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Abstract

In this paper we propose a model selection strategy for a univariate periodic autoreg-
ressive time series which involves tests for one or more unit roots and for parameter
restrictions corresponding to seasonal unit roots and multiple unit roots at the zero
frequency. Examples of models that are considered are variants of the seasonal unit roots
model and the periodic integration model. We show that the asymptotic distributions of
various test statistics are the same as well-known distributions which are already
tabulated. We apply our strategy to three empirical series to illustrate its ease of use, We
find that evidence for seasonal unit roots based on nonperiodic models disappears when
periodic representations are considered. © 1997 Elsevier Science S.A.
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1. Introduction

Periodic autoregressions (PAR) can yield usetul descriptions of secasonally
observed time series. Examples of their practical relevance for macroeconomic
time series are given in Osborn (1988) and Franses and Paap (1994), among
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many others. The key feature of PAR processes is that the AR parameters are
allowed to vary with the season. This implies that the time series is a nonstation-
ary time series since the autocovariance function varies with the season. This
fact complicates the analysis of stochastic trends both at the zero frequency and
at the so-called seasonal frequencies. To investigate unit root properties of PAR
time series, it is therefore useful to write the PAR model in its multivariate form
by stacking the seasonal time series into a vector of annual time series. In
Franses (1994) it is proposed to apply the Johansen (1988) cointegration testing
method to this vector process. This cointegration method can be used to test for
nonseasonal and seasonal unit roots in a periodic time series, as well as to
investigate the possibility of periodic integration, i.e. the usefulness of a differ-
encing filter that varies with the season. The analysis of the multivariate
representation of the PAR process does not impose all restrictions entailed by
the univariate model, including seasonal homoskedasticity of the error process.
Of course, such flexibility can lead to a reduction of empirical power in case the
error process is not seasonally heteroskedastic, and hence may lead to the
finding of too many unit roots, see, e.g. Franses and Romin (1993). In the
present paper, we propose a method to investigate multiple and seasonal unit
roots imposing all the restrictions in the PAR process. Our approach extends
the method in Boswijk and Franses (1996), where the presence of only a single
unit root in a PAR process is studied.

We propose a model selection method for PAR processes which involves tests
for unit roots at all frequencies of interest. The method can be easily applied in
practice, since it only involves tests for the adequacy of certain nonlinear
restrictions on the PAR parameters. An important advantage of our procedure
is that no new tables with critical values have to be generated since the relevant
asymptotic distributions are the same as those derived in Johansen (1988, 1991),
for which severai critical values are aiready tabulated in, e.g. Osterwald-Lenum
(1992). Examples of models we consider are models where first and seasonal
differences are assumed, the seasonal integration model and the periodic integ-
ration model. Hence, we also allow for processes where the differencing filter
varies with the season. We extend the well-known HEGY procedure (Hylleberg
et al., 1990), which concerns scasonal unit root processes in nonperiodic models.
We also generalize the approach in Ghysels et al. (1996) by allowing for the
possible presence of periodic differencing filters. An important feature of our
method is that our generalization in fact amounts to simpler results in the sense
that it does not require new asymptotic distributions.

The outline of our paper is as follows. In Section 2, we start off with
a discussion of some preliminaries concerning notation and representation. In
Section 3, we discuss the impact of multiple unit roots at the zero frequency. In
Section 4, we propose our general-to-simple testing procedure for seasonal and
nonseasonal unit roots. In Section 5, we evaluate our method through a Monte
Carlo experiment. In Section 6, we apply our method to three illustrative
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quarterly time series. We show that the evidence for seasonal unit roots disap-
pears when we allow for periodic variation in the AR parameters. Furthermore,
we find that a periodic differencing filter is most useful to remove the stochastic
trend from the data. In Section 7, we conclude this paper with some remarks.

2. Some preliminaries

In this paper we focus on a quarterly time series y, that can be described by
a periodic autoregression of order p (PAR{p)),

=0+ o byt e, =12, _....n 5=12734 1)

or

¢p.s(8)yr = &,

where ¢, i = 1, ..., p, are periodically varying parameters, B is the backward
shift operator, and where ¢, is a standard white noise process. Although some of
the ¢, parameters can be equal to zero, and (1) allows for seasonally varying
autoregressive lag lengths, we assume for the moment that p is equal for all
seasons. Furthermore, & is assumed to have nonsecasonal variance. Note that,
similar to the nonperiodic AR case, the value of p restricts the number of unit
roots in (1).

It can be argued that model (}) corresponds to a nonstationary process since
the autocovariances of y, are not constant over time. In order to study unit root
properties in y,, it is therefore most convenient to rewrite (1} in vector notation.
For example, for the PAR(2) process, one can write

t 0 0 0y Y.r 0 0 ¢z O ][Yir-
—¢12 i 0 OF|Yzr [ _|0 0O 0O 22| Yaroy
— 23 — i3 1 0| Yar 00 o0 0 Yar-a

0 — e —Pus ]| Yar 00 0 0 Yar—

1.1
&1

w27, 2
E3.r (2)
£a, 1

where Y, 7 and ¢, ; are the observations on y, and ¢ in season s in year
T =1, ...,N = n/4, see Tiao and Grupe (1980) and Liitkepohl (1991), inter alia.
This representation in (2) can be called a vector-of-quarters representation of
order 1 (VQ(I)). Denoting Yy =(Y .1, ..., YarY and e =&y, 1, .-, 84, 7)- (2)
can be summarized by

S Yr= Yy + 25, (3)
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Note that PAR processes with orders up to 4 can be written as VQ(1) processes.
More generally, a PAR(p) process corresponds to a VQ(P) process with
P =[{p — 1}/4] + 1, where [x] denotes integer part of x. Here we focus on (3)
for notational convenience. To investigate the presence of unit roots in y, it is
most convenient to check the solutions of the characteristic equation for (3), i.e.

|y — D,2] = 0. L))

If one or more solutions to {4) correspond to z = 1, then (4) can be expressed in
error correction form, i.c.

