changing the concentration of the individual components that might be important for Xist spreading in cis.

6.5 The comprehensive model for XCI

In this thesis, both initiation of XCI and spreading of Xist over the X chromosome in cis have been postulated to be dependent on the concentration of factors involved in XCI in the nucleus. The concentration of the XCI-activator determines whether XCI is initiated, based on the stochastic model. The XCI-activator was predicted to be X-linked, which ensures that only cells with two or more X chromosomes per diploid genome initiate XCI. Subsequently, the X-linked gene Rnf12 was found to initiate XCI when extra copies of the gene were integrated in male cells. However, how RNF12 regulates the XCI process is unknown. Furthermore, RNF12 is not likely to be the only X-linked XCI-activator, as discussed in paragraph 6.3.3.

The balance between the concentration of Xist RNA and the concentration of factors that bind and localize Xist to Xist binding sites could determine spreading of Xist RNA over the X chromosome. The putative proteins that facilitate Xist spreading are not exclusive to female cells. This is concluded from the fact that spreading of Xist not only takes place in female cells, but also in male cells (Chapter 4, Fig. 1B and 1C). Nevertheless, a more optimal concentration of Xist associating proteins in female cells could make female cells more prone for initiation of XCI. An X chromosome is destined to become inactivated when it overcomes the repression of Tsix transcription in cis. Xist RNA and the Xist associating proteins could achieve this by silencing of Tsix transcription. Therefore, if local spreading of Xist is more optimal in female cells than in male cells, than female cells are more likely to silence Tsix and initiate XCI in cis.

As described above, in Drosophila, spreading in cis of the MSL complex is localized around the roX genes when individual MSL complex components are overexpressed, so enhanced local spreading of Xist RNA in female cells could be mediated by a higher concentration of one of the protein factors that associate with Xist RNA, which can be achieved by an X chromosome-encoded Xist associating factor.

If loss of one copy of the X-linked Xist associating factor is enough to prevent or impair XCI in female cells, than the same deletion studies used to determine the localization of the X-linked XCI-activator can be applied to localize the gene encoding the dose dependent Xist association factor. Combination of data obtained with the Searle’s translocation embryos and HD3 truncation embryos, defines a region that is approximately 10 Mb long, that should encode the crucial dose dependent XCI factors. Rnf12 is located within this region, and interestingly so is Atrx, which makes ATRX an immediate candidate for a dose dependent Xist associating factor.
Figure 3. A comprehensive model for XCI
Overview of the comprehensive XCI model. The grey left arrow represents the progression of differentiation in time. The top panel row represents early dose-dependent upregulation of Xist by RNF12 and constant Tsix repression by an autosomally encoded factor in female (left) and male cells (right). X-encoded Xist associating factors (ATRX and X? in the figure) in female cells are twice as abundant in female cells (left) as in male cells (right)(second panel row). In female cells (left), Xist is associated to the X chromosome by dose-dependent (ATRX and X?) and/or autosomally encoded (EzH2) Xist associating factors whereas in males (right), Xist and Xist associating factors cannot form a complex efficiently. Xist and the Xist associating complex turn off Tsix transcription. Ultimately, Xist and Xist associating complex inhibit X-linked gene expression in cis (bottom).
ATRX is a protein of the SWI/SNF chromatin remodeling family that causes X-linked mental retardation and α-thalassemia in humans when it is mutated [65]. ATRX directly or indirectly regulates the methylation status of repeat sequences such as CpG islands and rDNA repeats [66], and thus can indirectly regulate gene expression. It also appears to directly interact with the SET domain of EzH2 in human cells [67,68]. Recently, ATRX was found to accumulate on the Xi after 8 days of differentiation in approximately 50% of female ES cells [43]. Deletion of Atrx in male ES cells results in a proliferative defect and deletion of Atrx in male embryos causes embryonic lethality at 9.5 dpc due to a defect in trophoblast giant cell proliferation [69]. Furthermore, heterozygous female embryos that inherit the null allele maternally are able to reactivate the wild type paternal X chromosome after imprinted XCI has taken place, which rescues more than 50% of the embryos [69]. This indicates that Atrx has a function in maintaining the silenced state of the paternal X chromosome after imprinted inactivation. In female embryos with a maternally inherited Tsix deleted X chromosome, reactivation of the maternal X chromosome does not take place, which results in embryonic lethality [70,71]. Inactivation of the paternal X chromosome with the wild type Atrx should also lead to embryonic lethality, because the extraembryonic tissue would lack functional ATRX. Nevertheless, in these embryos the inactivated X can be reactivated, indicating that the silencing and maintenance of the inactive Xp is impaired due to the mutation of the Atrx gene on the active Xm. The role of ATRX in XCI might be recognition or binding of X-linked binding sites or genes, because ATRX regulates genes that have been translocated from the pseudoautosomal region to autosomes in mice [72].

