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ABSTRACT

The univariate quarterly Dutch series of industrial production and money
stock are both modelled with a periodically integrated subset
autoregression (PISA). This model for a non-stationary series allows the
lag orders, the values of the parameters and the cyclical patterns to vary
over the seasons. The PISA models are found by applying a general-to-
simple specification strategy, which deals with non-stationarity and
periodicity simultaneously. It is found that the two series show a common
asymmetric cyclical behaviour. This paper further proposes a test for
periodicity in the errors, with which it is argued that a non-periodic model
for the industrial production and money stock is misspecified and that
seasonal adjustment does not remove periodicity in the autocorrelation
function.
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INTRODUCTION

The industrial production index and the money stock are important macroeconomic variables
since they can reflect business cycle behaviour and changing directions of an underlying trend.
Forecasts of these variables are used by many decision makers. Given that decisions sometimes
concern time intervals shorter than one year, forecasts for the monthly or quarterly observed
industrial production index or money stock can be useful.

For several macroeconomic variables it applies that seasonality, trends, and cycles can be
modelled separately, and hence that one may rely on forecasts for seasonally adjusted series.
There are, however, variables whose time series show dynamic and cyclical patterns that vary
over the seasons. This may be caused by economic agents who have preferences, technologies,
constraints, and expectations which are not constant over the seasons. Recently, the
construction of economic models in which seasonally varying parameters are allowed has
gained some attention (see, for example, Braun and Evans, 1991: Osborn, 1988; Hansen and
Sargent, 1993). For an empirical study in which it is found that many consumer confidence
indices or expectations in European countries show seasonality, see Franses (1992a).

0277-6693/93/070601—13$11.50 Received August 1992
© 1993 by John Wiley & Sons, Ltd. Revised March 1993



602 Journal of Forecasting Vol. 12; Iss. INO. ¥

In periodic dynamic patterns it is difficult to separate trend and cycles from seasonality.
Alternatively, linear seasonal adjustment filters are not likely to remove the INtrinsic
seasonality, and hence the ‘adjusted’ series still shows seasonality. As part of an analysis of
a univariate time series, which can include decisions on whether to seasonally adjust or not,
it may therefore be sensible to investigate seasonality and trend aspects in an unadjusted series.
The present paper illustrates a strategy that can be useful for this investigation. The main
feature of this strategy is that it deals with non-stationarity and seasonality simultaneously.

The illustrations of the approach are given by the quarterly Dutch series for money stock
and industrial production. It is demonstrated that both series are variables that can be
described by four different equations for the seasons. In particular, the two adequate models
turn out to be periodically integrated subset autoregressions (PISA). These PISA models
should be considered merely as adequate statistical representations of the underlying data-
generating process rather than as behavioural equations for economic agents. The models,
which will be estimated in the fourth section, allow the dynamics as well as the parameters to
vary over the seasons. Before their estimation, the results of standard preliminary univariate
time-series analysis are discussed in the next section. An application of these conventional tools
shows that autoregressive models for the fourth-order differenced series seem to be adequate.
However, the residuals show patterns that can be explained by the presence of dynamic
periodicity, which is detected by a formal test for periodicity proposed in the third section.
Alternatively, the non-periodic models are misspecified and periodic models would have been
more appropriate. In periodicity in a time series, in the sense that the dynamics are different
throughout the year, one can easily recognize that an application of linear seasonal adjustment
filters does not affect this type of periodicity. This is because these filters that the observations
within one year in the same way. An empirical illustration of this phenomenon is given in the
third section by showing that the residuals of autoregressions for the seasonally adjusted
variables still display periodicity.

