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PREMATURITY 

 

In 1960, the terms ‘neonatology’ and ‘neonatologist’ were first coined in a textbook on 

newborns [1]. In hindsight, that decade turned out to be the start of modern care for 

prematurely born babies. Since then, survival chances for premature infants improved 

dramatically: for 1-kg-weighing infants from hardly any to approximately 90% nowadays. In 

addition, due to ongoing research [2], many infants born too early now have good health 

outcome, although there is also a large group facing mild handicaps and a smaller group 

facing more severe handicaps.  

In the Netherlands, the incidence of all live births delivered preterm – that is before 37 

weeks of gestation – was 7.3% in 2004 [3]. Infants born alive very preterm (<32 weeks) 

make up 1.1% of the 194.007 births in the Netherlands that same year [3]. These very 

preterm infants spent on average 28 days on a neonatal intensive care unit (NICU) [3]. In the 

United States, the current incidence of births delivered preterm amounts 12.8% and is thus 

higher than in the Netherlands. Moreover, the percentage is on the rise: between 1981 and 

2005 it increased with 35% (Figure 1) [4]. Although we are aware of several factors 

responsible for this increase (see below), prematurity is becoming a problem affecting 

society more and more. 

Besides the direct high costs of neonatal (intensive) care, one should also take in 

account the consequences of possible lifelong handicaps these infants sometimes face. 

Apart from social responsibilities, research to improve the outcome in these infants is thus a 

good investment. As can be seen in Figure 1, the percentage of very prematurely born 

infants (below 32 completed weeks of gestation) has remained relatively stable at about 2%. 

The incidence of late prematurity (32-36 weeks gestation) is thus responsible for the overall 

increase. More assisted reproduction techniques available to more people have resulted in 

an increase in the incidence of multiplets which tend to be born earlier than singletons. In 

the Netherlands, 1.1% of all births in 1980 were multiplets; this increased to 1.8% in 2006 

[5]. In addition, there is a trend with multiple pregnancies towards earlier delivery. In 1990, 

FIGURE 1: Percent distribution for all live 

births according to gestational age (dark-

gray bars under 32 weeks gestation; 

light-grey bars from 32 to 37 weeks 

gestation) in the United States in 1981, 

1990, 2000, and 2005 [4].  
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47.9% of all twin births in the United States were born preterm; in 2005 this increased to 

60.5% [4]. 

However, the increase in the incidence of prematurity is not solely due to multiple 

pregnancy as the frequency has also increased in singletons, albeit less than that of 

multiplets (Figure 2) [4]. Improved and more intensive obstetrical management and 

neonatal interventions have probably resulted in a trend towards earlier induction of labor 

and cesarean delivery. Decreasing fetal mortality rates after 28 weeks gestation or more 

since 1990 are probably a reflection of improved obstetric care. Fetal mortality rates 

between 20 and 27 weeks, however, did not change during this period [6]. The shift towards 

earlier delivery has probably been of greater influence than improvements in antenatal care 

to prevent premature birth. 

 

 

BIRTH WEIGHT 

 

Although many (very) prematurely born infants will also be of low birth weight (LBW; <2500 

g), infants born at term can also be LBW because of growth-restriction. Other classifications 

in birth weight include very LBW (VLBW; <1500 g) and extremely LBW (ELBW; <1000 g). In 

2004, 6.4% of all live birth in the Netherlands were LBW infants; 1.0% was being born alive 

with a VLBW [3]. 

Just as prematurity has increased in the United States during the last decades, (V)LBW 

has also (Figure 3) [4]. However, there are some ethnic differences. Mothers of Non-

Hispanic Black origin still have a 2 to 3 times higher risk to deliver a (V)LBW infant than 

Caucasian mothers. Yet the incidence of prematurity in Non-Hispanic Black mothers 

remained constant from 1989 on, whereas the incidence in Caucasian mothers increased 

with 30% since 1989.  

 

 

FIGURE 2: Percent distribution of gestational age 

(dark-grey bars under 32 weeks gestation; light-

grey bars from 32 to 37 weeks gestation) for live 

singleton births only in the United States in 1990, 

2000, and 2005 [4]. 
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INFANT MORTALITY 

 

Since 1940, neonatal and infant mortality (below 28 and 365 days of age, respectively) has 

decreased dramatically until about 1995 after which it plateaud (Figure 4). In the 

Netherlands, neonatal and infant mortality rates in 2006 were 3.3 and 4.4 per 1000 live 

births, respectively [5]. The 10 leading causes of infant death in the Netherlands are shown 

in Table I. In total, over one-third of infant deaths in the United States are related to 

prematurity [7]. In fact, there is an exponential rise in survival chances with increasing birth 

weight (Figure 5). 

 

 

OUTCOME & NUTRITION 

 

The outcome of (V)LBW and/or prematurely born infants is of course something 

neonatologists care and worry about. The general trend is that among premature infants, 

outcome improves with increased birth weight and each week of intrauterine gestation [9-

17]. Functional long term outcome will not be discussed here in detail, but many reviews 

provide extensive insight [18-20]. Based upon data collected by Tyson and colleagues on 

4446 premature infants [12], the outcomes of infants born under 26 weeks gestation can be 

estimated using a web-tool by filling in several clinical birth characteristics of the infant [21].  

FIGURE 3: Percentage of live births of very low birth weight (VLBW; <1500 g) and low birth weight 

(LBW; <2500 g) in mothers of all races (1981-2005) and of Caucasian origin (1989-2005) in the 

United States [4]. 
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FIGURE 4: Neonatal (triangles) and infant (squares) mortality rates. Rates are neonatal (under 28 

days) and infant (under 1 year) deaths per 1000 live births in the United States from 1940 to 2005. 

TABLE I: Percentage of total infant deaths for the 10 leading causes of infant death (under 1 year) in 

the Netherlands in 2006 (n=820) [5] and between brackets in the United States in 2005 (n=28440) 

[8]. 

Rank Cause of death [Based on the WHO International Classification of 

Diseases, Tenth Revision, ICD-10, 1992] 

Percent of 

total deaths 
1 (1) Congenital malformations, deformations and chromosomal 

abnormalities [Q00-Q99] 

35.1 (19.5) 

2 (2) Disorders related to short gestation and low birth weight, not elsewhere 

classified [P07] 

10.7 (16.6) 

3 (12) Intrauterine hypoxia and birth asphyxia [P20-P21] 6.1 (1.9) 

4 (4) Newborn affected by maternal complications of pregnancy [P01] 4.9 (6.2) 

5 (5) Newborn affected by complications of placenta, cord and membranes 

[P02] 

4.4 (3.9) 

6 (8) Bacterial sepsis of newborn [P36] 3.7 (2.9) 

7 (9) Neonatal hemorrhage [P50-P52,P54] 3.2 (2.3) 

8 (10) Necrotizing enterocolitis of newborn [P77] 1.6 (1.9) 

9 (?) Spinal muscular atrophy and related syndromes [G12] 1.5 (?) 

10 (3) Sudden infant death syndrome [R95] 1.3 (7.8) 

… All other causes [Residual] 27.5 (37.0) 
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The problem, however, when studying long-term outcome, is that today’s outcome is the 

result of yesterday’s practice.  

Several factors, such as cerebral hemorrhages, increased oxidative stress, and 

inappropriate nutrition all may impair functional outcome. Since certainly the latter factor is 

iatrogenic, more research should be performed in this area. Nutrition is one of the key 

factors for normal cell growth. The fact that a fertilized oocyte undergoes approximately 47 

cycles of cell divisions until it reaches adult tissue, but that only 5 of these divisions take 

place after term birth, stresses the importance of normal intrauterine development [22]. 

Thus, when the placenta cannot control normal metabolic supply to the fetus anymore after 

premature birth, neonatologists take over the role of the placenta and the function of the 

fluid filled amnion cavity. 

Considering the many cell divisions during normal fetal life, it is not surprising that 

suboptimal growth during early life has a long-lasting influence on further development, 

even into adulthood. Providing the right amount and quality of nutrients could therefore 

prove essential in stimulating normal development. Although for normal growth and brain 

development a wide range of macro and micro nutrients is necessary, we will focus in this 

thesis only on proteins as these are the main functional component of organs and tissue as 

is also discussed further below. 

 

 

FIGURE 5: Infant mortality rates per 1000 live births by birth weight in the United States in 2004 [7]. 
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‘DEVELOPMENTAL ORIGINS’ HYPOTHESIS, ‘THRIFTY PHENOTYPE’ HYPOTHESIS, AND 

EPIGENETICS 

 

Starting already in the 1970s, reports started to appear that linked adverse nutritional 

development during early life to late onset disease, especially regarding coronary heart 

disease [23,24]. With David Barker as a major contributor of numerous later studies, many 

observations lead to the formation of the so-called ‘developmental origins of adult disease’ 

hypothesis [25,26]. This epidemiological hypothesis proposed that late onset disorders such 

as cardiovascular disease and type 2 diabetes may be a consequence of metabolic 

programming in response to poor nutrition in utero or during early postnatal life. Well-

known are the controlled experiments in female rats receiving a low protein diet during 

pregnancy or the lactation period [27,28]. Not only did offspring have reduced birth weight, 

they also suffered from elevated blood pressure and glucose intolerance during adult life. In 

humans, epidemiologic evidence originates in the Dutch famine during the Second World 

War. Offspring of those that encountered severe nutrient deprivation during pregnancy is 

now faced during adult life with increased risk of insulin resistance and obesity [29-32]. 

 The current thought behind these observations is that the fetus forecasts the nutritional 

environment it will receive after birth so that its growth trajectory, whole body physiology, 

and metabolism can be modified appropriately to maximize survival chances [33]. An 

example is that during intrauterine hypoglycemia resulting from maternal undernutrition, 

the fetus reduces insulin secretion and increases peripheral insulin resistance, thereby 

directing more glucose to the heart and brain and less to tissue such as skeletal muscle 

which are more insulin sensitive [34,35]. However, these adaptations, including metabolic 

and endocrine changes that may lead to life-long changes in the function and structure the 

body, can become detrimental if the postnatal conditions mismatch those experienced 

during fetal life [33]. A reduced number of pancreatic �-cells and sustained peripheral 

insulin resistance can then lead to type two diabetes in later life. This concept is known as 

the ‘thrifty phenotype’ hypothesis. 

However, the molecular mechanisms of this programming effect by which a 

phenomenon that takes place in utero has a phenotypic consequence during adult life are 

largely unknown. A potential concept, however, is that transient exposure to a variety of 

insults during early life leads to permanent alterations in gene expression. A mechanism 

that allows for the stable propagation of gene activity-states from one generation of cells to 

the next is thereby required. Epigenetic mechanisms are one such possibility [36]. 

Epigenetics refers to modifications that regulate gene activity by affecting the DNA itself 

(methylation) or the proteins that package DNA (histone modification), but without altering 

the actual nucleotide sequence of DNA. Because DNA methylation is maintained and copied 

after cell division, it is an attractive candidate mechanism for fetal programming as the 

effects are lasting. Thus, during critical time windows during early life, environmental insults 

might trigger epigenetic modifications in susceptible ‘developmental programming’ genes in 
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the DNA of certain organs. Altered expression of these critical genes during development 

could result in aberrant organ growth and differentiation with altered metabolic rates. 

Consequently, these organs might have reduced plasticity and be predisposed to stress by 

unusual circumstances or aging, so that diseases part of the metabolic syndrome might 

develop [36]. 

Lastly, the risk of disease might even be transgenerational, because environmentally 

induced epigenetic effects are unlikely to be reprogrammed in the germ line [33]. Epigenetic 

inheritance with concomitant diseased phenotype has been shown up to generation four in 

rats [37,38]. In addition, grandchildren of women that were pregnant in the Dutch famine 

also still seem to be affected by reduced birth weight [39]. 

 

 

WHAT ARE PROTEINS AND AMINO ACIDS? 

 

The word protein was first mentioned in a letter sent by the Swedish chemist Jöns Jakob 

Berzelius to his Dutch research associate Gerhardus Johannes Mulder on July 10, 1838. He 

wrote: “The name protein that I propose for the organic oxide of fibrin and albumin, I 

wanted to derive from the Greek word ������	
 (proteios, meaning of primary quality), 

because it appears to be the primitive or principal substance of animal nutrition” [40]. 

Proteins are defined as polymers of amino acids, which are nitrogen-containing 

molecules (Figure 6), and can be divided according to their dynamic or structural function. 

Enzymes are typical examples of the dynamic group of proteins, but also hemoglobin, 

albumin, immunoglobulin, fibrin, and many hormones join this category. Structural proteins 

FIGURE 6: The primary protein structure is a chain of amino acids. All amino acids contain an amino 

(NH2), carboxyl (COOH), and rest (R) group attached to the central �-carbon atom. 
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are usually incorporated into tissue (e.g. muscle or splanchnic organs) and are thus mainly 

responsible for growth. Every protein is a polymer of only 20 different amino acids, which 

we call �-amino acids and for which the order is defined after translation from the DNA.  

�- and �-amino acids (e.g. taurine and hydroxy-proline, respectively) cannot be incorporated 

into proteins but have important intracellular functions as individual acting amino acids. The 

a-amino acids can be grouped into essential (indispensable) or non-essential (dispensable) 

ones in that the former can only be derived through dietary intake and not produced de 

novo (Table II). In the fetus and during early neonatal life, some amino acids are considered 

as conditionally or semi-essential, as their metabolic system might not have developed 

completely, yet, to fulfill the demands for these amino acids just by de novo synthesis.  

 

 

Tyrosine, for example, is suggested to be conditionally essential due to impairment of 

hydroxylation of phenylalanine to tyrosine [41,42]. Some others did however show 

premature infants to be able to hydroxylate phenylalanine to a certain extent [43-45]. 

However, the question remains whether these hydroxylation rates are sufficient to meet 

tyrosine demands in the first days after birth. Tyrosine is poorly soluble and, therefore, it is 

difficult to provide adequate intake in infants receiving parenteral nutrition. Currently used 

solutions contain <1% of tyrosine, which is far below the needs of the parenterally fed 

neonate. Roberts et al. found the mean tyrosine requirement of the parenterally fed 

neonate to range from 66 to 88 mg/(kg·d), representing 2.8% to 3.8% of total amino acids 

[46]. 

Similarly, the transsulphuration pathway of converting homocysteine (derived from 

methionine) to cysteine might also be impaired during early life due to suboptimal activity 

of the responsible enzyme called cystathionase [47,48]. Nevertheless, others have recently 

shown that the trans-sulphuration pathway in VLBW neonates is active 48 hours after birth 

[49]. Cysteine is not stable in solution and oxidizes easily to cystine, which is insoluble; most 

TABLE II: Subdivision of �-amino acids in essential, non-essential, and in supposedly conditionally 

essential amino acids (for premature infants). 

Essential Non-essential 
Conditionally 

essential 

Leucine Alanine Tyrosine 

Isoleucine Serine Cysteine 

Valine Asparagine Glutamine 

Methionine Aspartate Arginine 

Phenylalanine Glutamate Glycine 

Threonine Tryptophan Proline 

Histidine     

Lysine     
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standard parenteral solutions therefore contain little cysteine or are cysteine free, which 

puts parenterally fed infants at risk for cysteine deficiency. Providing cysteine in its 

acetylated form (N-acetyl-L-cysteine), which is stable in parenteral solutions, does not aid 

premature infants as high concentrations of acetylated cysteine can be found in urine, 

indicating a low bioavailability [50]. The other conditionally essential amino acids will not be 

discussed here since they are not studied in this thesis, but more information can be found 

elsewhere [51]. Other ways of grouping amino acids are by their chemical characteristics: 

leucine, valine, and isoleucine are called branched chain amino acids; phenylalanine, 

tyrosine, and tryptophan form the aromatic group; methionine and cysteine are sulfur-

containing amino acids; serine and threonine contain a hydroxy (or alcohol) group; 

glutamine and asparagine are acidic and lysine, histidine, and arginine are basic amino acids. 

Almost all proteins undergo a constant process of synthesis and breakdown. Halftime 

differs from minutes (many enzymes) to weeks or months (muscle tissue) or hardly ever 

(eye lens and brain tissue). Anabolism, or growth, is defined as the net balance between 

protein synthesis and breakdown rates of a specific protein or whole body protein in 

general, respectively. The process of breakdown serves to release amino acids during 

fasting, to remove defective proteins after erroneous translation or after oxidative damage. 

Protein breakdown can also occur when there is a high need of certain scarce amino acids, 

so that the needed individual amino acids become free for synthesis of other proteins.  

For individual amino acids there exists no storage pool, like there is for for example 

glucose and fatty acids in the form of glycogen and fat, respectively. Also muscle protein is 

formed from a predefined (DNA) and fixed ratio of selected amino acids that form a 

polymer. Therefore, individual amino acids that are in surplus of those needed for protein 

synthesis cannot be stored separately, nor can amino acids that are in short for synthesis of 

a certain protein molecule selectively be degraded from some other protein molecule. 

Neither can the kidney selectively excrete or retain a single amino acid. Therefore, to avoid 

aminoacidemia, the only metabolic fate for an amino acid in excess is to be degraded into 

ammonia (later converted into urea) and a carbon skeleton which can either be oxidized in 

the citric acid cycle thereby yielding energy or used for glucose synthesis. 

Preterm infants are known to have very high rates of both protein synthesis and 

proteolysis as compared to older individuals [52]. Especially protein synthesis is an energy 

demanding process. It might be hard to imagine why growing individuals put so much 

energy in breaking down and resynthesizing proteins. Several amino acids kinetics studies 

have shown a marked difference in protein metabolism between preterm and term infants. 

There is a negative correlation between gestational age and protein loss, resulting in a 

doubling of the protein losses in ELBW infants as compared to term infants [44]. During 

protein administration, term infants [53] and adults [54] respond by decreasing proteolysis, 

whereas human preterm infants [55-57] and ovine fetuses [58] increase protein synthesis, 

rather than suppress breakdown. Only one study in premature infants found a concomitant 

decrease in proteolysis [43]. A developmental change seems responsible. A very high 
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turnover rate is also found in adults during illness or after injury, again a situation in which 

at first sight high breakdown and synthesis rates seem contradictory to energy scarceness. 

Presumably, a high turnover rate aids in fast damage repair and amino acid redistribution. 

One other possible benefit could be that if a positive stimulus (e.g. a hormone) increases the 

synthesis rate, leaving degradation unaltered, the net effect on growth is amplified when 

turnover rates in general are already raised [59].  

 

 

METHODS OF PROTEIN INVESTIGATION 

 

Nitrogen balances form the classic method of nitrogen-related research in individuals. It is 

no more than a simple comparison of nitrogen intake through diet and the rate of nitrogen 

excretion over a period of time [60,61]. Nitrogen is mainly excreted by the urinary tract 

(80% as urea, the remainder being ammonia and free amino acids), whereas fecal losses as 

well as breathing, sweating, hair, nails, and skin losses form only minor contributions [62]. 

However, obtaining a nitrogen balance is not informative on how a particular nutritional 

state is reached. As mentioned above, growth is defined as a balance between catabolism 

and anabolism and different combinations of the two can lead to the same conclusion with 

a nitrogen balance. Research tools that can aid in quantifying protein synthesis and 

proteolysis, like stable-isotope-labeled amino acids, provide an excellent and safe method 

when studying metabolism [63-73]. Stable isotopes are atoms with an extra neutron in the 

nucleus, and thus, slightly heavier. This difference in mass can be distinguished with mass-

spectrometry techniques. Nowadays, stable isotopes are widely available and applicable for 

numerous clinical and research purposes. Stable isotopes are not radioactive, their 

biological behavior is assumed to be the same as their parent compound, and they are 

already naturally occurring in the human body and in normal nutrition (the natural 

abundance for 13C is approximately 1.11%). 

Two of the most used models in pediatric stable isotope research include quantification 

of whole body amino acid turnover or the synthesis rate of a specific protein. In whole body 

turnover studies, an isotopically labeled amino acid is intravenously infused at a constant 

rate for several hours. The tracer mixes with the amino acids that enter the system after 

proteolysis, dietary intake, or if possible de novo synthesis. The sum is called the rate of 

appearance (Ra) and must equal the rate of disappearance (Rd) to avoid accumulation or 

depletion of an amino acid. The Rd consists of incorporation into proteins, oxidation, or 

conversion into another amino acid (Figure 7 and Figure 8). After tracer equilibrium, one can 

calculate from the tracer enrichment the dilution and thus Ra in the system. If [1-13C]leucine 

is used as a tracer for example, proteolysis can be quantified after subtraction of the dietary 

leucine intake from the Ra since leucine cannot be produced de novo. After collection of 

expiratory air, the 13CO2 content can be analyzed, and amino acid oxidation can be 

quantified. The non-oxidative disposal (NOD), which is assumed to be equal to incorporation 
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into proteins, can be calculated from the subtraction of oxidation from the Rd. The 

difference in proteolysis and protein synthesis then gives information on the net rate of 

protein, or more precisely amino acid, growth. 

However, a potential disadvantage of these kinds of turnover experiments is that they 

are an average of protein metabolism in the whole body. Counteracting changes in for 

example muscle versus liver metabolism will not be noted. From an ethical point of view, 

however, it is hardly ever possibly to obtain organ biopsies. Yet, to obtain insight in liver 

metabolism, one can study one of the liver proteins like albumin that are excreted into the 

accessible plasma compartment. After continuous tracer administration and subsequent 

multiple plasma sampling, one can calculate the albumin synthesis rate from the increase of 

tracer enrichment that is incorporated into albumin over time. 

When quantifying amino acid kinetics in the human fetus, however, the two models 

described above cannot be used since the tracer cannot be directly infused into the fetus, 

FIGURE 7: The tracer dilu-

tion principle. Flux through 

the pool (μmol/kg per min) 

= i/Ep, where i is infusion 

rate of the tracer (μmol/kg 

per min) and Ep is the pla-

teau enrichment. (From 

Rennie [68], with permis-

sion Cambridge University 

Press) 

FIGURE 8: General model 

of protein metabolism used 

in the whole-body turnover 

methods. Q, whole-body 

nitrogen turnover; Ra, rate 

of appearance in the free 

amino acid pool; Rd, rate of 

disappearance from the 

free amino acid pool; Phe, 

phenylalanine; Tyr, tyro-

sine. (From Wagenmakers 

[69], with permission Cam-

bridge University Press) 
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and we cannot take multiple blood samples from the fetus. Therefore, alternative models 

must be used. Since the fetus is provided with nutrients through the umbilical cord, one can 

use a veno-arterial balance model to calculate fetal uptake by using the Fick principle (net 

uptake = blood flow × veno-arterial concentration difference). In combination with tracer 

administration to the pregnant women and Doppler ultrasound measurements of the 

umbilical cord prior to delivery, one can sample blood from both the vein and arteries in the 

umbilical cord after birth and calculate fetal whole body amino acid kinetics after 

measurement of the amino acid concentrations and enrichments in both the umbilical vein 

and arteries. These kinds of balance models are often used when studying leg or splanchnic 

organ metabolism in animals or adult humans, but can, with some small adaptations also be 

used for studying fetal kinetics. 

Quantification of the fetal synthesis rate of specific proteins like albumin is also 

complicated due to the fact that only one blood sample can be taken from the fetus or 

umbilical cord, which is immediately after delivery whereas at least two subsequent 

samples are needed. To overcome this problem, we modified the staggered infusion 

protocol proposed by Dudley and colleagues [74] into a simplified multiple tracer infusion 

model. In one of the following chapters we will elaborate more on this new type of model. 

 

 

NUTRITION FOR PREMATURE INFANTS IN THE 20TH CENTURY 

 

Pierre Budin, a famous French obstetrician and together with his mentor the founder of 

modern perinatal care (by then obstetricians usually took care of newborns until aged about 

two years), stated already in 1907: “The path of pleasure, for adults, is drinking. May it not 

be the same for weaklings? I increased their absorption of milk with, as you have seen, the 

happiest of results” [75]. Thus, during these days, premature infants received high volumes 

of human milk by tube feeding (up to 200 mL/(kg
d)) to stimulate rapid growth [76]. But 

from the 1940s on, worries about aspiration pneumonias and kidney failure resulted in 

withholding all fluids for up to 72 hours after birth. Until approximately 1965, hardly any 

attention was paid on nutrition, but from then on, after the recognition of adverse 

neurodevelopmental outcome attributed to low initial fluid and nutrient intake, early 

provision of fluids/feedings was advocated again [76]. Since then, several small adaptations 

to formulas or breast milk fortifiers resulted in the way we now treat our babies with 

enteral feeding [77].  

But also intravenous nutrition already has a long history. The first report on intravenous 

amino acid administration to young infants in 1939 described many complications [78]. 

More triumphant was the report that appeared in 1944 where a marasmic suckling received 

solely total parenteral nutrition (TPN) for five consecutive days [79]. Almost 25 years later, a 

LBW neonate with near total small bowel atresia received for 44 consecutive days TPN 

without any enteral feedings; her weight had increased with 80% during the study period 
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[80]. However, these first solutions containing hydrolyzed amino acid residues also caused 

significant problems such as hyperammonemia [81]. The first generation of the synthetic 

crystalline solutions, however, also caused problems such as acidosis [82]. Studies reporting 

these adverse effects had, and still have, a profound effect on nutritional policies. Although 

it was recognized that withholding amino acids resulted in a catabolic state, they were 

withheld during early life under the assumption that the preterm infant was ‘intolerant’ to 

amino acids solutions. We have come to realize that both the method of manufacture and 

the composition of the amino acids solutions were likely to have caused complications such 

as hyperammonemia and metabolic acidosis, rather than the amino acids solutions per se. 

Nevertheless, fear of metabolic derangements is still firmly rooted in clinical practice. 

Guidelines, such as those presented in 1977 by the Committee on Nutrition of the 

American Academy of Pediatrics, have stressed the importance of amino acid administration 

to preterm neonates [83]. The goal stated at that time remains valid today: a postnatal 

growth rate that duplicates fetal growth rate. An additional aim is to strive for a similar body 

composition at term corrected age to that of a healthy term-born infant. Considering that 

nutrition is extremely important for normal cell function and development, ultimately we 

hope of course that optimal nutritional strategies will also result in a functional outcome in 

ex-premature infants that is comparable to term born infants. However, even today, 

international pediatric guidelines hardly state anything on the initiation and amounts of 

administrating TPN during the first week of life after very preterm birth. We might even 

conclude that compared to other innovations in neonatology, such as artificial ventilation, 

progress in the field of nutrition is lagging behind, probably because malnutrition or even 

complete absence of nutrients is not immediately life threatening at first sight. On the other 

hand, we have come to realize that even a single day of starvation can be detrimental to the 

preterm infant [77]. 

 

 

PLACENTAL NUTRIENT TRANSPORT  

 

Prior to birth, the fetus receives its nutrients through the umbilical cord from the placenta. 

The maternal facing microvillous membrane and the fetal facing basal membrane of the 

syncytiotrophoblast are the functional barrier between the fetal and maternal blood 

circulations at which nutrients, water, respiratory gases, ions, and waste products are 

exchanged. Transport of fatty acids, glucose, and amino acids all occurs through different 

processes which have not all completely been unraveled. Contrary to the transport of 

respiratory gases which diffuse freely through the placental membranes and which rate is 

mainly dependent on concentration gradients and uterine and umbilical blood flow rates, 

the transport of nutrients is more complicated. Successively, we will shortly discuss the 

placental transport of lipids, glucose, and finally amino acids. 