AY =Yy + vr, (35)
where vy = @5 &7, where
m=o;'d, —1I, (6)

and where A =(1 — B) denotes the first-order differencing filter so that
AYT = Y]" - YT—I-

Franses (1994) considers testing for (muitiplc) unit roots using the Johansen
(1988) method applied to (5), without imposing the restrictions implied by the
original model (1) on I and £2, the covariance matrix of v,. Suppose for example
that p = 4. In that case the original model has 16 + 1 parameters ({¢;}, 6°),
whereas the unrestricted VQ(1) model has 16 + 10 unrestricted parameters in
{11, ). The nature of the 9 restrictions implied by the PAR(4) is most easily
analyzed by transforming (5) in recursive form:

Ao dY = A1 Y7 _ | + 1y, )]

where A, is a lower-triangular matrix with unit elements on the main diagonal,
such that 4,824, = diag(oi, ... ,03), and hence that yy = Aovr has a diagonal
covariance matrix, and where A, = Agfl. It is easiiy seen that the PAR(4) model
implies Ag = @9, 4; = &, — ®gand 62 = a? fors = 1, 2, 3, 4. Thus, three of the
nine restrictions correspond to periodic homoskedasticity, and the other 6 are
restrictions across 4, and A4, (or, in the original form, across I7 and Q). Of
course, when p is smaller than 4, there will he even more restrictions. The
purpose of this paper is to obtain a possible power gain from imposing these
restrictions, i.e. by testing for unit roots directly in (1) instead of in the unrestric-
ted VQ model.

3. Periodic autoregression integrated of order 2

If there is one unity solution to (4), Boswijk and Franses (1996) show that any
PAR(p) process can be written as

Yo 1.s(B)1 — 2B}y, =&, @)
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where y/, , (B) is a periodic autoregressive polynomial of order p — 1 and
o ¢a3dy = 1. In VQ notation, this becomes

¥(B)YT =er,

Y':E = (50 - E:B) Y'r, (9}
where
1 0 0 0 0 0 0 a
- | —a 1 0 0 - _|00oo0 0
0T 0 —a 1 of @ Z1=|g 0 0 of (10)
0 0 -, 1 0o 00 0O

and where ¥(B) = ¥¢ — ¥ ,B— -+ — W,B" with h=[(p —2)/4] + 1.
It will be useful to start with the case p = 2, and then generalize the results to
higher-order models. In that case, (8) reduces to

(1 -8Bl —aB)y,=¢, s=1,...,4,
or, since B also operates on a,, as
Yo =osyi-1 + By — @ ayi-2) + &, (11)
where og = x4, and the ¥(B) polynomial in (9) can then be written as
1 0 0 -8B

_| —B: 1 0 0
¥, - ¥B= 0 —8, ] 0 12
0 0 -8B, i
Hence, in terms of the o, and f, coefficients, the YVQ process Yy reads
(Fo— ¥ 1BNEp — E1BYYr=(To—"B)Yr=¢r (13)
with Iy and I'; defined as
3 1 0 0 0
- (d;; + ﬂz} 1 0 0
o= and
o o2fs — {3 + fB3) 1 0
1 0 oafla — (s + Ba) 1
[0 0 —alf, oy + B,
_ 00 0 _ alﬁz
I'i=1o o 0 0 (14
[0 0 0 0

The characteristic equation of the polynomial in (13) can now be written as
[To — I'yz| = (1 — oy@0300a2)(1 ~ B18,8:842) = 0. (15)
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In Boswijk and Franses (1996) it is assumed that §§;,8:8, < 1. In the present
paper, we relax this assumption and consider the case where there can be more
than a single unit root.

As in (5), the VQ process in (13) can be written in error correction form like

AY—,-=(F51F1—I4)YT_1 +r5161=HYT—1+r518T- (16)

Under the assumption of two unity solutions to the characteristic equation (15),
le. xy0%3%s = 1828384 = 1, the 1T matrix in (16) reduces to

-1 Y — afy o + By
_ 0 -1 —oaffi(2+ B2) oo +2f, + 516
= 0 0 —K Klotg ’ (17)
0 0 — 4K IN
with
K= (a /Pl + (23/Ba)(1 + (22/B: )1 + (2,1/B1 ). (18)

It can be seen from (17) and (18) that the rank of IT will usually equal 3, and
hence that IT can be written as IT = yA’, where y and 2 are both of dimension
(4 x 3). Consider for instance the case where e, = f;=1foralls=1,2,3,4. In
this case the four Y, ; series are I(2), see e.g. Haldrup (1994a, b) and Johansen
(1992a).

When the restriction o o, 0304 = $,8,838, = 1 holds, there is another possi-
bility. When & = 0 the IT matrix is of rank 2. This may occur for several possible
parameter configurations, but in particular when o, = — , = 1 for all 5. In this
case the PAR(2) process reduces to (1 — B?)y, = &,, and this implies the presence
of one nonseasonal unit root and one seasonal unit root at the bi-annual
frequency, see, e.g. Hylleberg et al. (1990). We shall return to this situation in the
next section. In this section we will elaborate on the I(2) case.

One further insight of a periodically doubly integrated time series can be
obtained from considering the vector moving average (VMA) representation.
From (11), define the series yF = (1 — o B)y, such that

(1 — BBy =+ (19

It follows from Boswijk and Franses (1996) that the VQ representation of y¥ can
be described as

AYY =(OFf + @FTB)er, (20)
where
1 ] 0 0
1 e 0
6* = IBZ
¢ Bafi> B 1 0O
BaB3B4 Bafa Ba 1
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and
0 BafuB  Bubr ﬁt;
L o 0 BB B
@i=lo o 0 Bubabs | @D
0 0 0 0

If we denote (&% + ©TB)e; = uy, it follows equivalently that

A*Y; = (@g + @, Bluy = (0 + @,B) @5 + O B)er, (22)
with @, and @, defined as
1 0 0 o
_ oo 1 0 0
80 - e 21 XY 3 1 0
F'xza3ﬂ4 £ &1 R #1 1
and
[0 otaotqee, G0t 2
_ 0 0 271 F1" 4] o0y
@l . 1] 0 0 e S11 710 £ (23)
| 0 0 0 0

and hence the characteristic equation of the VMA polynomial can be described
as
10(z)} = 1@ + @:2]|107 + O1z]

=(1 - 051120!30!42)3(1 - ﬁ:ﬁzﬁ:ﬁ:&ﬂs =(l — Z)ﬁ =0, 24)

when &, 0530 = 1 and B;f,8,84 = 1. Since the A? filter applied to the VQ
series ¥, induces 8 unit roots, it can therefore be observed that only 2 of these
will be in common, i.e. a single doubly integrated process driving the system.

All of the above representational results are easily generalized to the case
where p > 2. In that case, write the model as

Ap—z.s(B}(l - B:B)(1 — a.B)y, = &,

where 4,_, (B} is a periodic autoregressive polynomial of order p — 2. In VQ
notation this becomes

AB)[¥o — ¥ B][Zo — E:B1Yr =1, (25)

where A(B} is a matrix lag polynomial of order [{p + 1)/4]. If the characteristic
equation |A(z}{¥¢ — ¥,zH{Zo — Z,2)| = 0 has only two unit roots and all other
roots outside the unit circle, then A(B} is invertible, leading to

[Po — ¥1Bl[50 — Z:B]Yr = [A(B)] ey
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Hence, the above results carry through after replacing ey by [A(B)] ‘er,
a periodically stationary process. For further analysis we need to derive the
limiting behavior of the Y process.

