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Abstract 

In this paper we propose a model selection strategy for a univariate periodic autoreg- 
rcssive time series which involves tests for one or more unit roots and for parameter 
restrictions corresponding to seasonal unit roots and multiple unit roots at the zero 
frequency. Examples of models that are considered are variants of the seasonal unit roots 
model and the periodic integration model. We show that the asymptotic distributions of 
various test statistics are the same as well-known distributions which are already 
tabulated. We apply our strategy to three empirical series to illustrate its ease of use. We 
find that evidence for seasonal unit roots based on nonperiodic models disappears when 
periodic representations are considered. © 1997 Elsevier Science S.A. 
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I.  Introduction 

Per iodic  au toregress ions  (PAR) can  yield useful descr ip t ions  of seasonal ly  
observed t ime series. Examples  of  their  pract ical  relevance for m a c r o e c o n o m i c  
t ime series are given in O s b o r n  (1988) a n d  F ranses  a n d  P a a p  (1994), a m o n g  
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many  others. The  key feature of PAR processes is that  the AR parameters  are 
allowed to vary with the season. This implies that  the time series is a nonstat ion- 
ary  t ime series since the autocovar iance  function varies with the season. This 
fact complicates the analysis of  stochastic trends both at the zero frequency and 
at  the so-called seasonal frequencies. T o  investigate unit root  propert ies of  PAR 
time series, it is therefore useful to write the PAR model in its mult ivariate form 
by stacking the seasonal t ime series into a vector of  annual  time series. In 
Franses (1994) it is proposed to apply the Johansen 0988)  cointegrat ion testing 
method to this vector process. This cointegrat ion method can be used to test for 
nonseasonal  and seasonal unit roots in a periodic t ime series, as well as to 
investigate the possibility of periodic integration, i.e. the usefulness of  a differ- 
encing filter that varies with the season. The  analysis of  the m~fltivariat¢ 
representat ion of the PAR process does not impose all restrictions entailed by 
the univariate model, including seasonal homoskedast ic i ty  of the error process. 
Of  course, such flexibility can lead to a reduction of empirical power  in case the 
error  process is not seasonally heteroskedastic, and hence may  lead to the 
finding of too many  unit roots, see, e.g. Franses  and Romijn (1993). In the 
present paper,  we propose  a method to investigate multiple and seasonal unit 
roots imposing all the restrictions in the PAR /3rocess. Our  approach  extends 
the method  in Boswijk and Franses (1996), where the presence of only a single 
unit root  in a PAR process is studied. 

We propose  a model  selection method for PAR processes which involves tests 
for unit roots at all frequencies of interest. The method can be easily applied in 
practice, since it only involves tests for the adequacy of certain nonlinear 
restrictions on the PAR parameters.  An impor tan t  advantage  of our  procedure 
is that  no new tables with critical values have to be generated since the relevant 
asymptot ic  distributions are the same as those der:,ved in Johansen (1988, 1991), 
for which several critical values are already tabulated in, e.g. Os t e rwa ld -Lenum 
(1992). Examples  of  models  we consider arc models  where first and seasonal 
differences arc assumed, the seasonal integration model and the periodic integ- 
rat ion model. Hence, we also allow for processes where the differencing filter 
varies with the season. We extend the well-known H E G Y  procedure (Hylleberg 
et al., 1990), which concerns seasonal unit root  processes in nonperiodic models. 
We also generalize the approach  in Ghysels  ¢t al. (1996) by allowing for the 
possible presence of periodic differencing filters. An impor tant  feature of  our  
method is that  our  generalization in fact amounts  to simpler results in the sense 
that  it does not  require new asymptot ic  distributions. 

The outline of our  paper  is as follows, in Section 2, we start  off with 
a discussion of some preliminaries concerning notat ion and representation. In 
Section 3, we discuss the impact  of multiple unit roots at the zero frequency, in 
Section 4, we propose  our  general-to-simple testing procedure for seasonal and 
nonseasonal  unit roots. In Section 5, we evaluate our  method through a Monte  
Car lo  experiment.  In Section 6, w¢ apply our method to three illustrative 
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quarterly time series. We show that  the evidence for seasonal unit roots  disap- 
pears when we allow for periodic variat ion in the AR parameters.  Fur thermore ,  
we find that  a periodic differencing filter is most  useful to remove the stochastic 
trend from the data. In Section 7, we conclude this paper  with some remarks.  

2. Some preliminaries 

In this paper  we focus on a quarterly time series Yt that  can be described by 
a periodic autoregression of order  p (PAR(p)), 

Y¢=q~l~Y,- t+  "'" + q ~ s Y r - p + ~ , ,  t = l , 2  . . . . .  n, s - - - -1 ,2 ,3 ,4  (l) 

OF 

~p.~(B)y, = E,, 

where ~e.~, i = 1 . . . . .  p, are periodically varying parameters ,  B is the backward  
shift operator ,  and where e~ is a s tandard white noise process. Although some of 
the ~p, parameters  can be equal to zero, and  {1) allows for seasonally varying 
autoregressive lag lengths, we assume for the m omen t  that  p is equal  for all 
seasons. Fur thermore ,  nt is assumed to have nonseasonal  variance. Note  that,  
similar to the nonperiodie AR case, the value of  p restricts the number  of  unit 
roots in (l). 

It  can be argued that  model (~) corresponds  to a nonsta t ionary  process since 
the autocovariances  of  y, are not constant  over  time. In order  to study unit root  
propert ies  in Yr, it is therefore most  convenient to rewrite (I)  in vector notat ion.  
For  example,  for the PAR(2) process, one can write 

I 0 0 i]rYLT1Ei01  IrYIT1 -~ ,~  i o l t d . , l =  o ~ ~ / r~ . ,_ , /  
- ~ , - ~ , ~  ! / r~ . , /  o o / r~ . ,_ , /  

o - ,_~ ,  - ~,~ L Y , . , I  o o L r , . , - , . I  

T , (2 )  

where Y,s.T and e~.T are the observat ions on y, and e, in season s in year 
T = i . . . . .  N = n / 4 ,  see Tiao  and Grupe  (1980) and Liitkepohl (1991), inter alia. 
This representation in (2) can be called a vector-of-quarters representation of  
order  ! (VQ(I)). Denoting Y r  = ( Y t . r  . . . . .  Y 4 , T ) '  and cT  =- ( e l , r  . . . . .  e4.r)', (2) 
can be summarized by 

~ o Y r  = e t Y r - z  + ~r. (3) 
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Note  that  PAR processes with orders up to 4 can be written as VQ(1) processes. 
More  generally, a PAR(p)  process corresponds to a V Q ( P )  process with 
P = [ (p  - !)/4] + !, where I x ]  denotes integer part  of x. Here we focus on (3) 
for notat ional  convenience. To  investigate the presence of  unit roots in y, it is 
mos t  convenient  to check the solutions of  the characteristic equat ion for (3), i.e. 

I@0 -- @~zl = 0. (4) 

i f  one or more  solutions to (4) correspond to z = 1, then (4) can be expressed in 
er ror  correct ion form, i.e. 

A Y r  = H Y r - I  + vr, (5) 

where vr  = ~ o  ~ er ,  where 

/ / =  ~ o  14~t -- 1, (6) 

and where d = ( l -  B) denotes the first-order differencing filter so that  
A Y T =  Y T - -  Y r - t .  