Given the outcomes of tests for periodicity in the residuals, one may now want to specity
a periodic model for the fourth-order differenced series. A drawback of this procedure 1s that
the choice for the fourth-order filter is likely to be influenced by the initially neglected
periodicity (see, for example, Franses, 1992b). Therefore, a more appropriate strategy would
be to specify and estimate a general periodic model, and, by means of a sequence of hypothesis
tests which involve tests for periodicity as well as for non-stationarity, to select a simplified
model. In the fourth section this strategy is pursued along the lines of Boswijk and Franses
(1992), and a final adequate model appears to be a PISA. Given that four different models are
necessary to describe the variable, it seems worth studying the effects on forecasts, on cyclical
behaviour, and on impulse response patterns. The fifth section reports that shocks in the
second quarter have a larger effect for both series than those in other quarters. This means that
a PISA model can describe asymmetric cyclical patterns and that, in the case of industrial
production and money stock, these patterns are similar. One-step-ahead forecasts from the
PISA and the rival non-periodic model indicate that an improvement in forecasting can be
observed. This confirms the theoretical and empirical findings in Osborn (1991) and Osborn
and Smith (1989). The final section presents conclusions.

PRELIMINARY ANALYSIS

A graph of the log of the industrial production index in the Netherlands for the period
1960.1—1989.4 is displayed in Figure 1. A similar graph for the log of the money (M1) stock
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for 1959.1-1988.4 1s depicted in Figure 2. From these figures it can be observed that both series
show non-stable seasonal patterns as well as trending behaviour. The first three years will be
used as starting values to ensure that all forthcoming models are estimated with the same
number of observations, and the last six years are used to evaluate the forecasting performance
of some of these models. The quarterly series will be denoted by y, and m,, where ¢ runs from
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Figure 1. The log of the industrial production index in the Netherlands, 1960.1 to 1989.4
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Figure 2. The log of the money stock in the Netherlands, 1959.1 to 1988.4
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1, ..., n, while the annual series containing the observations in the four quarters will be denoted
as Ys; rand M r where s can be 1, 2, 3, and 4, and where T runs from 1 to N = n/4. In the
present case, the N and n are equal to 21 and 84, respectively. The vector of Z; r series will
be denoted as Zr=(Z\.1,Z>.1,2Z3.1,24.7)', where Zr is Yr or Mr. The backward shift
operator B and the differencing filter A are defined by Axz, = (1 — B*)z, = z, — z—x, where z,
can be y, or m;.

A usual first step in a conventional approach to modelling a time series that shows similar
non-stationary and seasonally fluctuating patterns as the y, and mi;, series is to take a close look
at the autocorrelation functions of the z;, A1z, AsZ:, and A A4z, series. These autocorrelations
can then be used as a first indication of an appropriate model. The values of the estimated
autocorrelations in Table I indicate that y, and m, are likely to be non-stationary time series,
that this non-stationarity may not entirely be removed by an application of the A, or the Ag4
filter, but that the A ;A4 transformed series seems to be overdifferenced. The latter 1s suggested
by the significant values of —0.347 and —0.389 at the fourth lag, which come close to the
value of —0.5 that corresponds to perfect overdifferencing.

A disadvantage of considering autocorrelation functions for the selection between
differencing filters is that it is not based on the specification of a certain model. The Hylleberg
et al. (1990) [HEGY] method is one of the recently proposed approaches to select between
several differencing filters which is based on an explicit model specification. This test procedure
for seasonal and non-seasonal unit roots amounts to estimating

ox(B) Aqzi= mi(l + B+ B>+ B*)zi—i1— 72(1 = B+ B*=B*)z,_1 = m3(1 — B*)Z->
_71'4(1—32)2:—14‘#:"‘3: (1)

where ¢,(B) is a polynomial in B and where the u, can include deterministics as a constant,
three seasonal dummies, and a trend. From equation (1) it can be seen that, 1n general, an
assumed adequate model for z, 1s an autoregression of order 4 or higher. When all 7; are
insignificant one can apply the A4 filter to obtain stationarity for the z, series, and when only
71 1S insignificant, one can use the A, filter for the same reason. For the industrial production