Lemma 3.1. Let Y1 be generated according to the PAR(p) process (25), or
alternatively,
A2Y: =(Oo + ©,B)(OF + OTB)A(B) "¢, (26)

where A(B) is invertible, {ez} iid. N(0, 6%1,) and where €4,0,, @ and OF
are defined in (21) and (23) with o cs0a0ts = B1S28384 = 1, and x in (18) is not
equal to 0. Then we have as N — oo,

N73Y.m i>§(r) = waf Wu)du, r,uel0,1]
0

N-w2yE, L B*(r) = w*a*W(r), @n
{rN]

where [rIN] denotes the integer part of rN, where B(r) and B*(r) are (4 x 1) vector
Brownian motion processes with covariance matrices w*aa’ and w**a*a*, W (r}) is
a standard (scalar) Brownian motion process, and

w = a(b'a*){b* A(1)" ' ALY “b*}12,

w* = a{b¥ A(1) " A1) T 1b* 112, (28)
with
r 1 1 1 1
oy Y- 7 2 B1B3fa
a= N b= » * = and b* = .
X003 2y 0g 4 B2 " B1fa
X030y oy B2B3Pa B
(29)

Proof: see Appendix.
3.1. Quasi-differencing an K2) process

When testing for multiple unit roots in nonperiodic models Pantula (1989)
suggests a sequential testing procedure. Assuming that at least a single unit root
exists, the differenced iime series is tested for the presence of an additional unit
root. A similar strategy will be suggested here for periodic AR models. First, one
should transform the y, series such that the resulting time series y! has
Y* ; components that are at most I(1). In the second step one can check whether
y* has multiple unit roots, i.e. nonseasonal and/or seasonal unit roots. New
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problems arise for periodic models, however, since the way the time series
should be transformed in the first step involves quasi-differencing by filters that
are unknown and hence have to be estimated. The next theorem suggests how
the quasi-differencing filters across the seasons can be obtained.

Theorem 3.1. Let y, be a PAR(p) process satisfying the conditions stated in the
Lemma 3.1, and consider NLS estimation of the PAR(2) model

4 4
Y= Z oD Y-y + z BsDse(yi—1 — % 1¥e-2) + 14, (30)

s=1 s=1

under the restriction o edtay =1, ¢ = 1,2, ..., n, where D, , are the usual sea-
sonal dummy variables and where a_, = x4_y, then it follows that

Nz(&s - s) = Op(l)
N(B; — B) = 0,(1)
fors=1,234,

Proof. See Appendix.

The significance of Theorem 3.1 is that in order to exclude the possibility of
periodic models integrated of order 2, initial estimates of the periodic coefficients
in the periodic differencing filter (1 — «,B) can be obtained by a nonlinear
regression. The auxiliary regression only needs to be of second order, regardless
of the actual order of the PAR. Provided that the underlying time series is
periodically doubly integrated a ‘super-super’ (O,(N?)} consistent estimate of
the periodic coefficients at the first order of integration can be calculated. These
estimates form the basis for quasi-differencing the time series. Next, the trans-
formed series can be analyzed in accordance with the guidelines suggested below
in Section 4.

4. Model selection

In this section we start with an analysis of y, time series with Y r series that
are at most I{1). For such a series we propose test statistics for the number of
unit roots in the Y 5 process, and tests for parameter restrictions that correspond
with seasonal and nonseasonal unit roots. Furthermore, we discuss the impact
of trends and constants on the asymptotic distributions of the test statistics and
on the time series pattern under the various null hypotheses. Finally, we briefly
discuss multiple unit roots in so-called subselt PAR models, ie. the AR order
varies with the seasons.
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When the Y, r processes are at most I(1), there are five possible cases: the
(4 x 1) vector process Yy contains @, 1, 2, 3, or 4 unit roots, and hence 4, 3, 2, 1,
and 0 cointegrating relationships. We consider each case and derive the cointeg-
rating vectors. These vectors imply nonlinear restrictions on the parameters in
a PAR(p) process, which can easily be investigated using NLS techniques
applied to the PAR(p) process

@ By = &. (31)
4.1. A single unit root

Th= case of a single unit root is covered in Boswijk and Franses (1996).
One unit root in Y, implies three cointegrating relationships, which can be
expressed as

Yor—oaYsr,
Yir—asYa g,
Yor—oY 1. (32)

These three relationships imply the fourth, i.e. Y. r — a40030, Y, 5. Subtracting
the stationary variable AY 4 7 and dividing by — aqe.a; gives

YI.T — 0 Y4.T—! With alaza3a4 = 1. (33)

Given (32) and (33), the (periodically differenced) process y, — a,y,—, under the
restriction ayoe03%, = 1 is a periodically stationary process. The PAR(p) pro-
cess can then be written as

¢p.s(B}yl = ¢p— l.s(B)(l - txS'B}.'r’l = &- (34)
Boswijk and Franses (1996) show that the likelihood ratio test
LR = nlog(RSS,/RSS,) (35)

for the hypothesis o, &350, = 1 in (34) follows the “Johansen (1988) distribution’
for rank 3 versus rank 4, where RSS, is the residual sum of squares [RSS] of (34)
under the nonlinear restriction, and RSS,, is the RSS of the unrestricted model.
For further reference, we denote this test LR, . In Boswitk and Franses (1996) it
is also shown that, conditional on o« 00030, = 1, the F-testfora,=1,5=1,2, 3,
follows a standard F-distribution. This seems confirmed for small samples by
the simulation results in Franses and Paap (1994). Additionally, Boswijk and
Franses (1996} show that a joint test for a; = 1 in (34) follows a mixture of
a Johansen- and an F- distribution. A drawback of the joint test is that when the
null hypothesis a, = 1 is rejected, the y, series may still have a stochastic trend in
case of oty ot;23004 = 1. Therefore, Boswijk and Franses (1996) advocate to use the
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two step approach. In the sequel of this section, we follow this strategy when
investigating seasonal unit roots.

4.2. Twao unit roots
In case of two unit roots in the Y r process, and still under the assumption that

Yy is at most I{1), there are two cointegrating relations between the Y 7 series,
like, e.g.