Franses (1994) considers testing for (multiple) unit roots  using the Johansen 
(1988} method applied to (5), wi thout  imposing the restrictions implied by the 
original model  (I) on H and fl, the covariance matr ix  of  yr. Suppose  for example 
that  p = 4. In that  case the original model  has 16 + 1 parameters  ({~b,}, tr2), 
whereas the unrestricted VQ(1) model  has 16 + 10 unrestricted parameters  in 
(H, ~). The  nature of  the 9 restrictions implied by the PAR(4) is most  easily 
analyzed by t ransforming (5) in recursive form: 

A o A Y T  = A ] Y T _ t  + tlr, (7) 

where Ao is a lower-tr iangular  matr ix  with unit elements on  the main diagonal,  
such that  Ao~A'o ~- d i a g ( ~  . . . . .  t72), and hence that ~/r -- Aovr has a diagonal  
covafiance matrix, and where A t = Ao FI. i t  is easily seen that the PAR(4) model 
implies Ao = 4Jo, A1 = ~1 -- 4~o and ~ = a 2 fo r s  -- 1, 2, 3,4. Thus, three of the 
nine restrictions correspond to periodic homoskedast ici ty,  and the other  6 are 
restrictions across Ao and A~ (or, in the original form, across /7 and fl). O f  
course, when p is smaller than 4, there will be even more  restrictions. The  
purpose  of  this paper  is to obtain a possible power  gain from imposing these 
restrictions, i.¢. by testing for unit roots directly in (1) instead of  in the unrestric- 
ted VQ model. 

3. Periodic autoregression integrated of  order 2 

If  there is one unity solution to (4), Boswijk and Franses (1996) show that any  
PAR(p)  process can be written as 

~ p -  l.~(B)(1 -- ~,B)y, = e,, (8) 
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where Op_ L,(B) is a periodic autoregressive polynomial of order  p -  1 and 
0q~2~¢3~ 4 = 1. In VQ notation, this becomes 

9 ' ( B ) Y *  = e r ,  

Y ~  = (~'o - -  S t B )  Y r ,  

~ 0  ~ 

1 0 0  il "[1000000011 -- ~2 1 0 and -'-1 ~ 
0 --~t3 1 0 0 0 l 
0 0 - ~ ,  0 0 oj 

where 

(9) 

([o) 

and where ~(B)  = 'P0 - ~ t B  . . . . .  ~hB h. with h -- [(p - 2)/4] + 1. 
It will be useful to start  with the case p -- 2, and then generalize the results to 

higher-order models. In that case, (8) reduces to 

(I -/~.,B)(1 - 0~sB)yr = ,~, s = 1 . . . . .  4, 

or, since B also operates on ~s, as 

" yt = cqYr-t + fls(Yt-t -- ~ -  ty~-2) + er, (11) 

where ~o - ~,,, and the 'P(B) polynomial in (9) can then be written as 

~o-- ~,B= --/~2 1 0 (12) 
0 - -P3  l 0 | "  
0 0 - P4 1j 

Hence,  in terms of  the ~(, and  j~, coeff icients, the V Q  process Y r  reads 

~ q~o - -  qe l iU(~-o  - -  "~'lB) Y r  = (Fo  - -  F t  B ) ~  T ---- ~r  (13) 

with Fo and FI dvfined as 

o o i1 I 0 
- (~3 + P3) 1 ar.d 

(14) 

I ! 
Co = - (~2 + p ' )  

"[i FI = 0 
0 0 - e~] /2  J 0 0 
0 0 

The characteristic equation of  the polynomial  in (13) can now be written as 

IFo - F l z l  -- (1 - ~laza3~,,z)(1 - j~tPzP3P4z) = O. (15) 
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In  Boswijk and  Franses  (1996) it is a s sumed  that  f l l f l 2 f l 3 P ~ .  < 1. In the present  
paper ,  we relax this a s sumpt ion  and  consider  the case where  there can be m o r e  
than  a single unit root.  

As in (5), the V Q  process in (13) can be wri t ten in e r ro r  correc t ion  form like 

AYT = (Fo tFt  - -  14)YT- I + r i f l e r  = HYT'-t + F O 1 8 T  • (16) 

U n d e r  the a s sumpt ion  o f  two uni ty  solut ions  to the character is t ic  equa t ion  (I 5), 
i.e. ~l~tz%~a = fllflzfl3fl4 = 1, the H matr ix  in (16) reduces  to 

- 1 0 - ~4,81 ~ t  + / ~ t  "] 

H - -  0 - 1 - - ~ 4 f l l ( ~ 2 + P 2 )  ~l~,-+%gl+flLfl2J (17) 
0 0 - x r /~4 ' 
0 0 - ~4tc K 

with 

~c = (~a/F.~)(l + (ma/f13)(1 -I- (c~u//~z)(1 -I- (~q/flO))). (18) 

it can  be seen from (17) and (18) tha t  the rank o f / 7  will usually equal  3, and  
hence  tha t  H can  be writ ten as /7 = 72', where 7 and  ;. are  bo th  o f  d imens ion  
(4 × 3). Cons ider  for  instance the case where ~, = p ,  = 1 for all s = 1, 2, 3, 4. In 
this case the four  Y.~.T series are  I(2), see e.g. H a l d r u p  (1994a, b) and  Johansen  
(1992a). 

W h e n  the restriction ~tt~2%~ 4 =/~tflzflafl4 -- 1 holds,  there is a n o t h e r  possi- 
bility. W h e n  x = 0 the H matr ix  is o f  rank 2. This  m a y  occur  for several possible 
pa r ame te r  conf igurat ions ,  Out in par t icu lar  when ~ = - p., = I for all s. In  this 
case the PAR(2)  process  reduces  to (1 - B2)y, = e,, and  this implies the presence 
o f  one  nonseasona l  unit  roo t  a nd  one seasonal  uni t  roo t  at  the h i -annual  
frequency,  see, e.g. Hyl leberg et al. (1990). We  shall re turn  to  this s i tuat ion in the 
next section. In  this section we will e labora te  on  the •(2) case. 

O n e  fur ther  insight of  a periodical ly d o u b l y  in tegrated t ime series can be 
ob ta ined  f rom cons ider ing  the vector  m o v i a g  average  (VMA) representat ion.  
F r o m  (I I), define the series )'r* -- (1 - ct,B)y, such that  

(1 - -  fl,B)y,* = e , .  ( 1 9 )  

it follows f rom Boswijk and  Franses  (1996) tha t  the V Q  representa t ion of  y,* can  
be descr ibed as 

, j  y* = ( o  t + O ? B ) , ~ ,  

where  

I' °°il o ~  = P~ 1 o 
B2~3 ~3 I 

(20) 
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and 

0 ~ 4 ~ 1 # 2  1~1~2 

O,*-- 0 0 0 O #,#0dhJ" 

I f  we denote  (O* + O*B)~:z = ur ,  it follows equivalently that  

z l2Yr  = (¢~9o + O t B ) u r  = (6)0 + 01B)(O'~ + O~]J)ET, 

with Oo and O~ defined as 

I 0 

Oo = ~2 1 
~2~3  ~3 

~2~3~4 ~3~4 

0 
1 

a, 4 

and 

0 0 ~1 J 0 0 0 2% 

(21) 

(22) 

(23) 

and hence the characteristic equat ion of the V M A  polynomial  can be described 
a s  

10(z)l = IOo + O , z l  I0'~ + OTzl  

~--- ( I  - -  ~ Z l g / ~ 3 g a Z ) 3 ( l  - -  ~ l l~2~3f la .Z)  3 m ( I  - -  Z)6 m 0,  ( 2 4 )  

when ~L~z~3~4 = 1 and  #t/~2P3/~, = 1. Since the A z filter applied to the VQ 
series Yz induces 8 unit roots, it can therefore be observed that  only 2 of  these 
will be in common,  i.e. a single doubly integrated process driving the system. 