Table I. Autocorrelations

Industrial production Money stock
Lag Vi A Vi As Yy Ay Aayy m A m, Aqm; Ay Agmy
| 0.881 —0.439 0.848 0.050 0.927 —0.405 0.742 0.181
2 0.851 —0.065 0.683 —0.031 0.895 0.058 0.399 0.049
3 0.819 —0.432 0.528 0.109 0.849 —0.463 0.040 —0.284
4 0.863 0.922 0.342 —0.347 0.862 0.743 —0.161 —0.389
5 0.755 —0.416 0.264 —0.193 0.800 —0.386 —0.141 —0.086
6 0.726 —0.052 0.242 -0.111 0. 777 0.040 —0.102 —0.040
7 0.692 —0.430 0.254 -0.071 0.739 —0.366 —0.051 0.160
8 C.734 0.868 0.288 —0.044 0.746 0.680 —0.085 —0.072
9 0.628 —0.386 0.334 0.158 0.681 —0.347 —0.083 0.025
10 0.597 —0.035 0.331 —0.001 0.648 0.018 —0.068 —0.060
11 0.559 —0.404 0.331 0.058 0.606 —-0.353 —0.026 0.063

12 0392 0.805 0.312 0.139 0.605 0.657 —0.017 0.040

The estimated standard error for the estimated autocorrelations i1s 0.109.
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series ), 1t emerges that ¢,(B) is specified as (I — ¢1B — ¢sB* — ¢psB°), that a constant,
seasonal dummies, and trend are included in equation (1), and that the ¢ ratios for the #; are
—0.855, —1.491, —1.893, and — 0.479, respectively. For the money stock series it is found that
¢n(B) should be specified as (1 — ¢;B — ¢3B°> — ¢sB*), that a constant, seasonal dummies, and
trend are included, and that the ¢ ratios for the #; are —1.311, —3.640, — 2.712, and —1.658,
respectively. Comparing the obtained ¢ values with the 5% fractiles in Hylleberg e al. (1990)
indicates that the =; are all estimated to be insignificantly different from zero, except for the
m2 In the auxiliary regression for m,. In practice, one would neglect the latter outcome, also
since the (1 — B)(1 + B*) filter for m, does not seem to be reasonable, and hence one would
decide that the A4 filter for y, and m, may be appropriate.

The next step is to estimate autoregressive (AR) models of order # for the A4y, and Asm,
series. This order 4 is equal to the number of lags which have been necessary to whiten the
residuals of the regression in equation (1). These initial models are simplified by deleting

insignificant lagged variables. The final model should pass a set of diagnostic checks. The result
obtained for industrial production is

(1 —0.969B + 0.409B" — 0.281B°) A4y, = 0.006 (2)
(0.067) (0.120)  (0.113) (0.004)

where the standard errors are given in parentheses. The roots of this subset autoregression are
—0.531 £ 0.5514, 0.594 = 0.466i, and 0.842. These roots are not too far away from the unit
circle, and this may cause the autocorrelation function of A4y, in Table I not to die out
quickly. The values of the F versions of the LM tests for first- and fourth-order residual
autocorrelation, 1.e. Far: and Fars, are 0.001 and 0.613. The value of a x*(2) normality test
1s 2.782, and those of the LM tests for first- and fourth-order ARCH effects, i.e. Farcu: and
FarcHa, are 4.054 and 2.353. The latter values are caused by a single observation. Deleting this
observation in 1975.4 by including a dummy variable in equation (2) does not significantly
affect the parameter estimates and the diagnostic test results for autocorrelation and normality,
while the Farcui and Farcua statistics become insignificant. Given that normality could not
be rejected in the first instance, model (2) without the dummy variable is assumed to be
adequate in the sequel of this paper.

Similarly, it 1s found that an adequate model for the annual growth rates of quarterly money
stock 1s

(1 —0.870B + 0.317B3%) A4m, =0.010 (3)
(0.075) (0.075) (0.004)

The roots of this subset autoregression are 0.677 * 0.444; and —0.484. The application of
diagnostic checks yields Fari =0.666, Fars = 1.637, the x*(2) test statistic for normality is
1.035, and Farcu1 =0.103 and Farcus = 0.301. In summary, models (2) and (3) cannot be
rejected using conventional diagnostic checks. A test for the presence of periodicity in the
residuals can also be useful as a diagnostic tool, and this will be discussed in the following
section.