Lipid transfer to the fetus has been studied the least, partly because of its technical 
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difficulties, partly because the lipid content of most research animal tissue is far less than 

that of human tissue (Table III) [84-87]. In most mammals, fat is thus transported across the 

placenta at a much lower rate than in the human feto-maternal dyad. What we do know 

however, is that maternal plasma free fatty acids, lipoproteins and triacylglycerols are 

bound to appropriate receptors and lipases, respectively, on the microvillous membrane [88

-90]. Released free fatty acids that are not used for placental metabolism are transported 

over the basal membrane either by simple diffusion or by facilitated transport proteins. 

Glucose transport on both membranous layers of the placenta is mediated by facilitated 

glucose transporters of the GLUT family, mainly GLUT 1 [91,92]. The materno-placento-fetal 

concentration gradient is the main driving force for the glucose transport rate. In sheep, 

approximately 75% of glucose taken up by the placenta is not transported further to the 

fetus, but used for placental metabolism, consisting largely of oxidative purposes [93,94]. 

One-third of oxidized glucose occurs anaerobically, however, thereby forming lactate which 

is taken up by either the maternal or fetal circulation [95]. 

Since the primary driving force for glucose transfer is the fetal concentration, the fetus 

tries to control it tightly to ensure a constant supply [96]. During maternal hyperglycemia, 

the fetal concentration might also rise to decrease the materno-fetal glucose gradient 

thereby preventing an increased transplacental overload of glucose. On the other hand, 

during maternal hypoglycemia, the fetus will decrease its glucose concentration to maintain 

a gradient in concentration across the placenta [96]. Fetal gluconeogenesis is therefore only 

induced in an ultimate situation to prevent severe hypoglycemia as endogenous glucose 

production indeed raises the fetal glucose concentration, but at the same time reduces the 

materno-fetal glucose concentration gradient. Fetal gluconeogenesis is therefore only a very 

short-term survival mechanism and is probably only seen in experimental situations [97]. 

The fact that fetal glucose concentrations decrease physiologically towards the end of 

 

TABLE III: lipid content in different species at term birth [84-87].  

Species g fat/100 g body weight at term birth 

Black bear 0.9 
Pig 1.1 
Rat 1.1 
Cat 1.8 

Mouse 2.1 
Horse 2.6 

Baboon 3.0 
Sheep 3.3 
Rabbit 3.9 

Seal 4.0 – 9.0 
Guinea pig 10.0 

Human 16.0 
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gestation is probably also a mechanism to increase the feto-maternal glucose gradient to 

increase placental glucose transport to meet the increasing fetal glucose demands [96]. 

Protein transport across the placenta plays only a very minor role. Immunoglobulin class 

G (IgG) is probably the only protein transported in considerable amounts. Yet, only the 

hemochorial placenta (humans, guinea pigs, rats, and rabbits) is permeable so that just 

these fetal mammals receive passive immunization. Besides, the primary function of this 

placental protein transfer is probably not nutritionally. Also albumin, the main plasma 

protein is not transported to the fetus, although it is approximately four times smaller in 

size than IgG.  

Amino acids, however, are transported in large quantities to the fetus by active 

transport. Substrates for active transport include adenosine triphosphate (ATP) or sodium, 

but many amino acids are also transported inwardly in exchange for another amino acid 

that is transported outwardly [98]. At least 15-20 different amino acid transporters exist, 

each with their own, yet overlapping specificity for certain amino acids. At the microvillous 

membrane, amino acids are actively pumped into the trophoblast, where concentrations 

are up to four times higher than in maternal plasma [99,100]. The exact mechanisms how 

amino acids are then transported to the fetus are largely unknown. Previously, this was 

thought to occur through simple passive diffusion across the basal membrane into the fetal 

plasma where concentrations are approximately two times lower. However, since a few 

years, this thought seems to be too simplistic. Efflux transporters with specificity for only a 

few amino acids work together with many exchange transporters with broad specificity to 

create a net amino acid transport rate towards the fetus [101]. 

Many reviews have appeared in recent years regarding placental nutrient transport to 

which I refer for further reading [96,101-110]. 

 

 

INTRAUTERINE NUTRITION 

 

The fetus receives a continuous supply of nutrients through the umbilical vein [104]. 

Nutritional uptake in utero is large, not only for accretion of new tissue and a high oxidation 

rate, but also for replacement of body water with protein and fat. The water content of fetal 

tissue drops from 89% at 24 weeks to 74% at 40 weeks gestation. This drop is 

counterbalanced by a rise in lipid content from 0 to 11% in the last trimester, and a rise in 

protein content from 8.8% to 12% [111]. Impressive though this increase in lipid content 

appears, a linear 11% increase over 16 weeks needs a constant uptake of only 1.0 g lipids/

(kg·d) (calculated as 110 g/kg in 112 days). Apart from this change in body composition 

towards relatively leaner body mass and more fat tissue, the fetus also grows at a rate of 

about 15 g tissue/(kg·d) during mid-gestation, tapering off to 10 g/(kg·d) at term. Lipid need 

for new tissue increases from negligible during mid-gestation to 11% of 10 g tissue/(kg·d) 

(equaling 1.1 g lipids/(kg·d)) at term. A third component of uptake – oxidation – is rather 
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unimportant in fetal life as hardly any fatty acids are oxidized. Thus, the total need for fatty 

acids increases from about 1.0 g/(kg·d) at mid-gestation to a little over 2.0 g/(kg·d) at term 

(Figure 9). 

After term birth, the lipid content further increases to about 20% at 2 months of age 

[112]. This implies that an increase of 90 g lipids/kg in 60 days (1.5 g/(kg·d)) is necessary for 

tissue replacement. The 1.1 g lipid/(kg·d) needed for new tissue at birth will increase to 

1.5 g/(kg·d) (at a growth rate of 7.5 g tissue/(kg·d) at 2 months of age). Furthermore, 

significant lipid oxidation after birth is physiological, accounting for 2.5 g/(kg·d) [113]. Total 

lipid need at 2 months of age after term birth would therefore be 5.5 g/(kg·d) (Figure 9). 

A similar calculation for protein yields an amino acids demand of almost 0.3 g/(kg·d) 

(32 g/kg in 112 days) to meet intrauterine changes in body composition (water replacement 

by protein). Demands for normal growth stabilize at 1.2 g amino acids/(kg·d) throughout the 

second half of pregnancy due to the opposite effect of a slower growth rate at term with 

increased tissue protein content at this time. Amino acid contribution to human fetal 

oxidation is largely unknown and the few available data are contradictory. Obligatory 

nitrogen excretion in fasting premature neonates is approximately 0.6-1.0 g/(kg·d) [57,114]. 

Animal fetal research under physiological conditions demonstrates that intrauterine amino 

acids oxidation is much higher, and that uptake is far beyond amino acids requirements for 

body accretion [115,116]. Human studies have also showed considerable intrauterine urea 

production [117]. Total amino acid uptake can be estimated to be between 3 and 4 g amino 

acids/(kg·d) (figure 10). Because tissue protein content does not increase any further after 

birth, protein requirements at 2 months of age after a term birth decrease slightly, to 

approximately 2.0-2.5 g/(kg·d) (Figure 10). 

It must be noted that the factorial approach described above uses the tissue 

composition of deceased fetuses or newborns, whose growth might also have been 

affected; thus these figures might be underestimates. Nevertheless, we can still assume that 

the fetus receives a diet rich in protein and poor in fat. Compared to fetal nutrition, present 

postnatal nutritional strategies dictate the preterm infant be given a high-fat and 
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FIGURE 9: Stacked bar graph of the total 

estimated lipid uptake in the fetus at 26 and 

38 weeks gestation and lipid intake in a term 

born healthy infant fed breast milk at two 
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moderately high-protein diet. Although a high-caloric diet does indeed stimulate a preterm 

infant's growth, mass accretion would have been different in composition had the infant still 

been in utero. Indeed, preterm infants were found to show a larger than desirable fat 

deposition after birth, especially around the visceral organs [118,119]. Achieving a body 

composition that more closely resembles fetal body composition usually implies a larger 

amino acid intake. This should be accomplished as soon as possible after birth. 

 

 

PARENTERAL AMINO ACID ADMINISTRATION IN THE EARLY POSTNATAL PHASE 

 

Whereas the supply of nutrients delivered from the placenta to the infant ceases 

unanticipatedly after preterm birth, the ongoing delivery in the age-matched fetus is vital 

for normal growth and neurodevelopment. Yet, preterm infants often do not receive any 

amino acids during the first postnatal days; or they receive insufficient amounts. Clinical 

complications such as respiratory distress and patent ductus arteriosus with a subsequent 

strict fluid management can complicate adequate nutrient provision. In the absence of total 

parenteral nutrition, and not being able to receive enteral feedings in the direct postnatal 

period, an infant is dependent on its own protein stores for obligatory protein catabolism. 

For an infant receiving only glucose, this requires approximately 1.0 g/(kg·d) or 1% of the 

endogenous protein stores each day [120]. An age-matched fetus accretes protein at a rate 

of approximately 1.5 g/(kg·d) and it is this growth rate that should be the goal when feeding 

preterm infants; it is often not achieved [121,122]. Many infants born appropriate for 

gestational age will leave the hospital too small [123]. Note however, that the initial weight 

loss in the first postnatal days also represents the rearrangement of body fluids necessary 

for adapting to extrauterine life, rather than solely catabolism. 

In early studies, parenteral amino acids were initiated not until after 1 week in the 

smallest infants [124] or after 3 days in 1700-gram-weighing infants [125]; the infants were 

dependent on exogenous glucose for their metabolism during the intervening period. With 
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the introduction of solutions specifically designed for neonates [126], researchers began to 

study the effects of shortening time span of withholding amino acids [56,57,127,128]. In two 

separate studies, Van Goudoever et al. and Murdock et al. administered amino acids 

immediately after birth, although they used only 1.15 and 1.35 g/(kg·d) in infants weighing a 

mean 1400 g and 1500 g, respectively [114,129]. Neither these, nor the other early initiation 

studies, reported metabolic acidosis, hyperaminoacidemia or, hyperammonemia when 

measured. Beneficial effects – improvement in nitrogen balance, stable isotope balance, or 

plasma amino acids profile – were observed in all studies. Nevertheless, up till the advent of 

this thesis, clinicians were still reluctant to start giving amino acids to premature infants in 

the immediate postnatal phase. Compared to the in 2000 recommended daily intake of 3.0 

g protein/(kg
d) and 120 kcal/(kg
d), premature infants born before 31 weeks gestation 

accumulated a protein and energy deficit during the first 7 weeks after life of more than 25 

g/kg and 1000 kcal/kg, respectively [121]. Besides the cumulative protein deficit, Figure 11 

also shows the dramatic change in z-score in these infants during the same period. Stepwise 

regression analysis indicated that 45% of the variation in z scores could be explained by the 

reduced intake. 

The current guidelines, however, such as those proposed by the ESPGHAN, prescribe 

even 3.5 g protein/(kg
d) [77], which would double the cumulative protein deficit in the 

previously mentioned study by Embleton et al. to approximately 50 g protein/kg for the 

infants born under 31 weeks gestation. Two other recent reports show similar results 

[130,131]. The main reason for the protein deficit is that not only most NICU’s do not start 

immediately after birth with intravenous amino acids, but in addition also a stepwise 

increase in intake over several days is common. The motivation for the stepwise increase of 

amino acids intake is however not empirically based. Fluid limitations, concerns of 

intolerance and fear of hyperglycemia in case of mixed glucose/amino acids solutions might 

FIGURE 11: Protein intake, cumulative protein deficit, and change in weight z-score (standard devia-

tion score) during hospital stay in premature infants in first seven postnatal weeks. (From Embleton 

et al. [121]) 
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provide some explanations. 

However, over the years, quality of intravenous amino acids solutions has improved, and 

so has the general condition of the very low birth weight (VLBW) infant before and 

immediately after delivery. This provides a starting point for new nutritional strategies that 

must be explored. 

 

 

AIMS OF THIS THESIS 

  

The ultimate goal in neonatology is to achieve an outcome in premature infants that is 

comparable to healthy term born infants. Part hereof, but probably also directly related is to 

achieve a growth rate in premature infants that is comparable to that of intrauterine 

counterparts of the same gestational age. In addition to fetal growth rate, the fetal tissue 

composition should be mimicked.  

As can be read in this introductory chapter, nutritional intake in premature infants is not 

optimal, especially during the first weeks of life. Yet, the impact of nutrition for normal 

development is huge, not only for normal growth and brain development, but even beyond 

through epigenetics. A first simple recognition that many infants are catabolic in the first 

week of life and leave the hospital with growth failure indicates room for improvement of 

nutritional therapies. Therefore, in this thesis we will first focus on nutrition in the 

immediate postnatal phase as the sudden unanticipated transition from intra- to 

extrauterine life is critical and might set the further course of the infant on the NICU. Our 

specific hypotheses were that high dose parenteral amino acid administration to premature 

infants immediately after birth: 

• is safe and results in anabolism, 

• promotes protein synthesis rather than decreases proteolysis, and 

• stimulates liver activity by means of increased albumin synthesis rates.  

Then, we will try to unravel several aspects of fetal amino acid and protein metabolism. 

This information might give us new perspectives on how to feed premature infants in the 

near future. Our specific objectives were to quantify the fetal: 

• albumin synthesis rate, 

• protein accretion rate by means of phenylalanine kinetics, 

• hydroxylation rate of phenylalanine into the semi-essential amino acid tyrosine, and 

• metabolic pathways of leucine, valine, and methionine. 

Additionally, we were able to quantify these objectives in the pregnant woman and we 

could determine the synthesis rate of placental structural protein. All data obtained from 

the fetal studies can then be compared to those obtained postnatally to determine if 

postnatal nutrition can be improved. 
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OUTLINE OF THIS THESIS 

 

The first clinical part of this thesis describes a large clinical trial in premature infants where 

half of the group received relatively high dose parenteral amino acids next to glucose from 

birth onwards whereas the control group only received glucose during the first few 

postnatal days. Chapter 2 describes the safety and efficacy (in terms of nitrogen balance) of 

early amino acid administration to these infants. Chapter 3 then determines the 

mechanisms behind any change in metabolism by using leucine and glucose stable isotopes. 

Chapter 4 describes effects of early amino acid administration on the albumin synthesis rate 

in these infants. The outcome at age two of the infants that participated in the large trial is 

described in chapter 5.  

The next part of this thesis describes several studies in which pregnant women received 

multiple stable isotope infusions in the hours prior to cesarean section. After birth, umbilical 

cord blood was sampled and analyzed for the amino acid concentrations and enrichments. 

In chapter 6 the fetal albumin synthesis rate is quantified using a relatively novel stable 

isotope model. In chapter 7, the fetal metabolic pathways of phenylalanine and tyrosine are 

quantified and in chapter 8 the same is done for leucine, valine, and methionine. Chapter 9 

describes, using the same model as in chapter 6, the synthesis rate of mixed structural 

placental proteins. 

Finally, chapter 10 provides a general discussion of the results found here and in chapter 

11 all results are summarized in both the English and Dutch language. 
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ABSTRACT 

 

Objectives 

To test the hypothesis that the administration of 2.4 g amino acids (AA)/(kg·d) to very low 

birth weight infants is safe and results in a positive nitrogen balance. 

Study design 

We conducted a randomized, clinical trial. Preterm infants with birth weights <1500 g 

received either glucose and 2.4 g AA/(kg·d) from birth onward (n = 66) or solely glucose 

during the first day with a stepwise increase in AA intake to 2.4 g AA/(kg·d) on day 3 

(n = 69). Blood gas analysis was performed daily during the first 6 postnatal days; plasma 

urea concentrations were determined on days 2, 4, and 6; AA plasma concentrations and 

nitrogen balances were determined on days 2 and 4. Student t tests, Mann-Whitney tests, 

and �2 tests were performed to compare groups. 

Results 

Infants supplemented with AA had no major adverse side effects. Their plasma urea 

concentrations were higher, nitrogen balance turned positive upon AA administration, and 

more AA concentrations were within reference ranges. 

Conclusion 

High-dose AA administration to very low birth weight infants can be introduced safely from 

birth onward and results in an anabolic state. 
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INTRODUCTION 

 

After birth, very low birth weight (VLBW) infants are dependent on externally administered 

nutrients, as hardly any stored energy is at their disposal [1]. Both fat tissue and glycogen 

levels are limited, especially in small-for-gestational age (SGA) VLBW infants. Consequently, 

without adequate exogenous nutrient supply, protein breakdown will increase in these 

infants, resulting in a catabolic state. 

Despite a growing body of literature regarding the safety and efficacy of early amino acid 

(AA) administration, there is still wide variability in practice. Often, carbohydrates are still 

the only exogenous nutrients administered in the immediate postnatal period. In the past, 

AA were often withheld since formerly used AA mixtures were found to result in metabolic 

acidosis and hyperammonemia [2,3]. In utero, fetuses are supplied with large amounts of 

AA, which not only are used for protein synthesis but also serve as an important fuel source 

[4-7]. It seems logical, therefore, to supply newborn infants with adequate amounts of both 

energy and growth substrates to meet energy requirements and to promote protein 

accretion for ongoing growth. Indeed, several studies indicate that the currently used 

crystalline solutions seem well suited for the preterm infant, who may benefit from the 

anabolic effects [8-14]. However, in most of these studies, either low amounts of AA were 

administered, administration started only after the first day of life, infants with higher birth 

weights were studied, or the number of infants studied was small. 

Hypothesizing that premature infants may benefit from the anabolic effects of AA 

without metabolic derangement, we investigated the safety and efficacy of relatively large 

amounts of AA supplied postnatally to a large group of VLBW infants. 

 

 

METHODS 

 

SETTING 

A randomized, blinded trial was performed in the neonatal intensive care unit (NICU) of 

the Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands. For logistic 

reasons, it was not possible to perform the study using a double-blinded design. The trial 

was investigator-initiated, with no funding from the pharmaceutical industry. The study 

protocol was approved by the Erasmus MC Medical Ethical Committee, and parental 

consent was obtained before random assignment and subsequent enrollment in the study. 

STUDY DESIGN 

Prematurely born infants with birth weights equal or less than 1500 g born between 

March 2003 and September 2004 in the hospital and admitted to the NICU were randomly 

assigned to receive one of two parenteral nutritional schemes, as indicated in Table I. The 

amount of 2.4 g AA/(kg·d) was chosen because that was the amount that resulted in a 

positive nitrogen balance in an earlier study [14]. 
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After the third day of life, all nutrient intakes, including enteral feedings, were the 

decision of the attending neonatologist. Minimal enteral nutrition (6 to 12 feedings of 1.0 

mL) was whenever possible started on postnatal day 2 to day 3 and advanced to full enteral 

nutrition in the subsequent days if tolerated. We recorded birth weight, gestational age, 

percentage of SGA infants (< -2 SD) [15], sex ratio, number of prenatal corticosteroid doses 

(0, 1, or 2), and severity of illness at entry to the study with Apgar and CRIB scores [16]. 

Exclusion criteria were known congenital abnormalities, chromosome defects, metabolic 

diseases, and endocrine, renal, or hepatic disorders. 

SAFETY ANALYSIS 

We analyzed blood gas and glucose concentrations 12 hours after delivery, followed by 

daily measurements at 8 am until day 6. Plasma urea concentrations were monitored on 

days 2, 4, and 6 (Roche Hitachi 912, Roche Diagnostics, Basel, Switzerland). On days 2 and 4, 

we determined plasma AA concentrations (Biochrom 20, Biochrom Ltd, Cambridge, England) 

in a subset of patients (intervention group n = 17, control group n = 14) to identify possible 

hyperaminoacidemia (i.e., above reference ranges, as defined in Reference [17]). We also 

recorded fluid intakes and medications. 

EFFICACY ANALYSIS 

Efficacy of early AA administration was studied by quantifying the nitrogen balance in 

both groups on postnatal days 2 and 4. Because most nitrogen leaves the body in urine, we 

collected urine during a 12-hour period on both study days. Urinary nitrogen content was 

measured with a CHN elemental analyzer (ANA 1500; Carlo Erba Strumentazione, Milan, 

Italy). By subtracting the calculated nitrogen excretion rates from the precisely recorded 

nutritional intakes, nitrogen balances could be defined under the assumption that 1 g of 

nutritional AA equals 160 mg of nitrogen. Although 24-hour collections of urine are 

preferable, 12-hour or even 6-hour collections can be used to establish reasonable 

    Day 

    1 2 3 4 

  Glucose 1 5.5 5.6 5.7 7.1 

Intervention AA 2 2.4 2.4 2.4 2.4 

  Lipids 3 0 1.4 2.8 2.8 

  Glucose 1 5.5 5.6 5.7 7.1 

Control AA 2 0 1.2 2.4 2.4 

  Lipids 3 0 1.4 2.8 2.8 

TABLE I: Targeted intravenous macronutrient intake in mg/(kg·min) (glucose) or g/(kg·d) (AA and 

lipids). 

1 If enteral feedings were tolerated, parenteral glucose intake was decreased. 
2 Primene 10%, Baxter, Clintec Benelux NV, Brussels, Belgium. 
3 Intralipid 20%, Fresenius Kabi BV, 's Hertogenbosch, the Netherlands. 
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estimates of nitrogen excretion [18]. Many investigators used 12-hour urine collections 

accordingly [8,11,12,19]. Finally, to express efficacy in terms of a measurable clinical 

variable, we recorded on which postnatal day infants regained their birth weight. 

STATISTICS 

Differences between groups were tested by Student t-tests, Mann-Whitney tests, and �2 

tests, using SPSS version 11.0 (SPSS Inc, Chicago, IL). Depending on distribution and type of 

test, values are expressed as mean ± SD, as median (min-max), or as percentage, 

respectively. Significance level was set at P < 0.05. However, because of multiple variables 

assessed on single samples, differences in AA concentrations were considered to be 

statistically significant at P < 0.01. From previous findings, we calculated that with a power 

of 0.80, group size needed to be at least 26 to detect a difference in the nitrogen balance of 

150 mg N/(kg·d), with a standard deviation of 120 mg N/(kg·d). However, as we intended to 

study safety aspects as well, we continued to include patients for the full 18 months. 

 

 

RESULTS 

 

We included 66 infants in the intervention group and 69 in the control group; all infants 

were included on the basis of intention to treat (Table II). Despite random assignment, 

infants in the intervention group were more frequently exposed to prenatal corticosteroids 

(P = 0.017). According to study design, the infants in the intervention group received AA 

within 2 hours after birth (median, 1 hour, 33 minutes). Non-protein energy intakes did not 

differ between groups, except on day 5 (68 ± 14 [intervention] vs. 63 ± 14 [control] kcal/

(kg·d); p = 0.033) (Figure 1). 

SAFETY 

Results of blood gas analysis and whole blood glucose levels 12 hours after birth and on 

the second day are shown in Table III. Between postnatal days 3 and 6, there were no 

differences. Plasma urea concentrations are shown in Table IV. Table V shows individual 

  Intervention Control 

N (male/female) 66 (34/32) 69 (31/38) 

Birth weight (g) 1039 ± 235 1 989 ± 252 

Gestational age (wk) 28.4 ± 2.0 28.4 ± 1.9 

SGA infants (<�2 SD) 20% 29% 

CRIB score 3 (0–13) 2 4 (0–14) 

Apgar (5’) score 9 (1–10) 8 (2–10) 

Prenatal corticosteroids (% 0/1/2 doses) 18/18/64 39/19/42 
1 Mean ± SD (all such values). 
2 Median (min - max) (all such values). 

TABLE II: Clinical characteristics of the infants in the intervention and control groups. 
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plasma AA concentrations on the second day of life. No statistical differences between the 

two groups were found on the fourth postnatal day. Medications, including sodium 

bicarbonate for metabolic acidosis, were not different between groups. 

EFFICACY 

As follows from study design, nitrogen intake on the second day was higher in the 

intervention group (Figure 2). On the fourth day, intakes were similar between groups. 

Nitrogen excretion rates in the intervention group exceeded excretion rates in the control 

FIGURE 1: Total non-protein energy 

intakes (parenteral and enteral) 

during the first postnatal week in 

the intervention group (squares) 

and the control group (triangles). 

* Statistically significant; p < 0.05 

(Student t-test). 

  12 h   Day 2 

  Intervention Control   Intervention Control 

pH 7.33 ± 0.08 7.34 ± 0.08   7.31 ± 0.06 7.32 ± 0.07 

Base excess (mmol/L) �4.8 ± 3.1 �3.7 ± 3.3   �5.7 ± 2.4 * �4.4 ± 2.4 

Bicarbonate (mmol/L) 20.5 ± 2.6 * 21.5 ± 2.6   20.3 ± 2.5 * 21.4 ± 2.2 

Glucose (mmol/L) 5.7 ± 3.2 6.1 ± 2.4   4.4 ± 1.9 * 5.3 ± 2.1 

TABLE III: Blood gas analysis and whole blood glucose concentrations in the intervention and control 

groups 12 hours postnatally and on postnatal day 2. 1 

1 All values are mean ± SD and differences between groups are tested with Student t-test. 

* Statistically significant; p < 0.05. 

  Intervention Control 

day 2 9.6 ± 2.8 (27.0 ± 7.8) * 6.0 ± 1.8 (16.7 ± 5.2) 

day 4 9.4 ± 3.5 (26.4 ± 9.8) * 6.0 ± 3.3 (16.8 ± 9.2) 

day 6 8.4 ± 3.8 (23.6 ± 10.7) * 6.7 ± 3.1 (18.7 ± 8.7) 

TABLE IV: Plasma urea concentrations in mmol/L and plasma urea nitrogen concentrations in  

mg N/dL between brackets in both groups on postnatal days 2, 4, and 6. 1  

1 All values are mean ± SD and differences between groups are tested with Student t-test. 
* Statistically significant; P < 0.05. 
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group on both day 2 and day 4. Furthermore, within the intervention as well as within the 

control group, rates of excretion did not change between days 2 and 4. Consequently, 

nitrogen balance was higher in the intervention group on day 2 as compared with the 

control group, which had a negative nitrogen balance. On the fourth day, nitrogen balances 

in both groups were positive. However, in the control group, the balance was more positive 

than in the intervention group. There was no correlation between antenatal steroid 

administration and nitrogen excretion or balance. Fluid intakes were higher in the 

intervention group on both postnatal day 1 and day 2 due to the administration of AA. On 

  Intervention Control Reference range 

Leucine ** 148 ± 43 47 ± 13 86 – 171 

Isoleucine ** 88 ± 33 18 ± 8 31 – 124 

Valine ** 281 ± 90 88 ± 23 56 – 154 

Threonine 125 ± 48 123 ± 63 67 – 143 

Lysine ** 345 ± 144 98 ± 34 65 – 282 

Histidine ** 103 ± 53 52 ± 19 25 – 126 

Methionine * 42 ± 22 22 ± 9 21 – 55 

Phenylalanine ** 92 ± 31 58 ± 10 35 – 112 

Cystine 31 ± 79 22 ± 12 33 – 55 

Tyrosine 83 ± 43 122 ± 57 48 – 122 

Alanine ** 265 ± 139 124 ± 67 137 – 362 

Proline * 175 ± 89 102 ± 56   

Serine * 186 ± 89 116 ± 49 79 – 227 

Glycine 282 ± 161 205 ± 70 66 – 432 

Arginine ** 70 ± 19 29 ± 12 11 – 88 

Glutamine 507 ± 296 313 ± 153 147 – 623 

Glutamate ** 64 ± 34 22 ± 9 76 – 551 

Asparagine 39 ± 23 49 ± 24 16 – 21 

Aspartate * 35 ± 16 18 ± 14 5 – 46 

Taurine 150 ± 87 106 ± 112   

Citrulline 54 ± 67 31 ± 44 20 – 84 

Ornithine ** 180 ± 87 40 ± 13 39 – 386 

OH-Proline 47 ± 26 46 ± 28   

TABLE V: Plasma AA concentrations (in μmol/L) in the intervention and control groups on postnatal 

day 2 (mean ± SD) and reference values from healthy term breast-fed infants on postnatal day 11 

[reference 17]. 