Nevertheless, ATRX could be one of many X-linked factors that interact with Xist in a dose dependent way, but result in a mild phenotype when deleted, or only show a phenotype when they are deleted in combination with other factors that have a function in XCI. Therefore, extra copies of Atrx in male cells in combination with integration of extra copies of Rnf12 might still initiate XCI only partially upon differentiation. Other X-linked factors that could have a function in XCI are shown in Table 1 and Fig. 2.

Could RNF12 also be an Xist associating factor? RNF12 could facilitate formation, or be part of, an Xist associating complex, that spreads and silences Tsix in cis in female cells only. This would be similar to the action of RING1A and B of the PRC1 complex, which are also E3 ubiquitin ligases, and have a function in gene silencing on the Xi [73]. However, Xist expression is higher in female cells compared to male cells when Tsix is not present [1], which indicates that expression of Xist is dependent on the X:autosome ratio in a cell and must therefore be regulated by an X-linked gene. Presently, RNF12 is the most likely candidate, but functional studies of
Rnf12/RNF12 will have to determine what the exact role is in XCI regulation.

Ultimately, expression of Xist, regulated by one or multiple X-linked XCI-activators, together with spreading and silencing of Xist RNA in cis by an Xist associating complex that contains one or multiple X-linked components, could ensure that XCI is a process that is tightly regulated by the X:autosome ratio in cells and embryos (Fig. 3). In cells with an X:autosome ratio of 1.0, as in female cells, RNF12 may directly or indirectly regulate Xist expression, while ATRX, probably together with other autosomal or X-linked factors, may associate with Xist and facilitate spreading of Xist RNA over the X chromosome. Cells with an X:autosome ratio equal to or below 0.5, as in male cells, are expected not to have a sufficient dose of RNF12 to upregulate Xist expression to overcome Tsix repression. Furthermore, a relatively low level of ATRX may reduce the concentration of Xist associating complex, which would impair spreading towards Tsix, followed by subsequent silencing, in male cells. Together, dose dependent upregulation and spreading of Xist would reinforce that the XCI process is regulated by the X:autosome ratio, as proposed by the stochastic model.
General discussion

References


15. Xu N, Tsai CL, Lee JT (2006) Transient homologous chromosome pairing marks the


43. Baumann C, De La Fuente R (2008) ATRX marks the inactive X chromosome (Xi) in somatic cells and during imprinted X chromosome inactivation in
trophoblast stem cells. Chromosoma.


Genet 80: 133-137.


Summary
Samenvatting
Summary

All mammals employ genetic means to determine their sex, and have sex chromosomes of very different composition between males and females. In addition to the 20 pairs of autosomes, each male mouse cell has an X and a Y chromosome, while female mouse cells have two X chromosomes. Most molecular processes in an organism are dependent on the dose of the components involved, and as a consequence differences in X-chromosomal gene dosage between males and females would be lethal. Therefore, one of the X chromosomes is inactivated early during female development. This process is called X chromosome inactivation (XCI) and the current understanding of XCI is described in the Introduction of this thesis.