A TEST FOR PERIODICITY IN THE RESIDUALS

This section considers a test statistic for periodicity in the errors, which is related to the
autocorrelations of the process and not to the error variances. A test for the latter type of
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periodicity 1s given simply by a regression of the squared residuals on a constant and the
seasonal dummies D,,, g =1, 2, 3. Similarly, one can construct a test statistic for periodically
varying autoregressive conditional heteroscedasticity. An extensive treatment of testing for
periodicity 1n residuals i1s given in Lutkepohl (1991) and Ghysels and Hall (1992).

Consider the case in which one assumes the appropriateness of a constant-parameter model,
while the data-generating process has periodic autoregressive parameters. For example, one fits

Xt=aXi—1 + & (4)
while
X = QsXi-1 + Uy (5)

1S the data-generating process, where «s denotes a parameter with values that vary with the
season s, and where v, 1s assumed to be white noise. When ajaaa3aq 1s sufficiently smaller than
unity, the autocorrelation function of model (5) looks like that of a non-periodic AR(1) model,
and hence the case of fitting model (4) to a time series generated by model (5) may not be an
unusual occurrence in practice. However, when aja>a3a4 approaches unity, one may need
many more lags to whiten the residuals (see Osborn and Smith, 1989). Theoretically, the
residuals & are not white noise, since

& = (a — as)X—1 + Uy (6)

An LM test applied to model (4) for first-order residual autocorrelation may yield the
impression that the model 1s not misspecified. However, an LM test for first-order periodic
autoregressive patterns (PAR1) in the residuals constructed from the auxiliary regression

4
£ = VXi=1 T Zl BsDs€ -1 + Er (7)
as an fFpari(4,n—4—1) test will indicate that a periodic model would have been more
appropriate.

An application of such an LM test to the residuals of the model in equation (2) results in
an Fpari(4,75) test statistic value of 4.173, which is significant at a 5% level. Comparing this
value to that of the Fagr, statistic value of 0.001 seems to confirm the impression that a periodic
model would have been more appropriate for A4y, or y,. The Fpar:(4,76) test applied to
model (3) obtains a value of 3.498, which is also significant at a 5% level. Hence, a similar
conclusion can be drawn for the money stock.

These results suggest that it may be appropriate to start an analysis of seasonal time series
with estimating periodic models instead of non-periodic models. If the null hypothesis of non-
periodicity cannot be rejected one may then proceed along the lines of Hylleberg et al. (1990)
to decide on the non-stationary aspects of a time series. The HEGY method has been extended
to monthly time series in Franses (1991) and Beaulieu and Miron (1993). These authors find
that many monthly seasonal time series only need a A, filter to remove non-stationary patterns.
However, 1n Franses (1992b) it is shown that an application of the HEGY method to periodic
autoregressive time series can yield the inappropriate impression that such a A; filter is
adequate.

Before turning to the specification of periodic autoregressive models, it may be interesting
to see whether the periodicity is also not removed by the application of a linear seasonal
adjustment filter. The application of a linearization of the Census-X11 filter (see Laroque,
1977) uses a 57-period moving average filter. This implies that only seasonally adjusted series
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are constructed for 1967.1 to 1982.4 for y, and for 1966.1 to 1981.4 for m,. These adjusted
time series will be denoted as ya, and ma,. One could have used forecasts for y, and m;,
generated from models (2) and (3), to construct longer seasonally adjusted series. This 1s not,
however, done here since the Fpar: tests have indicated that these models may not be
appropriate. An adequate model for ya; 1s

ya,=0.942ya,_, + 0.267 (8)
(0.012) (0.053)

for which Fari = 0.222 and Fagrs = 0.361, but Fpari(4,56) = 2.847. The latter test statistic 1S
significant at the 5% level. Alternatively, the periodicity in y, is not removed by a linear filter.
For the adjusted money stock series an adequate model appears to be

A]ma;:0.309 ﬁlma[—l (9)
(0.127)

for which Far: =0.019 and Fars = 0.986, while Fpari(4,55) obtains a value of 1.848. This
Fpagr: value is significant only at a 14% significance level.