All of the above  representational results are easily generalized to the case 
where p > 2. In that  case, write the model as 

2p-z.s(B)(1 -- gB) (1  --  otsB)y , = st, 

where 2p_ 2..(B) is a periodic autoregressive polynomial  o f  order p - 2. In VQ 
notat ion this becomes 

A ( B ) [ ~ o  -- ~ t B ] [ ~ o  --  .F, 1B] Yr  = ~r, (25) 

where A (B) is a matr ix  lag polynomial  of  order  [ (p  + 1)/4], If  the characteristic 
equat ion IA(z)(~o -- W,z)(~,o -- .~tz)l --= 0 has only two unit roots and  all other  
roots outside the unit circle, then A ( B )  is invertible, leading to 

[tPo -- IP1 B i l b o  -- ~ t B ]  Yr  = [ A ( B ) ] -  lc r .  
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Hence, the above results carry through after replacing er by [A(B)]- t~r ,  
a periodically stationary process. For further analysis we need to derive the 
limiting behavior of the Yr process. 

Lemma 3.1. Le t  Y r  be generated according to the PAR(p) process (25), or 
alternatively,  

A 2 Y T  = ( 0 o  + O , B ) ( O ~  + O * ~ B ) A ( B ) - l e t ,  (26) 

where A ( B )  is invertible, {er} i.i.d. N(0, tr214) and where t9o,6)~, O*o and O~ 
are defined in (21) and (23) with ottot2ot~ot4 = fllfl2flafl4 = 1, and rc in (18) is not 
equal to O. Then  we have as N --, or, 

 B(r) =,va f~ w(u)du, r, ueto.  1] N -  az2 Ytrt¢ 1 

N - 1:2 Yt~tq* a_, B*(r)  = to*a* W(r) ,  (27) 

where [ r N ]  denotes the integer part o f  rN ,  where B(r)  and B*(r)  are (4 × I) vector 
Brownian motion processes with covariance matrices to2aa' and co*2a*a *', W (r) is 
a s tandard (scalar) Brownian motion process, and 

to = cr(b' a * ) { b * ' A ( l ) -  tA(l) '-  Lb* }t12, 

to* = t r {b* 'A(1) - l  A ( l )  "- lb*}l/z, 

with 

(28) 

L J LP P #,J P, 

(29) 

Proof:  see Appendix. 

3.1. Quasi-differencing an 1(2)process 

When testing for multiple unit roots in nonperiodic models Pantula (1989) 
suggests a sequential testing procedure. Assuming that at least a single unit root 
exists, the differenced time series is tested for the presence of an additional unit 
root. A similar strategy will be suggested here for periodic AR models. First, one 
should transform the Yt series such that the resulting time series Yr* has 
Y*T components that are at most I(I). In the second step one can check whether 
y~* has multiple unit roots, i.e. nonseasonal and/or seasonal unit roots. New 
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problems arise for periodic models, however, since the way the time series 
should be transformed in the first step involves quasi-differencing by filters that 
are unknown and hence have to be estimated. The next theorem suggests how 
the quasi-differencing filters across the seasons can be obtained. 

Theorem 3.1. Let Yz be a PAR(p) process satisfyino the conditions stated in the 
Lemma 3.1, and consider N L S  estimation of  the PAR(2) model 

4 4 
y, = Y. ~,D~.,y,_~ + T. p~D, . , (y ,_ , -  ~,_~y,_~)+ ,t,. (30) 

.~=1 xml  

under the restriction 0~t~20e3cc4 = 1, t --- 1) 2, . . . .  n, where D~., are the usua! sea- 
sona! dummy variables and where o~_~ = o~,_~, then it follows that 

N ' ( ~  - =~) = 0 , , (1 )  

N(~= - p, )  = O . 0 )  

f o r s  = 1,2,3,4, 

Proof. See Appendix. 

The significance of Theorem 3.1 is that in order to exclude the possibility of 
periodic models integrated of order 2, initial estimates of the periodic coefficients 
in the periodic differencing filter (1 -~=B)  can be obtained by a nonlinear 
regression. The auxiliary regression only needs to he of second order, regardless 
of the actual order of the PAR. Provided that the underlying time series is 
periodically doubly integrated a 'super-super" (Op(N z)) consistent estimate of 
the periodic coefficients at the first order of integration can be calculated. These 
estimates form the basis for quasi-differencing the time series. Next, the trans- 
formed series can be analyzed in accordance with the guidelines suggested below 
in Section 4. 

4. Model selection 

In this section we start with an analysis of Yr time series with Y~. T series that 
are at most I(1). For such a series we propose test statistics for the  number of 
unit roots in the YT process, and tests for parameter restrictions that correspond 
with seasonal and nonseasonal unit roots. Furthermore, we discuss the impact 
of trends and constants on the asymptotic distributions of the test statistics and 
on the time series pattern under the various null hypotheses. Finally, we briefly 
discuss multiple unit roots in so-called subset PAR models, i.e. the AR order 
varies with the seasons. 
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When the Y~.r processes are at  most  I(I) ,  there are five possible cases: the 
(4 × 1) vector  process Yr  contains 0, 1, 2, 3, or  4 unit roots, and hence 4, 3, 2, 1, 
and  0 cointegrat ing relationships. We consider each cast; and derive the cointeg- 
rat ing vectors. These vectors imply nonlinear restrictions on the parameters  in 
a PAR(p)  process, which can easily be investigated using N L S  techniques 
applied to the PAR(p)  process 

q~...(B)y, = e,. (3!) 

4.1. A single unit root 

Th~ case of  a single unit root  is covered in Boswijk and Franses (1996). 
One  unit root  in YT implies three cointegrating relationships, which can be 
expressed as 

Y a . r  - -  ~4 Y3 .  T, 

Y 3 . r  -- ~ 3 Y z . r ,  

Y 2 . r  - ~ 2 Y , . r .  (32) 

These three relationships imply the fourth, i.e. Y 4 .  r - -  ~4~3~2 YI. T- Subtract ing 
the s ta t ionary variable A Y4.T and dividing by - ~4~3~z gives 

Y , . r  -- ~ l Y ~ . r - 1  w i t h  ~1~2~3~4 = 1. (33) 

Given (32) and (33), the (periodically differenced) process y, - a,y,_ t unde r the 
restrictiort ~1~2a3~4 -- 1 is a periodically s ta t ionary procc.~ss. The  PAR(p)  pro-  
cess can then be written as 

~Pp.,(B)yr = cpp_ L~(B)(1 -- a~B)yz = ~r- (34) 

Boswijk and  Franses (1996) show that  the likelihood ratio test 

LR = n log(RSSJRSS, )  (35) 

for the hypothesis  at~2c¢3~, = I in (34) follows the ' Johansen (1988) distr ibution'  
for rank 3 versus rank 4, where RSS, is the residual sum of squares [RSS] o f (M)  
under the nonlinear restriction, and RSS, is the RSS of the unrestricted model. 
F o r  further reference, we denote  this test LR~. In Boswijk and  Franses (1996) it 
is also shown that,  condit ional  on at~2*ca~4 = 1, the F-test  for ~ = 1, s = !, 2, 3, 
follows a s tandard F-distribution. This seems confirmed for small samples by 
the simulation results in Franses  and Paap  (1994). Additionally, Boswijk and 
Franses (1996) show that  a joint  test for 0q = I in (34) follows a mixture of  
a Johansen-  and an F- distribution. A drawback  of the joint  test is that when the 
null hypothesis ~ = 1 is rejected, the yF series may  still have a stochastic trend in 
case of cctcz2~3~ 4 -- !. Therefore, Boswijk and Franses (1996) advocate  to use the 
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two step approach.  In the sequel of this section, we follow this strategy when 
investigating seasonal unit roots. 

4.2. Two unit roots 

In case of two unit roots in the YT process, and still under the assumption that 
YT is at most I(1), there are two cointegrating relations between the Y,. T series, 
like, e.g. 