XCI is dependent on the X-linked \textit{Xist} gene, which encodes an untranslated but functional RNA. Upon initiation of XCI in female cells, \textit{Xist} is upregulated and eventually \textit{Xist} RNA spreads over one of the two X chromosomes in \textit{cis}. \textit{Xist} RNA attracts many factors that together ensure that the X chromosome is silenced and remains silent through many cell divisions. \textit{Tsix} is a gene that, like \textit{Xist}, also does not encode a protein, and is transcribed in the antisense direction of \textit{Xist}, overlapping \textit{Xist} completely. Thereby, it functions as in \textit{cis} repressor of \textit{Xist} expression.

A satisfactory model that describes all aspects of the initiation of XCI, including the regulation of \textit{Xist} and \textit{Tsix} expression, has not been formulated yet. In Chapter 2, we describe a model for XCI based on the stochastic expression of \textit{Xist} and \textit{Tsix}. In this model, \textit{Xist} expression is dependent on the number of X chromosomes in a cell, while \textit{Tsix} expression is determined by the number of autosomes, which results in initiation of XCI in female cells only. Therefore, an X-linked XCI-activator most likely drives \textit{Xist} expression. The female \textit{Xist-Tsix-Xite} mouse knockout cell line described in this Chapter 2, still exhibits XCI, which suggests the presence of a novel X-linked gene involved in induction of \textit{Xist} upon XCI initiation. Transcription initiation of \textit{Xist} and \textit{Tsix} is stochastic, resulting in a probability for \textit{Xist} to inactivate \textit{Tsix} and subsequent silencing in \textit{cis}. After initiation of XCI on one X chromosome, one copy of the X-linked XCI-activator is silenced, which decreases the level of the XCI-activator and the probability of the other X chromosome to be inactivated. This results in inactivation of one of two X chromosomes in most female cells, but also in inactivation of both X chromosomes in a small but significant proportion of female cells. Analysis of XCI initiation in diploid and tetraploid cell lines underscores the validity of the stochastic model for XCI initiation.

In Chapter 3, initiation of XCI is also examined in triploid XXY mouse ES cells, which provides more evidence indicating that the X:autosome ratio determines the probability to initiate XCI, which supports the stochastic model for XCI initiation.
Furthermore, mathematical and computer simulations, based on a stochastic model, are employed to predict the outcome of XCI in male and female cells, in cells with an aberrant ploidy, and in cells with a variable probability for each X chromosome to inactivate.

One of the most important predictions of the stochastic model is the presence of an X-linked XCI-activator. In Chapter 4, Rnf12 is identified as an X-linked XCI-activator gene. Integration of extra copies of this gene in male ES cells results in induction of XCI on the single X chromosome. Nevertheless, other factors might be involved, as indicated by the fact that RNF12 is already expressed before the onset of XCI, and that it is not a straightforward transcription factor, but an E3 ubiquitin ligase.

In Chapter 5, experiments on the spreading of Xist RNA over the X chromosome in cis are described. Xist RNA does not seem to spread over the X chromosome via diffusion, but is confined to the X chromosomal territory during or immediately after transcription of Xist. This can be achieved by trapping the Xist RNA with Xist associating factors. We postulate that spreading of Xist is dependent on the concentration of Xist RNA and Xist associating factors, combined with the presence of X-chromosomal binding sites for the Xist-protein complex.