Yor—BraYar— f2a¥zr, (36)
YS.T - ﬁl3Y2.T - ﬁZBYl.T' (37)
These two relations imply two other cointegrating relationships
YZ.T_ﬁIZYI.T_ﬂ22Y4.T—1’ (38}
Yir—BuYar-1—Bu¥ar-s. (39

Since there are only two cointegrating relationships between the elements
of Y, the relations in (38) and (39) should be linear combinations of those in
{36) and (37). This implies the following four restrictions on the ff parameter
values:

Bi1 = — B13/B23B2a,

Bz1 =((1/B23) — B13B14/(B23B24))s (40)
Biz = — Br4P23/(B13P14 + B2a),

B2z = Y(f13B1a + Ba2a).

These four parameter restrictions can be tested via imposing the corresponding
nonlinear restrictions in the PAR{p) model when it is rewritten as

¢p.s(B)yt = ¢p—2.s(B)(l - ﬁlsB - ﬁszz)yl =&. (41)

We denote the relevant likelihcod ratio test statistic as LR,. We return with
a discussion of its asymptotic distribution in Theorem 4.1 below.

In case¢ the restrictions in (40} cannot be rejected, one may proceed with
testing restrictions on the £, and B, values, which correspond to, e.g. certain
seasonal and nonseasonal unit roots. Conditional on the restrictions in (40), one
can construct likelihnod ratio statistics LR} for a particular hypothesis. Hence,
LR? for (1 — B){(1 + B) in (41) implies that all §,, = 0 and §,, = 1. Imposing
Bis=0and B, = — 1 for all s results in a (1 + B?) filter, i.e. the seasonal unit
roots + i. Note that when §8,; = 2 and f;, = — 1, i.e. the case where the double
filter (1 — B)? is nceded, and hence where Y is at most I{2), the restrictions in
(40) are violated.
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4.3. Three unit roots

In case there are three unit roots in the Y1 process, there is only a single
cointegrating relation between the Y,  elements, which can be written as

Yor—71aYs 72— v2a¥or — vaa¥i 1. (42)
This relation implies three other cointegrating relationships, i.e.

Yar—vaYar—vaa¥ir—vaa¥ar-1,

Yor—72¥ir—Ya2Yar-1 —Y2¥sr-1,

Yir—raYar-i —va¥ar-i —va¥zar-1- (43)
Given (42), there are nine restrictions on the parameters in (43), i.e,

Yi1Vsa = 1, 21732 = — V14 731734 = — Y24

V12724 = — Y34, Yaz¥aa =1, Yaz¥24 = — Y14,

713714 = — V24, Y23Y14 = — V34, YasVia = 1. (44)
These restrictions can be tested in a rewritten version of (31), ie.

Gp.s(BYy: = Gp- 3.5(B)1 — p1B — v2,B* — 13,8y = & (45}

We denote the likelihood ratio test statistic for the restrictions in (44) in (45) as
LR,. Similar to the case of two unit roots, and conditional on the restrictions
{44), one may test for parameter restrictions as (1 — B)(1 + B?) in (45) using
likelihood ratio test statistics LRY.

4.4. Four unit roots

In case of four unit roots, the general PAR(p) model can be written as
Gp.(BY = @p-a AB)1 — By, = &,. (46)

The test for the hypothesis of four unit roots, which amounts 1o a linear
restriction, will be denoted as LR,.

Theorem 4.1. Under the hypoihesis of q unit roots, we have as n — oo,

-1 1
LR, 5 trace {r AW (s) W(s) (r W (s)W (s) ds) f W(s)dW(s)’},
0 [+] V]

where W (3} is a standard g-vector Brownian motion process.
Under the additional hypothesis of @ nonperiodic (seasonal) unit root,

LR 5 #2(k),

where k is the number of additional restrictions tested.
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Proof. See Appendix.

Notice that the limiting distribution of LR, is the same as the one obtained
and tabulated in Johansen (1988) for the likelihood ratio tests for p—¢q cointegrat-
ing vectors (and hence g unit roots) in a p-dimensional vector autoregressive
process. Thus, the tests proposed here do not require new tables to be generated.
This is in contrast to the approach followed in Ghysels et al. (1996), where it is
proposed to test for the adequacy of, e.g. the (1 + B?) filter within the general
PAR({p) model. The above theorem indicates that test statistics for such joint
hypotheses asymptotically follow distributions that are compticated functions of
Johansen- and yx2-distributions and, hence, that new critical values for those
tesis have to be generated. An additional disadvantage is that rejection of the
null hypothesis leaves open the question how many stochastic trends are driving
the lime series.

4.5. Summary of our empirical procedure

In practical occasions, the model selectior. strategy proceeds as follows.
The first step is to estimate the order p of the PAR process using some LR
based test or one of the familiar information criteria. The simulation results in
Franses and Paap (1994) indicate that the number of unit roots in the PAR
process does not affect this order selection. In case one suspects F(2) type
patterns, one should estimate the o, in a PAR(2) model, as suggested in
Theorem 3.1, In a next step one can analyze the yf = (1 — & B)y, series for
nonseasonal and seasonal unit roots via imposing nonlinear restrictions in
decreasing sequence of unit roots and testing for the number of unit roots
using our LR test statistics. Hence, the sequence is first to consider the LR, test.
Finally, if the number of unit roots is determined, one may check for restrictions
like (1 — B) or (1 + B) to investigate specific seasonal and nonseasonal unit
roots.

4.6. Constants and trends

In many practical occasions, one may want to enlarge the model in (1) like
yl=‘!.!+rst+¢lsyl“i + e +¢psy1—p+8h t= 1:21 cen g My (47)

where p, are seasonally varying intercept terms and v, are scasonally varying
parameters that correspond to the dsterministic trend. The inclusion of con-
stants and trends in the regression model has an effect on the asymptotic
distribution of the LR; test statistics, i = 1, 2, 3,4, see also the Appendix. The
critical values of the relevant distributions are tabulated in Osterwald-Lenum
(1992),
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4.7. Subset PAR processes

Until now we have assumed that the PAR process is of order p suci that the
AR order is equal to p for all seasons s. It may however occur in practice that the
AR order in some season s, say pg, is smaller than p. Furthermore, it may occur
that ¢; ; parameters can be set equal to zero for some j or 5. In both cases, these
models can be called subset PAR processes. Given the expressions for the
characteristic equations for the Y5 processes in Section: 2, it is clear that the
number of possible unit roots in a PAR process is determined by the minimum
value of p.. For example, for a PAR(2) as (11), the characteristic equation
becomes 1 — aya;0304z = O when only a single B; value equals zero.

For practical purposes, we recommend that one first tests for unit roots before
one checks whether the PAR model is a subset PAR model. This is because the
distribution of t-test statistics for the significance of, for example, lagged
(1 — &B)y, variables depends on the number of (any remaining; stochastic
trends.