Y¢.T -/$14Y3.T --/$24Y2.r, (36) 

Y 3 . r  - - /$13Y2,T - - /~23Y1.T.  (37) 

These two relations imply two other  cointegrating relationships 

Y2,T - - / $ 1 2 Y I . T  - - / $ 2 2 Y 4 .  T - I ,  (38) 

Y1.T - / $ t l  Ya.T- t --/$21Y3.r- i. (39) 

Since there are only two cointegrating relationships between the elements 
of YT, the relations in (38) and (39) should be linear combinations of  those in 
(36) and (37), This implies the following four restrictions on the fl parameter  
values: 

f i l l  = - -  /~13/f123f124, 

/$~t = ((1/fl23) - -  fl13~la/(/$23f124)), (40) 

]~12 = --  /$14/~23/(/$13fl14 "4" fl24), 

fl22 = 1/(/~t3/$14 + ~24) '  

These four parameter  restrictions can be tested via imposing the corresponding 
nonlinear restrictions in the PAR(p) model when it is rewritten as 

~)a.s(B)Y, --~ ~ e - 2 , , ( B ) ( l  - -  ~ t sB  --  ~2~B2)y, = 8,. (41) 

We denote  the relevant likelihood ratio test statistic as LR2. We return with 
a discussion of its asymptotic distribution in Theorem 4.1 below. 

In case the restrictions in (40) cannot  be rejected, one may proceed with 
testing restrictions on  the ~,~ and/~2~ values, which correspond to, e.g. certain 
seasonal and nonseasonal unit roots. Conditional on the restrictions in (40), one 
can construct likelibnod ratio statistics LR~ for a particular hypothesis. Hence, 
LR* for (I - B)(1 + B) in (41) implies that all/~ts -- 0 and/~2, = 1. Imposing 
/~ts = 0 and f12~ = - 1 for all s results in a (1 + B 2) filter, i.e. the seasonal unit 
roots ± i. Note  that when/~t~ = 2 and ~2, = - 1, i.e. the case where the double 
filter (1 - B) 2 is needed, and hence where YT is at  most 1(2), the restrictions in 
(40) are violated. 
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4.3. Three unit roots 

In  case there are  three unit  roo ts  in the Yr  process, there is on ly  a single 
eo in tegra t ing  relation between the Y~. r elements, which can be written as  

Y*,T -- 7 t * 7 3 . 7 -  72472 , r  -- 73471,r .  (42) 

This  re lat ion implies three o ther  coin tegra t ing  relationships,  i.e. 

Y3.T -- 7t3Y2.T -- 72aYl . r  -- Y33Y, , r -  t ,  

Y 2 . T  - -  7 t 2 Y I . T  - -  y 2 2 Y * . T -  t - -  7 3 2  Y 3 .  T -  1 ,  

Y1.y -- Yll Y * . y - t  -- Y21Y3.T-t -- 7 3 t Y 2 . r - e .  (43) 

Given  (42), 2here are  nine restrictions on the pa ramete r s  in (43), i.e. 

Y11~'34- : I ,  Y 2 1 Y 3 e  = - - 7 1 4 ,  7 3 1 7 3 ~ .  = - -  ] ) 2 4 ,  

712724 = -- 734, ]'22724 = 1, 732724 = - -  Y14, 

7 1 3 7 1 4  = - -  7 2 4 ,  7 2 3 7 1 4 -  • - -  7 3 4 ,  7337t4 = 1. (44) 

These  restr ict ions can  be tested in a rewritten version of  (31), i.e. 

dpp.~(B)y, = (pp_ 3 . s ( B ) ( l  - -  7 t s B  - -  ~ z s B  2 - -  7 a s B Z ) y r  ---- ~a- (45) 

We  deno te  the l ikel ihood rat io test statistic for  the restrictions in (44) in (45) as  
LR~. Similar to  the case of  two  unit  roots,  and  condi t iona l  o n  the restr ict ions 
[44), one  m a y  test for  pa ramete r  restrictions as (1 - B)(!  + B 2) in (45) us~.ng 
l ikel ihood ratio test statistics LR* .  

4.4. Four unit roots 

In case o f  four  unit  roots,  the general  P A R ( p )  mode l  can be wri t ten as 

4~p.,(B)y, = ~bp_4..,(B)(1 -- B4)y, = e,. (46) 

T h e  test for  the hypothes is  of  four  unit  roots ,  which a m o u n t s  to  a l inear 
restriction, will be deno ted  as L R , .  

Theorem 4.1. Under the hypothesis o f  q unit roots, we have as n --* ~ ,  

(f: ) } L R ,  ~ trace (dW(s)  W(s)'  W(s )W(s ) '  ds W(s)  dW(s ) '  , 

where W (s) is a standard q-vector Brownian motion process. 
Under the additional hypothesis o f  a nonperiodic (seasonal) unit root, 

LR* & X2(k), 

where k is the number o f  additional restrictions tested. 
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Proof. See Appendix. 

Notice that the limiting distribution of LRq is the same as the one obtained 
and tabulated in Johansen (1988) for the likelihood ratio tests for p-q  cointegrat- 
ing vectors (and hence q unit roots) in a p-dimensional vector autoregressive 
process. Thus, the tests proposed here do not  require new tables to be generated. 
This is in contrast  to the approach followed in Ghysels et al. (1996), where it is 
proposed to  test for the adequacy of, e.g. the (1 + B 2) filter within the general 
PAR(p)  model. The above theorem indicates that  test statistics for such joint  
hypotheses asymptotically follow distributions that are complicated functions of 
Johansen- and zZ-distributions and, hence, that new critical values for those 
tests have to be generated. An additional disadvantage is that rejection of  the 
null hypothesis leaves open the question how many stochastic trends are driving 
the time series. 

4.5. Summary  o f  our  empirical  procedure  

In practical occasions, the model selectior, strategy proceeds as follows. 
The first stop is to estimate the order  p of  the PAR process using some LR 
based test or one of the familiar information criteria. The simulation results in 
Franses and Paap  (1994) indicate that the number  of  unit roots in the PAR 
process does not  affect this order  selection. In case one  suspects 1(2) type 
patterns, one should estimate the 0~ in a PAR(2) model, as suggested in 
Theorem 3.1. In a next step one can analyze the y* = (1 --~sB)y, series for 
nonseasonal and seasonal unit roots via imposing nonlinear restrictions in 
decreasing sequence of unit roots  and testing for the number  of  unit roots  
using our  LR test statistics. Hence, the sequence is first to consider the LR4 test. 
Finally, if the number  of  unit roots is determined, one may check for restrictions 
like (1 - B) or  (l + B) to investigate specific seasonal and nonseasonal unit 
roo ts .  

4.6. Constants and trends 

In many practical occasions, one may want to enlarge the model in (1) like 

Y t =  #., + T~t + O,~vt-= + "" +Op~Yt-~,+v,, t = l,  2 . . . . .  n, (47) 

where p~ are seasonally varying intercept terms and z, are seasonally varying 
parameters that correspond to the deterministic trend. The inclusion of  con- 
stares and trends in the regression model has an effect on the asymptotic  
distribution of the LRi test statistics, i = 1, 2, 3, 4, see also the Appendix. The 
critical values of the relevant distributions are tabulated in Osterwald-Lenum 
(1992). 
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4.7. Subset PAR processes 

Unti l  now we have assumed  tha t  the P A R  process is o f  order  p suci) that  the 
A R  order  is equal  to  p for  all seasons s. I t  m a y  however  occur  in practice that  the 
A R  o rde r  in some  season s, say p~, is smaller  than  p. Fu r the rmore ,  it m a y  occur  
tha t  ~b~.~ pa ramete r s  can be set equal  to zero  for s o m e j  o r  s. In bo th  cases, these 
models  can be called subset  P A R  processes. Given  the expressions for the 
character is t ic  equa t ions  for the Yr processes in Section: 2, it is clear tha t  the 
n u m b e r  o f  possible unit  roo ts  in a P A R  process  is de te rmined  by the m i n i m u m  
value o f  p,. F o r  example,  for a PAR(2)  as (11), the character is t ic  equa t ion  
becomes  1 - cq~tzg3~t4z -- 0 when only a single ~ value equals zero. 

