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Abstract: A recurring issue in modeling seasonal time series variables is the choice of the most adequate model for the seasonal
movements. One selection method for quarterly data is proposed in Hylleberg et al. (1990). Market response models are often
constructed for bimonthly variables, and hence the topic of the present paper is an extension of their method to such time series.
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1. Introduction

A recurring issue in modeling seasonal time se-
ries variables is the choice of the most adequate
model for the seasonal movements. Given that a
large number of models is available, see e.g.,
Ghysels (1990), it is important to have an appro-
priate model selection method. One such method
is proposed in Hylleberg et al. (1990), where it is
applied to quarterly time series. The extension of
their method to monthly time series is treated in
Beaulieu and Miron (1991) and Franses (1990).
The influential paper on data interval bias by
Clarke (1976) has established that several market
response models make use of bimonthly time
series variables. An extension of the Hylleberg et
al. (1990) method to such time series may there-
fore be of interest to marketing researchers, and
it is therefore the topic of this paper.

In Section 2, I discuss the general model selec-
tion issue of interest for seasonal time series. In
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Section 3, the Hylleberg et al, (1990) method is
surveyed. In Section 4, I extend their approach to
bimonthly variables, and apply it in several exam-
ples. A discussion concludes this paper.

2. Modeling seasonality

In the literature on seasonality one can find sev-
eral different views on modeling seasonal time
series, see, e.g., Abraham and Box (1978) and
Hylleberg (1986). One view is introduced in Box
and Jenkins (1970, Chapter 9), and it results in a
general multiplicative seasonal time series model.
For a zero mean time series y,, which is mea-
sured 5 times a year, this model is given by

b (B*) (1~ B*) Py, = 0,6( B)v,, (1)
with

bo(BY(1 = B)", = 0,(B)e,. (2)
where B is the backward-shift operator defined

by B*y, =y, s, and where s is usually 2, 4, 6 or
12. The ¢,p(B°) and 6,,(B*) are polynomials in
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the operator B® of orders P and Q, and the
¢,(B) and 6,(B) are polynomials in B of order p
and g. It is assumed that the usual conditions for
stationary and invertibility of the processes in (1)
and (2) hold. The values of d and D are often 0,
1 or 2, see Dickey and Pantula (1987). The s, in
(2) is assumed to be a white noise process, i.e. an
uncorrelated zero mean process with constant
variance.,

When dealing with empirical economic time
series one may often observe that the observa-
tions in season i, i=1,...,s, are highly depen-
dent on the value of those in the same season in
previous years. Furthermore, they may show pat-
terns which seem to be independent from the
values in season J, where j + . This may indicate
that an appropriate value of D in (1) can be 1,
i.e. that one may apply the annual differencing
filter 1 — B®, With respect to the nonseasonal
part, if can often be recognized that the observa-
tions at time ¢ are highly dependent on ¢ — 1 such
that a nonseasonal differencing filter 1 — B, i.e,
d =1 in (2), may be suitable. Therefore, a regu-
larly applied transformation of economic time
series is

=(1T-.B-)(1~Bs)yn (3)

When thijs x, is modeled with an MA model such
that g = Q = 1, one obtains the well-known air-
line madel

(1-B)Y(1-B%)y,=(1+6,B)(1+6,B%)¢,

4

which has been popularized by Box and Jenkins
(1970). This airline model has already been ap-
plied and evaluated in a host of empirical studies
and it seems to be useful in many of these, see
Abraham and Ledolter (1983, Chapter 6),
Granger and Newbold (1986, Chapter 3) and
Hanssens, Parsons and Schultz (1990, Chapter 4).

Despite its apparent success, there are also
practical occasions in which the double differenc-
ing filter in (3) causes that model (4) is noninvert-
ible, i.e., that one or both of its parameters are
equal to minus 1. The choice of the 1 — B or the
1—B* filter may be guided by an inspection of
the autocorrelation functions (ACFs) of the sev-
eral distinctly differenced variables. A straightfor-
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ward interpretation of ACFs can however be
blurred by the presence of deterministic effects.
A similar phenomenon may occur in seasonal
time series where seasonal dummy varjables may
account for a part of the seasonal fluctuations.
The observations in season i and in the same
season the previous year are now highly corre-
lated. Hence, the values of the ACF at seasonal
lags may also die out only slowly. This establishes
the need for a class of models in which seasonal-
ity is modeled deterministically, or

s—=1

¢p(B)(1 _Bd)yr =ag+ ;1 a;D;, + ¢q(B)€1’
(5)

where ¢,(B) and 9,(B) can include terms as B**,
where k=1, 2,..., and in which intermediate
parameters can be set equal to zero. The seasonal
dummy variables D;, take a value 1 in season i
each year, and a value 0 in all other periods.