5. Monte Carlo simulations

We now turn to a small-scale Monte Carlo experiment to assess the finite
sample size and power properties of the tests proposed in the previous section,
with a specific focus on the validity of the asymptotic results in Theorem 4.1. We
consider 7 data generating processes [[DGPs], all of which are special cases of
the fourth-order periodic autoregression

GBIy = ps + &, (48)
where in the DGPs we set g, at 0 for all 5. The DGPs are
(DGPI1) ¢4.5(B)=(1 + 08B + 0.6B? + 04B%)(1 — o, B)

with DGPinopar: a, =1 for all s

with DGPlpar: o = {0.8,1,1.25, 1}
(DGP2) $4.s(BY=(1 +0.6B*)(1 — «,B?)

with DGP2nopar: o, = 1 for all 5

with DGP2par: o, = {0.8, i, 1.25, 1}
(DGP3) ¢a,(B)=(1 +08B)(1 — o,B + B2 — %, B%)

with DGP3nopar: o= 1forall s

with DGP3par: o, = {0.8, 1.25,0.8, 1.25}
(DGP4) $a.s(B) = (1 — B%).
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Table 1
Rejection frequencies of periodic unit root tests at a 5% nominal level number of replications is 2000
Tests
DGP 7] LR( LRz LR3 LR4
Inopar 100 0.037 0274 0.577 0.851
200 0.049 0.948 1.000 1.000
1par 100 0035 0.332 0.704 0.944
200 0.043 0977 1.000 1.000
2nopar 100 0.028 0.137 0476
200 0.038 0.699 (.993
2par 100 0.053 0.180 0.657
200 0.044 0.791 1.000
Inopar 100 0.032 0.193
200 0.048 0.594
3par 100 0.079 0.702
200 0.056 0.998
4 100 0.073
200 0.063

Note that DGPi invelves i unit roots, and that for i = 1, 2, 3, DGPinopar is the
nonperiodic model, and DGPipar is the periodic model. All periodicity in the
DGPs is contained in the cointegrating linear combinations, and all short-run
dynamics are nonperiodic. The construction of the tests, however, does not
involve corresponding parameter restrictions. Furthermore, notice that the
DGPs are chosen such that the characteristic roots of the VQ representation are
the same for the periodic and nonperiodic DGPs.

Table 1 contains the rejection frequencies of the LR; to LR, statistics, for
a sample size of 100 and 200 observations. All tests are based on the correct
order of the PAR(4) model since the simulation results in Franses and Paap
(1994} indicate that this order will usually be detected. The entries on the main
diagonal of Table 1 represent the empirical size of the test, whereas the off-
diagonal cells zive the empirical power.

We do not compute rejection frequencies of the LR; tests for DGPj withj > i
for two reasons. First, it is well known that if the DGP contains more unit roots
than are tested, then the test will have a higher (asymptotic) rejection frequency
than the nominal size. Thus, we should expect values ¢xceeding 0.05 below the
diagonal of Table 1, even asymptotically. Secondly, some of the parameters of
the model under i unit roots will not be identified when the DGP actually has
more than i unit roots. Therefore, convergence of NLS optimization methods
will be problematic. The first problem can be solved by employing Johansen’s
(1992b) sequential testing procedure, based on the work by Pantula (1989). In
this procedure, one starts with testing the maximum number of unit roots (in
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Table 2
Rejection frequencies of periodicity tests at a 5% nominal level, number of replications is 2000

Nonperiodic DGP Periedic DGP

DGP Test " (size) (power)
1 LK} 100 0.092 0.219

200 0.071 0.556
2 LR} 100 0.164 0.288

200 0.095 0.433
3 LR} 100 02353 0.364

200 0.130 0.719

this case 4), and only proceeds to testing i unit roots when the hypothesis of i 4 1
unit roots is rejected. This procedure will have an symptotically controllable
size, see Johansen (1992b).

From Table 1, we observe that the empirical sizes are reasonably close to the
nominal size of 5%, and that the power of the tests seems to be higher for the
periodic DGPs than for their nonperiodic counterparts.

Finally, in Table 2 we report the rejection frequencies of the LR* tests for
particular nonperiodic differencing filters, ie. (1 — B) in DGPL, (1 — B?) in
DGP2 and (1 — B + B* — B*) = (1 — B}(1 + B®) for DG3. We observe from
Table 2 that the finite sample size of the tests (i.e. the rejection frequencies for
DGPinopar)can be quite far from 5%, and seem to converge to the nominal size
only slowly. Therefore, it may be worthwhile to investigate the effectiveness of,
e.g. bootstrap methods or other small-sample corrections for this testing prob-
lem. The power of the tests appear to increase with the saniple size, as expected.

6. Applications

In this section we illustrate the empirical usefulness of our method to test for
nonseasonal and seasonal unit roots in periodic autoregressions for three
quarterly macroeconomic time series, which are selected for no particular
reason other than illustrative purposes. These series are Unemployment Rate in
Norway for 1966.1-1992.4 (not in logs), (Real} Consumption of Nondurables in
the USA for 1947.1-1991.4 (in logs) and Unemployment in Canada for
1960.1-1987.4 (not in logs). We start our empirical analysis with an application
of the HEGY test method for nonseasonal and seasonal unit roots in a non-
periodic AR model. Tke results are summarized in Table 3.

These results indicate that the nonseasonal unit roor 1 is present for all three
serie<..Unreported HEGY test results for the first-orc ar dif.-.. 2nced time series
reveal that these series are at most I(1) at the zero freguency. The scasonal unit
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Table 3
Testing for seasonal and nonseasonal unit roots in nonperiodic AR models using the HEGY
method, where the auxiliary regression includes four seasonal dummies and a linear trend

Unemployment Nondurables Unemployment
Tests* Norway Consumption /SA Canada
tn,) - 1.630 ~ 0433 — 1309
t(nz) - 2.626" — 2235 — 1.680
F{m3, 3) 5.925* 5.061 7.155**
Lags 2 6 5
n* 102 170 103

*The test statistics, the relevant auxiliary regression and the appropriate critical values are given in
Hylleberg et al. (1990). Lags denotes the number of lagged y,—y,_ 4 variables included in the auxiliary
regression, and r* is the number of effective observations. The t(x, }-test concerns the nonseasonal
unit root 1, the t(m;)-test concerns the seasonat unit root — 1, and the joint F(ns, 7,)-test concerns
the seasonal unit roots +i. The unit roots correspond with the {i — B), (1 + B) and (1 + B?)
differencing filters, respectively.