F o r  pract ical  purposes ,  we r e c o m m e n d  that  one  first tests for unit  roo ts  before 
one  checks  whether  the P A R  model  is a subset  P A R  model .  This  is because the 
d is t r ibut ion of  t-test statistics for  the significance of, for example,  lagged 
( 1 -  ~B)y,  variables depends  on  the n u m b e r  o f  (any remaining)  s tochast ic  
trends. 

5. Monte Carlo simulations 

We now turn  to  a small=scale M o n t e  Car lo  exper iment  to  assess the finite 
sample  size and  power  propert ies  o f  the tests p roposed  in the previous  section, 
with a specific focus on  the validity o f  the a sympto t i c  results in T h e o r e m  4.1. We  
consider  7 da t a  genera t ing  processes [ D G P s ] ,  all o f  which are  special cases o f  
the four th -o rde r  per iodic  autoregress ion  

~b4.,(B)y, = g., + e,,, (48) 

where  in the D G P s  we set ii., at 0 for  all s. T he  D G P s  are  

(DGPI)  q~4,s(B) = (1 + 0.8B + 0.6B z + 0.4B3)(1 -- ~ B )  

with D G P l n o p a r :  % = 1 for all s 

with D G P l p a r :  ~ = {0.8, 1, 1.25, 1} 

( D G P 2 )  ~4,~(B) = (1 + 0.6B2)(1 -- ~ ,B 2) 

with D G P 2 n o p a r :  % -- ! for  all s 

with D G P 2 p a r :  ~, = {0.8, 1, 1.25, 1} 

( D G P 3 )  $4..,(B) = (1 + 0.8B)(l  --  ~,B + B z --  ~,B 3) 

with D G P 3 n o p a r :  ~s = 1 for all s 

with D G P 3 p a r :  ~, = {0.8, 1.25, 0.8, 1.25 } 

( D G P 4 )  dp4,~(B) -- (1 -- B4). 
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Table ! 
Rejection frequencies of periodic unit root tests at a 5% nominal level number of replications is 2000 

Tests 

DGP n LRt LRz LR~ LR,~ 

1 nopar 100 0.037 0.274 0.577 0.851 
200 0.049 0,948 1.000 1,000 

lpar 100 0.035 0.332 0.704 0.944 
200 0.043 0.977 1.000 1.000 

2nopar 100 0.028 O. ! 37 0.476 
200 0.038 0.699 0.993 

2par 100 0.053 0. ! 89 0.657 
200 0.044 0.791 1.0(30 

3nopar 100 0,032 0.193 
200 0.048 0.594 

3par 100 0.079 0.702 
200 0.056 0.998 

4 100 0.073 
200 0.063 

Note  that  D G P i  involves i unit roots, and  that  for i = 1, 2, 3, D G P i n o p a r  is the 
nonperiodic model,  and D O P i p a r  is the periodic model.  All periodicity in the 
D G P s  is contained in the cointegrating linear combinat ions ,  and  all short- run 
dynamics are nonperiodic.  The construct ion of  the tests, however, does not 
involve corresponding paramete r  restrictions. Fur thermore ,  notice that  the 
D G P s  are chosen such that  the characteristic roots of  the VQ representation are 
the same for the periodic and nonperiodic  DGPs .  

Table  I contains the rejection frequencies of  the LR1 to LR4 statistics, for 
a sample  size of  1(30 and  200 observations.  All tests are based on the correct 
order  of the PAR(4) model  since the simulation results in Franses and  P a a p  
(1994) indicate that  this order  will usually be detected. The entries on the main 
diagonal  of Table  1 represent the empirical size of  the test, whereas the off- 
diagonal  cells give the empirical power.  

We do  not compute  rejection frequencies of  the LRi tests fer  D G P j  w i t h . / >  i 
for two reasons. First, it is well known that  if the D G P  contains more  unit roots  
than are tested, then the test will have a higher (asymptotic) rejection frequency 
than the nominal  size. Thus,  we should expect values exceeding 0.05 below the 
diagonal  of Table  1, oven asymptotically.  Secondly, some of  the parameters  of  
the model under i unit roots  will not  be identified when the D G P  actually has 
more  than i unit roots. Therefore, convergence of  NLS  opt imizat ion methods  
will be problematic.  The  first p roblem can be solved by employing Johansen 's  
(1992b) sequential testing procedure,  based on the work by Pantu la  (1989). In 
this procedure,  one starts with testing the m a x i m u m  number  of unit roots (in 
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Table 2 
Rejection frequencies of  periodicity tests at a 5% nominal level, number of replications is 2000 

Nonperiodie D G P  Periodic D G P  
D G P  Test n (size) (power) 

1 LR~' 100 0,092 0.2 t9 
200 0.071 0.556 

2 LR* 100 0,164 0.288 
200 0.095 O.433 

3 LR~ 100 0.253 0.364 
200 0.130 0.719 

this case 4), and only proceeds to testing i unit roots when the hypothesis of i  + 1 
unit roots is rejected. This procedure will have an symptotically controllable 
size, see Johansen (199213). 

F ro m Table 1, we observe that the empirical sizes are reasonably close to the 
nominal size of 5%, and that the power of  the tests seems to be higher for the 
periodic D G P s  than for their nonperiodic counterparts.  

Finally, in Table 2 we report  the rejection frequencies of the LR* tests for 
particular nonperiodic differencing filters, i.e. ( 1 -  B) in DGP1,  (1 - - B  2) in 
D G P 2  and (1 -- B + B 2 - -  B 3) ---- (1 - -  B)(i + B 2) for DGt '3 .  We observe from 
Table 2 that the finite sample size of the tests (i.e. the rejection frequencies for 
DGPinopar )  can be quite far from 5%, and seem to converge to the nominal size 
only slowly. Therefore, it may be worthwhile to investigate the effectiveness of, 
e.g. boots t rap methods or  other  small-sample corrections for this testing prob- 
lem. The power of the tests appear  to increase with the sample size, as expected. 

6. Applications 

In this section we illustrate the empirical usefulness of  our  method to test for 
nonseasonal and seasonal unit roots  in periodic autoregressions for three 
quarterly macroeconomie time series, which are selected for no particular 
reason other  than illustrative purposes. These series are Unemployment  Rate in 
Norway  for 1966.1-1992.4 (not in logs), (Real) Consumption of Nondurables  in 
the USA for 1947.1-1991.4 (in logs) and Unemployment  in Canada  for 
1960.1-1987.4 (not in logs). We start our  empirical analysis with an application 
of the H E G Y  test method for nonseasonal and seasonal unit roots  in a non- 
periodic AR model. The results are summarized in Table 3. 

These results indicate that the nonseasonal unit root  l is present for all three 
ser'_'e=.,Unreported H E G Y  test results for the first-or(er d i L ,  ~nced time series 
reveal that these series are at roost I(1) at the zero fre quer, c)'. The  seasonal unit 
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Table 3 
Test ing for seasonal  and  nonseasonal  unit  roots  in nonperiodic  AR models  using the  H E G Y  
method,  where the auxiliary regression includes four seasonal  dummies  and  a linear t rend 

Unemploymen t  Nondurab lcs  U n e m p l o y m e n t  
Tests  ~ Norway  C o n s u m p t i o n  IISA C a n a d a  

t(~1) - !.630 - 0.433 -- 1.309 
t(n2) -- 2.626* -- 2.235 -- 1.680 
F{=3, ~4) 5.925" 5.06t 7.155"* 

Lags 2 6 5 
n* 102 170 103 

~The test statislics, the relevant auxiliary regression and  the appropr ia te  crilical values are given in 
Hylleberg et aL (1990). Lags denotes  the n u m b e r  of  lagged yt-y,_ + variables included in the auxiliary 
regression, and  n* is the n u m b e r  o f  ©lTective observations.  The  t(~tt)-test concerns  the  nonseasonal  
unit  root  1, the  t(n2btest  c~ncerns the seasonal  unit  root  - !, and  the)oint F(~a,  ~4)qcst  concerns  
the seasonal  uni t  roots  + i .  The  unit  roots  cor respond with the  (i - B), (1 + B) and  (1 + B 2) 
differencing filters, respectively. 
***Significant at the 1% level. 
**Significant at  the  5% level. 
*Significant at  the 10% level. 

root  - I is present for all three series when we consider the 5% significance 
level. When we allow for the 10% significance level, we do n t t  find this seasonal 
unit root  to be present in unemployment  in Norway.  At the 5% significance 
level, we obtain evidence for th0 seasonal unit roots ___ i for two of the three 
series. In sum, our  three example series all have one or  more seasonal unit roots 
in case we consider a nonperiodic model. 