3. Model selection via testing for seasonal unit
roots

Given the complicated expressions in (1) with (2)
and (5), one can imagine that the selection of an
appropriate model for seasonal time series may
not be without difficulties. A recent proposal for
a model selection method is given in Hylleberg et
al. (1990). They consider for quarterly time series
a process like (1) and (2) with d assumed to be 0
as their null model, a simple version of which is
(1-B%y, = g,. They recognize that its differenc-
ing filter can be written as

(1-B*) =(1-B)(1 +B)(L - iB)(1+iB)
= (1-B)(1+B)(1+B?)
=(1-B)(1+B+B*+B). (6)

From this expression it can be seen that the
1—B* filter assumes the presence of four unit
roots, i.e. =1 and +1i, and that it can be written
as the product of 1 — B and a term which reflects
an annual moving average. The roots —1 and +1i
are called seasonal unit roots, while the root 1 is
called the nonseasonal unit root. There is now a
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large literature on the issue of unit roots, and
hence to save space, the reader is referred to,
e.g., the lucid discussion in Dickey, Bell and
Miller (1986).

From (6) it can be seen that transforming a
quarterly time series with a 1 — B* filter is appro-
priate only in the case of the simultaneous pres-
ence of 4 units roots. However, transforming the
series with 1 — B4 yields an overdifferenced se-
ries in case only one unit root is present such
that, e.g., applying the 1 — B filter is sufficient to
make the series stationary and that seasonality
can be handled by the inclusion of seasonal dum-
mies. This overdifferencing may cause trouble for
the construction of time series models because
the (partial) autocorrelation patterns become hard
to interpret. Furthermore, one may expect esti-
mation problems because of the introduction of
moving average polynomials with roots close to
the unit circle. On the other hand, underdiffer-
enced series may yield unit roots in their autore-
gressive parts, and so classical arguments as those
in e.g., Granger and Newbold (1974), for time
series containing neglected unit roots apply. So, it
is important to test for the presence of (seasonal)
unit roots.

The crucial proposition which makes the test-
ing procedure relatively simple is given in Hylle-
berg et al. (1990, pp. 221~222). Since I need it in
a subsequent section of this paper, this proposi-
tion is given almost literally in the technical ap-
pendix below. An application of this proposition
to testing for (seasonal) unit roots in quarterly
time series, i.e. applying (A.5) to (6), yields

¢(B) = A,Bp\(B) +Ay(~B)ey(B)
+As(—i=B)Be,(B)
+Ay(i—B)Bes(B)
+¢*(B) ey B), (7

where

¢(B) =(1+B+B*+B?), (8a)

¢y(B) = (1-B)(1+B?) = (1- B +B*-B%),
(8b)
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os(B) = (1-BY), (8)
¢4(B) =(1-B*). (8d)
Defining
Ay= -y, (9a)
Ay= =y, (9b)
Ay=3(—my+im), (%)
Ay=3(—my—imy), (9d)

(7) can be written as
@(B) = —m Be,(B) +m,Bp,(B)
+(m3B + ) Bos(B) + ¥ (B)py( B).
(10)

Suppose that the quarterly observations are gen-
erated by an AR process

‘P(B).Vr=l-"r+5u (11)

where pu, covers the deterministic elements, and
might consist of a constant, seasonal dummies, or
a trend. Now, the auxiliary test equation becomes