* Statistically significant; P < 0.01. 

** Statistically significant; P < 0.001. 



part II 

CH
A

PT
ER

 II
 

48 

all other days, fluid intakes were similar. Fluid balances, determined on postnatal days 2 and 

4, did not differ between groups. Age to regain birth weight was not statistically different; 

newborn infants in the intervention group regained their birth weight at day 8 (2-25) 

(median and [min-max]), those in the control group at day 10 (2-26) (p = 0.286). 

 

 

DISCUSSION 

 

The currently available AA solutions are safe and can be administered to premature infants 

during the first few days of life [8-14]. We performed the largest study to date confirming 

the safety and anabolic effects of early AA administration beginning within 2 hours after 

birth. Unlike most other reports, we did find modestly altered blood gas values and 

increased plasma urea concentrations with early AA administration. This could be due to the 

inclusion of fewer infants in other studies, with subsequently the possibility of reduced 

statistical power. Another explanation could be the early start of AA administration in our 

study, which was within 2 hours instead of 24 hours after birth [10,12] or even later [14]. In 

addition, others used a smaller amount of AA (�1.5 g/(kg·d)) [8,13] or included infants with 

higher birth weights [13,14]. 

We found that early AA administration normalized the plasma concentrations of most 

AA and that nitrogen balance was positive on day 2 of life, despite a relatively low energy 

intake (<40 kcal/(kg·d)). Plasma urea concentrations were higher in the intervention group, 

which theoretically could have increased urine production but in fact did not (data not 

shown). Besides, fluid balance is usually tightly controlled in NICUs. To our knowledge, no 

other potential side effects of increased urea concentrations have been reported. The 

higher urea concentrations are a reflection of a higher AA oxidation rate. This resembles the 

intrauterine situation in which AA seem to be a key nutrient for energy generation [5,7] and 

where plasma urea reference values for human umbilical cord blood are 7.5 to 14.3 mmol/L 
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FIGURE 2: Nitrogen balances on postnatal days 2 and 4. Grey bars represent the intervention group; 

open bars the control group. * Statistically significant; p < 0.05 (Student t-test). 
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(21.0 to 40.1 mg/dL) [20]. In conjunction with the higher urea concentrations, the higher 

amounts of excreted nitrogen in the intervention group also indicate a higher oxidation rate. 

Higher urea concentrations should, therefore, not be interpreted as a sign of AA intolerance 

but rather as a reflection of AA oxidation, just like in utero, where the AA are partly oxidized 

and partly used for protein synthesis. 

Many of the infants in the intervention group had on average less hyperglycemia than 

did the control group, which might be explained by higher insulin concentrations triggered 

by relatively higher plasma arginine and leucine concentrations [12,21,22]. In addition to 

these two AA, all essential AA levels, except for threonine and most of the nonessential AA 

concentrations, were higher and were within the reference range in the intervention group 

on the second day of life [17]. Although the plasma concentrations of valine, lysine, and 

asparagine exceeded the reference values measured postnatally in term breast-fed infants, 

the former two AA concentrations fit within intrauterine reference ranges [23]. 

The nitrogen balance was calculated by subtracting nitrogen excretion from nitrogen 

intake. However, nitrogen excretion is often modestly underestimated, because of 

incomplete urine collections and stool, breath, and skin losses, which are not accounted for 

[24]. Furthermore, although nitrogen balance measurements demonstrate net loss or 

accretion of protein, they do not reveal the mechanisms underlying these conditions. 

Previously performed studies using stable isotope techniques showed that premature 

infants supplied with AA have an improved balance, which is due to increased protein 

synthesis, while proteolysis is not suppressed [8,12,14,25].  

Inasmuch as premature infants cannot survive without growth, we conclude that the 

administration of AA soon after birth with the aim of promoting anabolism is safe and 

effective. 
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ABSTRACT 

 

Introduction 

We previously showed that, in prematurely born infants, an anabolic state without 

metabolic acidosis can be achieved upon intravenous amino acid (AA) administration in the 

immediate postnatal phase, despite a low energy intake. We hypothesized that the anabolic 

state resulted from an increased protein synthesis and not a decreased proteolysis. 

Furthermore, we hypothesized that the energy needed for the higher protein synthesis rate 

would be derived from an increased glucose oxidation.  

Methods 

To test our hypotheses, 32 ventilated premature infants (<1500 g) received intravenously 

either solely glucose or glucose and 2.4 g AA/(kg·d) immediately postnatally. On postnatal 

day 2, each group received primed continuous infusions of either [1-13C]leucine or [U-13C6]

glucose. 13CO2 enrichments in expiratory air and plasma [1-13C]�-KICA (as an intracellular 

leucine precursor) and [U-13C6]glucose enrichments were measured by mass spectrometry 

techniques.  

Results 

The AA administration resulted in an increased incorporation of leucine into body protein 

and a higher leucine oxidation rate, whereas leucine release from proteolysis was not 

affected. Glucose oxidation rate did not increase upon AA administration.  

Conclusions 

The anabolic state resulting from AA administration in the immediate postnatal period 

resulted from increased protein synthesis and not from decreased proteolysis. The energy 

needed for the additional protein synthesis was not derived from an increased glucose 

oxidation. 
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INTRODUCTION 

 

A series of studies on AA administration in premature infants within the first few postnatal 

days show a positive effect on nitrogen retention or plasma AA concentrations starting 

immediately after birth [1,2], within or at 24 h postnatally [3-5], or later [6]. In our latest 

study regarding early AA administration, we administered 2.4 g AA/(kg·d) to one half of 136 

VLBW infants within 2 h postnatally [1]. This resulted in a positive nitrogen balance and 

converted plasma AA concentrations to levels fitting reference ranges. Furthermore, there 

were no major metabolic disturbances in comparison with the group receiving solely 

glucose. 

However, nitrogen balance calculations provide no information on how a particular 

nutritional status was reached. An anabolic state can arise from increased protein synthesis, 

decreased protein breakdown, or a combination of both. To clarify the mechanism by which 

an anabolic state is reached in VLBW infants, we conducted in a first trial a stable isotope 

study using L-[1-13C]leucine. We speculated that the anabolic state would have been 

induced by an increased protein synthesis, a phenomenon also observed in other studies, 

none of which, however, started AA supplementation immediately after birth [3,5,6]. 

Furthermore, by collecting 13CO2 we were able to quantify leucine oxidation rates. 

We hypothesized that the extra energy required for protein synthesis would be derived 

from additional glucose oxidation. Therefore, we studied glucose metabolism in a second 

trial in which infants also received either solely glucose or glucose and AA, using D-[U-13C6]

glucose as a tracer. 

 

 

METHODS 

 

The included infants were a subset of the patients included earlier by Te Braake et al. [1] in a 

study determining safety and efficacy of high-dose early AA administration. The present 

study was designed as a randomized open trial and was performed in the neonatal intensive 

care unit of the Erasmus MC – Sophia Children’s Hospital, Rotterdam, the Netherlands. The 

study was investigator initiated with no funding from industry. The protocol was approved 

by the Erasmus MC Medical Ethical Committee and parental consent was obtained before 

the study. 

PATIENTS 

Thirty-two prematurely born infants with a birth weight <1500 g, who were born in the 

Erasmus MC – Sophia Children’s Hospital, were mechanically ventilated, had an arterial 

catheter, and were expected to be completely dependent on parenteral nutrition for the 

first 2 d of life, were directly after birth randomly assigned to receive either i) only glucose 

during the first 2 d (control group, n = 16) or ii) glucose and 2.4 g of protein/(kg·d) as AA 

(Primene 10%, Baxter, Clintec Benelux N.V., Brussels, Belgium) within 2 h postnatally 
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(intervention group, n = 16). 

AA and/or glucose solutions were constantly infused without interruptions during the 

study. Lipids and/or (minimal) enteral feedings were not administered until after the study 

period. Exclusion criteria were known congenital abnormalities, chromosome defects, and 

metabolic, endocrine, renal, or hepatic disorders. For all infants, we recorded birth weight, 

gestational age, SD scores for weight [7], antenatal corticosteroid usage, and severity of 

illness at entry of the study by means of Apgar and CRIB scores [8]. We also assessed blood 

gases and nitrogen balances as described previously [1]. 

The control and intervention groups were each subdivided into two cohorts (n = 8 each). 

In one cohort (A), we studied the effects of early AA administration on leucine kinetics on 

postnatal d 2. In the other cohort (B), we determined glucose kinetics on d 2 upon early AA 

administration. 

STABLE ISOTOPES 

[13C]Sodium hydrogen carbonate (NaH13CO3) (99% enriched), L-[1-13C]leucine (99% 

enriched), and D-[U-13C6]glucose (99% enriched) were purchased from Cambridge Isotope 

Laboratories (Andover, MA) and were diluted with a 0.9% saline solution by the hospital’s 

pharmacy after which it was tested on sterility and pyrogenicity. For the leucine study, the 

bicarbonate pool was initially enriched with a primed (10 μmol/kg) continuous NaH13CO3 

infusion (10 μmol/(kg·h)). After 2 h, the infusion was replaced by a primed (15 μmol/kg) 

continuous L-[1-13C]leucine infusion (15 μmol/(kg·h)) lasting for 5 h (Figure 1A). 

In the second cohort (the glucose study), the bicarbonate pool was also enriched with a 

primed (15 μmol/kg) continuous NaH13CO3 infusion (15 μmol/(kg·h)). After 2 h, the infusion 

was replaced by a primed (10 μmol/kg) continuous D-[U-13C6]glucose infusion (5 μmol/

(kg·h)) lasting for 6 h (Figure 1B). Tracers were infused with a Perfusor fm infusion pump 

(B|Braun Medical B.V., Oss, the Netherlands) along the same infusion route as the 

parenterally administered nutrients. 

 

t (h) = 21 3 4 5 6 70 8

NaH13CO3 L-[1-13C]leucineA
Expiratory air

Blood × ××

D-[U-13C6]glucoseB
Expiratory air

Blood × ××

NaH13CO3

FIGURE 1: Study design. Infants in both the control and intervention group were subjected to either 

the labeled leucine (A) or the labeled glucose (B) protocol on postnatal day 2. 
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MEASUREMENT OF ISOTOPIC ENRICHMENTS IN PLASMA.  

Arterial blood samples were drawn once before the isotope infusions (baseline) and 

twice during the last hour of the leucine or glucose tracer infusion. After collection, the 

samples were put on melting ice immediately and centrifuged, after which the plasma was 

aspired and stored at -80°C until analysis. 

Within the cell, leucine is reversibly transaminated to its keto-analogue, �-KICA. The 

plasma enrichment of [1-13C]�-KICA is very close to intracellular [1-13C]leucine enrichment. 

Measurement of the enrichment of [1-13C]�-KICA after L-[1-13C]leucine infusion will, 

therefore, reflect both the site of incorporation of leucine in protein and the site for the 

irreversible decarboxylation of [1-13C]�-KICA to isovaleryl-CoA and 13CO2 [9,10]. 

Samples (50 μL plasma) were treated and analyzed as previously described [2,11]. The 
13C enrichment of �-KICA was, after derivatization to butyldimethyl-silylquinoxalinol 

derivatives, determined with a Carlo Erba GC8000 gas chromatograph coupled to a Fisons 

MD800 mass spectrometer (Interscience BV, Breda, the Netherlands) by measuring the 

intensity of the 259 and 260 fragments in electron impact ionization mode. 

The [U-13C6]glucose enrichment of the glucose aldonitril pentaacetate derivatives was 

monitored, after combustion to carbon dioxide at mass 44 for 12CO2 and mass 45 for 13CO2, 

using a gas chromatograph combustion isotope ratio mass spectrometer (GC-C-IRMS) (Delta 

XP, Thermo Electron, Bremen, Germany). 

OXIDATION MEASUREMENTS 

To determine the fractions of leucine or glucose oxidized, approximately 15 mL of 

expiratory air was collected in a vacuum tube at the outlet of the ventilator: two times in 

duplicate before the isotope infusion (baseline), five times in duplicate during the last hour 

of the NaH13CO3 infusion, and five times in duplicate during the last hour of the labeled 

leucine or glucose infusion. We assumed an equal CO2 production and retention during the 

sodium bicarbonate and leucine or sodium bicarbonate and glucose infusions. Breath 

samples were analyzed for 13CO2 enrichment on an isotope ratio mass spectrometer (IRMS) 

(ABCA, Europe Scientific, Van Loenen Instruments, Leiden, the Netherlands). 

CALCULATIONS  

The turnover rates were calculated by measuring tracer dilution in plasma at steady 

state with standard isotope equations, as previously described for leucine [2] and glucose 

[12] studies. 

STATISTICS 

Based on previous findings from our study group, we calculated that with an � of 0.05, a 

power of 0.80, and a difference in protein synthesis rate of 1.4 g/(kg·d) with an SD of 0.8, 

group size in the leucine study needed to be at least six to detect a difference [6]. A 

statistically detectable increment in glucose oxidation of 2.0 mg/(kg·min) with an SD of 1.0 

would also require six infants in each group to be studied [12]. However, both in the leucine 

and the glucose studies, we included eight infants in the intervention and control groups 

and the control groups to increase power. 
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One-way ANOVA was used to detect differences between group characteristics, clinical 

laboratory measurements, and nutritional intakes between the four subgroups. Differences 

between intervention and control groups were tested by t-tests, Mann-Whitney tests, and 

�2 tests, as appropriate, using SPSS version 11.0 (SPSS Inc., Chicago, IL). Depending on 

distribution and type of test, values are expressed as mean ± SD, as median (25th to 75th 

percentile), or as percentage, respectively. Significance level was set at p < 0.05. 

 

 

RESULTS 

 

We included 32 infants, of whom 7 were small for gestational age (<-2 SD) [7]. Patient 

characteristics are provided in Table I. Overall, the infants in the intervention group had, by 

coincidence, received antenatal steroids more often than those in the control group. AA 

administration to the infants in the intervention group started within 2 h postnatally. The 

stable isotope study was started on the second postnatal day, i.e., between 20 and 44 h 

after birth. Isotopic steady state in 13CO2 excretion in expiratory air was reached in all 

infants during the last hour of each infusion (Figure 2).  

The actual protein intakes at time of study were 0 ± 0 and 2.32 ± 0.08 g/(kg·d) (p < 0.001) 

and the non-protein energy intakes (solely glucose) were 34 ± 8 and 30 ± 6 kcal/(kg·d) (p = 

0.103) in the control and intervention groups, respectively. Other relevant patient data are 

provided in Table II. Inasmuch as we only performed a power calculation on protein 

synthesis and glucose oxidation rates, all other outcomes should be regarded as hypothesis-

generating data. 

Leucine kinetic data are displayed in Figure 3. Infants in the intervention group had a 

higher leucine flux, NOLD rate (indicative of protein synthesis), and oxidation rate. The LRP 

rate (indicative of protein breakdown) was not altered. Leucine balance improved 

significantly in the infants receiving AA (p < 0.001). The control group had a negative 

  Control Intervention 

N (male/female) 16 (9/7) 16 (8/8) 

Birth weight (kg) 0.949 ± 0.231 1 0.923 ± 0.192 

Gestational age (wks) 27.4 ± 1.4 27.3 ± 1.8 

SD score for weight -0.9 ± 1.4 -1.0 ± 1.3 

CRIB score 2 6 (3-9) 3 5 (2-7) 

Apgar score (5 min) 8 (7-9) 9 (8-9) 

Antenatal corticosteroids (0/1/2 doses) 8/6/2 2/4/10 
1 Mean ± SD (all such values).  
2 CRIB is clinical risk index for babies [8].  
3 Median (25th – 75th percentile) (all such values). 

TABLE I: Clinical characteristics of the infants in the control and intervention groups.  
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balance, whereas the balance in the intervention group was not different from zero. 

The glucose kinetic data are outlined in Figure 4. AA administration did not have any 

significant effects on glucose metabolism with regard to GPR, flux, oxidation, and NOGD 

rate. In both groups, GPR (gluconeogenesis or glycogenolysis) was not completely inhibited, 

despite a mean intake of 5.7 ± 1.2 mg glucose/(kg·min) during the study period. In the 

control group, 75% of the glucose flux was oxidized; in the intervention group, this fraction 

amounted to 84% (p = 0.185). The absolute amount of oxidized glucose did not differ 

significantly between groups (5.3 ± 1.3 mg/(kg·min) and 5.8 ± 1.4 mg/(kg·min), respectively; 

p = 0.462).

FIGURE 2: 13CO2 excretion curve during the leucine (A) and glucose (B) experiments. Enrichments are 

represented in atom percent (AP) as mean ± SD in the control (open circles) and intervention (grey  

circles) groups. 
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  Control Intervention 

Glucose intake (mg/(kg·min)) 5.9 ± 1.3 1 5.2 ± 1.0 

Blood glucose concentration (mmol/L) 6.1 (4.2 – 6.9) 2 4.6 (3.7 – 5.4) 

Nitrogen balance (mg N/(kg·d)) -99 ± 42 151 ± 105 * 

pH 7.31 ± 0.05 7.30 ± 0.07 

Base Excess (mmol/L) -4.4 ± 1.3 -5.4 ± 2.0 

Plasma urea concentration (mmol/L) 6.2 ± 1.5 9.7 ± 2.6 * 

TABLE II: Study parameters on the second day of life in the control and intervention groups. 

1 Mean ± SD (all such values).  
2 Median (25th – 75th percentile) (all such values). 

* Statistically significant; p<0.05. 

FIGURE 3: Leucine kinetics. Data from the [1-13C]leucine infusion protocol (A) on postnatal day 2 in 

infants in the control (open bars, n = 8) and intervention (filled bars, n = 8) groups. Bars represent 

mean ± SD. NOLD represents protein synthesis. LRP represents protein breakdown. *Statistically 

significant, p < 0.05. 

FIGURE 4: Glucose kinetics. Data from the [U-13C6]glucose infusion protocol (B) on postnatal day 2 in 

infants in the control (open bars, n = 8) and intervention (filled bars, n = 8) groups. Bars represent 

mean ± SD. *Statistically significant, p < 0.05. 
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DISCUSSION 

 

We found that AA administration at a relatively high dose from birth onward exerted its 

anabolic effect through increased protein synthesis and not decreased proteolysis. The 

additional energy needed was not derived from glucose, but could, at least partially, be 

derived from a concomitant increase in AA oxidation. 

Most studies in premature infants, including the present, show a positive effect of AA 

administration on protein accretion caused by an increased synthesis rate [3,5,6,13]. Also, in 

the ovine fetus, AA administration does have a beneficial effect on protein accretion by 

increasing protein synthesis while leaving proteolysis unaltered [14]. One study, however, 

investigating a short-term change in nutritional regimen, found a simultaneous decrease in 

proteolysis [15]. 

Anabolism in adults [16,17] and healthy term infants [18,19], unlike in preterm infants 

and ovine fetuses, is predominantly achieved by suppression of proteolysis instead of 

protein synthesis. Possibly, a new balance between protein breakdown and synthesis is 

developing during early life, explaining this observed discrepancy. 

We found a positive nitrogen balance, not only in the intervention group of the 135 

infants studied earlier [1], but also in the intervention group of the leucine cohort in this 

study. However, the leucine balance was not significantly different from zero. Nevertheless, 

there is still a significant correlation between both balance methods (r2 = 0.47, p = 0.003). 

This discrepancy, which we and others noted before [2,3], might be explained by the 

relative abundance of leucine in parenteral AA solutions relative to the occurrence of 

leucine in body protein. Because the rate of protein deposition is controlled by the rate-

limiting AA in the AA solution, all excess AA are oxidized. Leucine in particular might be 

oxidized pro rata more than other AA, explaining a negative leucine balance despite a 

positive nitrogen balance. On the other hand, the difference between the stable isotope and 

nitrogen balance techniques could also be partially due to the tendency to overestimate 

nitrogen retention [20]. 

In our study, early AA administration had hardly any effect on glucose metabolism. 

Glucose oxidation, NOGD, and GPR were unaltered. In adults, AA supplementation, and thus 

provision of gluconeogenic substrates, was found to result in an increased endogenous GPR 

[21]. This contrasts with findings in premature neonates from the study by Poindexter et al. 

[13] and the present study. Like in adults, we expected to find a higher glucose oxidation 

rate for generating the energy needed for extra protein synthesis after AA administration. 

Poindexter et al. [13], using indirect calorimetry, also suggested a higher glucose oxidation 

rate after AA had been introduced, inasmuch as the respiratory quotient increased. 

Surprisingly, we could not detect any difference in oxidation rate. The source of the needed 

extra energy remains, therefore, speculative. Nevertheless, the higher leucine oxidation rate 

might reflect that AA oxidation itself might provide some of the energy needed. Other 

sources of energy could include fatty acids and ketone bodies. 
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In conclusion, AA administration to premature infants from birth onward reverses the 

catabolic state that is otherwise obtained when AA are withheld. Particularly protein 

synthesis rate especially is increased. The additional energy needed for this process is not 

derived from glucose oxidation. 
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ABSTRACT  

 

Background 

Recently we demonstrated that parenteral administration of amino acids (AA) immediately 

after birth to premature infants is safe and results in a positive nitrogen balance and  

increased whole body protein synthesis. However, we did not determine organ specific  

effects; Albumin, produced by the liver, is an important protein, but its concentration is of-

ten low in premature neonates during the first few days after birth. 

Objective 

To test the hypothesis that the albumin fractional and absolute synthesis rates would in-

crease upon AA administration following birth, even at low non-protein energy intake.  

Design 

Ventilated premature infants (<1500 g) received from birth onwards either solely glucose 

(control group, n=7) or glucose and 2.4 g AA/(kg·d) (intervention group, n=8). On postnatal 

day 2, all received a primed continuous infusion of [1-13C]leucine and mass spectrometry 

techniques were used to determine the incorporation of the leucine into albumin. Results 

are expressed as median (25th – 75th pctl). 

Results 

Albumin fractional synthesis rates in the intervention group were significantly higher than 

those in the control group (22.9 (17.6 – 28.0) %/d versus 12.6 (11.0 – 19.4) %/d; p=0.029). 

Likewise, the absolute synthesis rates in the intervention group were higher than those in 

the control group (228 (187 – 289) mg/(kg·d) versus 168 (118 – 203) mg/(kg·d); p=0.030). 

Conclusion 

Amino acid administration increases albumin synthesis rates in premature neonates even at 

low energy intake. 
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INTRODUCTION 

 

Plasma albumin concentration is a routinely measured parameter on the neonatal intensive 

care unit (NICU) and is often found to be low in ill premature infants [1,2]. Albumin, 

produced by the liver, has several important roles in neonatal physiology [3,4]. It is the main 

preserver of the colloid osmotic pressure in plasma (~75%), functions as an anticoagulant, 

and is an important binding transporter of certain metabolites, e.g. bilirubin, free fatty 

acids, and drugs. Moreover, albumin is an important antioxidant because it has specific 

binding sites for copper ions and a free sulfhydryl group, which can scavenge harmful 

reactive oxygen species [5]. The free sulfhydryl group can also bind nitric oxide (NO) forming 

a reservoir for this regulator of vascular tonus [6]. Furthermore, albumin synthesis probably 

provides for temporary ‘storage’ of amino acids (AA) so as to spare them from oxidation [7-

9]. Albumin consists of 585 AA and is the most abundant plasma protein [2], though about 

60% of the total albumin pool is in the interstitial space [10]. 

Albumin metabolism has been studied mainly in healthy adults and in adults during 

various stages of renal or liver disease. Most studies in neonates are limited to static 

properties such as concentrations. Measuring albumin synthesis rates would no doubt 

provide more insight into the dynamics of albumin metabolism and its response to nutrition, 

for example.  

Several authors have described relations between low albumin concentration and 

morbidity and mortality rates among premature neonates [11,12]. In the fasting state, 

albumin concentrations drop 2 to 3 g/L in the first 24 hours after birth [2]. As there is 

discussion about benefit and safety of exogenous albumin infusions in premature infants [13

-15], stimulating endogenous synthesis via adequate nutritional support might be an 

attractive alternative. The latter strategy requires good knowledge of premature infants’ 

protein metabolism. Studies using stable isotopes have provided insights into anabolism and 

catabolism in general [16-18]. For one, AA administration directly after birth stimulates 

whole body protein synthesis rather than depressing protein breakdown [16]. Studying 

whole body metabolism is limited, however, in that it only provides information on the 

average of all metabolic processes in the body rather than organ specific changes. It is 

unknown whether exogenous administration of AA also stimulates organ specific protein 

synthesis, e.g. albumin, in premature infants. Albumin synthesis can be quantified by 

measuring the incorporation rate of a stable isotope labeled AA into plasma albumin. 

We report a study in preterm infants aimed at determining the effect of AA 

administration starting directly after birth on subsequent albumin synthesis. We 

hypothesized that AA added to glucose would increase albumin synthesis rates. 
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SUBJECTS AND METHODS 

 

SUBJECTS 

Patients were eligible for the study when they were in the Sophia Children’s Hospital, 

had a birth weight less than 1500 g, and required an arterial line for clinical purposes. 

Exclusion criteria were known congenital abnormalities, chromosome defects, and 

metabolic, endocrine, renal or hepatic disorders. The cohort here described is the same as 

in an earlier study on whole body leucine metabolism [16]. It is a subset of infants 

participating in a large trial on AA administration in the immediate postnatal phase [19] and 

were selected if born within a predefined time span during that study and if they met 

current inclusion criteria. The study was designed as a randomized open trial and was 

performed in the NICU of the Erasmus MC – Sophia Children’s Hospital, Rotterdam, the 

Netherlands. The study was investigator initiated with no funding from industry. The 

protocol was approved by the Erasmus MC Medical Ethical Review Board and written 

parental consent was obtained prior to study. 