Ultimately, the models for initiation of XCI and spreading of Xist RNA are combined in the Discussion and a comprehensive model for XCI is introduced. X-linked factors, like RNF12, are important for Xist upregulation upon initiation of XCI, and putative X-linked Xist associating factors are essential for in cis silencing of Tsix. Together, these X-linked factors ensure dose-dependent activation of XCI, based on the X:autosome ratio.
Samenvatting

Bijna alle zoogdieren gebruiken genetische determinanten om hun seks te bepalen en hebben seks chromosomen waarvan de samenstelling verschillt tussen vrouwen en mannen. Naast de 20 paar autosomen, bevatten mannelijke muizen cellen een X en een Y chromosoom, terwijl vrouwelijke muizen cellen twee X chromosomen hebben. De concentratie van componenten die van belang zijn in een moleculair proces van een organisme is zeer belangrijk, waardoor verschillen in de dosering van X chromosomale genen tussen mannen en vrouwen leethal kan zijn. Daarom wordt vroeg tijdens de ontwikkeling van een vrouwelijk embryo een van de twee X chromosomen uitgezet. Dit proces heet X chromosoom inactivatie (XCI) en onze hedendaagse kennis van XCI wordt beschreven in de Introductie van deze thesis.

XCI is afhankelijk van het X gelinkte gen Xist, wat een ongetransleerd maar functioneel RNA codeert. Tijdens de initiatie van XCI wordt Xist opgereguleerd en uiteindelijk spreidt Xist over een van de twee X chromosomen in cis. Xist RNA trekt allerlei factoren aan die ervoor zorgen dat het X chromosoom wordt uitgezet en ook uitblijft in de vele celdelingen die daarna volgen. Tsix is een gen dat niet codeert voor een eiwit en het wordt overgeschreven in de tegenovergestelde richting van Xist, waarbij Tsix het hele Xist gen overlap. Hierdoor heeft het een remmende werking voor Xist expressie in cis.

Een bevredigend model dat alle facetten van de initiatie van XCI beschrijft, inclusief de regulatie van Xist en Tsix expressie, is nog niet geformuleerd. In Hoofdstuk 2 beschrijven we een model voor XCI dat is gebaseerd op de stochastische expressie van Xist en Tsix. Xist expressie is afhankelijk van het aantal X chromosomen in een cel, terwijl Tsix expressie afhankelijk is van de hoeveelheid autosomen, zodat alleen vrouwelijke cellen XCI initiëren. Daarom is er waarschijnlijk een X gelinkte XCI-activator die Xist expressie aanstuurt. De vrouwelijke Xist-Tsix-Xite knockout muizen cel lijnen die zijn beschreven in dit Hoofdstuk, zijn nog steeds in staat XCI te initiëren, wat suggereert dat een vooralsnog onbekende factor van belang is voor de initiatie van XCI. Transcriptie initiatie van Xist en Tsix is stochastisch, wat ervoor zorgt dat Xist een kans heeft om Tsix uit te zetten en vervolgens het X chromosoom te inactiveren in cis. Na initiatie van XCI op een X chromosoom wordt de X gelinkte XCI-activator uitgezet en daalt de kans van de overgebleven X om te worden geïnactiveerd samen met de concentratie van de XCI-activator. Dit resulteert in de inactivatie van een van de twee X chromosomen in de meeste vrouwelijke cellen, maar ook in inactivatie van beide X chromosomen in een klein maar significant deel van de cellen. Analyse van XCI initiatie in diploïde en tetraploïde cellen bevestigd de beschrijvende waarde van het stochastische model voor XCI initiatie.
In Hoofdstuk 3 wordt de initiatie van XCI ook bepaald in triploïde XXY muizen cellen, wat wederom bevestigd dat de X:autosoom ratio de initiatie van XCI bepaald, en waardoor het stochastische model voor initiatie van XCI wordt onderschreven. Bovendien worden mathematische en computer modellen, die gebaseerd zijn op het stochastische model, toegepast om de uitkomst van XCI te voorspellen in mannelijke en vrouwelijke cellen, in cellen met een afwijkende hoeveelheid seks chromosomen en in cellen met een variabele kans per X chromosoom om te inactiveren.