P (B)Yar=por + T ¥ oy + T2Y2-1
+T3Y3 -0t TaYa—1 & (12)

where

Yu=@B) Y
Yu=—¢B) ¥,
Ya=—03(B) ¥y
Yar=04(B) ¥,

Applying OLS to (12), where the order of ¢*(B)
is established in an experimental way using con-
ventional autocorrelation checks, gives estimates
of the ;. Because the r; are zero in case the
corresponding unit roots are on the unit circle,
see (9) and (A.2), testing the significance of the
estimated 4, implies testing for unit roots. There
will be no seasonal unit roots if 7, and 75 or m,
are significantly different from zero. If 7, =0,
then the presence of root 1 can not be rejected.
This procedure for the nonseasonal unit root is
similar to the Dickey and Fuller method when
applied to the series y,,. Note that, e.g., in case
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only 7, =m, =0 the transformation 1+ B? can
be applied to the raw data series. This kind of
test outcomes ensures that the procedure consid-
ers also models which are intermediate between
(1) and (5). For an exposition of such a case for a
monthly time series, see Abraham and Box (1978).
The alternative hypotheses for the first two unit
roots are that the roots are smaller than one in
an absolute sense, which implies that the #-test
for m; and 1, are one-sided. A test strategy for
73 and 7, may be to test o, in a two-sided
procedure, and when the insignificance of r, is
accepted, to check the significance of 75 with a
one-sided #-test. A sensible strategy may also be
to jointly test ;= a,=0 with an F-test. See
Hylleberg et al. (1990) for further details.

To see why it is reasonable to have a two-sided
test for m, and a one-sided test for 4, consider
for example

1-B*
e(B)=(1 +aBz)( 7 +Bz)
;(1 +aB%)(1—B?), (13)

where |a| <1 in the stationary case. Using (A.1)
and (A.3) it can easily be established that for the
«(B) in (13) its holds that

(~1) =o(i) =2(1 ~a),
8i(~1) *8,(—1) - 8,(—1) =8,(1) -8,(1) - 85(0) = 4,

and hence that Ay= A, =3(1 — @), such that A,,
A4>0 under the stationary alternative, The
transformations in (9) give that

T3 = "‘A3"")\4,
my=1(A4— Aa),

and hence that tests for 7, and m, may be one-
and two-sided, respectively.

The null hypothesis, j.e. (1 =B*)y,=¢,, in the
test procedure in (12) is a nomstationary model,
and therefore the critical valyes for the several
test statistics have to be tabulated, Tables with
critical values are displayed in Hylleberg et al.
(1990) for the cases where u, can contain several
combinations of deterministic elements. The dis-
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tribution of the f-test statistic for 7, depends on
the inclusion of trend and intercept. The distribu-
tion of the ¢-tests for the 7r,, 75 and m, are
dependent on the inclusion of seasonal dummy
variables. In general it applies that deterministic
elements make that the empirical as well as
asymptotic distributions shift to the left, or,
equivalently, that the critical values become larger
in an absolute sense. The tables are based on
Monte Carlo replications, and therefore the tabu-
Jated critical values are not exact. This naturally
implies that it may not be wise to establish the
significance of a parameter on the basis of test
values which differ from critical values only by
their second decimal point.

Extensions of this procedure to testing for
seasonal unit roots in monthly time series are
Franses (1990) and Beaulieu and Miron (1991).
The results of some empirical power investiga-
tions are also reported there. One conclusion is
that it is difficult to distinguish between station-
ary and integrated seasonality in a model like
Yi=pY-12tE, with p equal to 0.9 and 0.5,
although this difficulty mainly concerns the test
for the presence of the nonseasonal unit root.
The test procedure does seem to have reasonable
power with respect to the detection of the sea-
sonal unit roots, especially when p equals 0.5.
Secondly, it can be seen that a clear recognition
of the alternative hypothesis, and in particular
the elements in u,, does have a significant impact
on the power. Finally, the power of the test
procedure can be low for a small number of
observations.

4. Testing for seasonal unit roots in bimonthly
time series

The influential study of Clarke (1976) on data
interval bias in empirical marketing models has
motivated the consideration of bimonthly obser-
vations on time series variables in, e.g., market
response models which are built according to the
econometric and time series analysis approach
(ETS), see Hanssens, Parsons and Schultz (1990).
Recent examples of studies which consider such
bimonthly time series are Leeflang and Reuyl
(1985), and Franses (1991b).
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Consider the decomposition of the polynomial
as (6), which is relevant to bimonthly time series,
or

1~ B%=(1—-B?)(1-B+B?)(1+B +B?)
= (1-B?)(1+B%+B%)
=(1-B)(1+B+B2%+B%+B* + B®)
= (1-B)(1+B)(1-4(iV3 + 1)B)
X(1+3(V3 = 1)B)(1+3(iV3 +1)B)
x(1—-3(iV3 —1)B). (14)

Similar to the derivations in (6) through (9), which
for the bimonthly case are displayed in the tech-
nical appendix, a test equation for testing for
seasonal unit roots in this case can be found to be

O*(B)ys, =m1Y14-1F Va1 +T3Y3,-2
T Y3-1 T TsYagaF V4,1

+up,+e,, (15)
with
yu=(1+B)(1+B%+B%)y,
¥ = —(1=B)(1+B2+B%)y,,
ys=—(1-B%*)(1+B+By,
yao=—(1-B*)(1-B+B%)y,
v =(1—B%y,.

