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Summary

This paper deals with forecasting and nonlinearity aspects of linear periodic models for
seasonally observed time series which contain a single unit root. This unit root imposes a
nonlinear restriction on the model parameters. Multi-step ahead forecasts differ from
forecasts obtained from nonperiodic models in the sense that they can reflect slowly
changing seasonal patterns observed within the estimation sample,
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1. Introduction

Two often encountered characteristics of seasonally observed time series in economics is
that they show trending behavior and slowly changing seasonal patterns. Traditionally,
time series analysts describe such variables using linear autoregressive models for the
appropriately transformed series. Usually these transformations are based on the applicati-
on of the first order differencing filter or the seasonal differencing filter. These filters
imply for log transformed time series that the resulting series correspond to seasonal and
annual growth rates, respectively.

For some economic series these models can be considered to be only rough approxima-
tions. Seasonal growth rate models assume that the seasonal patterns can be described by
constant seasonal dummies. However, recursive estimates of the corresponding parameters
sometimes suggest that they may not be constant within the estimation sample, see, e.g.;
Canova and Ghysels (1992). On the other hand, the annual growth rate models assume
that the annual series, which contain the observations in the separate seasons, each have a
unit root. In theory, this implies that the observations in the different seasons may not
have the tendency to move together, which may be unreasonable for many economic time
series. This calls for a class of models that can cope with these drawbacks of the traditio-
nal models. An example of such a class is that.of periodic autoregressions with a single
unit root, which are also called periodically integrated autoregressions [PIAR]. Detailed
discussions of these models are given in Osborn {1988), Franses (1991), and Boswijk and
Franses (1992), In the present paper the focus is on the forecasting and nonlinearity
aspects of this class.

First, in section 2, some notational issues are briefly discussed. Then, in section 3, the
nonlinearity aspect is highlighted. Section 4 deals with forecasts from a PIAR. Section 5
concludes with some remarks.
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2. Preliminaries

Consider a time series x, which is observed s times per year during N years, where §
usually is 2, 4 or 12. The index ¢ runs from 1 through », with n = sN. A commonly
applied assumption for x, is that it can be described by an autoregression of order p
[AR(M)], ie.

0, (B)x, = p + g, ()

where §,(B) =1 - B - .. - ¢B" is a p-th order polynomial in the operator B which

is defined by B*, = x,_,. The ¢, is a standard white noise process, and p is a constant.

When q>p(B) can be decomposed as ¢,(B) = ¢;_S(B)(1 ~ B®) model (1) becomes q);_:(B)y,
=q + e, where y, = Ay, ie., the annually differenced x, series. The A, filter is defined by
ij, =X~ X Alternatively, when q),,(B) in (1) can be decomposed as q);:,(B)(l ~— B), then
model (1) becomes ¢,°,(B)z, = p + €, where z, = Ax, with A, is the first order differencing
filter. In the latter case, the p is usually replaced by seasonal durmmies to account for
seasonal variation.

Model (1) assumes autoregressive parameter constancy, i.e. the ¢; parameters do not
vary with season s. A model that allows periodic parameters is the so-called periodic
autoregression of order p [PAR(p)], see, e.g., Anderson and Vecchia (1993) and the
references cited therein. There are several ways to represent a PAR process, of which a
simple one is

¢ps(B)xt = }‘ls + 8' ? (2)

with ¢,(B) = 1 - ¢, B — ... — ¢,B", where the index s indicates that the parameters vary
with the season. Of course not all parameters in ¢,(B) have to be unequal to zero. Hence,
also the lag lengths in each of the seasons may be different.

It is clear from (2) that a PAR model considers each season differently. Therefore, an
alternative representation of (2) is given by a multivariate model for X; which is the (sxI)
vector of stacked seasonal observations, ie. X; = (Xip, Xop .., X,p)', Where Xy is the
observation in season i in year 7, see, e.g., Lutkepohl (1991) and the references cited
therein, The index T runs from 1 through N. A vector representation of (2) is

AX, =8 +AX, |+ . +AX,  _+e, 3

-m

where A;, [ = 0, ..., m are (sxs) parameter matrices, & is the (sx1) vector of constants, and
e is vector white noise process. The order m is related to the order p in (2) by m < sp .