Een van de belangrijkste voorspellingen die het stochastische model maakt is dat er een X gelinkte XCI-activator bestaat. In Hoofdstuk 4 wordt Rnf12 geïdentificeerd als potentiële XCI-activator. Extra kopieën van het Rnf12 gen veroorzaken inductie van XCI in mannelijke stam cellen, resulterend in inactivatie van het enige X chromosoom in de cel. Andere factoren kunnen echter ook een rol spelen, zoals wordt gesuggereerd door het feit dat RNF12 al voor de initiatie van XCI tot expressie komt en doordat het niet een voor de hand liggende transcriptie factor is, maar een E3 ubiquitin ligase.

In Hoofdstuk 5 komt de spreiding van Xist over het X chromosoom in cis ter sprake. Xist RNA lijkt zich niet te verspreiden over het X chromosoom door middel van diffusie, maar wordt tijdens of direct na transcriptie van het Xist gen vastgehouden in de X chromosomale omgeving. Dit is mogelijk door Xist te vangen met Xist associërende factoren. We postuleren dat de spreiding van Xist afhankelijk is van de concentratie van Xist RNA en Xist associërende factoren, gecombineerd met de aanwezigheid van X chromosomale bindingselementen voor het Xist-eiwit complex.

Uiteindelijk worden de modellen voor het initiëren van XCI en het verspreiden van Xist RNA gecombineerd in de Discussie, en wordt een compleet model voor XCI geïntroduceerd. X gelinkte factoren zoals RNF12 zijn belangrijk voor het opreguleren van Xist tijdens de initiatie van XCI, terwijl X gelinkte Xist associërende factoren essentieel zijn voor het stilleggen van Tsix in cis. Samen zorgen deze X gelinkte factoren voor een concentratie afhankelijke activering van XCI gebaseerd op de X:autosoom ratio.
Curriculum Vitae

Personal details
Name: Iris Hélène Jonkers
Birth date: 28-5-1979
Birthplace: Eindhoven, The Netherlands

Education
1997 – 2004 BSc and MSc degree Bioprocesstechnology
Wageningen University, Wageningen, The Netherlands

1990 – 1997 VWO, Gymnasium β
Stedelijke Scholen Gemeenschap Middelburg,
Middelburg, The Netherlands

Scientific background
From 2009 Postdoctoral fellow
Department of Molecular Biology and Genetics, Cornell
University, USA

2004-2009 PhD research
Department of Reproduction and Development,
ErasmusMC, Rotterdam, The Netherlands

2003 Internship
Department of Chemistry and Biomolecular Sciences,
Macquarie University, Sydney, Australia

2003 MSc research project
Laboratory of Virology, Wageningen University,
Wageningen, The Netherlands

2002-2003 MSc research project
Fungal Genomics, Wageningen University, Wageningen,
The Netherlands
Publication list

Published in refereed journals:


PhD Portfolio Summary

Name PhD student: Iris Hélène Jonkers
Promotor(s): F. Grosveld en J.A. Grootegoed
Supervisor: J. Gribnau
Erasmus MC Department: Department of Reproduction and Development
Research School: MGC graduate school