Tables for the critical t-values of the individual
m, are given in the appendix. The critical values
are generated similar to those for quarterly data.
This means that 5000 replications of the data
generating process y,=y,_¢c+eg, with g ~
N(0, 1), are constructed, that model (15) is esti-
mated by OLS, and that t-ratios and F-tests are
calculated and ordered. For example, the 5%
critical value is then obtained by taking that value
of a test statistic below, or above, which 5% of
the estimated values can be found. This is re-
peated for several combinations of deterministic
elements in u,, i.. constant, seasonal dummies
and trend. Similar to the quarterly case, one can
verify that the tests for o, and , are one-sided,
the tests for m; and w4 are two-sided and that for
7y and s these are one-sided. The tables for
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F-ests of 3 =my=0 and w5=m,=0 are dis-
played in the second part of the appendix.

To illustrate the application of the procedure
in (15), I have chosen to consider the log of the
Dutch car sales series for the period 1975-1988,
1LNQC, and the Dutch series over 1978-1987 for
the log of the primary demand for beer, LNQB,
and over 1978-1984 for total advertising, AT.
The graph of the first series, when observed as
monthly data, is given in Franses (1991a). It ap-
pears that a sensible alternative hypothesis is that
seasonality can be modeled by seasonal dummies,
and that a trend does not seem to govern the
series. The graphs of LNQB and AT are dis-
played in Franses (1991b), and for these series a
similar alternative hypothesis can be assumed.
The test results are summarized in Table 1. The
results for LNQC are quite close to those already
obtained for monthly data. In Franses (1991b) it
has been argued that for LNQB as well as for AT
seasonal dummies may be appropriate, and that
both series should not be first order differenced.
For the primary demand variable this seems to be
valid, although the AT series seems to contain
several unit roots.

Table 1
Testing for (seasonal) unit roots in some empirical bimonthly
time series

Variable
LNQC ® LNQB? ATV
f-statistics —2,439 —~3.544%% 0775
wy —2482%  ~2.667% —-1.39%4
T —3552%%  ~3198%  —~3,000%
Ta 3.679% % 4,135% 0.881
Ts —7342%%  3633%% 2988
T —3578%%  —.803 -0.817
Fstatistics w4,y O787%%  10,170%% . 5.152%
ey T, 26812 % 7,677 2.753

* Significant at a 10% level.

** Significant at a 5% level,

* Auxiliary regression contains a constant and seasonal dum-
mies. The polynomial ¢*(B) is 1— @4B% the estimated
parameter of which is highly significant. The number of
observations is 75,

b The auxiliary regressions contain constant und seasonal
dummies, while ¢*(B) is 1, and the number of observations
are 54 and 36.
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5. Discussion

Many modeling strategies for seasonally unad-
justed time series start with the formulation of a
suitable model for seasonality. It is current prac-
tice to remove seasonality via automatically trans-
forming the series with the double differencing
filter as in (5). Some adjustment procedures also
use filters as 1 —B®, and so the presence of
several (seasonal) unit roots is often assumed.
The method to test for seasonal unit roots devel-
oped in Hylleberg et al. (1990), and extended to
bimonthly time series in the present paper, may
be useful to establish the adequacy of these fil-
ters.

The empirical relevance of adequate model
selection in seasonal time series may be empha-
sized by the results in e.g., Beaulieu and Miron
(1991), Osborn (1990) and Franses (1991a). These
studies indicate that the use of the annual differ-
encing filter often implies overdifferencing. The
third study shows, via simulations as well as em-
pirical series, that an incorrect use of this differ-
encing filter is hard to recognize on the basis of
the conventional autocorrelation checks. Further-
more, it is illustrated there that overdifferencing
can yield a deterioration of forecasting perfor-
mance. Together with the fact that univariate
time series analysis often preceeds the construc-
tion of empirical market response models, and
that it is easy to imagine that inadequate models
for seasonality can blur inference, it seems
preferable to include testing for seasonal unit
roots in empirical marketing research.