To  investigate the robustness of  the findings in Table 3 to periodicity in the 
AR parameters,  we use the method proposed in Franses (1994). Within this 
method, the PAR model is allowed to have seasonally heteroskedastic error  
terms. The main results are presented in Table 4. 

The Johansen type test statistics for the rank r of  the matrix H = ?~,' in the 
VQ(1] model as in (5) indicate that this rank is equal to 1 for the two unemploy- 
ment  series and is equal to 2 or  3 for the consumption variable. These results 
clearly indicate that the rank is not  equal to 0, which corresponds to the 
~Ldequacy of the ( I  - -  B 't ) t ransformation for y, (or the d transformation for Yr), 
The  value of 3 of the rank of H for the consumption series is clearly in contrast  
to the results in Table 3, where evidence for all four unit roots is reported. Since 
this cointegration-based method does not  impose all restrictions implied by the 
PAR model, it will be less powerful than our  new methods which do impose 
these restrictions, provided of course that these restrictions, such as seasonal 
homoskedasticity, arc satisfied. 
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Table 4 
Testing for the coinlegration rank r of H = 7g' in the VQ(1) model (5) using the Johansen method 

Unemployment Nondurables Unemployment 
Tests" Norway Consumption USA Canada 

gl 0.973*** ~808"** 0~17"** 
2z 0.411 0.553*** 0A15 
23 ~248 0.263* 0.260 
24 0.088 0.037 0.044 

Trace (r ~< 0) 117.688"** 123.023"** 91.046"** 
Trace (r ~< 1) 23.584 50.457*** 23.813 
Trace (r ~< 2) 9.813 15.068 9.346 
Trace (r ~< 3) 2.392 1.641 1.223 
N* 26 44 27 

Decision r = 1 r = 3 r = i 

~The tests ate the familiar km,,and Trace test statistics, proposed in Johansen (1988, 1991), where ~,i 
in the table refers to the relevant ).~, test. The asymptotic distribution of these tests is given in 
Osterwald-Lenum { :~2). N* is the :ffective sample size. Because of the small sample size, we use the 
critical values displayed in Franses (1994), for N* is 25 and 50. Several model selection and 
diagnostic criteria indicate that the VQ(1) model sufficiently describes the annually observed vector 
time series Yr. 
*** Significant at the 1% level. 
** Significant at the 5% level. 
* Significant at the 10% level. 

O u r  next  step is to apply  the LR tests which  are p roposed  in Sect ion 4. The  
(unrepor ted)  H E G Y  ou tcomes  for the (1 - B ) y r  series suggest  tha t  I(2) type 
behav io r  is no t  present  in ou r  three example  series. Before we can  app ly  ou r  
tests, we need to decide on  the o rder  of the var ious  P A R  models.  U s i ng  
d iagnos t i c  tests for res idual  au toco r r e l a t i on  a t  lags I a n d  1 - 4  a n d  for per iodic  
pa t t e rns  in the residual  au toco r r e l a t i on  funct ion ,  we f ind tha t  the order  p can 
be set at  4 for each t ime series. The  residuals  of  the es t imated  PAR(4)  mode l  
are also checked for the absence  of seasonal  heteroskedast ic i ty .  The  F- tes t  
values  of  the auxi l iary  regression of  ~2 on  a c o n s t a n t  a n d  three  seasonal  
d u m m i e s  o b t a i n  the (5%) ins ignif icant  va lues  of 1.982, 1.796 a n d  2.407. We  
also test whether  the AR pa rame te r s  are indeed per iodical ly  varying.  In  the 
PAR(4)  model ,  a n  F- tes t  for the hypothes is  of  no  periodici ty follows a 
s t a n d a r d  F ~ l i s t r i b u t i o n  with 12 a n d  n --  20 degrees of freedom. See Boswijk 
and  F ranses  (1996) for the de r iva t ion  of this d i s t r ibu t ion .  The  test results 
for per iodici ty  are 0.762, 9.797 a n d  3.102, which indicate  a conv inc ing  reject ion 
of  the nul l  hypothes is  of no  per iodic  pa rame te r  va r i a t ion  for ou r  three example  
series. 
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Table 5 
Testing for multiple unit roots in PAR(4) models  using LR tests 

185 

Unemployment  Nondurablcs  Unemployment  
Tests" Norway  . .Consumption USA Canada 

LR4 328.128"** "196.432 =** 232.741"* 
LR 3 123.700"** " J 33,950*** 164.240"** 
LR2 70.459*** • 64.315"** 32.004"** 
LRt 0.469 2.056 1.040 

~1 1.014 1~53 1.077 
~z 1.057 !.018 0~82 
~3 1.012 1.022 0~71 
a4 ~922 0.913 0.974 

F(1-m 7.457*** 8.907"** 3.895*** 

"The LR, ([ = I, 2, 3, 4) test statistics are discussed in Section 4. The a~ (s = 1, 2, 3, 4) ¢stimat¢~ 
concern the parameters in the periodic differencing filter ( I -  a,B) under the restriction 
ctictzct3~4 = 1, which transforms the y, series to periodic stationarity. The F(t-a~ test concerns an 
F-test for the restriction a ,  = I, conditional on ataa~t3~,~ = 1. This F-test has a standard F-distribu- 
tion with 3 and m degrees of freedom, with m equal to n -- 4 -- 4/) + 1. The PAR(4} models  contain 
4 seasonal intercept terms, but no seasonal trends. The results do not  change very much when tlmse 
trends arc included. 
*** Significant at the 1% level. 
**Significant at the 5% level. 
* Significant at the 10% level. 

The results for the LR test statistics for 1 -4  unit roots are given in Table 5. 
Comparcn with Table 4, we may expect different findings given that our new 
method imposes all restrictions implied by the PAla(4) model (including sea- 
sonal homoskedasticity) and the diagnostic mentioned above suggest that these 
restrictions are valid. 

The results for the LR~ (i = 1, 2, 3, 4) statistics in Table 5 can easily b¢ 
summarized. Only the LRt test value is insignificant, while th¢ null hypo-  
theses corresponding to the LRz to LR4 tests are rejected at the 1% level 
(or even at the 0.1% level). Hence, there appears to be only a single unit root 
in each of the three time series considered. Finally, we investigate if this 
single stochastic trend can b¢ removed using the (1 - B) filter. The values of 
the Fit-a)  test for this hypothesis in the last row of  Table 5 indicate a 
firm rejection. In other words, our three example series all seem periodically 
integrated of  order l.  This means that the appropriate differencing filter for 
these series is (1 - ~ B )  with cq#2cta#4 = 1, where the estimates of  ~t~ arc also 
given in Table S. 
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7. Concluding remarks 

In this paper we propose and apply a simple testing strategy for periodic 
autoregressions, which involves an investigation of seasonal unit roots and one or 
two nonseasonal unit roots. Our method also allows for periodic integration of 
order I and 2. The latter class of methods may yield useful descriptions of seasonal 
time series since it allows the seasonal fluctuations to depend on the stochastic 
trend. Our applications show that tests for seasonal unit roots in nonperiodic 
models may too often detect such roots, while, when allowing for periodically 
varying AR parameters, the evidence for seasonal unit roots tends to disappear. 