***Significant at the 1% level.

**Significant at the 5% level.

*Significant at the 10% level.

root — 1 is present for all three series when we consider the 5% significance
level. When we allow for the 10% significance level, we do act find this seasonal
unit root to be present in unemployment in Norway. At the 5% significance
level, we obtain evidence for the seasonal unit roots +i for two of the three
series. In sum, our three example series all have one or more seasonal unit roots
in case we consider a nonperiodic model.

To investigate the robustness of the findings in Table 3 to periodicity in the
AR parameters, we use the method proposed in Franses (1994). Within this
method, the PAR model is allowed to have seasonally heteroskedastic error
terms. The main results are presented in Table 4.

The Johansen type test statistics for the rank r of the matrix {7 = ya' in the
VQ(1) model as in (5) indicate that this rank is equal to 1 for the two unemploy-
ment series and is equal to 2 or 3 for the consumption variable. These results
clearly indicate that the rank is not equal te 0, which corresponds to the
adequacy of the (1 — B*) transformation for y, (or the 4 transformation for Y ¢).
The value of 3 of the rank of IT for the consumption series is clearly in contrast
to the results in Table 3, where evidence for all four unit roots is reported. Since
this cointegration-based method does not impose all restrictions implied by the
PAR model, it will be less powerful than our new methods which do impose
these restrictions, provided of course that these restrictions, such as seasonal
homoskedasticity, are satisfied.
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Table 4
Testing for the cointegration rank r of 71 = y&' in the VQ(1) model {5) using the Johansen method

Unemployment Nondurables Unemployment
Tests® Norway Consumption USA Canada
A 0.973>* 0.808%** 091 7%+
A 0411 0.553%** 0415
A3 0.248 0.263* 0.260
Aa 0.088 0.037 0.044
Trace (r < 0) 117.688%** 123.023%** 91.046***
Trace (r < 1) 23.584 50.457%%* 23813
Trace (r < 2) 9.813 15.068 9.346
Trace (r < 3) 2.392 1.641 1.223
N* 26 44 27
Decision r=1 r=3 r=1

* The tests are the familiar 4, .and Trace test statistics, proposed in Johansen (1988, 1991), where 4;
in the table refers to the relevant A, test. The asymptotic distribution of these tests is given in
Osterwald—Lenum {132). N* is the >ffective sample size. Because of the small sample size, we use the
critical values displayed in Franses (1994), for N* is 25 and 50. Several model selection and
diagnostic criteria indicate that the VQ(1) model sufficiently describes the annually observed vector
time series ¥r.

***Significant at the 1% level.

** Significant at the 5% level.

*Significant at the 10% level.

Qur next step is to apply the LR tests which are proposed in Section 4. The
(unreported) HEGY outcomes for the (1 — B)y, series suggest that I(2) type
behavior is not present in our three example series. Before we can apply our
tests, we need to decide on the order of the various PAR models. Using
diagnostic tests for residual autocorrelation at lags 1 and 1-4 and for periodic
patterns in the residual autocorrelation function, we find that the order p can
be set at 4 for each time series, The residuals of the estimated PAR(4) model
are also checked for the absence of seasonal heteroskedasticity. The F-test
values of the auxiliary regression of & on a constant and three seasonal
dummies obtain the (5%) insignificant values of 1.982, 1.796 and 2.407. We
also test whether the AR parameters are indeed periodically varying. In the
PAR(4) model, an F-test for the hypothesis of no periodicity follows a
standard F-distribution with 12 and n — 20 degrees of freedom. See Boswijk
and Franses (1996) for the derivation of this distribution. The test results
for periodicity are 9.762, 9.797 and 3.102, which indicate a convincing rejection
of the null hypothesis of no periodic parameter variation for our three example
series.
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Table 5
Testing for multiple unit roots in PAR(4) models using LR tests

Unemployment Nondurables Unemployment
Tests? Norway .Consumption USA Canada
LR, 328.123%** '196.432%** 232.741%**
LR; 123.700%** 133,950+ 164.240%*
LR, 70.459%** - GA315%* 32.004%=*
LR, 0.469 2056 1.040
oy 1.014 1.053 1.077
2z 1.057 1.018 0.982
o3 1012 1.022 0971t
&y 0.922 0913 0974
Fa-a 7.457%** B.907*** 3.895%4+

*The LR, (i = 1, 2, 3, 4) test statistics are discussed in Section 4. The «, (s = 1, 2, 3, 4) estimates
concern the parameters in the periodic differencing filter (t — «.B) under the restriction
®;%;¢304 = 1, which transforms the y, series to periodic stationarity. The F;; - p, test concerns an
F-test for the restriction «, = 1, conditional on a2, = 1. This F-test has a standard F-distribu-
tion with 3 and m degrees of [reedom, with m equal to n — 4 — 4p + 1. The PAR(4) models contain
4 seasonal intercept terms, but no seasonal trends. The results do not change very much when these
trends are included.

=** Significant at the 1% level.

** Significant at the 5% level.

* Significant at the 10% level.

The results for the LR test statistics for 1-4 unit roots are given in Table 5.
Compared with Table 4, we may expect different findings given that our new
method imposes all restrictions implied by the PAR (4) model (including sea-
sonal homoskedasticity) and the diagnostic mentioned above suggest that these
restrictions are valid.

The results for the LR; (i = 1, 2, 3, 4) statistics in Table 5 can easily be
summarized. Only the LR, test value is insignificant, while the null hypo-
theses corresponding to the LR; to LR, tests are rejected at the 1% level
(or even at the 0.1% level). Hence, there appears to be only a single unit root
in each of the three time series considered. Finally, we investigate if this
single stochastic trend can be removed using the (1 — B) filter. The values of
the F;_p, test for this hypothesis in the last row of Table 5 indicate a
firm rejection. In other words, our three example series all seem periodically
integrated of order 1. This means that the appropriate differencing filter for
these series is (1 — a,B) with o,a,0304 = 1, where the estimates of a, are also
given in Table £,
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7. Concluding remarks

In this paper we propose and apply a simple testing strategy for periodic
autoregressions, which involves an investigation of seasonal unit roots and one or
two nonseasonal unit roots. Qur method also allows for periodic integration of
order 1 and 2. The Iatter class of methods may yield useful descriptions of seasonal
time series since it allows the seasonal fluctuations to depend on the stochastic
trend. Qur applications show that tests for seasonal unit roots in nonperiodic
models may too often detect such roots, while, when allowing for periodically
varying AR parameters, the evidence for seasonal unit roots tends to disappear.