Technical appendix

This appendix contains the proposition given in
Hylleberg et al, (1990), which is useful for a
method to test for seasonal unit roots. The sec-
ond part of this appendix contains an application
of this proposition to bimonthly time series.

Proposition. Any (possibly infinite or rational)
polynomial, ¢©(2), which is finite valued at the
distinct,. non-zero, possibly complex points,

412

STATISTICS & PROBABILITY LETTERS

8 December 1992

015 .50, can be expressed in terms of elementary

polynomials and a remainder as follows:

p
o(z) =kZI'\kA(Z)/5k(Z) +4(z)e**(2),

(A1)
where the A, are constants defined by
Ae=0(0:)/ gf;(ek)a (A2)

J

o**(z) is a (possibly infinite or rational) polyno-
mial and

8u(2) =1 (1/0,)z, (A3)
p
a(z) = T15:(2). (Ad)

An alternative form of (A.1) which will be used in
the sequel, is

e(z) = k};l)tkA(z)(l =8.(2))/8:(2)

+4(z)p*(z), (A.5)

where @*(z) =@**(2)+ LA,. From the defini-
tion of A, it can be seen that the polynomial ¢(z)
will have a root at 8, if and only if the correspond-
ing A equals zero. O

To test for the presence of seasonal unit roots
in bimonthly series, apply (A.5) to the first row of
(14). This gives

©(B) =X Boy(B) +Ay(—B)p,(B)
+A3(3(1V3 +1) = B) Bps(B)
+A4(=3(V3 = 1) — B) Boy( B)
+As(—3(iV3 +1) —B) Bo,(B)
+26(3(1V3 = 1) — B) Boy( B)

+¢*(B)ps(B), (A6)
where
o(B) = (1+B)(1+B*+B%), (A.7a)
¢o(B) =(1—B)(1+B*+B*), (A.7b)
¢3(B) =(1—B*)(1+ B+ B?), (A7)
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el(BY=(1 —Bz)(l — B +B?),
os(B) = (1~-B°).

To get rid of the complex terms in (A.6), it is
suitable to define

(A.7d)
(A.7e)

Ay = —ry, (A.8a)
A= s, (A.8b)
A= = 3ivEm, — 3(1+ 4V )y, (Ago)
A= 33— 3(1- 313 )m,, (A-8d)
BT, (Ag)
Ae= —3iV3ms— 3(1— 3V3 )ms. (A.8f)

Table A.1
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Substituting (A.8) into (A.6) gives

@(B) = —mBpy(B) +m,Bo,(B)
+(my +m3B) Bos( B)
+(mg +msB) Bo,(B)
+¢*(B)es(B),

and the test equation becomes (16).

(A.9)

Appendix: Critical values

The following notation is used in Tables A.1 and
A2

(n)e: (no) constant term in auxiliary regres-
sion.

(n)d: (no) seasonal dummies.

(t: (no) trend.

T: number of observations.

Critical ¢-values based on 5000 Monte Carlo simulations; DGP: y, = y,_¢ + 5,, &5, ~ N(0, 1)

Parameters oy and

Regression T ™ Ty
0.01 0.025 0.05 0.10 0.01 0.025 0.05 0.10
ne, nd, nt 60 -2.45 =215 —1.84 -1.54 -252 -221 —1.88 -1.53
120 —2.61 -222 ~1.94 —1.60 —-2.54 —-221 —1.90 —1.58
¢, nd, nt 60 —-342 -3.05 —2.81 —2.48 —2.54 —~2.18 -~1.89 -1.53
120 —340 -3.09 ~2.85 -2.51 -2.54 -221 -1.90 —1.58
c,nd, t 60 —3388 -3.61 -3.30 ~3.03 -2.54 -2.15 —1.88 -1.54
120 —-3.90 -3.62 -334 ~3.08 -2.54 —-220 ~1.91 -1.58
c,d, nt 60 —3.40 -2.99 ~2.74 -242 -333 -3.01 —~2.73 -2.40
120 ~3.38 —-3.06 —2.80 —248 -335 -3.01 ~2.77 —2.48
¢, dt 60 -3.84 —-3.55 —-3.26 ~2.96 -333 -2.99 ~2.73 —241
120 —3.89 ~3.58 ~3.32 -3.05 -3.36 -3.01 =277 —247
Parameter 74
Regression T 0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99
nc, nd, nt 60 -2.16 —-181 —1.48 -111 1.36 1.76 214 2.34
120 ~2.15 -1.76 —~1.48 -1.12 1,39 177 2.06 2.50
¢, nd, nt 60 -2.12 =179 ~1.45 -1.09 134 172 1,98 2.32
120 -2.13 -1.76 —1.46 -1.11 1.38 1,75 2.05 247
¢, nd, t 60 -212 -1.74 —1.44 -1.10 131 1.65 191 223
120 -210 -172 —145 -1.10 136 1.70 2,05 240
¢, d,nt 60 -1.50 -115 ~-0.82 —0.40 220 2.53 2.87 3.26
120 -1.64 -1.18 -0.80 —0.40 232 2,67 3.00 3.38
c,dt 60 —~141 -1.05 -0.72 —-0.36 2.18 2.51 283 3.18
120 -1.52 -112 ~0.76 ~0.36 232 2.65 2.99 333