EXPERIMENTAL DESIGN 

Within two hours after birth, infants were randomly assigned to receive during the first 

two postnatal days either glucose only (control group, n=7) or glucose and 2.4 g protein/

(kg·d) as AA (Primene 10%, Baxter, Clintec Benelux NV, Brussels, Belgium) (intervention 

group, n=8). 

The administration of glucose solution or the AA and glucose solution was accomplished 

by continuous infusion. Lipids and/or (minimal) enteral feedings were withheld during the 

study period. None of the infants received exogenous albumin infusions during the study. 

The hospital’s pharmacy dissolved L-[1-13C]leucine (99% enriched, Cambridge Isotope 

Laboratories, Andover, MA, USA) in normal saline and tested it for sterility and pyrogenicity. 

We infused it (prime: 15 μmol/kg; continuous 15 μmol/(kg·h)) with the use of an infusion 

pump (Perfusor fm; B Braun Medical B.V., Oss, the Netherlands).  

Arterial blood samples (0.4 mL) were drawn before the isotope infusion (baseline) and 

after 4 and 5 hours of infusion. The blood samples were immediately put on melting ice and 

centrifuged (2500 × g, 10 min, 4 °C), after which the plasma was stored at -80°C until 

analysis. 

ANALYTICAL METHODS 

To isolate plasma albumin [20], samples (50 mL plasma) were deproteinized and washed 

with 10% trichloroacetic acid. To the protein pellet, water and 1% trichloroacetic acid in 96% 

ethanol were added and the sample was centrifuged. The supernatant was mixed with 

26.8% ammonium sulfate to precipitate albumin overnight. The pellet was then dissolved in 

0.3 mol NaOH/L and again precipitated with 2 mol perchloric acid/L. After washing, the new 

pellet was redissolved in 6 mol HCl/L and hydrolyzed for 24 hours, after which the acid was 

dried under nitrogen and dissolved in water. AA were isolated using a cation-exchange 

column, derivatized with ethylchloroformate, and enrichment was measured on a gas 
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chromatograph – combustion – isotope ratio mass spectrometer (GC-C-IRMS; Delta XP; 

Thermo Electron, Bremen, Germany) as previously described [21]. 

As albumin precursor we used the plasma [1-13C]�-ketoisocaproate (�-KIC, the keto acid 

of leucine) enrichment at plateau which had already been measured as described in our 

preceding paper [16]. While liver amino acyl-tRNA enrichment forms the true precursor, its 

use requires tissue biopsies and technically demanding assays. Nevertheless, �-KIC 

enrichment adequately represents leucyl-tRNA enrichment and is valuable in this type of 

research [22,23]. Plasma albumin concentrations were routinely measured on a Roche 

Hitachi 912 (Roche Diagnostics, Basel, Switzerland). 

CALCULATIONS 

The FSR reflects the fraction of the intravascular albumin pool that is renewed per unit of 

time (%/d) and can be calculated as follows: 

 

 

where Eleu–alb is the enrichment in mole percent excess (MPE) of incorporated leucine in 

albumin at t2 and t1 (at 5 and 4 hours after the start of infusion, respectively) and EKIC is 

the mean enrichment in MPE of the precursor, i.e. plasma �-KIC, at both time points. 

The ASR represents the absolute amount of albumin that is produced per unit of time  

(mg/(kg·d)), and can be calculated as follows: 

 

where Calb is the plasma albumin concentration in g/L, volbl is the infant’s total blood 

volume in mL (assumed to be 75 mL/kg body weight [24,25]), (1 – Ht) is the fraction of 

blood which is plasma, and weight is birth weight in kg.  

We also calculated the contribution (%) of albumin ASR in relation to whole body protein 

synthesis in percentage based on previously measured leucine turnover data according to 

the following formula: 

 
where NOLD is the non oxidative leucine disposal representing whole body protein 

synthesis in μmol/(kg·h) and which was calculated in an earlier study by our group [16]. 

Furthermore, 0.104 represents the fraction of leucine residues in albumin on a weight 

basis, 131.2 is the mole mass of leucine, and 24 and 0.001 convert to day and milligram, 

respectively. 

STATISTICS 

Calculations were made with Microsoft Office – Excel software (version 2000; Microsoft 

Corp, Redmond, WA, USA) and all statistical tests were done with GraphPad Prism software 

(version 4.0; GraphPad, San Diego, CA, USA). Differences between control and intervention 

groups were tested by Mann-Whitney tests unless otherwise stated. Values are expressed 

as median (25th – 75th percentile) or as mean (SD) and significance level was set at p<0.05. 

ASR× 0.104
 =

NOLD×131.2×24 × 0.001
contribution ×100%

12leu-alb,t leu-alb,t

1KIC 2

E -E 24
FSR = × ×100%

E t - t

-1
alb blASR = FSR×C × vol ×(1-Ht)× weight
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RESULTS 

 

Fifteen premature infants were studied: seven in the control group and eight in the 

intervention group. All infants were mechanically ventilated. Birth weight, gestational age, 

SD score for weight [26], sex, disease scores (Apgar and CRIB [27]), and antenatal steroid 

use to improve lung maturation were not significantly different between the groups  

(Table I). The birth weights of one infant in the control group and two infants in the 

intervention group were below 2 SD when related to gestational age. Blood gas parameters, 

whole blood glucose concentrations, and non-protein calorie intakes (only glucose) on the 

second day of life did not differ between groups (Table II). Because the intervention group 

received AA, the plasma urea concentration and the nitrogen balance were higher in these 

infants. 

The mean leucine enrichments in albumin in the control group were 0.243 (0.12) and 

0.289 (0.13) mole percent excess (MPE) after 4 and 5 hours of infusion, respectively.  In the 

intervention group, enrichments were 0.201 (0.050) and 0.249 (0.050) MPE. The mean �-KIC 

enrichments at plateau were 7.16 (0.56) MPE in the control group and 5.18 (0.46) MPE in 

the intervention group. 

The intervention group showed significantly higher albumin FSR than the control group 

(Figure 1). Albumin plasma concentration was measured in 5 out of 7 infants in the control 

group and in 6 out of 8 infants in the intervention group; it was significantly higher in the 

intervention group (Figure 2). The calculated ASR was also higher in the intervention group 

(Figure 3). Because we had also obtained leucine turnover data [16], we were able to 

compare the albumin ASR with the whole body protein synthesis rate. The median NOLD (a 

measure of protein synthesis) increased from 130 (122 – 172) to 185 (169 – 203) μmol 

leucine/(kg·h) upon AA administration (p=0.030). The proportion of leucine used for 

albumin synthesis relative to whole-body NOLD was approximately 4% in both subject 

groups (Figure 4), which implies that AA administration stimulates albumin synthesis and 

whole-body protein synthesis at a similar rate. 

  Control Intervention 

No. (male/female) (n) 7 (2/5) 8 (4/4) 

Weight (kg) 0.960 (0.780 – 1.080) 2 0.940 (0.770 – 1.070) 

Gestational age (wks) 26.7 (26.4 – 28.9) 26.9 (26.6 – 29.9) 

SD-score for weight [26] (SD) -0.53 (-0.75 – -0.11) -1.14 (-2.22 – -0.19) 

CRIB score [27] 5 (2 – 8) 3 (1.3 – 5) 

5 min Apgar score 9 (7 – 9) 9 (8 – 10) 

Antenatal corticosteroids (no/yes) (n) (2/5) (1/7) 

TABLE I: Clinical characteristics. 1 

1 There were no statistical differences between groups (Mann-Whitney). 
2 Median (25th – 75th percentile) (all such values). 
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 Control (n=7) Intervention (n=8) 

Non-protein energy intake (kcal/(kg·d)) 33.3 (30.7 – 36.9) 31.2 (26.0 – 32.9) 

AA intake (g/(kg·d)) * 0 2.3 (2.3 – 2.4) 

Nitrogen balance (mg N/(kg·d)) * -110 (-133 – -56) 156 (116 – 226) 

Plasma urea concentration (mmol/L) * 6.2 (5.8 – 6.9) 9.7 (7.6 – 11.8) 

Glucose concentration (mmol/L) 4.9 (3.1 – 6.2) 3.9 (3.0 – 4.8) 

pH 7.31 (7.25 – 7.33) 7.31 (7.28 – 7.38) 

Base excess (mmol/L) -5 (-6 – -4) -6 (-6 – -3) 
1 All values are median (25th – 75th percentile). 

* Statistically significant, p<0.05 (Mann-Whitney). 

TABLE II: Study parameters on the second day of life. 1 

FIGURE 1: Albumin FSR in %/d in the control (n=7) 

and intervention (n=8) groups. Presented as 

median and interquartile range. The intervention 

group had a significant higher albumin FSR 

(p=0.029; Mann-Whitney). 

FIGURE 2: Albumin plasma concentration in g/L in 

the control (n=5) and intervention (n=6) groups. 

Presented as median and interquartile range. The 

intervention group had a significant higher plasma 

albumin concentration (p=0.030; Mann Whitney). 

FIGURE 3: Albumin ASR in mg/(kg·d) in the control 

(n=5) and intervention (n=6) groups. Presented as 

median and interquartile range. The intervention 

group had a significant higher albumin ASR 

(p=0.030; Mann Whitney). 
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DISCUSSION 

 

Our data are consistent with the assumption that parenteral AA administration in 

premature neonates stimulates albumin synthesis. For on the second day of life albumin 

FSR, ASR, and plasma albumin concentrations were significantly higher in premature infants 

who had received parenteral AA from birth onwards. 

Plasma albumin concentration is governed by four processes; changes in synthesis, 

degradation, intravascular space, and transcapillary escape. In the present study, we were 

not able to measure the three latter processes, but we speculate that increased synthesis is 

the primary cause for the higher plasma concentration noted. Alternatively, a rise in 

albumin synthesis does not automatically coincide with a parallel rise in concentration. 

Albumin is a negative acute-phase protein, which means that its concentration will fall 

during an inflammatory event. Such falls have been described during cholecystitis [28], 

hemodialysis [29], cancer [30], and in head trauma patients [31], despite a coinciding rise in 

albumin FSR. Cytokines might be responsible for this paradoxical increase [29,32]. The 

lowered concentrations probably result from concomitant increases in catabolic rate and 

transcapillary escape. 

The albumin FSR in healthy adults is about 6-8 %/d [8,9,32-36] and seems unresponsive 

to intravenous nutrients [37]. Meals, however, will increase albumin synthesis [7,8,38]. A 

recent study showed that the protein portion of meals is the effective component 

responsible for this increase [9]. Adults suffering from chronic hemodialysis were also found 

sensitive to nutrition, as albumin FSR improved after intradialytic administered nutrition 

[20]. Overall, it seems that albumin synthesis in adults is more responsive to gastro-

intestinal nutritional uptake than intravenous nutrition, as was also demonstrated after 

surgery [39] and in rats [40]. Our findings in human neonates and findings in young piglets 

suggest that other metabolic mechanisms might be regulating albumin synthesis in younger 

individuals, whose albumin synthesis is also responsive to parenteral nutrition [41,42]. 

Consistent with the general finding that younger individuals have higher metabolic rates 

than adults, higher albumin FSR, ranging from 15 to 20 %/d, have been found in 12-month-

old infants [43,44]. Bunt et al found values of 14 %/d in fasted premature infants with a 
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FIGURE 4: Contribution in % of albumin synthesis 

(ASR) to whole body protein synthesis (NOLD) in 

the control (n=5) and intervention (n=8) groups. 

Presented as median and interquartile range. There 

was no difference between groups (Mann-

Whitney). 



albumin synthesis rates upon early amino acid administration 

CH
A

PT
ER

 IV
 

73 

gestational age of 28 weeks on the first postnatal day [21]. Yudkoff et al calculated a mean 

albumin FSR of 12%/d in parenterally fed, premature neonates with appropriate size-for-

gestational-age (which was 28 weeks), after approximately 1 week of life [45]. These figures 

correspond well with the synthesis rates we observed in this study. Yet, unlike Bunt et al 

[21], we did not find clear correlations between the FSR and SD-scores for weight related to 

gestational age. This might have been the result of reduced power in our study or 

interference by our nutritional intervention. 

We calculated that albumin constitutes about 4% of all proteins synthesized in the body. 

Besides, in healthy humans and rats, it was estimated that of all proteins synthesized in the 

liver, including those not excreted but produced for intrahepatic maintenance, 15% was 

albumin [34,38]. Combining these figures reveals that the liver would contribute over 25% 

to whole body protein synthesis. Normal hepatic functioning would therefore seem to be of 

vital importance. Apart from all the important roles of albumin mentioned in the 

introduction, increasing the albumin FSR is also interesting from a nutritional point of view. 

A higher albumin ASR makes premature infants less vulnerable to catabolic insults through 

the temporary storage of AA in albumin, preventing excess AA from being oxidized. Later, 

during low protein intake or increased demands, body protein stores can be spared albeit at 

the cost of albumin breakdown, thereby releasing free AA. 

Especially in the first 24 hours after premature birth, non-protein energy intake is usually 

very low (~30-35 kcal/(kg·d)) and less than desirable. Recently, energy expenditure was 

measured in premature infants during the first few days after life having comparable caloric 

intakes [46]. Energy expenditure was estimated at 29-35 kcal/(kg·d), thus leaving, at an 

intake of approximately 30 kcal/(kg·d), no calories for net energy storage or growth. As a 

consequence, AA efficacy in terms of anabolism is usually moderate in that a large fraction 

will be irreversibly oxidized [16]. Carbohydrate intake is limited due to potential 

hyperglycemia and fluid restrictions. Parenteral lipids are also often withheld in the first 24 

hours after premature birth, as neonatologists fear pulmonary disease, hypertriacyl-

glycerolemia, and high free fatty acid concentrations leading to competition with bilirubin 

binding on albumin [47]. Albumin is the main transport vehicle for fatty acids to and from 

the tissues according to metabolic demands. Notwithstanding the fact that lipids in blood 

are largely in the form of triacylglycerols, the turnover and utilization of fatty acids bound to 

albumin is high, thus making fatty acids an important contributor to lipid metabolism [48]. 

Providing AA directly after birth increases albumin synthesis and subsequent binding 

capacities, which theoretically improve the tolerance of intravenous lipids. Apart from the 

advantage of delivering essential fatty acids, the high caloric content makes immediate 

commencement of lipids after birth beneficial by improving the energy balance. This in turn 

might stimulate protein synthesis even more. A recent study with high dose AA and lipids 

initiated immediately after birth, demonstrated high anabolic use of AA, probably due to a 

higher energy availability [49]. We would like to speculate that an increased albumin 

synthesis rate was at least partially responsible for the increased tolerance of lipids. More 
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clinical trials are required to determine efficacy and safety of starting parenteral 

administration of lipids together with high dose AA immediately after birth to premature 

infants. 

A potential limitation of this study is that the hydrolyzed protein pellet may not have 

contained pure albumin. Jacobs et al earlier reported that after simple ethanol extraction 

about 8% of proteins were contaminants [50]. By adding ammonium sulfate we aimed to 

eliminate some of the contaminating proteins [20]. However, even if purification of the 

protein pellet was still incomplete, the vast majority must have been albumin.  

In conclusion, we have shown that introducing AA immediately after birth to premature 

neonates stimulates not only whole body protein synthesis, but also albumin synthesis. This 

finding might have important implications in view of the vital roles of albumin, among which 

serving as an antioxidant and binding bilirubin and free fatty acids. Improving albumin 

synthesis might, therefore, have major impact on later outcome. 
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INTRODUCTION 

 

Since the early 1970s the routine availability of parenteral nutrition has enabled the 

administration of lipids and amino acids (AAs) to preterm infants in the neonatal phase. 

However, administration of first generation AA solutions resulted in serious metabolic 

disturbances, impeding their use in preterm infants, and impacting on nutritional regimens 

up till the present day. A large number of studies has been conducted since, on what is 

described as aggressive early AA administration. In this journal in 2005, we published data 

of a randomized clinical trial, in which we investigated safety and efficacy aspects of early 

AA administration in a group of 135 very low birth weight (VLBW) infants [1]. Our results 

reconfirmed metabolic safety of early AA administration while a catabolic state was 

converted into anabolism. 

Although it is known that postnatal growth restriction may have long-lasting adverse 

effects, such as short stature and compromised neurodevelopmental [2,3], evidence for 

improved long-term outcome as a result of early AA administration is limited [4]. In fact, 

recently some concerns have been raised about safety and efficacy of early aggressive AA 

administration [5-8].  

In this short report, we describe neurodevelopmental outcome at two years of age in 

our previous cohort of 135 very low birth weight infants. We hypothesized that early AA 

administration at a dose of 2.4 g/(kg·d) does not negatively affect neurologic development.  

 

 

METHODS 

 

In our initial study we included 66 infants with a birth weight below 1500 g who received 

AAs (2.4 g/(kg·d)) directly from birth onwards (intervention group), and 69 infants who 

received glucose only for the first two days of life (control group) [1]. Of the 135 infants, 132 

had a gestational age less than 32 weeks and were therefore considered eligible for 

neurodevelopmental follow-up and anthropometric assessment at 2 years of corrected age. 

All parents gave written permission to use the follow-up data for statistical analyses. 

The prevalence of handicaps, such as cerebral palsy, visual and hearing impairments was 

documented. The Mental Developmental Index (MDI) was assessed by the Bayley Scales of 

Infant Development (BSID), 2nd edition. Furthermore, anthropometric data were recorded. 

Data were analyzed using the statistical package SPSS version 15.0 (SPSS Inc, Chicago, 

USA). Data are described as mean ± SD. A p-value <0.05 was considered statistically 

significant. 
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RESULTS 

 

In the initial study we included 132 infants with a gestational age less than 32 weeks. 

Eighteen infants died in the neonatal phase (ten infants in the control group; eight infants in 

the intervention group). Twelve of the 114 surviving children were lost to follow-up (eight in 

the intervention and four in the control group). Consequently, in 102 children (89%, 47 in 

the intervention and 55 in the control group), follow up data were available. There were no 

differences in demographic data except for a trend towards more males in the intervention 

and more females in the control group (Fisher's Exact Test p=0.05).  

Table I shows neurologic outcome at two years of age. No differences were observed 

between the intervention and control group as a whole. In boys but not in girls, the 

percentage of handicaps (e.g. visual/hearing deficiency, cerebral palsy and/or MDI<70) in 

the intervention versus the control group tended to be lower (p=0,10) (Figure 1). Table II 

shows anthropometric data of the included children. Again, no differences were observed 

between groups. 

 

 

DISCUSSION 

 

In the past decade, a large number of studies have been published on early AA 

administration and its beneficial effects in terms of promoting anabolism in the early 

postnatal phase. Recently we demonstrated additional benefits upon early AA  

 

 Control 

(n=55) 

Intervention 

(n=47) 

Total 

(n=102) 

Any handicap 1 Absent 44 (80%) 42 (89%) 86 
Present 11 (20%) 5 (11%) 16 

Neurology Normal 47 (86%) 38 (81%) 85 
Mildly abnormal 4 (7%) 8 (17%) 12 
Cerebral palsy 4 (7%) 1 (2%) 5 

Visual deficiency Absent 53 (96%) 47 (100%) 100 
Present 2 (4%) 0 (0%) 2 

Hearing deficiency Absent 54 (98%) 46 (98%) 100 
Present 1 (2%) 1 (2%) 2 

Mental Developmental 

Index (BSDI II ) 2 
mdi >85 36 (77%) 34 (76%) 70 

mdi 85-70 6 (13%) 8 (18%) 14 
mdi <70 5 (11%) 3 (7%) 8 

TABLE I: Neurodevelopmental outcome at two years of age in infants in the control and intervention 

groups. 

1 visual/hearing deficiency, cerebral palsy or MDI<70. 
2 visual/hearing deficiency and cerebral palsy (n=8) and refusals (n=2) excluded. 
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administration in terms of increased albumin and glutathione synthesis rates [9,10]. In our 

study, however, there was no benefit in terms of growth at two years of age. In most studies 

anthropometric measurements improve at discharge after early or high AA administration 

[11-14]. Measured effects at later age are more sparse. Poindexter and colleagues, 

however, for example found that head circumference measured in 1000 infants at 18 

months corrected age was larger in boys in the high dose amino acid supplemented group, 

although no effects could be observed in mental or psychomotoric indices [13]. In addition, 

favorable effects of a rapid postnatal weight gain on neurodevelopment, as assessed by 

BSID, were found in a study of Latal-Hajnal et al. in 219 VLBW infants [3]. 

In the exploratory study described here, we demonstrate that providing 2.4 g AAs/(kg·d) 

seems safe with respect to the handicap rate at two years of age. On the other hand, no 

statistically significant clinical benefits were demonstrated as yet, although there were 

many theoretical advantages of being anabolic during the early postnatal phase. 

Neurodevelopmental outcome in preterm infants is, however, dependent on multiple 

variables, of which only one is nutrition. It is therefore very difficult to determine whether 

control intervention control intervention
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FIGURE 1: Absence (light-grey) or presence (dark-grey) of handicaps (visual/hearing deficiency, 

cerebral palsy and/or MDI<70) in boys and girls in the control versus the intervention group at two 

years of age. Numbers inside bars indicate the total number of infants evaluated. 

  Control (n=50) Intervention (n=44) 

Weight (kg) 11.4 ± 1.68 11.6 ± 1.83 

Head circumference (cm) 48.2 ± 1.74 48.5 ± 1.85 

�SD weight 2 y minus birth (SD) -0.112 ± 1.39 0.122 ± 3.10 

�SD head circumference 2 y minus birth (SD) -0.30 ± 1.52 -0.04 ± 1.58 

TABLE II: Weight and head circumference at two years of age in infants in the control and 

intervention groups. 
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deprivation of two days of AAs will have a major clinically measurable effect on long-term 

outcome.  

In general, girls tend to have a more favorable neurodevelopmental outcome than boys, 

which is also observable in our data. Furthermore, the handicap rate in boys in the 

intervention group tended to be lower than in boys in the control group. The number of 

studied children was relatively small, however and the age of 24 months is too young for 

definitive conclusions regarding neurocognitive outcome at a later age. 

In conclusion, in this exploratory study, no negative effects of early AA administration  

on postnatal growth and handicap rate were found. Nevertheless, we strongly encourage  

a nutritional strategy including early AA administration, seeing its beneficial effects in  

the early neonatal phase. Long term follow-up is, however, mandatory to define whether 

early aggressive AA administration will have a, perhaps subtle, effect on long-term, 

neurocognitive outcome.  
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ABSTRACT 

 

Background 

Despite nutritional intervention, albumin concentrations are often low in critically ill 

premature neonates.  

Objective 

Our aim was to quantify albumin synthesis rates during early life under physiologic 

circumstances. Human fetuses thereby reflect the developmentally related optimal 

condition.  

Design 

Pregnant women undergoing elective cesarean section received three different labeled 

amino acid infusions starting at different times prior to surgery. Using mass- spectrometry 

techniques, this novel model enabled us to quantify fetal albumin synthesis from a single 

blood sample taken from the umbilical cord after cesarean delivery. The fractional synthesis 

rate reflects the fraction of the albumin pool that is daily renewed. The absolute synthesis 

rate is the absolute amount of albumin that is daily synthesized. Results are expressed as 

median (25th-75th percentile).  

Results 

We studied 8 fetuses at 29.9 (28.4-35.4) weeks gestation and 8 fetuses around term. 

Fractional synthesis rates in premature fetuses (17.5 (12.1-24.4) %/d) were higher (p=0.02) 

than in mature fetuses (10.4 (9.1-13.7) %/d). Absolute synthesis rates were also higher 

(p=0.02) in premature than in mature fetuses: 280 (227-365) versus 205 (184-238)  

mg/(kg·d).  

Conclusions 

On a weight basis, albumin synthesis rates in premature fetuses were higher than in fetuses 

at term and higher the rates previously found in neonates after preterm birth. Considering 

that the premature fetal liver has the capacity to synthesize albumin at a high rate, the 

observed hypoalbuminemia in premature infants therefore would seem to suggest that 

current (nutritional) therapies fail to meet requirements necessary to sustain an optimum in 

albumin synthesis rates. 
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INTRODUCTION 

 

Albumin concentrations are considered a marker of nutritional status; albumin synthesis 

rates a measure of liver activity. Albumin is the major export protein produced by the liver 

and forms more than half of the total plasma protein mass. Albumin has been described as 

“the body’s tramp steamer, shuttling cargo of various kinds between ports of call” [1]. Its 

load includes bilirubin, cysteine, free fatty acids, calcium, and drugs. Besides, albumin 

preserves the colloid osmotic pressure and is an important antioxidant.  

Recently, we determined albumin synthesis rates in premature infants immediately after 

birth and who received only glucose [2]. These rates almost doubled in response to 

additional intravenous amino acid administration [3]. Despite this increase, plasma albumin 

concentrations were still very low. However, having knowledge of albumin synthesis rates 

during early life under physiologic circumstances, i.e. pregnancy, would enable us to relate 

the intrauterine with the extrauterine synthesis rates. To this aim, we employed a stable 

isotope model allowing measurements on the human fetal albumin synthesis rates.  

It has been long known that animal [4,5] and human [6] fetuses are capable of 

endogenous albumin synthesis from early pregnancy on. Besides, all albumin in the fetus is 

from fetal origin since albumin does not cross the hemochorial placenta as demonstrated  

in the rat [7], guinea pig [8], and the in vitro dually perfused human placenta [9]. But  

also after intravenous injection of radioiodinated albumin to pregnant women, only trace 

amounts were found in umbilical cord blood [10,11]. Furthermore, fetal plasma albumin 

concentrations at term are often higher than in maternal plasma [12,13], which suggests no 

passive materno-fetal transport. In addition, normal concentrations of fetal plasma albumin 

were found during mild or severe maternal hypoalbuminemia [13,14].  

The only available kinetic information on albumin synthesis, however, is in the ovine 

fetus, where the albumin fractional synthesis rates (FSRs) were determined [15,16]. The 

albumin FSR reflects the fraction of the intravascular albumin pool that is renewed per unit 

of time. The FSR is usually calculated by infusing one stably labeled amino acid and 

obtaining multiple blood samples at consecutive time points. From the increase of tracer 

incorporation in albumin over time, one can calculate its synthesis rate. In humans, 

however, the insertion of catheters in the fetus or umbilical cord for repetitive blood 

sampling is impossible on ethical grounds. Obtaining blood from both the umbilical vein and 

artery is only possible at birth. We therefore modified the staggered infusion protocol 

proposed by Dudley and colleagues [17] into a simplified model enabling us to measure the 

synthesis rate of albumin from a single blood sample taken at birth.  
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SUBJECTS AND METHODS 

 

SETTING AND SUBJECTS 

The study was performed at the Mother and Child Center of the Erasmus MC – Sophia 

Children’s Hospital after approval by the Dutch (CCMO, The Hague) and the institutional 

medical ethical review board. Pregnant women scheduled to undergo elective cesarean 

section (repeat, breech, or multiple pregnancy) were eligible. We aimed to include fetuses 

who were close to term as well as fetuses who were still premature. Exclusion criteria were 

obesity (preconceptional body mass index > 30 kg/m2), diabetes, or known fetal anomalies. 

Participants gave written consent after having been fully informed about the study. 