One drawback of periodic autoregressions is that the number of parameters 
increases with the seasonal frequency. Hence, a periodic AR model for monthly 
time series can involve a huge number of parameters. This would complicate the 
empirical application of our approach, which seems to work well for quarterly 
data. To allow the application of our .~lethod to monthly data would then imply 
that one imposes restrictions on the various AR parameters. When such proper 
restrictions arc imposed, the asymptotic results in our paper indicate that our 
selection strategy can easily be used. 

Appendix. Proofs of lemmas and theorems 

Proof of  Lemma 3.1. The error term {~z} is assumed Gaussian and hence 
satisfies the multivariate invariance principle, see, e.g, Phillips and Durlauf 
(1986), thus implying that 

[rN] d 
(1/N Ifz) ~ Ej ~ aE(r), (A.I) 

j = l  

where a214 lim:~ ~ N-  ' E~iX "N N = ,,~j=, r.j)(y_~= ~ e~)') is the covariance matrix of the 
vector standard Brownian motion E(r) of dimension (4 x 1). it follows from the 
analysis of, e.g. Park and Phillips (I 989) and Haldrup (1994a, b) that given (26) 

[rNI k 

(|/N3'2)YI,N l = (l/NSl2)(Oo + t , ' ,  :@~ + OT)A(I)- '  ~. ~ ~j -..F- Op(1) 
k=I  j ~ l  

fo ~ ~(0o + 0~)(0"  + O~)A(1)-~ E(u) du -- B(r). 

(A.2) 

It is now a consequence of the results in Boswijk and Franses (1996) that due to 
the unit roots in the VMA polynomial (24)~ th,~ matrices (Oo + O~) and 
(O~ + O~') both will be of rank I and 

(0o + 0~)(~)~ + 07)  = ab'a*b*', (A.3) 
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where the a, b, a* and b* vectors are given in (29). Define now the scalar 
integrated standard Brownian motion 

fir(r) = e ta -  ~ b 'a*b* 'A( l ) -  1 f o  E(u)  du, (A.4) 

with to given in (28) and the first part of  (27) follows straightforwardly. With 
respect to the second part of (27) it follows from 

A Y*  = ( 0 "  + O~[B)A(B) - ~cr (A.5) 

that 
IrN] 

(I/N'I2)Y~,NI = (1/Nt /Z)(O~ + O * B ) A ( B ) - '  ~,  . j  + %(1) 
j f f i l  

d 
--* cr(O~ + O * ) A ( 1 ) - t  E(r)  --  B*(r). (A.6) 

Similarly to the analysis in Boswijk and Franses (1996) and the procedure above, 
we now have that 

P*(r) = oa*b*'A(1)- IE(r), (A.7) 

and with the standard Brownian motion 

W ( r )  = cra~*- tb*'A(l)- IE(r), (A.8) 

the required result follows. []  

P r o o f  o f  Theorem 3.1. We shall consider model (30) both under the restriction 
0q0tz~a~4 = I and the additional restriction fllfl:fl3fl4 = 1. Our  setup en- 
compasses both situations. For  the latter case, we wdtg the model as 
yt = xt(~,) + et, where y = (~2, ~3, 0t4, flz, fla, f14)', which we also may write in the 
condensed form 7 = (a', if)'. When the restriction fllfl2fl~.fl4 = 1 is not imposed 
in the estimation, the y vector may be redefined such that fl is simply 
(ill, lff2,//3, f14)'. Define the vector of pseudo regressors 

Ox,/O~t = (z',. w;)', 

where zz = J'lvr, wf = J'2u, with vf = (vl.,, v2.~, va. ,  v4.~)', u~ = (ul.f, u2.t, ua . ,  
u4,t)', v~.~ = D~.ty,- 1 - ~ +  iDa+ J.,Yr-2, u~.t = Ds.,(y~- t -- %-  lye-2) and with 
J t  and J2 defined as 

I - - ! / ( ~ % ~ 4 )  1 0 i l  .I~ = 1/(~2~I~4) 0 I 
I/(~2930C 2) 0 0 
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[ - - l / (#~#s#4)  1 0 ! ]  
J ~ =  l/(PdT)tL) 0 I , 

l/(#2#~#I) 0 0 

respectively. When the restriction #l ~2#s/ff4 ---- 1 is not imposed when estimating 
the parameters, all the derived results will carry through with J2 substituted by 
a (4×4) identity matrix. Notice that we also let ~l =(~2~s~4) - t  and 
f l l  = (f12f13~4)--  1 Furthermore, define ~o = ~4,/70 = f14- Hence, we have that the 
NLS estimates can be found asymptotically as 

p , - ; ] : r ~ , : , : , : :  >:,:, z,w,, ~-, r~,:, ,,,,, 1 <A.9) 
# - LY-.,":, w,z; y_:,":, w, wlJ L~'7:, w,~, j  

To derive the order of ~ and ~ we require that after appropriate normalization 
the diagonal submatrices Z~= i zrz't and ~"= 1 w~w', are nonsingular. To show this 
we write (A.9) in the following way: 

[ ;_  ~]__ [[S; o .,.~ r~,:, o,o~ ,~,=, .,o,. == ~,=, .,.!1 r-,; , ,,,.,, ,o o ] ] - ,  ~,~ 

x [o" o ~r>-:!-, ,,,,,,1 
J:JLY:. , : ,  um,_l 

Along the lines of Boswijk and Franses (1996) we let V.,.T indicate the VQ 
process of v,.,_ This is a different process for each s. If the (4 x4)  matrix !P(B) 
defined in (I2) is partitioned such that row number s is I#~, it follows that 

V.,.r = ~ , , (B )Y , -  ~.r = I ~ , Y , - , . r  + dd* (B)A~Y~-~ .T ,  

where ~*(B) follows from a polynomial decomposition of IP,(B). Since the term 
IJ ' ,Y,-i . r  is doubly integrated whilst AIY,_ l . r  is integrated of order one, it 
follows from Park and Phillips (1989)and Haldrup (1994a) that 

N - 4  = N - 4  , v,.,v~., Y. v;.~v~.r = (~'=tp,,)(N 4) 
t=l  7 : 1  

N 

x ~. Ys- l .rYq- t.T + Op(1) 
T=I  

for s, q = 1, 2, 3, 4. In accordance with Lemma 3.1, we therefore have that 

N -'l ~ v,v~ d_~ ol2AiP,itt A f t  (~'(r))  2 dr 
I = l  3o 

where A = diag(a4, a t ,  a2, a3). in a similar fashion the VQ process correspond- 
ing to us.t reads 

Us.z = dz*Y* -  l . r ,  
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where ~/'* = 14 and ¢* corresponds to column s of this matrix. Because the 
columns are orthogonal ,  we have that the expression 

N - 2  = N - 2  , Us.rUq. t E Us.TU¢. T 
r = l  T = I  

is 0 for s ¢ q, while for s -- q the expression yields 

N-Z  u 2 = N - 2  s., ~'. Y*- t ,TY*- t .T .  
t = I  T = I  

It follows in accordance with Lemma 3.1 that  

N - "  ~. u,u; = ~*2A*A* f l  W(r)  2 dr, 
3o 

where A* = diag(a*, a*, a'z, a*). 
The nonsingularity conditions that have to be met require that the matrices 

J'IAqP ' and J'~A* are of  full rank equal to 3. Both J'~ and J [ ,  which are (3 x 4 )  
matrices, are of full rank by their construction. When the restriction on the ffs is 
not  imposed, J2 is naturally full rank of  dimension (4 x 4). A and A* are full rank 
matrices whilst ~P is of rank 3. It follows that J'2A* is full rank and it also follows 
from the construction of  2'1 that the first rank condit ion will be satisfied. To  
conclude, the matrices N-4~"= t z,z; and N-4~j= 1 w,w~ are indeed nonsingular. 