The test statistic calculated from model (7) can be used to have an indication of the kind
of misspecification once one has estimated a non-periodic model. Of course, the auxiliary
regression in model (7) can be enlarged by including variables such as DsX;-1. This regression
comes close to the estimation of a fully specified periodic model. An alternative and preferable
strategy may then be to start a univariate analysis by specifying a general periodic model, and
to select a simplified model using tests for parameter restrictions (see Franses, 1992c). An easily
applicable strategy is proposed in Boswijk and Franses (1992), and in the next section 1t will
be applied to the macroeconomic time series under consideration.

PERIODICALLY INTEGRATED SUBSET AUTOREGRESSION (PISA)

A general expression for a periodic autoregression of order p is

p 4 4

i = 'Zl 21 disDsiyi-i + Zl Dy (ps + 7sT1) + & (10)
I = 5§ = [ i —

where ¢is, us, and 75 are periodically varying parameters, of which s and 75 refer to a

seasonally varying mean and trend 7. The lag order is not necessarily p for all seasons, 1.e.

the orders may be p; in season s, and p is then equal to max(ps). Further, not all ¢is or pus,

7. have to be unequal to zero. Finally, note that y, is untransformed.

The initially specified model for the industrial production y, appears to be of order 5, while
7. as well as &>, and ¢3s can be set equal to zero for all s. This model is found by estimating
a model such as (10) with p such that several diagnostic checks do not indicate
misspecification, and by deleting insignificant variables. A test for seasonal heteroscedasticity
also does not suggest modification of model (10). A first step is now to test for periodicity,
or testing the validity of the hypothesis that ¢ ;s = ¢; for jis 1, 4, and 5. This joint hypothesis
can be tested using an F-test which asymptotically follows a standard distribution since the
parameter restrictions do not affect the number of unit roots in the system of Y7 (see Franses,
1992b). Here, the F(9, 68) test statistic obtains a value of 4.464, and the null of no periodicity
can be rejected. The estimation results for the restricted version of model (10) indicate that
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some of the parameters ¢45; and &ss are equal to zero. The model can then be simplified to

] 0 0 0 Y].T 0 0 O ‘;bll YI,T—I
— @12 l 0 0 Yo T $s2 ¢p42 0 O Yo 74
T e Tl Loy ol
e T W T e 08 0 o Yy i [P ens b
0 0 —¢iq4 ] Ya,1 0 0 O d¢aqg Y4,T-1

and the parameters are estimated as
quarter 1: y,=1.043y,_;—0.216
(0.015) (0.066)

quarter 2: y,=0.853y,-1+0.744y,_4 — 0.646y,-5s + 0.212
(0.136) (0.199) (0.147) (0.100)

quarter 3: y,=1.321y,-1—0.405y,-5+ 0.241]
(0.124) (0.113) (0.085)

quarter 4: y,=0.573y,-1+0.451y,_4 + 0.023
(0.096) (0.078) (0.099)

(12)

It can be seen from model (12) that a large proportion of the variation in y; can be explained
by the seasonally varying autoregressive polynomials. Further, it is clear that the models are
indeed quite different for the various seasons. This may explain the results obtained when
applying the descriptive techniques discussed in Barsky and Miron (1989). A regression of Ay,
on four seasonal dummies gives a coefficient of determination with a value of 0.876. However,
(unreported) graphs of the recursive estimates of the parameters for these dummies show that
they are not constant over time. Also, seasonality seems to change over time for this y, series,
a phenomenon that can be modelled with a model like (12).