1. PhD training

<table>
<thead>
<tr>
<th></th>
<th>Year</th>
<th>Workload (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>General academic skills</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory animal science</td>
<td>2005</td>
<td>108</td>
</tr>
<tr>
<td>Scientific communication course Marburg</td>
<td>2005</td>
<td>24</td>
</tr>
<tr>
<td>Biomedical English Writing and Communication</td>
<td>2007</td>
<td>84</td>
</tr>
<tr>
<td><strong>Research skills</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Save laboratory techniques</td>
<td>2004</td>
<td>8</td>
</tr>
<tr>
<td>Working in the C-lab</td>
<td>2004</td>
<td>24</td>
</tr>
<tr>
<td><strong>In-depth courses (e.g. Research school, Medical Training)</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In vivo imaging; From cell to organism</td>
<td>2004</td>
<td>32</td>
</tr>
<tr>
<td>Experimental approach to Molecular and Cell Biology</td>
<td>2005</td>
<td>168</td>
</tr>
<tr>
<td>From Development to Disease</td>
<td>2005</td>
<td>32</td>
</tr>
<tr>
<td>Molecular Medicine</td>
<td>2005</td>
<td>32</td>
</tr>
<tr>
<td>Analysis of microarray gene expression data</td>
<td>2008</td>
<td>32</td>
</tr>
<tr>
<td><strong>Presentations</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winterschool Klein Walsertal</td>
<td>2005 - 2008</td>
<td>128</td>
</tr>
<tr>
<td><strong>International conferences</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Conference on ‘Chromatin and Transcription’; FASEB summer research conference; Snowmass Village, Colorado, USA (poster contribution)</td>
<td>2005</td>
<td>32</td>
</tr>
<tr>
<td>- Conference on ‘X chromosome inactivation’;</td>
<td>2006</td>
<td>32</td>
</tr>
<tr>
<td>- 16th International chromosome conference;</td>
<td>2007</td>
<td>32</td>
</tr>
<tr>
<td>- Amsterdam, The Netherlands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Conference on ‘Transcriptional regulation during cell growth, differentiation and development’; FASEB summer research conference Snowmass Village, Colorado, USA (poster contribution)</td>
<td>2008</td>
<td>32</td>
</tr>
<tr>
<td><strong>Seminars and workshops</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MGC Promovendi Workshop</td>
<td>2004 - 2005</td>
<td>64</td>
</tr>
<tr>
<td>Third Dutch chromatin community meeting</td>
<td>2005</td>
<td>16</td>
</tr>
<tr>
<td>SCDD BSIK conference</td>
<td>2009</td>
<td>8</td>
</tr>
</tbody>
</table>
Dankwoord

Het zit erop! Ik mag mezelf Doctor noemen en ik kan een boekje in de kast zetten waar ik heel trots op ben. Vijf jaar heb ik met veel plezier bij het ErasmusMC gewerkt, en die periode zal ik niet snel vergeten. En dat komt natuurlijk vooral door alle mensen die ik hier heb ontmoet, waarmee ik heb samengewerkt en ongelooflijk veel fantastische ervaringen heb opgedaan!

Allereerst wil ik Joost bedanken. Wat een enorm geluk dat ik jou als begeleider heb getroffen. Het is een hele leerzame en interessante ervaring geweest om met jou een lab op te zetten en te zwoegen voor de eerste resultaten. Dat ging in het begin niet altijd even soepel, maar een groot deel van jou kracht zit in het feit dat je mislukkingen opzij kan zetten en altijd een stortvloed van nieuwe ideeën hebt om uit te voeren. Ik ben dan ook enorm blij dat dat uiteindelijk heeft geresulteerd in hele mooie artikelen en een groeiende groep X-perts. Dank je wel voor je niet aflatende ideeën, interesse, geduld, goede humeur en humor.

Natuurlijk hebben mijn promotors Frank en Anton ook een grote rol vervuld in de totstandkoming van dit proefschrift. Frank, je hebt vooral in de eerste jaren een belangrijke rol gespeeld in het vormgeven van mijn promotie onderzoek. Nu nog steeds ben je iemand waar ik altijd advies aan kan vragen en ik wil je daar dan ook hartelijk voor bedanken. Anton, ik ben je steeds meer gaan waarderen. De gedetailleerde manier waarop je aandacht hebt besteed aan mijn projecten, artikelen, en promotie onderzoek is heel waardevol geweest voor me en ik stel het enorm op prijs. Samen zijn jullie echt het ideale promotor koppel!

Verder wil ik de kleine commissie, bestaande uit Dies, Ben en Niels heel hartelijk bedanken voor het zorgvuldig lezen van m’n proefschrift. De opbouwende kritiek wordt zeer gewaardeerd.

Eveline, als Joost de hersenen zijn, dan ben jij het kloppende hart van ons clubje. Je bent de stille kracht die het lab draaiende houdt en voor al de goede zorgen wil ik je heel erg bedanken. Verder ben je natuurlijk een schat van een meid en ik heb altijd enorm veel plezier met je. Ik mis je nu al (je bent namelijk de Kilimanjaro aan het beklimmen terwijl ik dit schrijf)!