EXPERIMENTAL DESIGN 

L-[1-13C,15N]leucine, L-[1-13C]phenylalanine, and L-[U-13C5]valine were bought from 

Buchem BV, Apeldoorn, The Netherlands (local distributor of Cambridge Isotope 

Laboratories, Andover, MA, USA) (all 99% enriched and tested for sterility and pyrogenicity). 

Our hospital pharmacy dissolved the isotopes in 0.9% saline after which the solution was 

filtered (0.2 μm) and sterilized. Tests were performed to reassure the correct identity, 

concentration, and a sterile and pyrogen free product.  

Pregnant women received primed continuous stable isotope infusions of L-[1-13C,15N]

leucine (8 μmol/(kg·h)), L-[1-13C]phenylalanine (5 μmol/(kg·h)), and L-[U-13C5]valine (5 μmol/

(kg·h)), starting at least 4, 3, and 2 hours prior to planned surgery, respectively. The priming 

doses were half of the hourly doses. Tracers were given in a forearm vein with three 

separate Perfusor® fm infusion pumps (B|Braun Medical B.V., Oss, the Netherlands) until 

surgery was completed.  

Maternal blood was sampled before the tracer infusions had begun (baseline) and from 

a contralateral maternal forearm vein immediately before anesthesia started. Fetal blood 

was sampled from both the vein and arteries of a doubly clamped segment of the umbilical 

cord immediately after delivery. After collection, blood samples were centrifuged (2000×g) 

in heparin tubes and plasma was frozen at -80°C until analysis. 

BLOOD SAMPLE ANALYSES 

To isolate albumin from plasma, we used anti-human serum albumin affinity resin  

kits (Vivascience – Sartorius Group, Hannover, Germany). Fetal and adult albumin are 

indistinguishable [18]. Enclosed spin columns were filled with 400 μL affinity resin and 25 μL 

of thawed plasma. According to the included protocol, the column was washed three times 

with a tris-buffer and albumin was thereafter eluted from the affinity resin with 0.1 mol 

glycine/L (acidified to pH 2.5 with HCl). Eluted albumin was precipitated with 750 μL of 2 

mol HClO4/L. A washing step was performed with 0.2 mol HClO4/L by resuspending and 

precipitating the pellet again. The protein pellet was then hydrolyzed in 140 μL of 6 mol HCl/

L for 22 hours at 110°C. Following hydrolyzation, the acid was evaporated using a speedvac, 

after which the dried amino acids were dissolved in H2O. Samples were derivatized using 

propylchloroformate (commercial kits: Phenomenex for hydrolysates, EZ:Faast, Bester BV, 
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Amstelveen, The Netherlands) and measured in triplicate on a gas chromatograph – 

combustion – isotope ratio mass spectrometer (Delta XP, Thermo Electron, Bremen, 

Germany) [2].  

The enrichments of the true albumin precursors (intrahepatic amino-acyl tRNA) can 

obviously not be measured in the human fetus or mother. Because keto acids are 

intracellularly derived metabolites of amino acids, their enrichment has been advocated as a 

surrogate precursor [19,20]. However, keto acids are also transported transplacentally and 

it is thus not possible to discriminate whether the keto acids have undergone intracellular 

metabolism in the maternal, placental, or fetal compartment. Therefore, we chose to use 

plasma amino acid enrichments as the albumin precursors. As keto acid enrichment can only 

be lower than amino acid enrichment, the use of the latter results in a slight 

underestimation of synthesis rates.  

Amino acids were extracted from plasma and derivatized using the same Phenomenex 

kits which were also used for product (albumin) sample preparation. Enrichments of plasma 

leucine, phenylalanine, and valine were measured in triplicate on a gas chromatograph – 

combustion – isotope ratio mass spectrometer as well. Plasma albumin concentrations in 

maternal and umbilical plasma were measured on a Roche Hitachi 917 (Roche Diagnostics, 

Basel, Switzerland). Hematocrit was measured on an Advia 120 (Bayer Diagnostics, 

Leverkussen, Germany).  

CALCULATIONS 

Baseline enrichment in the fetus could not be measured but was considered to be 

identical to that in the pregnant woman since the fetus consists of what the mother eats.  

The fetal liver is perfused with blood directly from the umbilical vein (70%) and with 

blood which first passes the ductus venosus and then reenters the liver through the portal 

vein (20%) and hepatic arteries (10%) [21,22]. Blood from the portal vein and hepatic 

arteries has theoretically the same composition as in the umbilical arteries. Thus, the fetal 

liver is perfused with blood from both umbilical cord vessels. However, plasma amino acid 

enrichment in the umbilical arteries is slightly lower than that in the umbilical vein due to 

isotopic dilution by unlabeled amino acids released from fetal protein breakdown. 

Therefore, we calculated the precursor enrichment as the mean of umbilical venous and 

arterial plasma enrichment.  

The enrichment of amino acids incorporated in fetal albumin was very similar in blood 

from the umbilical vein and arteries, which indicates no materno-fetal albumin transport. 

Nevertheless, we averaged the values. In each subject, the separate leucine, phenylalanine, 

and valine product/precursor enrichment ratios were plotted in a graph against the moment 

the corresponding infusion was started (Figure 1). Using computer software, the slope and 

the correlation coefficient of the linear trend line were calculated. The FSR was then derived 

using the following equation: 

FSR (%/d) = slope of trend line × -1 × 24h × 100% 

The absolute synthesis rate (ASR) represents the absolute amount of albumin that is 
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produced per unit of time and can be calculated with the following equation: 

ASR (mg/(kg·d)) = FSR × Calb × volpl × weight-1 

where Calb is the plasma albumin concentration in g/L, volpl is the plasma volume in mL, 

and weight is the maternal actual weight or infant’s birth weight in kg. Maternal plasma 

volume was estimated from data by Whittaker et al. [23] according to the following 

equation: plasma volume (mL) = 36.1 × height (cm) + 11.0 × weight (kg) – 3029. Fetal 

plasma volume (including placental and umbilical blood) was calculated by multiplying  

(1-hematocrit) with an estimated 105 mL blood/kg fetal body weight [24].  

In our model, the use of one single amino acid with three different isotopomers (e.g. [1-13C]

leucine, [D7]leucine, and [18O]leucine) could theoretically be preferred over infusing three 

different labeled amino acids as in our study. However, since the enrichment of 

incorporated amino acids in albumin is very low (ranging from 0.01 mole percent 

enrichment (MPE) for valine to 0.17 MPE for leucine in our study), enrichments can only be 

analyzed accurately by using GC-C-IRMS. Measuring hydrogen and oxygen on a GC-C-IRMS is 

technically very challenging. Besides, leucine with an oxygen label was at time of the study 

prohibitively expensive. Unfortunately, [15N]leucine could not be used because of label loss 

due to transamination. Owing to these technical difficulties and financial constraints, the 
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FIGURE 1: Study design. Pregnant women received three different stable isotopically labeled amino 

acid infusions starting at different times prior to cesarean section. In maternal and umbilical cord 

blood, sampled at t=0, we measured the product/precursor enrichment ratio of each of the three 

infused amino acids. These ratios were plotted in a graph against the moment the corresponding 

isotope infusion was started. As labeled leucine had the longest infusion time, its incorporation into 

albumin will be highest. The slope of the trend line determines the albumin FSR. 
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single amino acid strategy could not be utilized. We thus have chosen to use carbon labels 

only, which necessitates using different amino acids when measuring with a GC-C-IRMS. In 

addition, because of anticipated low enrichment in the last infused amino acid, valine was 

uniformly labeled to increase measurement accuracy. 

STATISTICS 

Calculations were made with Microsoft Office - Excel software (version 2007; Microsoft 

Corp, Redmond, WA, USA) and statistical tests were done in GraphPad Prism software 

(version 4.0; San Diego, CA, USA). Because of our small groups, normality distribution of our 

data could not be determined or assumed. Therefore non-parametric data analysis was 

performed. Consequently, values are expressed as median (25th – 75th percentile) and  

Mann-Whitney tests were used to detect statistical differences. Significance level was set at 

p<0.05.  

 

 

RESULTS 

 

We included eleven pregnant women, of whom eight delivered at term, one at 31 weeks 

gestation, one delivered a triplet at 35 weeks (two identical, one non-identical), and one 

delivered a quadruplet at 28 weeks (all non-identical). We thus studied 16 fetuses, classified 

into two groups: premature (<37 weeks gestation) and mature. Maternal age, 

preconceptional and current body mass index, and parity are shown in Table I. Descriptive 

characteristics of fetuses/neonates, which include birth weight, gestational age, birth 

weight Z-score [25], sex, umbilical pulsatility index, and Apgar score are shown in Table II.  

Table III and Table IV show the enrichments of the three infused labeled amino acids 

both incorporated in albumin and free in plasma, respectively. Figure 2 displays the trend 

lines through the leucine, phenylalanine, and valine product/precursor enrichment ratios in 

each studied subject. The median linear regression coefficients (r2) of these trend lines were 

0.995 (0.985 – 0.999) in pregnant women, 0.988 (0.981 – 0.993) in premature fetuses, and 

0.996 (0.985 – 0.998) in mature fetuses. In Figure 3, the maternal, premature fetal, and 

mature fetal albumin FSRs are outlined. They were all significantly different from each 

other; pregnant women had the lowest FSRs, premature fetuses the highest.  

Maternal albumin concentrations were 32.0 (29.5 – 34.5) g/L. Concentrations in 

Characteristic Value 

Age (y) 35.0 (27.5 – 36.5) 1 

Preconceptional BMI (kg/m2) 22.8 (20.3 – 24.6) 

Actual BMI (kg/m2) 29.4 (25.2 – 31.6) 

Parity (0:1:2:3) (n) (6:1:2:2) 

TABLE I: Maternal characteristics (n=11). 

1 Median (25th – 75th percentile) (all such values). 
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premature fetuses were 28.8 (27.3 – 30.8) g/L and in mature fetuses 33.5 (32.6 – 34.6) g/L, 

which is significantly different (p=0.003). Hematocrit in umbilical cord blood (mean of 

venous and arterial blood) was 0.43 (0.40 – 0.50) in the premature fetuses and 0.46 (0.46 – 

1 Median (25th – 75th percentile) (all such values). 
2 Birth weight corrected for gestational age (reference 28). 
3 The umbilical pulsatility index (P.I.) is a Doppler ultrasound derived index on the blood stream  

velocity profile through the umbilical arteries and is a marker of fetal well-being. A normal P.I.  

decreases slightly over gestation. 
4 The Apgar score is a postnatal scoring scale ranging from 0-10. 

TABLE II: Characteristics of the premature (<37 weeks gestation) and mature group of fetuses.  

  Premature (n=8) Mature (n=8) 

Gestational age (wks) 29.9 (28.4 – 35.4) 1 38.5 (37.6 – 38.9) 

Birth weight (kg) 1.3 (1.2 – 1.9) 3.3 (2.7 – 3.4) 

Birth weight Z-score (SD) 2 -0.19 (-0.70 – 0.22) -0.11 (-0.86 – 0.52) 

Sex (M:F) (n) 3:5 4:4 

P.I. 3 1.28 (1.18 – 1.36) 0.89 (0.78 – 0.96) 

Apgar score at 5 min 4 9 (9 – 10) 10 (10 – 10) 

TABLE III: Enrichments of the infused amino acids incorporated into albumin (product enrichments) 

in the maternal and fetal (mean of arterial and venous umbilical cord plasma) compartment. 1  

1 Enrichment is expressed in mole percent excess (MPE). All values are median (25th – 75th  

percentile). 

TABLE IV: Enrichments of the infused amino acids in plasma (precursor enrichments) in the maternal 

and fetal (mean of arterial and venous umbilical cord plasma) compartment. 1  

1 Enrichment is expressed in mole percent excess (MPE). All values are median (25th – 75th  

percentile). 

  
Pregnant women 

(n=11) 

Premature fetuses 

(n=8) 

Mature fetuses 

(n=8) 

[1-13C]leucine 0.075 (0.061 – 0.083) 0.105 (0.097 – 0.119) 0.096 (0.089 – 0.112) 

[1-13C]phenylalanine 0.063 (0.054 – 0.078) 0.103 (0.089 – 0.116) 0.095 (0.087 – 0.108) 

[U-13C5]valine 0.015 (0.013 – 0.022) 0.019 (0.017 – 0.024) 0.025 (0.023 – 0.030) 

  
Pregnant women 

(n=11) 

Premature fetuses 

(n=8) 

Mature fetuses 

(n=8) 

[1-13C]leucine 8.89 (8.27 – 9.27) 5.40 (4.84 – 6.12) 6.55 (5.98 – 7.24) 

[1-13C]phenylalanine 12.7 (11.1 – 13.0) 8.55 (8.27 – 8.96) 10.1 (9.19 – 11.4) 

[U-13C5]valine 6.73 (6.02 – 7.06) 3.75 (3.24 – 4.34) 4.97 (4.56 – 5.20) 
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0.48) in the mature group. The albumin ASRs are shown in Figure 4. Similar to the fractional 

values, premature fetuses had the highest ASRs, followed by the mature fetuses and the 

pregnant women. 
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FIGURE 2: Individual trend lines 

through the three product/

precursor trend lines in (A) 

pregnant women (n=11), (B) 

premature fetuses (n=8), and 

(C) mature fetuses (n=8). In 

each case, leucine had the 

longest infusion time, followed 

by phenylalanine and valine, 

respectively. 
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DISCUSSION 

 

This is the first study addressing albumin synthesis rates in human fetuses. These values are 

of great importance since they give guidance as what to strive for in aiming optimal 

nutrition for premature infants. The fetal measurements were possible due to a relatively 

novel multiple stable isotope infusion method. This enabled us to measure a protein’s 

synthesis rate from a single blood sample. Given the high correlation coefficients, our 

method proves to be valid. 
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FIGURE 3: Albumin fractional synthesis 

rates in pregnant women (n=11), 

premature fetuses (<37 weeks gestation, 

n=8), and mature fetuses (n=8). Boxes and 

whiskers indicate the medians, and 

interquartile and outer ranges.  

* Significantly different (Mann-Whitney), 

p<0.05; ** Significantly different (Mann-

Whitney), p<0.001.  

FIGURE 4: Albumin absolute synthesis 

rates in pregnant women (n=11), 

premature fetuses (<37 weeks gestation, 

n=8), and mature fetuses (n=8). Boxes and 

whiskers indicate the medians, and 

interquartile and outer ranges. 

* Significantly different (Mann-Whitney), 

p<0.05; ** Significantly different (Mann-

Whitney), p<0.001. 
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In this study, we compared albumin synthesis between pregnant women, fetuses at 

term, and fetuses that were still premature. In mothers of the latter group, however, 

elective cesarean sections are rarely performed as these are usually in the acute setting 

because of sudden (worsening of) fetal or maternal distress. Thus, there is usually no time 

for obtaining informed consent followed by a four-hours-lasting infusion protocol for 

research purposes. Still, we were able to include three women who underwent a planned 

cesarean section before term, and whose infants were assumed to be in relatively good 

condition. One woman had to give early birth because of maternal cervical carcinoma, the 

two other women because of anticipated complications due to triplet and quadruplet 

pregnancy. Whether the results in the premature group of fetuses were influenced the 

effects of multiple pregnancy itself or by genetic relationships remain unknown. However, a 

common genetic background does not imply having equal fetal metabolic nutrient 

availability. In normal pregnancy, the latter depends more on placental activity in each 

individual than on maternal nutrient availability. Thus, amongst multiplets, it is likely that 

the intrauterine metabolic environments are different, which was also reflected by different 

synthesis rates between siblings. 

As the maternal blood sample used for calculation of the albumin FSR was taken before 

spinal anesthesia was initiated and surgery had started, the latter two procedures could not 

have influenced our results. It is unknown, however, to what extent maternal surgery 

influences fetal metabolism. Yet, surgery until the infant was born only lasted some ten 

minutes, which is only a short period relative to the total infusion time. Thus, potential 

effects of maternal surgery would only minimally influence fetal synthesis rates. 

The maternal plasma albumin concentrations in this study are low as compared with 

those in non-pregnant individuals, but a 10 g/L drop in concentration starting early in 

pregnancy is common [23]. However, rather than simple dilution because of a pregnancy-

associated plasma volume expansion, actual alterations in albumin metabolism during 

pregnancy have been observed. During late gestation, albumin FSRs and ASRs as well as the 

total intravascular albumin pool were found to be higher than those in non-pregnant 

women [23,26]. Our measured maternal synthesis rates were very similar to the rates in 

those studies. Increased synthesis could be necessary to compensate for the albumin loss 

caused by placental uptake and subsequent degradation, thereby releasing free amino acids 

available for transport to the fetus [27,28]. 

Two of the mature fetuses had birth weights that were only on the 5th percentile. These 

two small for gestational age infants had the lowest two albumin FSRs and ASRs. When 

nutrient availability is compromised, ultimately leading to reduced growth, oxygen and 

nutrient rich blood entering the fetus through the umbilical vein is shunted away from the 

liver through the ductus venosus towards the upper body half [29]. Bypassing the fetal liver 

ensures a more or less constant supply of essential substrates to the myocardium and brain. 

Underperfusion of the fetal liver, however, results in diminished liver growth. Small for 

gestational age infants are known to have smaller liver volumes, also when corrected for 
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total body weight [30,31]. Interestingly, these two fetuses did not upregulate albumin 

synthesis rates so as to compensate their supposedly smaller liver size. In fact, the opposite 

was true as the albumin synthesis rates were the lowest. This could have important 

implications as impaired liver functioning might have lifelong effects on metabolism. 

Summarized as the ‘fetal origins of adult disease’ or ‘Barker hypothesis’, compromised 

growth during early life of organs such as the liver, pancreas, spleen, kidneys and adrenal 

glands, predisposes an individual to cardiovascular disease, stroke, and type two diabetes 

[32,33]. 

Considering the functions of albumin, which include acting as an antioxidant and 

transporting bilirubin and free fatty acids, one may wonder why normally grown fetuses, 

especially earlier in gestation, have such high synthesis rates. During intrauterine life, 

oxygen tension in blood is low, thereby generating only low amounts of radicals, which 

could damage albumin. The low oxygen tension is compensated for by the increased oxygen 

affinity of fetal hemoglobin. After birth, fetal hemoglobin is rapidly broken down, thereby 

releasing large amounts of bilirubin that should be transported off by albumin. Also, during 

the beginning of the third trimester, fatty acid concentrations are low and will be of no 

burden to albumin. The surge in albumin synthesis would therefore be expected just prior to 

term birth, as a preparation against an elevated radical exposure and for a higher transport 

load consisting of hemoglobin breakdown products and fatty acids, the latter found in high 

amounts in postnatal nutrition (breast milk). In addition, all mothers of the prematurely 

born infants had received corticosteroids in the two days prior to their planned cesarean 

section. Antenatally given steroids accelerate fetal lung maturation in preparation for 

postnatal life. These stress hormones, however, can also elicit a catabolic response in the 

fetus. Albumin synthesis might therefore even have been downregulated in the premature 

group at time of the measurements.  

The reason for a decreasing albumin synthesis rate during gestation could either be 

functional or depend on the general metabolic rate. During ovine pregnancy, fetal whole 

body protein synthesis rates decrease significantly throughout gestation [34]. Oxygen 

consumption by the ovine fetal liver has also been shown to decrease [35]. In human 

preterm infants, whole body protein metabolic rates are also higher when compared to 

infants born at term [36]. However, human fetal liver volume as percent of body weight 

does not decrease as much throughout gestation as it does in fetal sheep [37].  

The albumin ASR in intravenously fed premature babies (27 wks gestation) was 228  

(187 – 289) mg/(kg·d) [3]. The ASRs of premature fetuses measured in the current study  

are higher than the postnatal values from premature infants. Having low albumin 

concentrations and ASRs after birth is an unfortunate situation considering that sick 

premature infants experience more oxidative stress after high oxygen pressure ventilation 

and have to deal with increased bilirubin and drug transport. In our previous study, we 

showed that albumin synthesis in premature neonates is responsive to parenteral nutrition 

[3]. Yet, the current recommended nutrient intakes for premature infants still not appear to 
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be sufficient to increase the albumin synthesis rates to levels observed in fetuses. This can 

be speculated since premature infants should however, theoretically, be able to synthesize 

albumin in larger quantities as they also did while still in utero. Although the traditional 

method of measuring an FSR used in premature infants is different from our employed 

infusion model, the two should theoretically give comparable results. 

In conclusion, we showed that mature fetuses produce twice as much albumin as their 

mothers per kg bodyweight and premature fetuses three times as much. Premature fetuses 

have higher albumin synthesis rates than parenterally fed premature neonates indicating 

that postnatal synthesis capacity is reduced or that recommended nutrient intake is not 

sufficient. Our employed method is not only applicable in fetal research, but could be of 

benefit in all situations where multiple sampling is impossible or inconvenient to a subject. 

In organ protein metabolism studies (for example liver, bowel, or muscle protein synthesis) 

the required number of tissue biopsies can be reduced to one, instead of two or three with 

many currently used models [38,39]. In addition, our single sample method shortens sample 

preparation and analysis time and reduces risk on measurement artifacts. 
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ABSTRACT 

 

Background 

Knowledge on human fetal amino acid (AA) metabolism, largely lacking so far, is pivotal in 

improving nutritional strategies for prematurely born infants. Phenylalanine kinetics are of 

special interest since there is debate as to whether neonates will adequately hydroxylate 

phenylalanine to the semi-essential AA tyrosine.  

Objective 

Our aim was to quantify human fetal phenylalanine and tyrosine metabolism.  

Design 

Eight fasted, healthy pregnant women undergoing elective cesarean section at term re-

ceived primed continuous stable isotope infusions of [1-13C]phenylalanine and [ring-D4]

tyrosine starting prior to surgery. Umbilical blood flow was measured by ultrasound. Mater-

nal and umbilical cord blood was collected and analyzed by gas chromatography mass spec-

trometry for phenylalanine and tyrosine enrichments and concentrations. Data are  

expressed as median (25th – 75th percentile).  

Results 

Women were in catabolic state for which net fetal AA uptake was responsible for at least 

one quarter. Maternal and fetal hydroxylation rates were 2.6 (2.2 – 2.9) and 7.5 (6.2 – 15.5) 

μmol phenylalanine/(kg·h), respectively. Fetal protein synthesis rates were higher than 

breakdown rates: 92 (84 – 116) vs. 73 (68 – 87) μmol phenylalanine/(kg·h), respectively, 

indicating an anabolic state. The median metabolized fraction of available phenylalanine 

and tyrosine in the fetus was less than 20% for both AA.  

Conclusions 

Around term gestation, fetuses still show considerable net AA uptake and AA accretion 

(converted to tissue ~12 g/(kg·d)). The low metabolic uptake (AA usage) implies a very large 

nutritional reserve capacity of nutrients delivered through the umbilical cord. Fetuses at 

term are quite capable of hydroxylating phenylalanine to tyrosine. 
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INTRODUCTION 

 

These days, many premature infants survive – yet sometimes at the cost of impaired 

outcome [1,2]. Inappropriate nutrition is at least partially responsible for suboptimal 

outcome, as it negatively affects neonatal growth and brain development [3,4]. Since 

several decades, the international pediatric nutritional goals are to feed premature infants 

so that they grow at the same rate they would have had while in utero and thereby 

mimicking the fetal tissue composition or quality. Many infants do not reach these targets, 

however, as growth lags behind. Moreover,  the body composition of preterm-born infants 

is often more adipose at term corrected age [5]. Seeing that hardly anything is known about 

human fetal metabolism itself, it is not surprising that fetal accretion rates are often not 

met. It would seem, therefore, that better mimicking of fetal growth could be achieved by 

putting more effort in unraveling human fetal metabolism. The obtained knowledge could 

then lead to improved nutritional strategies. 

Current knowledge on fetal metabolism is mostly derived from animal data. Technical 

difficulties and ethical issues are of course causal to the lack of knowledge on human fetal 

metabolism. However, the use of stable isotopes to study protein metabolism during human 

pregnancy provides a safe research tool.  

The quantification of fetal phenylalanine and tyrosine kinetics is of particular 

importance. It does not only give information on fetal protein breakdown and synthesis 

rates in general, but also quantifies the metabolic conversion (hydroxylation) rate of the 

essential amino acid phenylalanine to tyrosine. Hydroxylation occurs in the liver and kidneys 

[6]. It is important for two reasons: it disposes of excess phenylalanine, and provides an 

alternative source of tyrosine if tyrosine is absent in the diet, for example due to poor 

tyrosine solubility in parenteral nutrition. Parenterally fed neonates thus depend on 

hydroxylation for their tyrosine requirements necessary for net protein accretion. Yet, the 

enzymatic activity of phenylalanine hydroxylase might be suboptimal in neonates and even 

older infants, making tyrosine a conditionally essential amino acid [7]. Tyrosine that is not 

incorporated into proteins can be degraded and oxidized through the formation of fumarate 

and acetoacetate. The amount of tyrosine used as a precursor of the catecholamines 

dopamine, norepinephrine, and epinephrine, is quantitatively negligible. 

 In this study, our aim was to investigate several aspects of fetal phenylalanine and 

tyrosine kinetics by analyzing umbilical cord blood after having infused pregnant women 

with stable isotopically labeled amino acids prior to elective cesarean section at term. 
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SUBJECTS AND METHODS 

 

SETTING AND SUBJECTS 

The study was performed at the Mother and Child Center of the Erasmus MC – Sophia 

Children’s Hospital after approval by both the institutional medical ethical review board and 

the Dutch central committee on research involving human subjects (CCMO, The Hague). 

Pregnant women undergoing elective cesarean section (repeat or breech pregnancy) under 

spinal anesthesia at term were eligible. Exclusion criteria were maternal obesity 

(preconceptional BMI >30), preeclampsia, diabetes, severe fetal growth restriction (< -2 SD), 

or known fetal anomalies. Participating women gave written consent after having been fully 

informed about all study details. 

EXPERIMENTAL DESIGN 

To determine the blood flow necessary for our calculations (see below), blood flow 

velocity and vessel diameters were measured in the umbilical vein with an ultrasound 

machine (iU22, Philips Medical Systems, Eindhoven, the Netherlands) as previously 

described [8]. Ultrasound measurements were made in the late afternoon on the day 

preceding the cesarean section; sections were all performed at approximately 8.00 a.m. 

after an overnight fast.  

At least 3 hours to planned surgery, the women received a priming dose of L-[1-13C]

tyrosine (0.5 mmol/kg) directly followed by a primed continuous infusion of L-[1-13C]

phenylalanine (2.5 mmol/kg; 5 mmol/(kg·h)) through a forearm vein. One hour later a 

primed continuous infusion of L-[ring-2,3,5,6-D4]tyrosine (1.5 mmol/kg; 3 mmol/(kg·h)) was 

started along. Isotopes (all >99% enriched and tested for sterility and pyrogenicity) were 

bought from Buchem BV, Apeldoorn, the Netherlands (local distributor of Cambridge 

Isotope Laboratories, Andover, MA, USA). Our hospital pharmacy dissolved the isotopes in 

0.9% saline and the solutions were filtered (0.2 μm) and sterilized. Tests were performed to 

ensure the correct identity, concentration, and a sterile and pyrogen free product. Tracers 

were given using Perfusor® fm (B|Braun Medical B.V., Oss, the Netherlands) and Graseby 

3000 (Graseby Medical Ltd, Watford, UK) infusion pumps for the phenylalanine and tyrosine 

tracers, respectively. Maternal blood was sampled before the tracer infusions started 

(baseline), then immediately before anesthesia and, if possible (n=4), also about 20 minutes 

later just before surgery started. Fetal blood was sampled after birth from both the vein and 

arteries of a doubly clamped segment of the umbilical cord. The fact that there are two 

arteries in the umbilical cord does not affect our results as the concentrations of the amino 

acids and their enrichments in the blood of both arteries should be equal. After collection in 

heparin tubes, blood was centrifuged and plasma was frozen at -80°C until analysis. 