A formal test for non-stationarity, or in this case of a periodic model for periodic
integration, 1s developed in Boswijk and Franses (1992). This reduces to checking whether for
z =1 the following equality holds:

] 0 0 — @112
— @12 — $s522 | — @422 0 ¢ SUNR
=0 13
0 — P13 — $s532 ] 0 ()
0 0 — P14 1 — ¢aaz

Some rewriting allows the null hypothesis of periodic integration to be written as a non-linear
restriction on the parameters, or

I (1 — b42)(1 — Paa) (14)
P1a(P12 + ¢52) (P13 + Ps3)

This restriction 1s imposed on model (12), and the parameters are now estimated with the non-
linear least squares routine in MicroTSP (version 7). The one-sided likelihood ratio test statistic
LR, which asymptotic distribution is the same as that of the usual Dickey—Fuller 7, statistic
here, obtains a value of —2.305. The null hypothesis of periodic integration thus cannot be
rejected. A full account of this LR, statistic is given in Boswijk and Franses (1992). In case
one wants to test for specific parameter restrictions while assuming that periodic integration
1S appropriate, one adds these to model (14). One interesting example is given by checking
whether the (1 — B) filter can be applied in each equation of model (12) given the validity of
periodic integration. The parameter restrictions for this hypothesis are ¢, =1,

P12+ Qa2+ Ps2=1, 13+ ds3 =1, and d4 + d44 = 1. Since the number of unit roots in the




Philip Hans Franses Periodically Integrated Subset Autoregressions 609

system for Y7 remains one under this hypothesis, the F(3,73) test value of 8.882 can be
compared to the critical values of a standard F-distribution.

In summary, an adequate univariate model for industrial production is a periodically
integrated subset autoregression. For each of the models in (12) one can calculate the
characteristic roots of the autoregressive polynomial and the corresponding cycle length.
Assuming the validity of the restriction in model (14), these results are summarized in Table II.
It can be seen that the cyclical movements in y; are indeed varying over the seasons. The model
in (11), i.e. AgYr=A,Yr_1 + u+ €r, can be rewritten as a first-order vector autoregressive
model, or Yr=A5'A4,Yr—,1 + p" + 7. For the production series the eigenvalues of Ag 'A, are
0, 0.234 and 0.817 £ 0.047:.

Similarly, an initially adequate periodic autoregressive model for m, appears to be of order
4. An F(12,64) test for the equality of the parameters over the seasons yields a value of 7.218.
Some of the estimated parameters appear to be insignificant, and the model can be simplified

€9 l 0 0 OTT M+ 0 0 ¢ O|[ M.
— 012 1 0 0| | Ma,1 0 a2 32 O | Mz

i) = il PR 15

—p33  —Pi3 ] 0| Ms,r O 00 TN My ey bl 1)
0 0 —ous 1 My T 0 O 0" 01 Mas 1

and the parameters are estimated as
quarter 1: m,=0.893m,-, + 1.171
(0.024) (0.265)

quarter 2: m,= 1.409m,-, — 1.146m,_3 + 0.828m,-4 — 0.975
(0.231) (0.325) (0.227) (0.391)

quarter 3 nm; = 1.346”1:-[ = 0.4631’?‘1;_2 + 1.198
(0.154) (0.172) (0.338)

quarter 4. M = 0.815mr-—1 + 2.056
(0.026) (0.281)

(16)

A regression of A m, on four seasonal dummies has an R?* of 0.644. However, the graphs of
the recursive estimates for the corresponding parameters indicates that these estimates are not
constant. Furthermore, these graphs intersect, which implies that seasonality seems to change

Table II. The roots of the autoregressive polynomials in the periodically integrated subset
autoregressions

-

Industrial production Money stock
Quarter Roots Cycle length Roots Cycle length
1 1.040 0.925
0.001 = 0.9914, 4.0 0.645 * 0.628: 8.1
—0.991 —0.936, 1.118
1.000, 0.875
3 1.083 £ 0.151 45.4 0.675 £ 0.090: 47.5
—0.083 = 0.709:
—0.673
4 0,137 %£0.7791 4.5 0.815