Kim, Stefan, and Eskeww, your scientific influence and advice is much appreciated. Of course, I want to thank the students in the lab as well: Annegien, Nilhan, Hakima, Bas and Ruben, it was great to work with you! You are the reason labs should have as many students as possible. You were hilarious and helpfull.

A special thanks goes to the office members Sam, Akiko, and Eskeww. There
is never a dull moment when you are there. Lab 910 was already a great place to work at before you came, but you brought life, laughter and personality to the office! Like with all good friends, I sometimes want to stick you behind wallpaper, but I can never stay irritated and I really hope that we will always remain friends. Thank you for all the great times.

To all other (former) people in the lab, Willy, Peng, Eveliene, Esther, Marja, Jos, Albert, Leen and Mark, I want to say thank you very much for your interest, advice, and fun! Peng, a special thanks to you for all the computer wisdom from the “Chinese connection”.

Samenwerkingen zijn super, zeker als ze met lab 1030 zijn. Niels, Helen en Suzanne super bedankt voor de leuke en soepel lopende samenwerkingen, hopelijk worden de resultaten snel gepubliceerd. Frankie Keys, onze samenwerking reikt zo ver als Lowlands, en is nog lang niet klaar! Ik vond het echt heel tof om samen over proeven na te denken, experimenten te optimaliseren (tot in den treuren) en enorme bomen op te zetten over vrijwel alles. Picknick tafels hebben een hele nieuwe betekenis voor me.....

Verder wil ik de cell culture buddies niet overslaan: Maureen, Jeffrey, Petra, en Erik en Daniel (de “Splitsers”) heel erg bedankt voor de tips en de hilariteit. Celkweek zuigt, maar niet als jullie erbij zijn.

There are a lot more colleagues and friends that I haven’t mentioned here, but there are just too many! I always thought the working atmosphere inside and outside the building (read: in a bar or restaurant) was amazing and I thank you all very much for it. Cheers! I can only wish that I will have as many fun colleagues in the future.

Last but not least, I would like to thank Sanja, Akiko (again) and Daan for providing a PhD-support-system for me. You are amazing! Daan, good luck in Lausanne, I know you will do great over there and I can’t wait to set up our first collaboration. Our paths will cross eventually, they always do. Sanja, although you won’t be able to come to my defense, you will be in my mind, and that will be a great comfort. I wish you and Nir a great future in Israel. Akiko, you are unique, in the best possible way, and you really have to do a postdoc in New York!! I will be waiting.

Natuurlijk wil ik ook alle “andere” vrienden uit Wageningen en Rotterdam bedanken voor de afleiding en ontspanning. Zonder jullie zou het maar een saaie bedoeling zijn, en ook al ga ik naar de Verenigde Staten, ik hoop dat jullie zo nu en dan de oceaan over zullen steken (met het vliegtuig, de mail, skype of telefoon). Tegen Jasperien wil ik zeggen, het spreekwoord ‘gedeelde smart is halve smart’ is bewezen, lijkt me.
Franz, dank je voor de afleiding en de introductie tot de Rotterdamse cultuur, beter laat dan nooit.

Uiteindelijk zijn de belangrijkste mensen in dit dankwoord mijn ouders, Frans en Hélène. Jullie hebben me opgevoed met het idee dat ik een intelligente en zelfstandige meid zou worden, die doet wat ze belangrijk en leuk vindt. Dat is gelukt (denk ik). Ik weet dat jullie trots op me zijn en me onvoorwaardelijk steunen in mijn besluit om in de VS te gaan werken, ook al vinden jullie het ook heel jammer om me te zien vertrekken. Wees niet getreurd, ik verdwijn niet van de aardbodem! Dank jullie wel voor alles, ik ben er ongelofelijk trots op jullie dochter te zijn.

Heel veel lief,
Iris