BLOOD SAMPLE ANALYSIS 

As calculations in a veno-arterial balance model (as on the umbilical cord in the fetus, 

see below) largely depend on the small differences in concentration and enrichment 

between the vein and arteries, rather than on the absolute values, measurements must be 
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extremely precise. To minimize the effects of potential analytical measurement errors, 

samples were prepared for analysis twice using two different derivatization methods (PCF 

and MTBSTFA, see below). Each derivatized sample was analyzed in triplicate on two 

different gas chromatography mass spectrometers (GCMS) (see below). Enrichments were 

calculated from the mean of all twelve analyses; concentrations could be calculated from 

the mean of the six analyses using the MTBSTFA derivative only.  

PCF (propylchloroformate) derivatization on samples was performed using commercial 

kits (EZ:Faast for hydrolysates, Phenomenex, Bester BV, Amstelveen, the Netherlands) 

according to the enclosed protocol. As internal standards for concentration determinations, 

[D8]phenylalanine and [U-13C9,15N]tyrosine were added to the samples to be derivatized with 

MTBSTFA. Concentration calibration curves were prepared using MTBSTFA as well. Two 

different enrichment calibration curves were made with either PCF or MTBSTFA derivates. 

Samples and calibration curves were analyzed with a MSD 5975C Agilent GCMS (Agilent 

Technologies, Amstelveen, the Netherlands) on a VF-17ms, 30m x 0.25mm ID capillary 

column (Varian Inc., Middelburg, the Netherlands) and a Thermo DSQ GCMS (Thermo 

Fisher, Breda, the Netherlands) on a VF-1701ms, 30m x 0.25mm ID capillary column (Varian 

Inc., Middelburg, the Netherlands). 

CALCULATIONS 

For the calculation of maternal whole body phenylalanine and tyrosine kinetics, 

including hydroxylation rates, we used the Clarke and Bier model [9], in combination with 

the adjustments proposed by Thompson et al. [10]. To control for pregnancy, we added an 

extra parameter to the rate of disappearance. In our model, amino acids disappear not only 

through hydroxylation (or oxidation) or incorporation into protein synthesis, but also 

through net transport to the fetus. The latter is calculated as the umbilical veno-arterial 

concentration difference multiplied with the umbilical blood flow per kg maternal weight. If 

maternal blood was sampled twice prior to surgery, enrichments were averaged. 

We quantified fetal whole body kinetics by using the concept of an umbilical veno-

arterial balance model. To do so, we rewrote the leucine arteriovenous balance model by 

Tessari et al. [11] and the phenylalanine hydroxylation equation proposed by Nair et al. [12] 

into a phenylalanine and tyrosine model suitable for fetal studies. The model is outlined in 

Figure 1 and its determinants are calculated using the following equations, where kg in all 

units denotes fetal weight (= birth weight):  

Rate of phenylalanine delivery from umbilical vein to the fetus in μmol/(kg·h): 

  
where [phe] is the total (labeled + unlabeled) phenylalanine concentration (μmol/L) and 

BF the umbilical blood flow (L/(kg·h)). Subscripts indicate whether blood was sampled 

from the umbilical vein or arteries (as below). 

Rate of phenylalanine release from fetus to umbilical artery in μmol/(kg·h): 

   

veindelivery = [phe] × BF

artrelease = [phe] × BF

(1.1) 

(1.2) 
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Fraction of phenylalanine in the umbilical vein that is metabolized intracellularly in %:  

   
where [13C·phe] is the labeled phenylalanine concentration (μmol/L). 

Rate of phenylalanine inflow from umbilical vein into intracellular compartment in 

μmol/(kg·h): 

   
Rate of phenylalanine outflow from intracellular compartment into umbilical artery in 

μmol/(kg·h): 

   
Net fetal phenylalanine uptake in μmol/(kg·h): 

⎛ ⎞
⎜ ⎟= − ×
⎜ ⎟
⎝ ⎠

i

i

13
art

13
vein

[ C phe]
metabolized fraction 1 100%

[ C phe]

metabolic inflow = Eq(1.1)×Eq(1.3)

= + −metabolic outflow Eq(1.2) Eq(1.4) Eq(1.1)

FIGURE 1: Schematic model of fetal phenylalanine and tyrosine metabolism. Phenylalanine and  

tyrosine are delivered to the fetus through the umbilical vein (1.1) and (2.1). Part of these amino 

acids are taken up from the fetal intravascular system into the fetal cells (1.4) and (2.4), whereas 

theremainder of the intravascular amino acids are transported back to the placenta through the 

umbilical arteries (1.7) and (2.7). Amino acids are constantly released from proteins due to  

proteolysis (3.3) and (3.6). Part of the available phenylalanine is hydroxylated to tyrosine (3.1),  

incorporated in proteins (3.2), or released into the vascular system (1.5). Tyrosine is either used for 

protein synthesis or oxidation (3.5), or also released into the vascular system (2.5). Finally  

phenylalanine and tyrosine are transported back to the placenta through the umbilical arteries (1.2) 

and (2.2). Numbers in brackets also correspond to the equations in the methods section and the 

fluxes outlined in table 5. 
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Rate of phenylalanine directly released from umbilical vein to artery without being 

metabolized in μmol/(kg·h): 

   
Equations (1.1) through (1.7) can also be used for calculations of tyrosine kinetics (using 

tyrosine concentrations and the [D4]tyrosine enrichments), yielding equations (2.1) through 

(2.7). 

Rate of phenylalanine hydroxylation to tyrosine in μmol/(kg·h): 

   
where D4·tyr·E is the [D4]tyrosine enrichment (in MPE). Other enrichments are 

abbreviated accordingly. 

Rate of intracellular phenylalanine incorporation into protein (synthesis) in μmol/(kg·h): 

   
Rate of phenylalanine release from proteolysis (breakdown) into the intracellular space in 

μmol/(kg·h): 

   
Rate of net phenylalanine accretion in μmol/(kg·h): 

    
In our model, we could not discriminate between the two major intracellular pathways of 

tyrosine metabolism, i.e. incorporation into protein and oxidation. This is why we used the 

sum of the latter two rates in μmol/(kg·h): 

      
Rate of tyrosine release from proteolysis into the intracellular space in μmol/(kg·h): 

    
Phenylalanine and tyrosine protein synthesis and breakdown rates can be converted from 

molar rates into grams of protein and grams of tissue under the assumption that one gram 

protein contains 246 μmol phenylalanine and 158 μmol tyrosine [13] and new tissue 

contains 14% protein [14]. 

Hydroxylation rates in several previously performed whole body experiments have also 

been calculated without tyrosine tracer infusion in order to measure tyrosine kinetics or 

proteolysis rates [10,15]. The latter are then estimated by multiplying the actual 

phenylalanine proteolysis rate with an average tyrosine/phenylalanine breakdown ratio 

= − = −net uptake Eq(1.1) Eq(1.2) Eq(1.4) Eq(1.5)

= −non-metabolized release Eq(1.1) Eq(1.4)

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= × × −
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

i i i i i i
i i i i i i

13 13
4 vein art vein

PT 13 13
4 art art art

D tyr E C tyr E C tyr E
H Eq(2.1)

D tyr E C phe E C phe E

= × −
i i
i i

13
vein

phe 13
art

C phe E
S Eq(1.4) Eq(3.1)

C phe E

= + −pheB Eq(3.1) Eq(3.2) Eq(1.6)

= −pheaccretion Eq(3.2) Eq(3.3)

+ = ×
i i
i i

4 vein
tyr tyr

4 art

D tyr E
S O Eq(2.4)

D tyr E

= − −tyrB Eq(3.5) Eq(3.1) Eq(2.6)

(1.6) 

(1.7) 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 
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(Btyr/Bphe) measured in similar studies or with the theoretical tyrosine/phenylalanine molar 

content ratio of total body protein. No equations were as yet available for an arteriovenous 

balance model, and these were therefore developed ourselves, using analogous derivations 

to the whole-body model by Thompson et al. [10]. These equations are outlined beneath 

and enable to compare our hydroxylation rates with those of Chien et al. [16] in spite of the 

fact  that this group did not infuse labeled tyrosine to their subjects. 

The rate of phenylalanine released from proteolysis (equation 3.3) can also be calculated as 

follows (mathematically the same): 

    
The total rate of tyrosine appearance (Ratyr), defined as Eq(2.1)+Eq(3.1)+Eq(3.5), can 

normally be calculated after labeled tyrosine infusion according to the following equation: 

    
Equation (3.1) can then be rewritten into: 

   
However, if no labeled tyrosine is infused, Eq(4.2) cannot be used so that Ratyr has to be 

calculated alternatively using a known ratio Btyr/Bphe (in our case the mean of the other seven 

fetuses): 

   
Equations (4.3) and (4.4) can then be combined and rewritten into: 

 
Thus, using the latter equation it is possible to calculate hydroxylation rates in a balance 

model if no labeled tyrosine has been infused. 

In our model, we make the following assumptions: 1, a labeled molecule will not be 

discriminated from an unlabeled molecule; 2, the labeled molecule will trace the movement 

of the unlabeled molecules; 3. the administration of the labeled molecules will not affect 

the kinetics of the unlabeled molecules. 
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STATISTICS 

Calculations were made using Microsoft Office - Excel software (version 2007; Microsoft 

Corp, Redmond, WA, USA). Statistical analysis was performed using GraphPad Prism 

software (version 4.0; San Diego, CA, USA). Because the number of included subjects  

was relatively small (n=8), normality distribution of our data could not be determined  

or assumed. All results are therefore expressed as median (25th – 75th percentile). 

Consequently, however, by presenting our data as medians, all rates as outlined in Table 5 

do not add up correctly as outlined in our model (Figure 1). The fluxes of each individual 

subject still do, nonetheless. 

 

 

RESULTS 

 

We included eight feto-maternal dyads. Maternal age, preconceptional and actual body 

mass index (BMI), and parity are shown in Table I. Five of the cesarean sections were 

performed because of breech presentation; three because of a cesarean section in the 

patient’s medical history. There were no complications during any of the cesarean sections. 

Visual inspection of the placentas and umbilical cords showed no abnormalities. Fetal 

characteristics in terms of gestational age, birth weight, birth weight z-score [17], sex, 

umbilical blood flow, pulsatility index (P.I.), umbilical arterial pH and base excess, and Apgar 

score are shown in Table II. None of the infants had congenital anomalies and all were 

discharged from the hospital in good health together with the mother at the fifth day of life. 

In four women, we obtained two blood samples before surgery had started at an 

approximately 20-minutes interval. Phenylalanine and tyrosine enrichments had not 

changed over this time interval, even though spinal anesthesia had been started meanwhile. 

Therefore, steady state was assumed. Only one blood sample could be withdrawn from the 

other four women, which was before anesthetics were initiated. Concentrations and 

enrichments of phenylalanine and tyrosine in maternal and fetal plasma are shown in Table 

III. The median coefficients of variance for all measurements of the phenylalanine and 

tyrosine concentrations were 0.007 (0.002 – 0.011) and  0.012 (0.007 – 0.019), respectively. 

The coefficients of variance for the enrichments of [1-13C]phenylalanine, [1-13C]tyrosine, and 

[ring-D4]tyrosine amounted 0.022 (0.011 – 0.040), 0.091 (0.060 – 0.123), and 0.026 (0.011 – 

TABLE I: Maternal characteristics (n=8). 

1 Median (25th – 75th percentile) (all such values). 

Characteristic Value 

Age (y) 33.0 (28.8 – 38.0) 1 

Preconceptional BMI (kg/m2) 21.9 (20.3 – 24.5) 

Actual BMI (kg/m2) 30.5 (23.3 – 31.6) 

Parity (0:1:2:3) (n) (4:1:2:1) 
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0.058), respectively. The feto-maternal enrichment ratios across the maternal and umbilical 

veins were 0.90 (0.80 – 0.92) for phenylalanine and 0.72 (0.67 – 0.75) for tyrosine. 

Table IV shows maternal phenylalanine and tyrosine kinetics. Since women were in 

fasting state, phenylalanine released from protein breakdown equaled the total flux. The 

tyrosine/phenylalanine breakdown ratio (Btyr/Bphe) was 0.75 (0.74 – 0.79). The fraction of the 

maternal net catabolic state that could be explained by net fetal uptake was 26 (23 – 40)%.  

Figure 1 and Table V display fetal phenylalanine and tyrosine kinetics. Although gravidae 

were catabolic, their infants had a positive phenylalanine accretion balance. The fetal 
Btyr/Bphe was 0.75 (0.70 – 0.81), slightly higher than the theoretical ratio of 0.64 (=158/246) 

calculated from the molar expressed amino acid content of protein in deceased fetal bodies 

[13]. Conversion to protein turnover rates from phenylalanine kinetics reveals a protein 

Characteristic Value 

Gestational age (wks) 38.5 (37.6 – 38.9) 1 

Birth weight (kg) 3.3 (2.7 – 3.4) 

Birth weight z-score (SD) 2 -0.11 (-0.86 – 0.52) 

Sex (m:f) (n) 4:4 

Umbilical blood flow (mL/(kg·min)) 101 (90 – 110) 

P.I. 3 0.89 (0.78 – 0.96) 

Umbilical arterial pH 7.30 (7.28 – 7.32) 

Umbilical arterial Base Excess (mmol/L) -1.5 (-2.0 – -1.0) 

Placental weight (kg) 0.590 (0.558 – 0.649) 

Apgar score at 5 min 4 10 (10 – 10) 

TABLE II: Fetal characteristics (n=8).  

1 Median (25th – 75th percentile) (all such values). 
2 Birth weight corrected for gestational age (reference 17). 
3 The umbilical pulsatility index (P.I.) is a Doppler ultrasound derived index on the blood stream 

velocity profile through the umbilical arteries and is a marker of fetal well-being.  
4 The Apgar score is a postnatal scoring scale ranging from 0-10. 

  Maternal vein Umbilical vein Umbilical artery 

phe concentration 64.7 (58.5 – 67.2) 87.0 (83.4 – 93.6) 84.1 (78.6 – 88.4) 

tyr concentration 48.0 (42.7 – 49.4) 65.8 (61.5 – 76.2) 66.9 (65.2 – 71.6) 

[1-13C]phe enrichment 11.5 (10.9 – 11.9) 9.8 (9.0 – 10.2) 8.4 (7.6 – 8.7) 

[1-13C]tyr enrichment 0.94 (0.89 – 1.08) 1.04 (0.97 – 1.12) 1.02 (0.97 – 1.13) 

[D4]tyr enrichment 8.3 (7.7 – 8.6) 5.8 (5.3 – 6.1) 4.9 (4.7 – 5.4) 

TABLE III: Phenylalanine (phe) and tyrosine (tyr) concentrations (μmol/L) and enrichments (MPE) 

measured in the maternal vein, umbilical vein, and umbilical artery (n=8 for each). 1 

1 All values are median (25th – 75th percentile). 
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synthesis rate of 9.0 (8.2 – 11.3) g/(kg·d) and a proteolysis rate of 7.1 (6.7 – 8.5) g/(kg·d). 

Accretion rates are 1.7 (0.8 – 3.0) g protein/(kg·d) or 12.2 (5.4 – 21.3) g tissue/(kg·d). 

Conversion from tyrosine kinetics yield a proteolysis rate of 7.9 (7.2 – 11.4) g/(kg·d). 

 

 

DISCUSSION 

 

In this study, we described several aspects of human maternal and fetal phenylalanine and 

tyrosine metabolism. We aimed to add to the minute knowledge on fetal amino acid 

metabolism, so as to stimulate and aid the development of better nutrition for premature 

TABLE IV: Maternal phenylalanine and tyrosine kinetics (n=8). 1 

1 All values are expressed in μmol/(kg·h) as median (25th – 75th percentile). 

TABLE V: Fetal phenylalanine and tyrosine kinetics (n=8). 

1 Numbers between brackets indicate the used equation and flux for phenylalanine and tyrosine 

kinetics, respectively, as they are also outlined in figure 1. 
2 All values are expressed in μmol/(kg·h) as median (25th – 75th percentile) unless indicated  

otherwise. 
3 Includes tyrosine oxidation. 

Flux Phenylalanine Tyrosine 

Umbilical vein delivery (1.1 & 2.1) 1 559 (456 – 603) 2 454 (325 – 492) 

Umbilical artery output (1.2 & 2.2) 509 (443 – 567) 449 (310 – 472) 

Metabolized fraction (%) (1.3 & 2.3) 18 (17 – 20) 16 (12 – 17) 

Metabolic uptake from umb. vein (1.4 & 2.4) 91 (80 – 111) 69 (55 – 78) 

Metabolic output into umb. artery (1.5 & 2.5) 59 (57 – 66) 55 (49 – 67) 

Net uptake (1.6 & 2.6) 23 (16 – 47) 2.4 (-3.9 – 9.2) 

Non-metabolized release (1.7 & 2.7) 449 (371 – 499) 374 (253 – 422) 

Hydroxylation (3.1) 7.5 (6.2 – 15.5)   

Protein synthesis (3.2 & 3.5) 92 (84 – 116) 77 (63 – 93) 3 

Release from protein breakdown (3.3 & 3.6) 73 (68 – 87) 52 (47 – 75) 

Net accretion (3.4) 17.5 (7.8 – 30.6)   

Flux Value 

Phenylalanine released from proteolysis 38.2 (36.6 – 40.5) 

Phenylalanine used for protein synthesis 34.2 (33.4 – 37.8) 

Net phenylalanine balance -3.8 (-4.7 – 2.8) 

Phenylalanine hydroxylation 2.6 (2.2 – 2.9) 

Tyrosine released from proteolysis 29.5 (28.5 – 31.2) 
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infants.  

Whether the fetus is a significant drain on maternal substrate availability during fasting 

is a semantic issue. Umbilical phenylalanine uptake per kilogram maternal weight was 1.0 

(0.6 – 1.9) μmol/(kg·h). This amount can easily be realized through a small increase in the 

maternal proteolysis rate or a reduction in protein synthesis as these rates are 

approximately 30 times higher than net umbilical uptake. On the other hand, when 

considering the effects on the gravida’s net catabolic state, one-fourth is attributable to net 

umbilical uptake. This fetal attribution to maternal catabolism is even underestimated since 

it does not include the extra amino acid consumption of other conceptus tissues such as the 

placenta.  

How the metabolic load of the total conceptus is handled by the gravida is not exactly 

known. In rats, maternal protein stores initially increase during early pregnancy, and are 

later catabolized to sustain fetal demands necessary for rapid growth [18,19]. In humans, 

there is no such evidence. However, since protein intake does not seem to be increased 

substantially in pregnant women, other mechanisms probably also account for the total 

accumulation of 925 gram protein in various tissues and fetus during pregnancy [20]. Some 

studies showed unchanged oxidation [21-23], but others showed reduced amino acid 

oxidation and urea synthesis rates [24,25], or reduced nitrogen excretion rates [22,24,26], 

probably all to spare nitrogen necessary for fetal growth [26]. Maternal phenylalanine 

hydroxylation rates in our subjects were lower than those found in non-pregnant 

individuals, but comparable to those in other pregnant women [15,21,27]. Relating the 

other kinetic rates measured in this study to non-pregnant women is difficult. For one thing, 

the differences are probably more subtle. Moreover, changes in body weight and 

composition during pregnancy, and the contribution of the feto-placental compartment to 

maternal metabolism, distort comparisons to non-pregnant women. 

Whereas net umbilical uptake of all essential amino acids was considerable in the 

hereafter cited studies, tyrosine uptake in the term human fetus has been shown to be 

small or even slightly negative [16,28-30]. During the second trimester of gestation, fetal 

tyrosine uptake was also found to be absent [31], or small at most [29]. Although placental 

amino acid transporters are capable of transporting tyrosine to the fetus, the in vitro 

measured tyrosine influx is strongly inhibited by the presence of several other amino acids, 

even at physiological concentrations [32,33]. The Ki value (giving half-maximal inhibition) of 

tyrosine transport across the maternal facing trophoblastic membrane was found to be 

68±4.0 μM with phenylalanine [32]. This value does not deviate much from the observed 

maternal phenylalanine concentrations (Table 3).  In this light, it is interesting that mothers 

of growth-restricted fetuses have elevated plasma amino acid concentrations, including 

phenylalanine [34]. Whether this could result in further inhibition of materno-fetal tyrosine 

transport remains speculative. 

Because net fetal tyrosine uptake is probably low, it thus seems that the fetus is largely 

dependent on endogenous tyrosine synthesis from phenylalanine. Some early in vitro 
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studies reported substantial enzymatic activity in liver extracts from first or second 

trimester aborted human fetuses [35-37]. Tyrosine formation in premature neonates 

immediately after death has also been described [38]. One other study describes 

disappearing phenylalanine hydroxylase capacity during the second half of pregnancy [39] 

and the absence was confirmed in a deceased premature infant [40]. Next to these in vitro 

studies, of which none measured renal hydroxylating capacity, only Chien and colleagues 

attempted to quantify in vivo phenylalanine hydroxylation rates in fetuses at term [16]. 

They did not simultaneously infuse labeled tyrosine, however, and Nair et al. [12] had not 

published their balance model by then, resulting in a highly simplified model to determine 

hydroxylation rates. But when using their enrichment results in combination with our 

equation (4.5), hydroxylation rates are very high, i.e. 42.6 μmol/(kg·h) using our median 

 Btyr/Bphe of 0.75, or 40.8 μmol/(kg·h) using the theoretical breakdown ratio of 0.64 from 

deceased fetuses [13]. As these rates are much higher than the net umbilical phenylalanine 

uptake, they seem improbable. Hydroxylation rates in premature and term infants have 

been measured in several studies during the last 15 years. Mean rates in fasting premature 

infants receiving only glucose range from 6 to 17 μmol/(kg·h) [41-45]. If amino acids are also 

supplemented, some studies report no change [41], other show a small increase with means 

ranging from 11 to 22 μmol/(kg·h) [42-44]. Shortland et al. even measured hydroxylation 

rates of 48 μmol/(kg·h) after amino acid supplementation [45], but these rates appear to be 

overestimated [46]. Rates in healthy term infants do not seem to be different from rates in 

preterm infants and range from 8 to 13 μmol/(kg·h), irrespective of nutrient administration 

[42,47]. Our observed hydroxylation rates of 7.5 (6.2 – 15.5) μmol/(kg·h) are in concordance 

with the postnatal values. 

Fetal growth velocities around 38 weeks gestation are around 8 to 10 g/(kg·d). Our 

observed growth rates (12.2 (5.4 – 21.3) g tissue/(kg·d)), calculated from the accretion rate 

of one amino acid, are not much different. Potential errors in the conversions to proteins 

and body weight and measurement errors are probably responsible for the small difference.  

Much to our surprise, the metabolized fraction of available fetal phenylalanine and 

tyrosine was only approximately 20% for both amino acids. Calculations on data from Chien 

et al. in term human fetuses as well [16], reveal a metabolic uptake of 26% for 

phenylalanine and 36% for leucine. In ovine fetuses, we calculated from available data [48] a 

fraction of approximately 25% for leucine, which does not seem to differ between normally 

grown and growth-restricted fetal animals. This implies that most amino acids entering the 

fetus through the umbilical cord remain intravascular before returning to the placenta 

through the umbilical arteries. It thus seems that the placenta provides the fetus with an 

enormous reserve capacity of these amino acids. Intrauterine growth restriction would, 

therefore, not seem to be primarily caused by a lack of amino acids. The cause of fetal 

growth restriction could then lie in a reduced potential or necessity to internalize amino 

acids from the fetal tissue arterioles into the tissue or organ, because of a lack of secondary 

metabolites necessary for cellular inward transport or growth (e.g. ATP, oxygen, or sodium), 



part III 

CH
A

PT
ER

 V
II 

118 

or through hormonal influences. Insufficient oxygen supply to the ovine fetus, for example, 

decreases protein synthesis more than breakdown, so that net protein accretion becomes 

compromised [49]. Fetal amino acid concentrations increased during this four-hours 

lasting experiment, whereas placental leucine transport decreased. Whether the latter  

is primarily the result of hypoxemia too or a compensatory mechanism in order to avoid 

hyperaminoacidemia is speculative. 

On the other hand, growth-restricted fetuses show reduced umbilical plasma 

concentrations [34]. Besides, placentas of fetuses with intrauterine growth restriction 

(IUGR) have reduced transporter activity [50,51] which has also been described in human in 

vivo research [52]. Although there seems to be a large overcapacity of phenylalanine and 

tyrosine available for fetal growth, protein accretion is determined by the first limiting 

amino acid. It might well be that for one of the other essential amino acids, the surplus is 

less abundant. Reduced placental functioning might then induce a lower availability of this 

first limiting amino acid and consequently slower growth. Further studies on other amino 

acids and studies in growth-restricted fetuses are necessary to support these hypotheses. 

All our concentration and enrichment measurements were done in the plasma 

compartment, rather than in whole blood, due to analytical advantages. Many studies, 

however, reported rapid equilibrium between erythrocyte and plasma concentrations of 

various amino acids, including phenylalanine and tyrosine [53-55]. The role of erythrocytes 

in organ amino acid delivery is thus as important as the role of the plasma compartment. 

Compared to normal organ balance studies, the circulation time of blood in fetal balance 

studies is relatively long since blood from the umbilical vein flows through the whole fetus 

before returning to the umbilical arteries. By then complete mixing can be expected. Even in 

single organ balance studies, many groups chose to use plasma sampling in combination 

with whole blood flows rather than plasma flows [56-59]. The latter would reduce all kinetic 

rates by approximately 40% (~ hematocrit) and yield improbably low kinetic rates. 

Whether maternal anesthesia and surgery would have any consequences for fetal 

metabolism remains speculative. Spinal anesthesia might result in maternal hypotension 

and blood flow redistribution, but these effects can be prevented by using a lateral wedge. 

Furthermore, blood pressure monitoring allows for prompt correction if necessary. Besides, 

the pulsatility index of the umbilical artery does not seem to be influenced by spinal 

anesthesia [60]. Konje et al. measured flow using a transonic time flowmetry technique on a 

exteriorized loop of the umbilical cord during cesarean surgery [61]. Their flow values 

halfway during surgery correspond well to our flow measurements. Besides, umbilical blood 

flow after vaginal delivery has been reported to be stable for the first 100 postnatal seconds 

[62]. We thus assume that umbilical blood flow is fairly constant during surgery. The fetal 

metabolic response to maternal surgery remains speculative. A maternal noradrenalin surge 

after an invasive procedure did not seem to reach the human fetus [63]. In mice, however, 

noradrenalin was suggested to have transferred the placenta [64]. 