3. A Unit Root and Nonlinearity

The vector process X and the univariate process X, do not contain unit roots if the
solutions to the characteristic equation
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A ~ Az - .. -Az" =0 4)

are outside the unit circle. Franses and Paap (1993) in a yet unpublished paper find
evidence of the presence of a single unit root in about twenty quarterly UK macroecono-
mic time series. The presence of a unit root can be checked by testing whether z=/ is the
only unity solution of (4). It is clear from (1) that this unity solution implies a nonlinear
parameter restriction. Hence, a periodically integrated autoregression is a linear model with
a nonlinear parameter restriction. A simple example is given by a PAR(1) process

x1=¢lsxz~l+el ’

The multivariate model for the corresponding X, vector process contains a unit root when
I, ¢u=1.
Pre-multiplying (3) with A,™, and some rewriting yields

AX, =0+ [AX, , + .. +T AX + X, + o

m=1"""Temt] 1-m T (5)
where the T; and I, j = 1,..,m-1, are functions of the A; in (3), i=0,..,m, where A is the
first order differencing filter for annual time series, and @y = A,'ey. Note that the A filter
here corresponds to the A, filter for the univariate quarterly series X,.

The representation in (5) is convenient to test for cointegration between the elements of
X, see Franses (1991). For example, if the rank of the matrix I is equal to zero, the
model reduces to a vector process for the AX; series. Otherwise stated, when there are no
cointegration relations between the elements of Xy, the transformed series A X, can be used
for further modeling. Then, each of the time series X,; contains a stochastic trend, and
there are no linear combinations that ensure that these series tie together.

A PIAR process of some order p which contains a single unit root has s-J/ cointegrating
relations between the X, series. Hence, the rank of [T in (5) is equal to s-7. If this is the
case, it can easily be shown that these cointegration relations are given by

X aX

r- X o, with Toop=1 for i=12..9, (6)

=1

where X, = X, »_,. Hence, a PIAR(p) process can also be
written as

(1 - aBx, =B, (1 - o Bx_ +. + (- ai-;mB)x:—,m +p t+e,, N

where the o satisfy the restriction in (6), and where o, = 0, for £=0, 1,... . The f§; are
again periodic parameters. The filter (I — oB) is called a periodic differencing filter.
Obviously, when all o; are equal to one, the conventional (/-B) filter emerges.

Together with (4), the equation in (7) indicates a useful model selection strategy. A first
step is to estimate the order p of the PAR. This can be done using familiar model
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selection criteria as the Akaike and Schwarz information criteria, or using F type tests for
parameter redundancy. Once this order is determined, the next step is to test whether the
autoregressive parameters are seasonally varying. Again an F type test can be constructed.
In Franses and Paap (1993) it is shown that for both F tests standard asymptotic results
apply. The third step is to check the number of unit roots in a PAR by checking the
solutions of (4). When there is only a single unit root, which is usually the case in
practice, one can reformulate the model as in (7) to test for adcquaLy of filters such as (/-
B), or even (1 — BY) if the order p is large enough.

The model selection strategy, discussed in the previous paragraph, is a general-to-
simple-method. The crucial tests for periodicity and unit roots are performed within the
context of a prespecified model. An alternative, since simple-to-general, method is given
in Vecchia and Ballerini (1991). This approach checks for periodicity in the autocorrelati-
on function, A drawback of this method however is that two distinct time series processes,
like AR(2) and AR(3), can have similar estimated autocorrelation functions. Moreover, not
rejecting the null hypothesis of no periodic autocorrelations does not automatically imply
that the underlying process is nonperiodic.

4. Forecasting

Consider again the expressions in (6) and (7). In practice, the o; are usually estimated to
be close to, though not equal to, one. This means that the distance between the observati-
ons X;; and X,_, ; is not constant over time, which implies that a PIAR process displays a
slowly changing seasonal pattern. The changes in this pattern depend on the changes in the
stochastic trend in the X, process.

The cointegration relations in (6) also effect the pattern of the multistep ahead forecasts.
In fact, these forecasts will display slowly changing patterns too. The magnitudes of these
changes depend on the estimated values of o On the other hand, the nonperiodic models
for the A, and A, transformed time series do not generate such slowly changing patterns in
the forecasts.

Of course, when the (1 — oB) filter is appropriate, one can expect some gain in one-
step ahead forecasting of using PIAR models. This is because some nonperiodic models
misspecify either the number or the form of the cointegration relations. Empirical evidence
of such a gain is reported in Osborn and Smith (1989), Franses (1992), and Franses and
Romijn (1992).

5. Remarks

Periodically integrated autoregressions can be useful for the description of time series with
a stochastic trend and a slowly changing seasonal pattern. This seasonal pattern changes
because of variations in the stochastic trend. In other words, seasonality, trend and
possibly cycles may not be easily separable. Since this is the underlying assumption of
seasonal adjustment methods as Census-X11, one may question the usefulness of these
methods when applied to periodic time series with a single unit root. Future research will
be directed to investigate the effects of seasonal correction methods.

Although Osbarn (1988) derives a PIAR(1) process for nondurable quarterly consumpti-
on directly from an economic theory, for many economic time series it is unlikely that a
univariate PIAR process is the underlying data generating process. A natural step may then
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be to consider periodic cointegration models. These models incorporate error correction
mechanisms with periodic equilibrium and adjustment parameters.
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