1.012, —0.702

-
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significantly throughout the sample. The LR, test statistic calculated along the lines of models
(13) and (14) for periodic integration obtains a value of —1.737. Given the parameter estimates
and lag lengths in model (16), a test for the appropriateness of the (1 — B) filter does not seem
to be relevant. Hence, an appropriate model for m, is also a periodically integrated subset
autoregression. The roots of the various polynomials under the periodic integration restriction,
and their corresponding cycles, are displayed in the second part of Table II. Again, one can
observe asymmetric cyclical patterns. The eigenvalues of the Ag'A, matrix, where the
parameter estimates from model (16) have been substituted, are 0, 0, —0.367, and 0.933.

CYCLES, SHOCKS AND FORECASTS

Models (12) and (16) can now be used for forecasting and evaluating the effects of exogenous
shocks. From Table II it can be seen that the cyclical behaviour of the y, and m;, series varies
over the seasons, although the patterns of the first, second, and fourth quarter are similar. The
third quarter, however, shows a much larger cycle, 1.e. of about 11 years, than those in the
other quarters. One of the implications of these varying cycle lengths 1s that for these
macroeconomic variables the turning points can occur more frequently 1n some seasons than
in others (see Ghysels, 1991, for related evidence for the composite leading indicator index 1n
the United States). Further, an interesting result 1s that the Dutch industrial production and
money stock variables have common asymmetric patterns since the cycle lengths in the third
quarter are almost equal.

To be more concrete, given the large cycle in the third quarter, and also given the high value
of the parameter for y,-; in that season, it can be seen that an exogenous shock in the second
quarter has the largest effect on both the future patterns of industrial production and money

49 -
4.0 -
|
35
30 -
25 -

20_&[:1““'1;1“:1' l|III-|'Ill|lFITTIIIl_T_1I‘IIFT'1

70 72 74 76 78 80 B2 B4 86 Le

ANO o= X002 e XO4

______ A e XO3

Figure 3. The effect of an innovative outlier in quarters 1, 2, 3, or 4. XNO 1s the series without an
innovative outlier
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Table III. An evaluation of the forecasting performance on the basis of 24 one-step-
ahead forecasts and the root mean squared error (RMSE)

Industrial production

Money stock

RMSE (x 100) Model (2) Model (12) Model (3) Model (16)
Total 4.117 3.856 6.373 6.441
Quarter 1 4.718 5.966 4.005 8.769
Quarter 2 4.738 2.424 4.907 5.431
Quarter 3 3.300 2.347 8.064 4.434
Quarter 4 3.496 3.576 11.772 11.085
SIGN 2.041° 0.408

*Significant at the 5% level.

Note: Models (2) and (3) are non-periodic models, and models (12) and (16) are periodically
integrated subset autoregressions. SIGN denotes the sign test for the equality of the squared
forecasting errors from the two rival models.

stock. This occurrence for a univariate series is easily illustrated by simulating a quarterly
series for, say, 1950.1—1999.4, from the model as it is given in equation (12) with the restriction
in model (14) imposed, where & is drawn from a standard normal distribution, and by adding
an innovation outlier in, say, each of the quarters of 1973. The graphs of the effects of these
outliers, with a magnitude of three times the standard deviation, are displayed in Figure 3. It
is clear that an exogenous shock in the second quarter has a large impact. A similar result
emerges for the model in equation (16).

Finally, one-step-ahead forecasts from the non-periodic models in equations (2) and (3) and
from the PISAs in equations (12) and (16) are generated for 24 quarters. The results for the
overall, as well as the per quarter, root mean squared error are displayed in Table IIlI. The
outcomes for the mean absolute prediction error are broadly similar and hence not reported.
Also, the results for the non-parametric SIGN test are reported. This test 1s used to decide
whether the squared errors from the rival models are significantly different. The (unreported)
results for the Wilcoxon rank-sum test yield similar outcomes. From Table III 1t can be
concluded that the periodic model for industrial production yields improved forecasts in two
of the four seasons, and that the forecasts from the models for money stock are not
significantly different. The results confirm the theoretical results in Osborn (1991) that a
periodic model should outperform, or at least perform equal to, a non-periodic model when
the first 1s appropriate.