To conclude, we showed that the fetus at term receives considerable amounts of 
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phenylalanine from the placenta. Nevertheless, the fetus actively uses only a relatively small 

part; two-thirds of which are used for net protein synthesis and one-third for hydroxylation 

to the semi-essential amino acid tyrosine. Whether these findings would also hold true for 

the growth restricted fetus or a fetus earlier in gestation remains to be elucidated. 
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ABSTRACT 

 

Introduction 

Human fetal metabolism is a largely unexplored field. However, increased knowledge might 

play a pivotal role in improving nutritional strategies for prematurely born infants to  

ameliorate long-term outcome. Therefore, our aim was to quantify human fetal leucine, 

valine, and methionine metabolism.  

Methods 

Eight fasted, healthy pregnant women undergoing elective cesarean section at term re-

ceived continuous stable isotope infusions of [1-13C,15N]leucine, [U-13C5]valine, [1-13C]

methionine, and [methyl-D3]methionine starting prior to surgery. Umbilical blood flow was 

measured using ultrasound. Maternal and umbilical cord blood was collected and analyzed 

for amino acid enrichments and concentrations using gas chromatography mass-

spectrometry. Data are expressed as median (25th – 75th percentile).  

Results 

Fetuses showed considerable leucine, valine, and methionine uptake (90 (79 – 145), 71 (68 – 

123), and 16 (11 – 20) μmol/(kg·h), respectively). These three amino acids were released 

from fetal protein breakdown at rates of 242 (220 – 306), 194 (168 – 216), 42 (35 – 48) 

μmol/(kg·h), respectively. Conversion from these molar rates reveals a protein breakdown 

rate of approximately 10 g protein/(kg·d). After reversible leucine transamination to �-

ketoisocaproate, the latter was transported to the placenta at a rate of 18 (32 – 15) μmol/

(kg·h), reaminated to leucine (77 (67 – 99) μmol/(kg·h)), or oxidized. Oxidation rates could 

not be quantified directly, but our data indicate that a large part of leucine and valine is 

ultimately oxidized.  

Conclusions 

Collectively, our data show that the fetus around term gestation has considerable amino 

acid uptake in combination with high protein breakdown rates. Probably, amino acids are 

used in large amounts for oxidation to yield energy. 



fetal leucine, valine, and methionine kinetics 

CH
A

PT
ER

 V
III

 

127 

INTRODUCTION 

 

Historical wise, the fact that the design of current nutrition for premature neonates are 

merely step-by-step alterations of the original composition of breast milk [1] is not 

surprising. Years ago, gestational viability was closer to term than it is currently and the 

analysis of normal neonatal nutrition was easier than the study of fetal nutrition. But with 

increased survival of less mature infants, metabolic demands of these young individuals 

probably deviate much more from those who receive breast milk or regular formula after 

term birth. Besides, we know from several decades of animal fetal research that intrauterine 

nutrient supply delivers more amino acids and less fat than is supplied during breast feeding 

[2]. Today, however, the exact composition of human fetal nutrient supply still remains 

unknown. Current common practice for a premature infant dependent on parenteral 

nutrition, is to supply 2 to 3 g/(kg·d) of amino acids and 2 to 3 g/(kg·d) of lipids [3]. With the 

current preterm formula, infants even have a higher lipid intake. However, since protein is 

the main functional component of tissue gain, this macronutrient has gained most attention 

and, over time, recommended protein intake and quality have often changed. Yet, most of 

the prematurely born infants still show significant postnatal growth restriction which can 

affect growth and development over a long period.  

With the availability of harmless tracer studies, human fetal metabolism can be 

unraveled. This knowledge could prove pivotal in further ameliorating nutritional strategies 

for the premature infant. Therefore, our aim was to investigate several aspects of human 

fetal essential amino acid metabolism, specifically leucine, valine, and methionine kinetics. 

These could be determined by analyzing umbilical cord blood after the infusion of stable 

isotopically-labeled amino acids into pregnant women undergoing elective cesarean section 

at term. These kinds of studies provide normative data against which amino acid 

metabolism in the neonate after, for example, fetal growth restriction or prematurity can be 

judged. 

 

 

METHODS 

 

PATIENTS 

The study was performed at the Mother and Child Center of the Erasmus MC – Sophia 

Children’s Hospital after approval by both the institutional medical ethical review board and 

the Dutch central committee on research involving human subjects (CCMO). Pregnant 

women undergoing elective cesarean section (repeat or breech presentation) at term were 

eligible. Exclusion criteria were obesity (preconceptional body mass index (BMI) >30), 

preeclampsia, diabetes, known fetal anomalies, or severe intrauterine growth restriction 

(< -2SD). Participating women gave written consent after having been fully informed about 

all study details. 
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EXPERIMENTAL DESIGN 

To determine the umbilical blood flow, blood flow velocity and vessel diameters were 

measured in the umbilical vein using an ultrasound machine (iU22, Philips Medical Systems, 

Eindhoven, the Netherlands) as previously described [4]. Ultrasound measurements were 

made in the late afternoon on the day preceding surgery; cesarean sections were scheduled 

at approximately 8.00 a.m. after an overnight fast.  

At least 4 hours prior to planned surgery, the women received a primed continuous 

infusion of L-[1-13C,15N]leucine (8 mmol/(kg·h)) through a forearm vein. Two hours later 

primed continuous infusions of L-[U-13C5]valine, L-[1-13C]methionine, and L-[methyl-D3]

methionine (5, 2, and 2 mmol/(kg·h), respectively) were started along. Priming doses were 

half the hourly doses. Isotopes (all >98% enriched and tested for sterility and pyrogenicity) 

were obtained from Buchem BV, Apeldoorn, the Netherlands (local distributor of Cambridge 

Isotope Laboratories, Andover, MA, USA). Our hospital pharmacy dissolved the isotopes in 

0.9% saline and the solutions were filtered (0.2 μm) and sterilized. Tests were performed to 

ensure the correct identity, concentration, and a sterile and pyrogen free product. Tracers 

were given using Perfusor® fm (B|Braun Medical B.V., Oss, the Netherlands) infusion 

pumps. Maternal blood was sampled before the tracer infusions started (baseline), once 

immediately before anesthesia (spinal) and, if possible (n=4), about 20 minutes later just 

before surgery started. Fetal blood was sampled after birth from both the vein and arteries 

of a doubly clamped segment of the umbilical cord. After collection in heparin tubes, blood 

was centrifuged and plasma was frozen at -80°C until analysis. 

ANALYSIS 

As calculations in a veno-arterial balance model (as on the umbilical cord in the fetus, 

see below) largely depend on the small differences in concentration and enrichment 

between the vein and arteries, rather than on the absolute values, measurements must be 

extremely precise. To minimize the effects of potential analytical measurement errors, 

samples were prepared for analysis twice using two different derivatization methods (PCF 

and MTBSTFA, see below). Each derivatized sample was analyzed in triplicate on two 

different gas chromatography mass spectrometers (GCMS) (see below). Enrichments of 

valine and methionine were calculated from the mean of all twelve analyses; enrichments of 

leucine isotopomers (m+0, m+1: [1-13C]leucine (without 15N), and m+2: [1-13C,15N]leucine) 

were calculated from the MTBSTFA samples only (due to the fragmentation pattern after 

PCF analysis); amino acid concentrations were calculated from the mean of the six analyses 

using the MTBSTFA derivative. 

PCF (propylchloroformate) derivatization on samples was performed using commercial 

kits (EZ:Faast for hydrolysates, Phenomenex, Bester BV, Amstelveen, the Netherlands) 

according to the enclosed protocol. Samples to be derivatized with MTBSTFA were added 

with [D10]leucine, [D8]valine, and [U-13C5,15N]methionine as internal standards for 

concentration determinations. Concentration calibration curves were prepared using 

MTBSTFA as well. Two different enrichment calibration curves were derivatized with PCF 
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and MTBSTFA for analysis. Samples and calibration curves were analyzed with a MSD 5975C 

Agilent GCMS (Agilent Technologies, Amstelveen, the Netherlands) on a VF-17ms, 30m x 

0,25mm ID capillary column (Varian Inc., Middelburg, the Netherlands) and a Thermo DSQ 

GCMS (Thermo Fisher, Breda, the Netherlands) on a VF-1701ms, 30m x 0,25mm ID capillary 

column (Varian Inc., Middelburg, the Netherlands). 

Samples intended to be analyzed for the enrichments and concentrations of the 

ketoacids �KIC and �KIV were added with [methyl-D3]�KIC and [dimethyl-13C2]�KIV as 

internal standards. Enrichment and concentration calibration curves were also prepared. 

Samples were derivatized with quinoxanol-silyl, phenylenediamine, and MTBSTFA and 

measured in triplicate on the same Thermo DSQ GCMS as described above. 

CALCULATIONS 

Maternal leucine fluxes (Q) were calculated from the tracer dilution resulting from the 

rate of leucine appearance [5,6]. In short, carbon leucine flux (QC) is made up of leucine 

appearing from proteolysis only, whereas nitrogen leucine flux (QN) is made up of both 

proteolysis and �KIC reamination. Thus, the difference between QN and QC yields the rate of 

�KIC reamination to leucine. Fluxes were calculated as I × [(Ei/Ep) – 1], where I is the [1-
13C,15N]leucine infusion rate and Ei and Ep represent the enrichments in mole percent excess 

(MPE) of the infusate and of either plasma [1-13C,15N]leucine or [1-13C]�KIC yielding QN or 

QC, respectively. Because [1-13C,15N]leucine enrichment in plasma is no more than the site of 

infusion and not the site where the majority of metabolism will take place, the plasma 

enrichment will be slightly overestimated leading to an underestimated QN. The [1-13C]�KIC 

enrichment is the resultant from intracellular metabolism and thus gives a good reflection of 

intracellular metabolism because of rapid exchange. 

Maternal valine and methionine kinetics were studied regarding their carbon skeletons 

only; QC was calculated analogous to leucine using the [U-13C6]�KIV enrichment. Maternal 

methionine transmethylation kinetics were not quantified as the tracer infusion would be 

too short to achieve [1-13C]homocysteine steady state [7]. 

We quantified fetal whole body kinetics by using the concept of an umbilical veno-

arterial balance model. To do so, we rewrote the leucine arteriovenous balance model by 

Tessari et al. [8] to suit fetal studies. The model is outlined in Figure 1 and its determinants 

are calculated using the following equations, where kg in all units denotes fetal weight 

(= birth weight):  

Rate of leucine delivery from umbilical vein to the fetus: 

  
where [leu] is the total (labeled + unlabeled) leucine concentration (μmol/L) and BF the 

umbilical blood flow (L/(kg·h)). Subscripts indicate whether blood was sampled from the 

umbilical vein or arteries (as below). 

Rate of leucine release from fetus to umbilical artery: 

  

vendelivery = [leu] × BF

artrelease [leu] BF= ×

(1.1) 

(1.2) 
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Fraction of leucine that is metabolized intracellularly:  

  
where [13C,15N·leu] is the labeled [1-13C,15N]leucine concentration (μmol/L). 

Rate of leucine inflow from umbilical vein to intracellular compartment: 

  
Rate of leucine outflow from intracellular compartment to umbilical artery: 

  
Net fetal leucine uptake: 

  
Rate of leucine directly released from umbilical vein to artery without being metabolized: 

  
Rate of �-ketoisocaproate delivery from umbilical vein to the fetus: 

  
where [KIC] is the total (labeled + unlabeled) �KIC concentration (μmol/L). 

13 15
art

13 15
ven

[ C, N leu]
metabolized fraction 1

[ C, N leu]
= −

i
i

metabolic inflow Eq(1.1) Eq(1.3)= ×

metabolic outflow Eq(1.2) Eq(1.4) Eq(1.1)= + −

net uptake Eq(1.1) Eq(1.2) Eq(1.4) Eq(1.5)= − = −

non-metabolized release Eq(1.1) Eq(1.4)= −

vendelivery [KIC] BF= ×

reamination

oxidation

deamination (2.4)

metabolicmetabolic
uptake

(1.4) (1.5)

umbilical artery:

leucine
delivery

intracellular
free

leucine

umbilical vein:

leucine
delivery

(1.1)
non-metabolized release

release

(1.2)

(1.7)

breakdown
protein

(2.5)
leucine

in proteins
synthesis
protein(2.3) leucine

in proteins
&

CO2

intracellular
αKIC

(2.2)

metabolicmetabolic
uptake

umbilical artery:

αKIC
delivery

umbilical vein:

αKIC
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(1.8)
non-metabolized release

release

(1.9)

FIGURE 1: Schematic model of fetal leucine metabolism. Numbers in brackets correspond to the 

equations in the methods section and the fluxes outlined in table 5. Dashed lines indicate fluxes that 

could not be quantified. Fluxes 2.3 and 2.4 are the sums of protein synthesis and either deamination 

or oxidation, respectively. 

(1.3) 

(1.8) 

(1.7) 

(1.6) 

(1.5) 

(1.4) 
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Rate of �-ketoisocaproate release from fetus to umbilical artery: 

  
Net fetal �-ketoisocaproate uptake: 

  
Fraction of [1-13C]leucine that is metabolized intracellularly:  

  
where [13C·leu] is the total labeled [1-13C]leucine concentration (μmol/L). The total [1-
13C]leucine enrichment was calculated as the sum of the [1-13C]leucine (without 15N) 

enrichment and the [1-13C,15N]leucine enrichment. 

Rate of intracellular �-ketoisocaproate reamination to leucine: 

  
where 13C·KIC·E is the [1-13C]�KIC enrichment (in MPE). 

In our model, we could not discriminate between leucine being incorporated into protein 

and leucine being deaminated to �KIC. Thus, we calculated the sum of the latter two rates 

in μmol/(kg·h): 

  
In our model, we could not discriminate between leucine being incorporated into protein 

and �KIC being oxidized to CO2. Thus, we calculated the sum of the latter two rates in μmol/

(kg·h): 

  
Rate of leucine release from proteolysis into the intracellular space: 

  
The above outlined model can also be used for calculations on valine kinetics. However, 

because the nitrogen group of valine was not labeled, equations (1.3, 1.4, 1.5, 1.7, 2.2, and 

2.3) could not be determined. Equations (1.1, 1.2, 1.6, 1.7, 1.8, 1.9, 1.10, 2.1, 2.4, and 2.5) 

can be resolved by replacing leucine by valine and �KIC by �KIV. 

Since a balance model does not require steady state assumptions (e.g. for  

[1-13C]homocysteine), such as in the whole body model, methionine kinetics were calculated 

using the same model as the leucine kinetics by replacing leucine, �KIC, [13C,15N·leu], 

deamination, and reamination by methionine, homocysteine, [D3
met], demethylation, and 

remethylation, respectively. However, homocysteine concentration and enrichment were 

not actually measured because its plasma concentration and uptake are very low [9]. The 

denominator in equations 2.2 and 2.3 was therefore formed by the [1-13C]methionine 

artrelease [KIC] BF= ×

net uptake Eq(1.8) Eq(1.9)= −

13
art

13
ven

[ C leu]
metabolized fraction 1

[ C leu]
= −

i
i

( )13
art

13
art

BF [ C leu] Eq(1.3) Eq(2.1)
reamination

C KIC E

× × −
=

i
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( )13 13
ven art
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BF [ C leu] [ C leu]
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C KIC E

× −
+ = +

i i

i i

S + O Eq(2.3) Eq(2.2) Eq(1.10)= − +
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(2.3) 

(1.10) 
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instead of homocysteine enrichment, thereby slightly underestimating transmethylation 

and proteolysis fluxes.  

Proteolysis rates of these three amino acids can be converted from molar rates into 

grams of protein under the assumption that one gram of fetal protein contains on average 

562 μmol leucine, 395 μmol valine, and 130 μmol methionine [10]. 

STATISTICS 

Calculations were made using Microsoft Office - Excel software (version 2007; Microsoft 

Corp, Redmond, WA, USA). Statistical analysis was performed using GraphPad Prism 

software (version 4.0; San Diego, CA, USA). Because the number of included subjects was 

small (n=8), normality of data could not be assumed. All results were therefore expressed as 

median (25th – 75th percentile). Consequently, by presenting our data as medians, all rates in 

Table 6 do not add up correctly as outlined in our model (Figure 1). Nonetheless, the fluxes 

of each individual subject do. 

 

 

RESULTS 

 

We included eight feto-maternal dyads. These patients are the same as those described in 

an earlier study by our group on fetal phenylalanine and tyrosine kinetics [11]. Maternal 

age, preconceptional and actual BMI, and parity are shown in Table I. Fetal characteristics in 

terms of gestational age, birth weight, birth weight z-score [12], sex, umbilical blood flow, 

umbilical pulsatility index, and Apgar score are shown in Table II. 

From four women, we obtained two blood samples before surgery had started with an 

interval of approximately 20 minutes. Enrichments did not differ during this time interval, 

despite spinal anesthesia being applied in between. Therefore, steady state was assumed. 

The other four women had only one blood sample taken, which was before anesthetics 

were initiated. Achieving steady state is important in whole body modeling; calculating 

kinetics in a balance model like we did on the fetus, however, does not depend on  

steady state. The maternal and umbilical leucine, �KIC, valine, �KIV, and methionine 

concentrations and enrichments are shown in Table III. The feto-maternal enrichment and 

concentration ratios across the maternal and umbilical veins are outlined in Table IV. 

Table V shows maternal leucine, valine, and methionine kinetics. Since the women were 

fasting, amino acids released from protein breakdown equaled the total rate of appearance. 

Table VI displays fetal kinetics of the 3 amino acids. However, the data of the leucine and 

valine kinetics from one patient were excluded in this table as the findings deviated greatly 

from the other 7 subjects. Results from this particular patient are outlined in the discussion. 
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Characteristic Value 

Age (y) 33.0 (28.8 – 38.0) 

Preconceptional BMI (kg/m2) 21.9 (20.3 – 24.5) 

Actual BMI (kg/m2) 30.5 (23.3 – 31.6) 

Parity (0:1:2:3) (n) (4:1:2:1) 

Characteristic Value 

Gestational age (wks) 38.5 (37.6 – 38.9) 

Birth weight (kg) 3.3 (2.7 – 3.4) 

Birth weight z-score (SD) -0.11 (-0.86 – 0.52) 

Sex (m:f) (n) 4:4 

Umbilical blood flow (mL/(kg·min)) 101 (90 – 110) 

P.I. 0.89 (0.78 – 0.96) 

Placental weight (kg) 0.590 (0.558 – 0.649) 

Apgar score at 5 min 10 (10 – 10) 

  Maternal vein Umbilical vein Umbilical artery 

leu concentration 108 (99.7 – 119) 145 (134 – 148) 125 (111 – 133) 

�KIC concentration 28.1 (25.5 – 31.2) 36.5 (35.0 – 41.2) 39.3 (36.4 – 40.9) 

val concentration 149 (138 – 157) 191 (179 – 221) 179 (167 – 186) 

�KIV concentration 11.0 (10.4 – 11.9) 13.0 (12.1 – 14.7) 12.6 (11.6 – 14.0) 

met concentration 28.3 (24.7 – 30.5) 36.7 (34.3 – 39.0) 34.8 (32.0 – 36.7) 

[1-13C,15N]leu enrichment 4.1 (3.2 – 4.5) 2.6 (2.6 – 2.8) 2.0 (1.8 – 2.1) 

[1-13C]leu (w/o* 15N) enrichment 5.5 (5.0 – 5.8) 5.5 (5.0 – 6.1) 5.0 (4.5 – 5.6) 

[1-13C]leu (total) enrichment 9.4 (8.7 – 9.8) 8.1 (7.4 – 8.8) 7.0 (6.3 – 7.8) 

[1-13C]�KIC enrichment 6.0 (5.8 – 6.2) 5.7 (5.2 – 5.9) 4.8 (4.3 – 5.2) 

[U-13C5]val enrichment 6.6 (6.2 – 7.0) 5.0 (4.7 – 5.1) 4.4 (4.2 – 4.7) 

[U-13C5]�KIV enrichment 4.5 (4.0 – 4.8) 3.9 (3.7 – 4.3) 3.6 (3.2 – 3.8) 

[1-13C]met enrichment 9.8 (9.5 – 10.2) 6.9 (6.6 – 7.5) 5.9 (5.5 – 6.2) 

[methyl-D3]met enrichment 9.6 (8.9 – 10.4) 6.4 (6.1 – 6.9) 5.2 (4.8 – 6.0) 

TABLE I: Maternal characteristics. Results are expressed as median (25th – 75th percentile), except for 

parity (n). 

TABLE II: Fetal characteristics. Birth weight z-scores are corrected for gestational ages [12]. The  

pulsatility index (P.I.) is a Doppler ultrasound derived index on the blood stream velocity profile 

through the umbilical arteries and is a marker of fetal well-being. The Apgar score is a postnatal 

scoring scale from 0-10. All results are expressed as median (25th – 75th percentile), except for sex. 

* without 

TABLE III: Plasma leucine (leu), �KIC, valine (val), �KIV, and methionine (met) concentrations  

(μmol/L) and enrichments (MPE) measured in the maternal vein (n=8), umbilical vein (n=8), and 

umbilical artery (n=8). Results are expressed as median (25th – 75th percentile). 
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DISCUSSION 

 

This report is the third in a series exploring fetal amino acid and protein metabolism by our 

group [11,13]. In this study several metabolic pathways of the essential amino acids leucine, 

valine, and methionine were quantified.  

Previously, we found that the fetal net protein accretion rate in the same subjects as 

here was 1.70 g/(kg
d) when measured with phenylalanine and tyrosine tracers [11]. This 

can be converted to a net accretion rate of 40 μmol leucine/(kg·h), 28 μmol valine/(kg·h), 

and 9.2 μmol methionine/(kg·h). Yet, the net TLC, TVC, and methionine uptakes (table 6) are 

much higher than the net accretion rates. This would therefore seem to suggest that a large 

proportion of these amino acids is being oxidized, or in the case of methionine, follows the 

transsulfuration pathway. This is especially true for valine, where 60% of the net TCV uptake 

is oxidized. Leucine oxidation would contribute for approximately 40% of total TLC uptake. 

Chien et al. showed fetal leucine oxidation rate to be one-third of TLC uptake [14], a value 

close to our estimation. In the ovine fetus around term, valine has the highest net fetal 

Flux Value 

Leucine released from proteolysis 125 (119 – 129) 

Valine released from proteolysis 104 (98 – 118) 

Methionine released from proteolysis 19 (18 – 20) 

�KIC reamination to leucine 63 (49 – 107) 

Leucine concentration 1.3 (1.3 – 1.4) 

�KIC concentration 1.4 (1.2 – 1.5) 

Valine concentration 1.4 (1.3 – 1.5) 

�KIV concentration 1.2 (1.1 – 1.3) 

Methionine concentration 1.3 (1.2 – 1.5) 

[1-13C,15N]leu enrichment 0.70 (0.60 – 0.81) 

[1-13C]leu (total) enrichment 0.92 (0.81 – 0.95) 

[1-13C]�KIC enrichment 0.92 (0.90 – 0.95) 

[U-13C5]val enrichment 0.79 (0.70 – 0.82) 

[U-13C5]�KIV enrichment 0.87 (0.84 – 0.92) 

[1-13C]met enrichment 0.74 (0.69 – 0.83) 

[methyl-D3]met enrichment 0.70 (0.61 – 0.78) 

Result Ratio 

TABLE IV: Feto-maternal ratios of the concentrations and enrichments across the umbilical vein and 

maternal vein. Results are expressed as median (25th – 75th percentile). 

TABLE V: Maternal leucine, valine, and methionine kinetics (n=8). All results are expressed in  

μmol/(kg·h) as median (25th – 75th percentile). 
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leu (n=7) 

�
KIC (n=7) 

val (n=7) 
�

KIV
 (n=7) 

m
et (n=8) 

U
m

bilical vein delivery (1.1 &
 1.8) 

837 (644 – 935) 
229 (171 – 245) 

1067 (956 – 1249) 
82 (57 – 90) 

220 (165 – 250) 

U
m

bilical artery output (1.2 &
 1.9) 

765 (569 – 817) 
247 (185 – 272) 

997 (798 – 1170) 
76 (60 – 90) 

202 (164 – 231) 

M
etabolized fraction (%

) (1.3) 
40 (27 – 41) 

—
 

—
 

—
 

20 (19 – 23) 

M
etabolic uptake from

 um
bilical vein (1.4) 

248 (231 – 327) 
—

 
—

 
—

 
48 (33 – 57) 

M
etabolic output into um

bilical artery (1.5) 
155 (130 – 208) 

—
 

—
 

—
 

32 (25 – 38) 

N
et fetal uptake (1.6 &

 1.10) 
90 (79 – 145) 

-18 (-32 – -15) 1 
71 (68 – 123) 

0 (-6 – 2) 1 
16 (11 – 20) 

N
et TLC/TVC uptake 

67 (51 – 118) 
69 (65 – 128) 

—
 

N
on-m

etabolized release (1.7) 
533 ( 424 – 600) 

—
 

—
 

—
 

164 (136 – 193) 

M
etabolized fraction of carbon skeleton (%

) (2.1) 
30 (20 – 31) 

—
 

19 (15 – 22) 
—

 
19 (19 – 24) 

�KIC ream
ination to leu (2.2) 

77 (67 – 99) 
—

 
—

 
—

 
1.9 (-2.1 – 4.5) 2 

Protein synthesis + deam
ination to �KIC (2.3) 

402 (381 – 523) 
—

 
—

 
—

 
61 (45 – 71) 3 

Protein synthesis + �KIC/�KIV oxidation (2.4) 
314 (292 – 399) 

279 (228 – 379) 
58 (48 – 69) 4 

Release from
 protein breakdow

n (2.5) 
242 (220 – 306) 

—
 

194 (168 – 216) 
—

 
42 (35 – 48) 

Proteolysis rates (g protein/(kg·d)) 
10.3 (9.4 – 13.1) 

—
 

11.8 (10.2 – 13.2) 
—

 
7.7 (6.4 – 8.9) 

TA
BLE V

I: Fetal leucine (leu), valine (val), and m
ethionine (m

et) kinetics. N
um

bers in brackets indicate the equation used and flux as they are outlined in 

the m
ethods section and in figure 1. D

ata are expressed as m
edian (25

th – 75
th percentile) in μm

ol/(kg·h) unless otherw
ise indicated. 

1 a negative value indicates net fetal release tow
ards the placenta 

2 hom
ocysteine rem

ethylation to m
et 

3 protein synthesis + dem
ethylation to hom

ocysteine 
4 protein synthesis + transsulfuration 
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 uptake of all essential amino acids [15-18]. Yet, only a relatively small part is necessary for 

protein deposition [16]. These findings, in combination with the fact that especially valine 

plasma concentrations are much higher during fetal life [19] than postnatally in healthy 

term breast-fed infants [20], could confirm that valine is largely oxidized during intrauterine 

life. Direct measurements of fetal valine oxidation, however, are unavailable in humans or 

animals. Since we were using several 13C tracers simultaneously, we were not able to 

directly quantify the oxidation rates of the specific amino acids. 