413



Volume 15, Number 5

Table A.1 (continued)
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Parameter

Regression T 0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99
nc, nd, nt 60 —2.62 -2.11 -1.75 -1.37 1.13 1.49 1.78 2.17
120 -2.38 -2.02 -173 -1.38 1.11 1.44 1.72 2.15
¢, nd, nt 60 -~2.59 -2.07 -173 ~1.36 1.10 1.47 1.79 2.11
120 -237 -2.02 -173 -1.38 1.09 1.42 1.70 213
c,nd, t 60 ~255 -2.03 -1.73 -1.35 1.06 1.42 1.72 2,08
120 ~2.36 -2.01 -1.73 -1.38 1.07 1.41 1.68 2.07
¢, d, nt 60 -3.33 -2.94 —2.62 -2.29 0.41 0.78 1.16 1.48
120 -3.39 -3.04 ~2.69 -2.29 0.46 0.83 1.15 1.56
cd,t 60 -331 -291 —2.58 —~2.20 0.41 0.78 1.14 147
120 -3.30 -3.01 -2.68 —-2.27 0.46 0.82 1.13 1.54
Parameters 3 and g
Regression T Ty Ts
0.01 0.025 0.05 0.10 0.01 0.025 0.05 0.10
nc, nd, nt 60 249 -2.14 -1.87 - 1.54 -2.68 —2.17 -~1.84 -1.49
120 ~2.62 -2.18 -1.87 -~1.57 - 2.61 —-2.20 -1.87 -1.55
¢, nd, ot 60 —245 -2.15 ~1.85 —-1.54 -2.67 -2.19 -1.82 -1.48
120 -2.61 -2.18 —-1.87 -1.57 -2.60 —2.20 ~1.87 —-1.55
¢, nd, t 60 —244 -2.14 —1.86 -~ 1.56 -2.72 -2.19 -1.82 -1.49
120 —2.58 -2.17 -1.84 -1.57 -2.61 -22 -1.87 -1.55
¢ d, nt 60 =37 -3.47 -3.21 =290 -3.83 -3.48 —3.21 -2.87
120 -394 -3.57 -331 -3.00 -3.93 -3.57 —-3.28 —-2.98
cdt 60 -3.76 —-3.45 ~3.20 -2.8 -3.82 -349 -3.19 -2.87
120 -391 -3.58 -332 -3.00 -3.91 —-3.58 -3.32 -3.00
Table A.2 Acknowledgements

Critical F-values based on 5000 Monte Carlo simulations;
DGP: y,=y,_¢+5,, 5, ~N(0, 1)

Regression T mwy=my=0 Ts=m5=0

090 095 099 090 095 0.99

ne, nd, nt 60 228 295 4.66 232 315 5.10
120 238 311 481 234 306 4.64

c,nd, nt 60 225 289 468 226 308 5.01
120 235 3.07 478 231 305 4.56

¢,nd, t 60 221 284 464 222 303 4.86
120 232 303 473 229 301 4.45
¢, d,nt 60 509 615 844 515 622 877
120 544 646 871 546 645 8.76
¢ dyt 60 508 605 819 504 614 879

120 542 647 866 543 642 8.73
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Comments from Teun Kloek and the computa-
tional efforts of Peter Reedijk are gratefully ac-
knowledged.
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