CONCLUSIONS

One of the conclusions of this paper is that the quarterly Dutch industrial production index
and money stock can be described by periodically integrated subset autoregressions. This
means that each quarter is described by a different model with different lag structures and that
cyclical patterns vary with the seasons. Interestingly, it turns out that both series have common
asymmetric cyclical movements, i.e. for both series a shock in the second quarter has the
largest effect and this effect is similar. Out-of-sample forecasts indicate that a periodic model
can outperform a non-periodic model. The latter model, however, is rejected for both series
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since it is misspecified. Using a test for periodicity in the errors, it is shown that there is such
periodicity in the non-periodic models as well as in the models for the seasonally adjusted
series. This emphasizes the conjecture that linear seasonal adjustment filters may not remove
all periodicity in the autocorrelation function.

The question is how one should proceed in practice when one wants to check for periodicity
in economic time series. The two options are, first, to estimate a non-periodic model and to
check for periodicity in the residuals, and second, to estimate a general periodic model and
to use tests for parameter restrictions related to periodicity to obtain a simplified model, as in
Franses (1992¢). In the present paper it is argued that it seems most appropriate to work along
the lines of Boswijk and Franses (1992), since this approach deals with periodicity and non-
stationarity simultaneously. The major argument is that initially neglected periodicity can blur
correct inference with respect to non-stationarity. In the present paper, for example, it 1s
shown that periodicity causes one erroneously to use fourth-order differencing while no filter
at all 1s appropriate.

As already noted, the estimated PISA models may not be very useful as representations of
behaviour of economic agents. They should be regarded as descriptive statistical models which
can be used as a starting point for the construction of multivariate dynamic econometric
models. In fact, the revealed non-stationarity and periodicity may well be caused by periodic
equilibrium relations between sets of variables and by periodically varying adjustment to
disequilibrium errors. This multivariate extension of periodic integration is called periodic
cointegration. Recently, an empirical modelling strategy for this type of cointegration has been
proposed and applied in Franses and Boswijk (1992).

Finally, there remains the issue of seasonal adjustment in relation to periodic time series.
The results in this paper suggest that linear seasonal adjustment filters applied to periodic time
series may not yield series that are free from seasonal fluctuations. Hence, one conclusion is
that seasonal adjustment for a periodically integrated series may not be possible without a
specified model which relates trends, cycles, and seasons. Given the non-trivial relations
between these components, this is not likely to be a straightforward exercise. Future research
can be directed towards finding accurate and useful correction methods. However, the finding
of periodic integration does not automatically preclude the use of periodic models when one
wants, for one reason or another, to seasonally adjust a time series along standard lines. It
may well be that forecasts from PISA type models can be used for adjusting current
observations, and that this yields smaller data revision errors. Further theoretical developments
and Monte Carlo simulations may shed some light on this issue. These investigations should
then also consider the case when one wants to forecast a seasonally adjusted time series. A
natural question is whether it 1s more appropriate to adjust a raw series and then to forecast
using a periodic model, or to forecast the raw series using a PISA model and then to adjust
the forecasts. Given that the outcomes in the present paper suggest that adjusting prior to
modelling removes some but not all periodicity, it seems that the second strategy may be
favourable. This conjecture can be verified via a thorough investigation of the theoretical
effects of linear seasonal adjustment filters on periodically integrated time series.

NOTE

Discussions with Peter Boswijk, Eric Ghysels, Marius Ooms, and Timo Terasvirta have proved
to be very helpful, as well as the comments from Niels Haldrup and Svend Hylleberg at an
Institute of Economics seminar in Aarhus. In particular, the extensive suggestions from an
anonymous referee improved the paper in several respects. The financial support from the
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Royal Netherlands Academy of Arts and Sciences is also gratefully acknowledged. The data
used in this paper, as well as the unpublished papers in the References, are available from the

author upon request.
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