One drawback of periodic autoregressions is that the number of parameters
increases with the seasonal frequency. Hence, a periodic AR model for monthly
time series can involve a huge number of parameters. This would complicate the
empirical application of our approach, which seems to work well for guarterly
data. To allow the application of our method to monthly data would then imply
that one imposes restrictions on the various AR parameters. When such proper
restrictions are imposed, the asymptotic results in our paper indicate that our
selection strategy can easily be used.

Appendix. Proofs of lemmas and theorems

Proof of Lemma 3.1. The error term {er} is assumed Gaussian and hence
satisfics the multivariate invariance principle, see, e.g. Phillips and Durlauf
(1986), thus implying that

[r.
(1/N"2) ZM & S oE(r), (A1)
i=1

where %1, = limy.., N7'E(T., t:_,](Zle g;)) is the covariance matrix of the
vector standard Brownian motion E(r) of dimension (4 x 1). It follows from the
analysis of, e.g. Park and Phillips (1989) and Haldrup (1994a, b} that given (26)

[FNl &
(1/N*3)Y (o = (I/N2) @ + ¢, 95+ ONAM™! T ¥ &+ 0p(1)

k=1 j=1

5 6(8, + 8,)(@F + O) A1) [ E(u)du = B(r).
[v]

(A.2)

It is now a consequence of the results in Boswijk and Franses (1996) that due to
the uvnit roots in the VMA polynomial (24), thc matrices (@ + @,) and
(@F + O7) both will be of rank 1 and

(@0 + ©,)(O} + OF) = ab'a*b*, (A3)
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where the a, b, a* and b* vectors are given in (29). Define now the scalar
integrated standard Brownian meotion

W(r) = oo~ "Pa*b¥ A1)} -[r E(u)du, (A4)
0

with @ given in (28) and the first part of (27) follows straightforwardly. With
respect to the second part of (27) it folows from

AYF = (08 + @1 B)A(B) 'er (A5)

that
(ril
(1/N")Y gy = (1/NY2)OF + OTB)AB) ' ¥ & + o,(1)
j=1

4

4 (@5 + O7)A(1) L E(r) = B*(r). {A.6)

Similarly to the analysis in Boswijk and Franses (1996) and the procedure above,
we now have that

P*(r) = ca*b* A(1) " 'E(r), (A7)
and with the standard Brownian motion
W(r) = o™~ 'b¥ A(1) *E(r), (A.8)

the required result follows. [J

Proof of Theorem 3.1. We shall consider model (30) both under the restriction
oy02%3%4 = | and the additional restriction f,828:8, = 1. Our setup en-
compasses both situations. For the latter case, we write the model as
Yo = x(y) + &, where p = (a3, ct3, 04, B2, B3. §4), which we also may write in the
condensed form y = (&', §')’. When the restriction 8, 8,88, = 1 is not imposed
in the estimation, the y vector may be redefined such that § is simply
(81, B2, B3, B4). Define the vector of pseudo regressors

0x, /0y = (1. wi),

where z, = Jyo,, w, =Jou, with v, = (U3, V2,05 V3,05 Va.e)s = (81,05 U2 4) U3

r -
g ) Use =Dy ¥i—1 — Bs+1Dse1,40Ve-25 Use = Dy ((yr-1 — @51 y,-2) and with
J, and J; defined as

— fadazas) 1 0O O
J’] = — l/(azagaq_) 0 1 0
- Wazz23) O O 1
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and
—1/(p3BsBs) 1 0 0O
J'z=[-l/(ﬁzﬁ§54) 01 0],
— 1AB2B3B3) 0 0 1

respectively. When the restriction £, 28364 = I is not imposed when estimating
the parameters, all the derived results will carry through with J, substituted by
a (4x4) identity matrix. Notice that we also let o, = (a2304)” " and
By = (B28384) . Furthermore, define oy = %4, o = B4. Hence, we have that the
NLS estimates can be found asymptotically as

[OE—“:I=|:Z:'=1Z:Z: Z:'=|erI]" ]:E:'=1Z:’1r] (A9)
B—B Simawez o= ww, Yi=1 weily
To derive the order of & and § we require that after appropriate normalization

the diagonal submatrices ¥7- z,2; and } ;- ; w,w; are nonsingular. To show this
we write (A.9; in the following way:

[a - cx] _ [[J'; 0 ] [Zl‘=1 G Y v.u:][J'x 0 ]]’ !
-8l o wmllymiun Toiud]lo s
X[Jl 0 ][Z?=1 Ur"h:l
0 J || Fr-rum ]
Along the lines of Boswiyk and Franses (1996) we let ¥, r indicate the VQ

process of v, ,- This is a different process for each s. If the (4 x 4) matrix ¥(B)
defined in (12) is partitioned such that row number s is ¥, it follows that

Vs.'l‘ = 'f’s(B)Y:— 1.T = 'I"sYs- .t + ‘!’:(B)Alys- 1.7

where ¥(B) follows from a polynomial decomposition of y.(B). Since the term
Y. Y, 7 is doubly integrated whilst 4,Y,_,; r is integrated of order one, it
follows from Park and Phillips (1989) and Haldrup (1994a) that

n N
N4 Z U ety = N~* Z VirVyr = (ll';'l'q)(N*“)
t=1 T=1

N
X ¥ Yonr¥eoir +0y(1)
T=1
for 5,9 =1, 2,3, 4. In accordance with Lemma 3.1, we therefore have that
=1 0

] 1
N-*Y oo S mZA'p'qlA'f (W(r))? dr

where 4 = diag{dy. a;, g2, a3). In a similar fashion the VQ process correspond-
ing to u, , reads

— Y *
Us.T - d’s Ys—l.Tv
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where ¥* = I, and ¥ corresponds to column s of this matrix. Because the
columns are orthogonal, we have that the expression

n N
N_z z us.ruq.t = N_2 2 U;.TUQ.T
=1 T=1
is 0 for s # g4, while for s = g the expression yields
n N
N2Y ul,=N"25% Y¥, Y%, r.
=1 T=1
It follows in accordance with Lemma 3.1 that

n 1

N7 Y uu; = w*2A*A4* I wi(r)?dr,
=1 0

where A* = diag(a}, a7, a3, a¥).

The nonsingularity conditions that have to be met require that the matrices
J1AY and J5A4* are of full rank equal to 3. Both J, and J5, which are (3x4)
matrices, are of full rank by their construction. When the restriction on the fsis
not imposed, J; is naturally full rank of dimension (4 x 4). A and A* are full rank
matrices whilst ¥ is of rank 3. It follows that J5.4* is full rank and it also follows
from the construction of J; that the first rank condition will be satisfied. To
conclude, the matrices N~%Y7-, z,z; and N~ *%}_, ww} are indeed nonsingular.