Now, define DN = diag(N3JZla, Nllala). It can b¢ deduced from Haldrup 
(1994a) that in this case 

/i LE,.=I ,,:; E~'=~ ,',.',~;J 

i r~--~.~= I Zt~t / = Or(l), x N -  1:~'D~ LYe=, w,~,j 

Theroforo, 

N'-(~ - ~) = O ~ 0 ) ,  N( /}  - # )  = O~(1).  

Because ~(~ = (~2c(3c¢4)-~, we also have that 
4 

N2(0~t _ ~,) = _ (0~2~30{4)-t E ( a s ) - I N 2 ( ~ s  - -  ~Zs) ~-~ O p ( l ) .  
s = 2  

A similar argument applies to N(/~I -- fl~). Notice that these results will apply 
regardless of imposing the restriction fltfl2flalI4 = 1 in the NLS estimation. [ ]  

Proof  o f  Theorem 4.1. Consider the general VQ representation of  the PAR(p)  
model 

~ o Y r = C b l Y r - t  + "'" + ¢ ~ e Y r - r + r . r ,  ~ r " I N ( 0 , 2 7 ) ,  T =  1 . . . . .  N 

(A.10) 
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where P is an integer obey ing  [ (p  - I) /4]  + 1, where [ - ]  means  "integer of ' ,  
where Z" = a21,~ and  

[ o 011 ( 0 o =  --t~12 ! 0 0 • 
~23 -- tibia 1 

(to~).~j = ~b[4i+,-j~.~, i : 1  . . . . .  P 

(A. I 1) 

In e r ro r  correc t ion form, the model  reads as 

A Y r =  H Y . r - 1  + F] A Y T - I  + ..~ + F e - t  d Y r - e + t  + Vr, 

Vr "- IN(0,  f2) (A.12) 

where v r = too Jc~., where  D = too l-rtoti j '  = tr2(tootoo) k l, and  

//=-too~(too ..... to~), F~=--too'(to;+,+ "'" +toe), 

i =  t . . . . .  P - -  1. (A.13) 

The  null hypothesis  o f  (4 - r) unit roots  expressed as 

Ha:  H = y~', (A.14) 

where the matr ix ~ is defined in Section 4 for r = 1, 2, 3; for r = 0, take • to be 
equal  to 0. Define the matr ix S = H -- ~ ' ,  so tha t  one  way  to  express the model  
is 

A Y r = ' ; ~ t ' Y ' r - I  + - Y r - i  + F I A Y r - t  + "'" + Fe i A Y r - e + ~  + vr,  

vr  ~ IN(0,  0) ,  (A. 15) 

and  the null hypothes is  becomes  H~: --- = 0. 
Suppose  tha t  we disregard the restr ictmns imposed u p o n  (A.15) by the 

under ly ing  per iodic  model .  Define the full pa ramete r  vector  0 = (0'~, 0", 0~)', 
where 0t conta ins  the free parameters  in (7, F1 . . . . .  Fp_ 1, t2), and  where 02 and 
03 conta in  the identified parameters  in ct and ~,, respectively. The  d imens ion  o f  
01 is 4r + 16(P  - 1) + 10. F r o m  Johansen ' s  (1991) results it can be seen that  the 
d imens ion  of  02 is r(4 --  r), and  f rom this it can in turn be deduced that  d im 0a 
equals 14 - r) 2. 

The  per iodic  mode l  however  implies certain over- ldent i fying restrictions on  
(A.15). W i t h o u t  the unit  roo t  restrictions, the total n u m b e r  of  free parameters  is 
4p + 1. With  (4 -- r) unit  roots ,  this number  is 4(p - (4 - r)) + | + r(4 - r), so 
tha t  this hypothes is  co r responds  to  ( 4 -  r) z restrictions, which cor responds  
exact ly with the d imens ion  of  03. Likewise, f rom Section 4 it can  be seen that  the 
d imens ion  of  the vec tor  o f  parameters  in the co in tegra t ing  vectors  is r(4 - r), 
which co r responds  to the d imens ion  of  0z in the unrestr icted V Q  model .  Thus,  
the "mderlying periodic s t ructure  implies only restrictions on 0 , ,  i.e. on  the 
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' shor t - run '  parameters  (in the sense that the~e do not characterize unit roots or  
cointegrating vectors). Let us express these re3trictions as g(01) = 0. From the 
above, it follows that the dimension of the vector  function g equals 
16P - 4p + 9, which is exactly equal to the difference in the number  of para-  
meters between a four-dimensional VAR(P)  and a univariate PAR(p)  process. 

Let O ~- (9, x O2 x (93 denote the unrestricted parameter  space, where Oi is 
the parameter  space for 0j, i = i, 2, 3. Next, let OPt -- {0t ~ Ot :  #(0t)  = 0}, the 
restricted parameter  space corresponding to the periodic structure, and let 
O~ = {0}, the restricted parameter  space corresponding to the hypothesis of  
(4 - e) unit roots. Similarly, define 

O r = o ~ x O 2 x O 3 ,  O r = ( g t x o z x O ~ ,  

O p" = OPc~O ' = O~ x 02  x O~. (A.16) 

Johansen 's  likelihood ratio statistic for the hypothesis of(4 - r) unit roots in the 
unrestricted VAR may be expressed as 

LR(O ' I  O)  = - 2(max0 ca, log L(0) - max0 ~ o log L(O)), (A.17) 

with L(0) the likelihood function. On the other  hand, the LR statistic for (4 - r) 
unit roots in the periodic autoregression is given by 

LR(OPr I O p) = LR(O" I O) + LR(OP'IO r) - LR(OP [ e ) .  (A.t8) 

Note  that the last two terms on the right-hand side are the likelihood rat io 
statistics for the restriction 0(0~) = 0, with and without  the unit roots imposed. 
Slightly extending the results of  Johansen (1991, Appvndix C), it can be shown 
that  (Nll2)ff), -- 01) is asymptotical ly independent from N(O~--02) and 
N(Oa - 03). This implies that  

P 
LR(Oprl O p) - LR(O ' I  O)  = LR(Orrl  t9 r) - LR(OP]O) -* 0, (A.I9) 

so that the LR statistic for (4 - r) unit roots in the periodic autoregression is 
asymptotically equivalent to the LR statistic lot  ( 4 -  r) unit roots in the 
unrestricted VAR model. Hence, 

LR(OP" OP) d { j ' 2  trace (dW(s)W(s)' 

' fS W(s)dW(s)'}, (A.2O) 

where W(s) is a s t a n d a r d ( 4 -  r)-dimensional Brownian mot ion  process, see 
Johansen (1991). Quanti les of  this distribution are tabulated in Os te rwald-  
Lenum (1992, Table  0). Extensions to fitted intercepts and  linear trends 
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can be proved analogously; see Os te rwa ld -Lenum (1992) for tables with the 
relevant critical values. 

In a similar fashion, we can prove that  with the correct number of  unit roots 
imposed, the likelihood ratio statistic for restrictions on • has an asymptot ic  X 2 
distribution under the null hypothesis, whether or  not  the restriction g(01 ) = 0 is 
imposed. Let us denote  such restrictions on 0¢ by h(02) = O, and  the correspond-  
ing restricted pa ramete r  space of  02 by O~ = {0z e O2: h(02) = 0}. Likewise, 
define (9 ~m' = ¢9~ p x -63~ x O~, and so on. Then, the likelihood ratio statistic for 
the restrictions on Oz in the periodically integrated AR model  satisfies 

LR(OP~'I 0~')  = LR(Oh'  I O ") + LR(OPh'I O h') -- LR(OP'  I O ' )  

= LR(O*'I  0")  + o p ( l )  d X2(m), (A.21) 

where m is the dimension ofh.  The  second equality follows from the fact that  the 
LR statistic for the restrictions on 01 is independent of  whether  restrictions have 
been imposed on ~; the limiting X 2 distribution is proved in Johansen (1991, 
Appendix C). [ ]  
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