Now, define Dy = diag{(N32I;, NY21,). It can be deduced from Haldrup
(1994a) that in this case

A n g n ’ -1
N2p ["f - ‘”] = [N' Dyt [z’=‘ “h o Lies z'w',]D“]
N B—B N Vi1 Wiz Yi=1 WiW N

x N~12pst z:'=‘z'"‘]=o 1),
v [Z?:.w.m o(1)

Therefore,
N — a) = Oy(1), N(B — B) = Oy(1).
Because o, = (a;0304) ", we also have that
4
N3Gy — o) = — (aa0t3004) 1 Y, (o) N2 (d — &) = O (1).
5=2

A similar argument applies to N(8, — 8,). Notice that these results will apply
regardless of imposing the restriction §,f,838, = 1 in the NLS estimation. [

Proof of Theorem 4.1. Consider the general VQ representation of the PAR(p)
model

¢0Yr = ¢1 YT—I. + - + ¢pYT_p +&r, Er~ ]N(O, Z), T= l, . ,N
(A.10)
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where P is an integer obeying [(p — 1)/4] + 1, where [ -] means ‘integer of”,
where £ = g2, and

1 0 0 0
L AU N U WE O B RN
— ¢ — s — s |
(A.11)
In error correction form, the model reads as
AY7=M0Yy_ + T AY g+ - +Tp_ Y p_poi + vr,
vr ~ IN(0, Q) (A.12)
where v; = & ', where 2 = @y ' Zd, V¥ = 62 (Ppdy) L, and
N=—@;(0o— - —®p), I'=—& (Disy+ - + Pp),
f=1, .. ,P—L (A.13)
The null hypothesis of (4 — r) unit roots expressed as
Hy: 11 =%, (A.14)

where the matrix « is defined in Section 4 for r = 1, 2, 3; for r = 0, take « to be
equal to 0. Define the matrix = = /T — yo’, so that one way to express the model
is

AYr =y’ Y ¢ 1+ EYyr + M AYr_ + - +Tp_ 1 AY7_pyy + vy,

vr ~ IN(0, ), (A.15)

and the nuill hypothesis becomes Hy: = = 0.

Suppose that we disregard the restricions imposed upon (A.15) by the
underlying periodic model. Define the full parameter vector 0 = (6}, 05, 0,),
where 0, contains the free parameters in{y, I'y, ... ,'p_,, 2), and where §, and
} contain the identified parameters in « and Z, respeciively. The dimension of
0,is4r + 16(P — t) + 10. From Johansen’s (1991) results it can be seen that the
dimension of &, 1s #(4 — r), and from this it can in turn be deduced that dim 0,
equals (4 — r)>.

The periodic model however implies certain over-identifying restrictions on
(A.15). Without the unit root restrictions, the total number of free parameters is
4p + 1. With (4 — r) unit roots, this numberis4(p — (4 —r)) + L + r(4 — r), so
that this hypothesis corresponds to (4 — r)? restrictions, which corresponds
exactly with the dimension of &,. Likewise, from Section 4 it can be seen that the
dimension of the vector of parameters in the cointegrating vectors is r(4 — r),
which corresponds to the dimension of &, in the unrestricted VQ model. Thus,
the nderlying periodic structure implies only restrictions on &,, i.e. on the
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‘short-run’ parameters {in the sensc that these do not characterize unit roots or
cointegrating vectors). Let us express these restrictions as g(f,) = 0. From the
above, it follows that the dimension of the vector function g equals
16P — 4p + 9, which is exactly equal to the difference in the number of para-
meters between a four-dimensional VAR(P) and a univariate PAR(p) process.

Let @ = @, x @, x @, denote the unrestricted parameter space, where @, is
the parameter space for 6;, i = 1, 2, 3. Next, let @ = {0, € ©,: g(0,) = 0}, the
restricted parameter space corresponding to the pertodic structure, and let
05 = {0}, the restricted parameter space corresponding to the hypothesis of
(4 — r) unit roots. Similarly, define

@":9’;)(@2)(@3, Qr=61x62>(63,
OF — 07O = @ x @, x O (A.16)

Johansen’s likelihood ratio statistic for the hypothesis of (4 — r) unit roots in the
unresiricted VAR may be expressed as

LR{(@"| @) = — 2(maxy . ¢ log L(0) — max, . o log L(D)), (A.17)

with L(f) the likelihood function. On the other hand, the LR statistic for (4 — r)
unit roots in the periodic autoregression is given by

LR(@7]|@%) = LR{(@"| @) + LR(&"|@") — LR{&F|O). (A.18)

Note that the last two terms on the right-hand side are the likelihood ratio
statistics for the restriction g(f,) = 0, with and without the unit roots imposed.
Slightly extending the results of Johansen (1991, Appendix C), it can be shown
that (NY2)(0, — 0,) is asymptotically independent from N(ﬁz —0;) and
N(05 — 05). This implies that

LR(&7|6%) — LR{(O"|®) = LR(&™| Q") — LR(©?|@) 5 0, (A.19)

so that the LR statistic for (4 — r) unit roots in the periodic autoregression is
asymptotically equivalent to the LR statistic for (4 — r} unit roots in the
unrestricted VAR model. Hence,

1
LR(@”|@°) % trace” (AW ()W (s)
0

L -1 1
x(J W(s)W{(sy ds) J. W(s)dW(s)’}, (A.20)
° 0

where W (s) is a standard(4 — r)-dimensional Brownian motion process, sce
Johansen (1991). Quantiles of this distribution are tabulated in Osterwald-
[.enum (1992, Table 0). Extensions to fitted intercepts and linear trends
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can be proved analogously; see Osterwald-Lenum (1992) for tables with the
relevaat critical values.

In a similar fashion, we can prove that with the correct number of unit roots
imposed, the likelihood ratio statistic for restrictions on « has an asymptotic x>
distribution under the null hypothesis, whether or not the restriction g{@,) = Ois
imposed. Let us denote such restrictions on « by h{#,) = 0, and the correspond-
ing restricted parameter space of ¢, by e = {0, @,: h(B,) = 0}. Likewise,
define @ = O x @ x @3, and so on. Then, the likelihood ratio statistic for
the restrictions on 8; in the periodically integrated AR mode] satisfies

LR(©7"| @) = LR(6"|©") + LR(€""| 8") — LR(O"' | ©")
= LR(O" | ") + o (1) = y*(m), (A.21)

where m is the dimension of A. The second equality follows from the fact that the
LR statistic for the restrictions on 9, is independent of whether restrictions have
been imposed on o; the limiting x? distribution is proved in Johansen (1991,
Appendix C). [
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