In our study and in the human study by Chien and colleagues [14], fetuses showed a net 

output of �KIC towards the placenta. Contrary are the findings in studies sheep, where 

fetuses demonstrate a net uptake of �KIC [21-23]. A species-related difference could explain 

this phenomenon. However, the ketoacid of valine, i.e. �KIV, did not show any significant 

net uptake or output. To our knowledge, studies on ovine fetal metabolism have not 

described �KIV concentrations. 

As addressed in the results section, one fetus showed different results, especially 

reflected by a very high positive net uptake of �KIC (92 μmol/(kg·h)). The uptake of �KIV 

was also higher (30 μmol/(kg·h)) than in the other seven fetuses. Given the surprising result 

in this infant, measurements on �KIC and �KIV concentrations were repeated, but showed 

comparable results. Interestingly enough, this fetus also had a very high reamination rate 

(307 μmol/(kg·h)), probably to dispose the high �KIC uptake into leucine. All other fetal 

leucine and valine kinetic parameters were comparable to the other fetuses. The maternal 

reamination rate in this feto-maternal dyad was comparable to the other women. As can be 

seen in equation (2.2) under methods, the quantification of the fetal reamination rate 

occurs mathematically independent of fetal �KIC uptake or concentrations. We do not have 

any explanation for this finding. Additionally, mother and infant were in good clinical 

condition and the postnatal course of the infant was normal. Yet, the fact that a high fetal 

�KIC uptake was counterbalanced by a mathematically independent high reamination rate, 

gives us confidence in our methods, analyses, and thus overall results in all other subjects. 

As shown in table 3, the enrichment of [1-13C]leucine (without 15N) was very similar to the 

enrichment of [1-13C]�KIC. This also confirms the model as a [1-13C]leucine molecule 

(without the 15N label) can only be formed through the reamination of an [1-13C]�KIC 

molecule. 

The pregnant women in our study showed higher reamination rates than previously 

measured in pregnant women [6] but were still lower than the protein breakdown rates. 

Maternal leucine proteolysis rates in studies using similar methodology have yielded rates 

that were 10% lower [6,14,24], similar [25], or 10% higher [26,27] than those reported here. 

Ovine premature fetuses showed reamination rates approximately twice the rate of 

leucine appearance from protein breakdown [22,28]. This is in contrast with our results, 

where reamination rates are only one-third of the proteolysis rates. Apart from species 

differences, the sheep fetuses were also studied earlier in gestation. A higher growth rate in 

these premature sheep could demand fast transamination rates in order to shuttle nitrogen 
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between various tissues.  

Reamination rates in enterally-fed growing premature neonates at 35 weeks corrected 

gestational age were with ~250 μmol/(kg·h) [29] much higher than the rates we observed in 

fetuses at term. In term-born healthy neonates on postnatal day two, however, reamination 

rates amounting ~140 μmol/(kg·h) were closer to our values, although still higher [30]. 

Nonetheless, proteolysis rates in these two studies by Parimi and colleagues and in a study 

by our group in premature neonates [31] were comparable to the fetal protein breakdown 

rates in the current study. Thureen et al, however, found lower proteolysis rates in 

premature infants [32]. 

Taken together, it seems that our observed fetal reamination rates are lower than the 

postnatal values in human neonates. A reason, partially explaining the higher postnatal 

values, is that the placenta cannot take up substrates anymore. Thus, in order to avoid 

irreversible �KIC oxidation, neonates reaminate at high rates. Another reason for a lower 

reamination rate in human fetuses compared to fetal sheep could be that �KIC is being 

transported towards the placenta, whereas in ovine fetuses the opposite is true, which 

necessitates a higher reamination rate. 

The activity of BCAA aminotransferases (deamination) was reported to be very high in 

human first trimester placentas [33] and ovine placentas at term [34,35]. The feto-maternal 

enrichment ratios as reported in table 4 provide qualitative information on transplacental 

amino acid transport in relation to proteolysis rates in the placenta or fetus (and 

endogenous synthesis in non-essential amino acids). The fact that the feto-maternal 

enrichment ratio of [1-13C,15N]leucine was much lower than the total [1-13C]leucine 

enrichment ratio, indicates that the placenta indeed reaminates at a high rate. The total 

[1-13C]leucine enrichment ratio we found was comparable to the ratio observed by Marconi 

et al. [27], but higher than the one by Chien et al. [14]. Umbilical cord manipulation to 

perform flow measurements could theoretically have caused the lower enrichment ratios in 

the latter study. The enrichment ratio of another branched chain amino acid, valine, showed 

very good agreement, whereas the ratio for methionine was slightly lower for unknown 

reasons. 

Surprisingly, we found on average very low remethylation rates. Besides, in some 

individuals, calculations even revealed small negative values. Of course, the latter is 

physiologically impossible. A relatively low methionine turnover rate, which can hamper 

accurate kinetic calculations, in combination with measurement or modeling errors, could 

be causal for these negative values. Therefore, although we must interpret our average 

remethylation rate with care, in the end we believe it is low and that most homocysteine 

undergoes transsulfuration ultimately leading to cysteine. In several recent studies, 

transsulfuration pathways have indeed been suggested to be active in both preterm and 

term neonates [36-38]. 

As the drawbacks of this study, including plasma versus whole blood measurements and 

potential effects of maternal surgery on fetal metabolism, have already been addressed 
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previously [11], they will not be elaborated upon here. In short, however, the amino acids 

studied here also show very rapid exchange between the erythrocyte and plasma 

compartments [39-41], implicating that plasma measurements as performed in this study 

should suffice. Several reports show in various ways that umbilical blood flow does not 

seem to be influenced by maternal anesthesia or surgery [42-44]. 

To conclude, we have described an explorative study on several metabolic pathways of 

three essential amino acids in human fetuses at term. Our data suggest high protein 

breakdown and synthesis rates, comparable with, or even slightly higher than in premature 

infants. The relatively large uptakes of leucine and valine total carbon suggest high fetal 

oxidation rates of these branched chain amino acids. 
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ABSTRACT 

 

Background 

The fetus is highly dependent on the placenta for its nutrient and oxygen supply. Further 

knowledge on placental metabolism helps us understand the critical role of the placenta in 

ensuring high rates of placental nutrient transport necessary for fetal growth. Therefore, 

our objective was to study the in vivo placental protein synthesis rate in human pregnancies 

during different periods of gestation. 

Methods 

Pregnant women received three different stable isotope infusions (1-13C,15N]leucine, [1-13C]

phenylalanine, and [U-13C5]valine) starting at different times prior to elective cesarean sec-

tion. After delivery, placental tissue samples were collected. Using mass spectrometry tech-

niques, we determined the enrichment of the incorporated tracer amino acids in placental 

proteins. From the three product/precursor enrichment ratios, we calculated the fractional 

synthesis rate, which is the fraction of mixed placental proteins that is daily renewed. Re-

sults are expressed as median (25th-75th percentile). 

Results 

We analyzed placentas from preterm (n=8) and term-delivered pregnancies (n=8). Fractional 

synthesis rates were higher in premature than in term placentas. (24.5 (21.6 – 26.0) vs. 18.0 

(15.6 – 22.8) %/d; p=0.028). Concordantly, more placental proteins were synthesized daily in 

the premature group (1.7 (1.5 – 1.8) vs. 1.2 (0.9 – 1.3) g/d per 100 g placenta; p=0.005). 

Conclusion 

The placenta has a very high protein turnover rate, which, however, decreases with advanc-

ing gestational age. 
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INTRODUCTION 

 

Imagining the placenta as a passive organ or a simple materno-fetal conduit, solely 

functioning as a barrier between maternal and fetal circulations for some substances, yet 

passing nutrients and oxygen, is an outdated thought. In fact, the placenta is a metabolically 

very active organ. For example, placental intracellular amino acid concentrations are higher 

than in maternal or fetal plasma indicating active energy demanding transport [1-3]. To 

support placental aerobic metabolism, half of the total uterine oxygen uptake during ovine 

late pregnancy is retained within the placenta, whereas the other half is transported further 

to the fetus [4,5]. Glucose consumption by the placenta accounts even up to 60% of the 

total glucose uptake by the conceptus [6]. In addition, the relative placental consumption 

rates of oxygen and glucose are even higher during midgestation than at term [7].  

Furthermore, if the pregnant ewe is subjected to chronic hypoglycemia, importance of 

undisturbed placental metabolism is even more stressed. Although under prolonged 

maternal hypoglycemia, the absolute glucose consumption rates by the fetus and placenta 

together are reduced, the uteroplacental tissues retain relatively even more glucose than 

under normoglycemic circumstances, thus, at the expense of glucose available for the fetus 

[4,6]. Measurements in human pregnancies at term yield similar data: 40% of oxygen uptake 

by the total conceptus is retained by the placenta, whereas only 60% is transferred further 

to the fetus [8]. 

Large part of the generated energy by the placenta is probably necessary for optimal 

amino acid transporter functioning at the expense of ATP either directly or indirectly by 

maintaining the electron gradients which drive the sodium dependent transporters. This in 

addition to the normal energy costs of cellular metabolism [9] which include continuous 

tissue remodeling and during midgestation also placental growth. 

Placental protein and cellular turnover is physiological and supports optimal placental 

functioning. Apoptosis rates are twice as high at term as in first trimester placentas [10]. 

Apoptosis rates even further rise in a series of complications, amongst which intrauterine 

growth restriction [11,12]. Whether higher programmed cell death in pathologic states or 

towards the end of pregnancy is a direct result or a compensatory mechanism is unknown. 

However, the mixed placental protein turnover rate might be a more specific indicator of 

its metabolic activity. Under the hypothesis that the protein turnover would decrease during 

gestation we measured the human in vivo placental protein fractional synthesis rate (FSR) 

using a stable isotope model. 
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PATIENTS AND METHODS 

 

SETTING AND SUBJECTS 

The study was performed at the Mother and Child Center of the Erasmus MC – Sophia 

Children’s Hospital after approval by both the institutional medical ethical review board and 

the Dutch central committee on research involving human subjects (CCMO, the Hague). 

Pregnant women scheduled to undergo elective cesarean section (repeat, breech, or 

multiple pregnancy) under spinal anesthesia were eligible. We aimed to include pregnancies 

which were close to term as well as pregnancies which were premature. Exclusion criteria 

were maternal obesity (preconceptional body mass index > 30 kg/m2), diabetes, severe fetal 

growth restriction (< -2SD), or known fetal anomalies. Participants gave written consent 

after having been fully informed about all study details. 

EXPERIMENTAL DESIGN 

L-[1-13C,15N]leucine, L-[1-13C]phenylalanine, and L-[U-13C5]valine were purchased from 

Buchem BV, Apeldoorn, The Netherlands (local distributor of Cambridge Isotope 

Laboratories, Andover, MA, USA) (all 99% enriched and tested for sterility and pyrogenicity). 

Our hospital pharmacy dissolved the isotopes separately in 0.9% saline after which the 

solutions were filtered (0.2 μm) and sterilized. Tests were performed to ensure the correct 

identity, concentration, and a sterile and pyrogen free product.  

Pregnant women received primed continuous stable isotope infusions of L-[1-13C,15N]

leucine (8 μmol/(kg·h)), L-[1-13C]phenylalanine (5 μmol/(kg×h)), and L-[U-13C5]valine (5 

μmol/(kg·h)), starting at least 4, 3, and 2 hours prior to planned surgery, respectively. The 

priming doses were half of the hourly doses. Tracers were given in a forearm vein with three 

separate Perfusor® fm infusion pumps (B|Braun Medical B.V., Oss, the Netherlands) until 

surgery was completed. After delivery of the neonate, the placenta was weighed and put on 

melting ice. Fetal blood was sampled from both the vein and arteries of a doubly clamped 

segment of the umbilical cord. After collection, blood samples were centrifuged (2000´g) in 

heparin tubes and plasma was frozen at -80°C until analysis. During centrifugation of the 

cord blood, three tissue samples (± 1.5×1.5×1,5 cm) were cut from the placenta in different 

areas around the insertion of the umbilical cord. Samples were washed several times in 

fresh and chilled saline and vigorously shaken until largely devoid of visible blood. Tissue 

was then quickly frozen at -80°C until analysis. 

SAMPLE ANALYSES 

Of each frozen placental tissue sample (n=3 per placenta, 48 samples in total), 

approximately 1.2 g tissue was cut and subsequently freeze-dried for at least 15 hours. 

Exact wet and dry weights were measured. Dried placental material was dissolved in H2O 

(1:20 m/m) before homogenization and sonification. The material was treated as cold  

as possible during all procedures. Portions of two-hundred μL of homogenate were  

used to determine the placental protein concentration in sextuplicate according to the 

photospectrometrical method of Lowry et al. [13]. The remaining homogenate (1.5 mL) was 
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deproteinized using 1.5 mL of 2 mol perchloric acid (PCA)/L. After centrifugation, 

supernatant was separated and treated further as described below. To the protein pellet, 2 

mL of 0.2 mol PCA/L was added as a washing step. After complete mixing and 

centrifugation, supernatant was discarded. The washing steps were repeated another two 

times. To the protein pellet, 200 μL internal standard solution (10 g norvaline/L and 10 g 

norleucine/L) and 1.2 mL of 7 mol HCl/L were added. Samples were then hydrolyzed for 22 

hours at 110°C. After cooling down, a portion of 100 μL of hydrolysate was taken and added 

with sodium hydrogen carbonate to direct the pH between 1.5 and 3.0 and subsequently 

filtered through 0.22 μm nylon filters to remove ashes. Samples were then derivatized using 

ethylchloroformate and measured in triplicate on a gas chromatograph – combustion – 

isotope ratio mass spectrometer (Delta XP, Thermo Electron, Bremen, Germany) [14]. 

Enrichment calibration graphs were created by mixing known amounts of enriched and 

nonenriched amino acids; these were derivatized and analyzed similar to the samples. 

Baseline enrichments of leucine, phenylalanine, and valine in placental proteins could of 

course not be measured, but were assumed to be equal to those amino acids that were not 

administered and do not share common metabolic pathways. Therefore, we measured the 

natural enrichment of lysine and alanine (~0) in the placental samples taken after birth. The 

averaged values were used to correct for the natural abundance of the leucine, 

phenylalanine, and valine tracers. 

As a precursor for placental protein synthesis, we measured the placental intracellular 

free amino acid enrichment. However, the intracellular free amino acid enrichment turned 

out to be approximately one-fourth to one-half of the enrichments that were measured in 

the maternal and fetal plasma [15]. Probably, placental protein started to degrade already 

very soon after placental removal from the uterus thereby diluting the intracellular amino 

acid enrichment. Free intracellular tissue amino acid enrichments could therefore not be 

used. Yet, Watt et al. found that the enrichment of aminoacyl-tRNA, which is the true site of 

protein incorporation, was not only very close to free intracellular enrichment, but also to 

the plasma enrichment in the umbilical arteries [16]. We therefore took the previously 

measured free amino acid enrichments in umbilical arterial plasma as precursors [15]. 

CALCULATIONS 

In each subject, the separate leucine, phenylalanine, and valine product/precursor 

enrichment ratios were plotted in a graph against the moment the corresponding infusion 

was started (Figure 1) [15]. Using computer software, the slope and the correlation 

coefficient of the linear trend line were calculated. The FSR was then derived using the 

following equation: 

FSR (%/d) = slope of trend line × -1 × 24h × 100% 

The absolute synthesis rate (ASR) represents the absolute amount of placental protein that 

is produced per unit of time and can be calculated with the following equation: 

ASR (g/d per 100 g placenta) = FSR × Cprotein × weight -1 

where Cprotein is the placental protein content in g protein/placenta, and weight is the 
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trimmed placental weight in g. The latter was calculated as follows [17,18]: 

trimmed placental weight = gross placental weight × 0.86. 

The half life time was calculated as follows: 

t½ (d) = 100 × ln 2 × FSR -1 

Finally, the results of all three placental tissue samples per placenta were averaged. 

STATISTICS 

Calculations were made with Microsoft Office - Excel software (version 2007; Microsoft 

Corp, Redmond, WA, USA) and statistical tests were done in GraphPad Prism software 

(version 5.0; San Diego, CA, USA). Because of our small groups, normality distribution of 

data could not be determined or assumed. Therefore, non-parametric data analysis was 

performed. Consequently, values are expressed as median (25th – 75th percentile) and Mann

-Whitney tests were used to detect statistical differences. Significance level was set at 

p<0.05.  
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FIGURE 1: Study design. Pregnant women received three different stable isotopically labeled amino 

acid infusions starting at different times prior to cesarean section. At time=0 (i.e. birth), placental 

tissue was collected and the enrichments of the three infused amino acids that were incorporated in 

mixed structural placental protein (MSPP) was measured. The product/precursor enrichment ratio 

of each of the three infused amino acids was then plotted in a graph against the moment the 

corresponding isotope infusion was started. As labeled leucine had the longest infusion time, its 

enrichment ratio will be highest. The slope of the trend line determines the fractional synthesis rate 

of MSPP. 



placental protein synthesis rates 

CH
A

PT
ER

 IX
 

149 

RESULTS 

 

We included eleven pregnant women, of whom eight delivered at term, one at 31 weeks 

gestation, one delivered a triplet at 35 weeks (two identical, one non-identical), and one 

delivered a quadruplet at 28 weeks (all non-identical). The placenta of the monozygotic twin 

was regarded as two separate placentas as the insertions of the umbilical cord were far 

apart and surrounding placental tissue for each infant might have different metabolic rates. 

We thus studied 16 placentas, classified into two groups: premature (<37 weeks gestation) 

and term. Table 1 shows the clinical characteristics of the studied subjects. Term infants 

were born in good health and premature infants were, considering their prematurity, in 

good clinical condition. Placental characteristics in terms of dry weight and protein content 

are displayed in Table 2. Water and protein content of placentas did not differ between the 

premature and term group.  

 

 

  Premature group (n=3/8) Term group (n=8/8) 

Maternal age (y) 35.0 (29.5 – 35.0) 33.0 (28.8 – 38.0) 

Preconceptional BMI (kg/m2) 23.9 (21.9 – 26.6) 21.9 (20.3 – 24.5) 

Actual BMI (kg/m2) 29.4 (27.9 – 33.6) 29.7 (23.6 – 31.4) 

Parity (0:1:2:3) (n) (2:0:0:1) (4:1:2:1) 

Gestational age (wks) *** 29.9 (28.4 – 35.4) 38.5 (37.6 – 38.9) 

Birth weight (wks) *** 1.3 (1.2 – 1.9) 3.3 (2.7 – 3.4) 

Birth weight Z-score (SD) ref [42] -0.19 (-0.70 – 0.22) -0.11 (-0.86 – 0.52) 

Gross placental weight (g) ** 396 (362 – 467) 590 (558 – 649) 

Sex (m:f) (n) 3:5 4:4 

Apgar score (0-10) * 9 (9 – 10) 10 (10 – 10) 

  Premature group (n=8) Term group (n=8) 

Estimated trimmed placental weight (g) ** 341 (311 – 402) 507 (479 – 558) 

Dry matter content (%) 12.3 (12.1 – 12.6) 11.8 (10.6 – 12.4) 

Protein content (%) 6.9 (6.1 – 7.1) 6.6 (5.4 – 6.8) 

Protein content of dry weight (%) 54.7 (50.8 – 57.4) 54.7 (50.5 – 57.3) 

TABLE I: Clinical characteristics of included women and their infants divided in a prematurely-born 

group (< 37 weeks gestation; n=3 mothers, n=8 neonates) and a term-born group (n=8 mothers, n=8 

neonates). Data are displayed as median (25th – 75th percentile), except if indicated otherwise. 

*  Significantly different (Mann-Whitney), p<0.05  

**  Significantly different (Mann-Whitney), p<0.01 

***  Significantly different (Mann-Whitney), p<0.001 

TABLE II: Morphometric characteristics of studied placentas in the premature group (n=8) and the 

term group (n=8). Data are displayed as median (25th – 75th percentile). 

**  Significantly different (Mann-Whitney), p<0.01. 
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 Table 3 shows the enrichments of the three infused labeled amino acids both 

incorporated in placental protein and as free amino acids in umbilical arterial plasma. The 

median linear regression coefficients (r2) of the trend lines through the three product-

precursor enrichment ratios were 0.97 (0.90 – 0.99) and 0.94 (0.91 – 0.96) in the premature 

and mature groups, respectively. 

The mixed protein FSRs and ASRs of placental tissue in placentas of the premature and 

term groups are displayed in Figure 2 and Figure 3, respectively. The half life times of 

placental protein were significantly shorter (p=0.028) in the premature group than in the 

term group (2.8 (2.7 – 3.2) days and 3.9 (3.1 – 4.5) days, respectively). Both the FSR and ASR 

decrease significantly during the third trimester of human pregnancy as is shown by a linear 

regression plot in Figure 4. 

  Premature group (n=8) Term group (n=8) 

[1-13C]leucine (inc.) 0.163 (0.142 – 0.187) 0.174 (0.160 – 0.209) 

[1-13C]phenylalanine (inc.) 0.210 (0.188 – 0.239) 0.227 (0.199 – 0.278) 

[U-13C5]valine (inc.) 0.042 (0.036 – 0.050) 0.060 (0.045 – 0.073) 

[1-13C]leucine (free) 5.17 (4.72 – 5.82) 5.93 (5.31 – 6.67) 

[1-13C]phenylalanine (free) 8.18 (8.05 – 8.58) 9.45 (8.63 – 10.76) 

[U-13C5]valine (free) 3.61 (3.15 – 4.15) 4.66 (4.35 – 4.90) 

TABLE III: Enrichments of the infused amino acids incorporated (inc.) into mixed structural proteins 

of placentas (product enrichments) and enrichments free in umbilical arterial plasma (precursor 

enrichments) in the premature group (n=8) and term group (n=8). Enrichments are expressed in 

mole percent excess (MPE) and displayed as median (25th – 75th percentile). 
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FIGURE 2: Fractional synthesis rates (FSR) of mixed structural placental proteins in placentas from 

infants born prematurely (n=8) and at term (n=8). Boxes and whiskers indicate the medians, and 

interquartile and outer ranges. * Significantly different (Mann-Whitney), p<0.05. 
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FIGURE 3: Absolute synthesis rates (ASR) of mixed structural placental proteins in placentas from 

infants born prematurely (n=8) and at term (n=8). Boxes and whiskers indicate the medians, and 

interquartile and outer ranges. Open boxes depict the ASR expressed per trimmed placenta (left 

ordinate), cross-hatched boxes depict the ASR expressed per 100 g trimmed placenta (right 

ordinate).  

** Significantly different (Mann-Whitney), p<0.01. 

FIGURE 4: Linear regression plot of the gestational age at which placentas were delivered versus 
both the fractional synthesis rate (FSR; triangles) and the absolute synthesis rate (ASR; circles). Both 
synthesis rates are inversely correlated with gestation (r2=0.40, p=0.008; r2=0.66, p<0.001, 
respectively). 
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DISCUSSION 

 

In this study, we measured the mixed structural protein synthesis rates of human placentas 

in pregnancies with delivery at term or at premature gestation. In mothers of the latter 

group, however, elective cesarean sections are rarely performed as these are usually in the 

acute setting because of sudden (worsening of) fetal or maternal distress. Thus, there is 

usually no time for obtaining informed consent followed by a four-hours-lasting infusion 

protocol for research purposes. Still, we were able to include three women who underwent 

elective cesarean section before term, and whose infants were assumed to be in relatively 

good condition. One woman had to give early birth because of cervical carcinoma, the two 

other women because of anticipated complications due to triplet and quadruplet 

pregnancies. Whether the results in the group of premature fetuses were influenced by the 

effects of multiple pregnancy itself or by genetic similarities remain unknown. However, the 

placenta is entirely of fetal origin and since most of the multiplet-fetuses were non-

identical, it seems unlikely that a partially common genetic background was solely 

responsible for the observed differences. 

In the past, the FSR of placental protein has been measured in sheep, but probably due 

to different techniques, a wide variety of results was found. FSRs ranged from 13 to 23 %/d 

when measured in vitro [19,20], or 60%/d under in vivo circumstances [21,22]. Maternal 

insulin infusion even led to a doubling of the in vivo placental protein FSR which could be an 

explanation for the large placentas often observed in diabetic pregnancies [22]. 

Interestingly, the placental FSR remained unchanged during maternal starvation, whereas 

the FSR of most fetal tissues significantly decreased [21]. This stresses again the importance 

of normal placental function, even at the expense of fetal metabolism. In guinea pigs, 12-

16% of amino acids taken up from the uterine circulation were used for incorporation into 

placental proteins [23]. In humans, the protein FSR of in vitro perfused term placenta was 

found to be 12 %/d [24]. Using an improved perfusion medium, the same group later 

reported a FSR of 40 %/d [25]. To our knowledge, the only in vivo measured placental 

protein FSR in humans was 18 %/d at term [16], very similar to our values. 

Gestational changes in FSR have only been studied in animals so far. Although a drop in 

placental protein FSR was observed during the first third of pregnancy in sheep, it remained 

constant in the second third of gestation [19]. In rat placental proteins, the FSR was found 

to decrease gradually during the last third of pregnancy from approximately 65 to 23 %/d 

[26,27], but in another experiment the FSR increased [28]. Whereas the maximum weight of 

the ovine placenta is reached halfway during pregnancy after which it even decreases [19], 

the human placenta is believed to grow continuously, even after 40 weeks of gestation 

[18,29]. Dry weight of term human placentas has been found to be 15 to 19% of total weight 

[29-33]. The fact that our observed values (~12%) are somewhat lower is probably due to 

the fact we washed the placentas to remove most blood. The placental protein  

content described in literature varies more, ranging from 6 to 15% [30,33-36]. Protein 
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concentrations in combination with cellular DNA and RNA content have been used to 

describe placental growth. As reviewed, most studies show that when approaching term, 

cell division ceases and cell hypertrophy is mainly responsible for further placental weight 

increments [37]. This seems to be in accordance with our observations. 

Despite the fact that we found decreased placental protein synthesis rates at term when 

compared to early in the third trimester, Vatnick et al. demonstrated in sheep that the 

oxygen consumption per gram placental protein remains constant throughout gestation 

[38], which would suggest unaltered metabolic rates. Maintenance of the high placental 

oxygen and glucose consumption, which far exceeds those of the fetus on weight base, are 

probably necessary to fulfill the need to transport more nutrients according to increasing 

demands by the growing fetus. Throughout gestation, most relative placental growth 

precedes fetal growth [18]. To compensate for the decreasing placento-fetal weight ratio, 

the placenta probably undergoes continuous tissue remodeling, which includes increased 

surface exchange area, increased transporter density, and decreased barrier thickness. Since 

ammonia is a byproduct of protein turnover, large amounts of uterine ammonia excretion 

have been observed in sheep [39]. During midgestation, 44% of nitrogen uptake was 

released as ammonia back into the maternal or fetal circulation [40].  During late gestation 

the excreted amount of ammonia by the uterus is, however, reduced, which would seem to 

indicate less amino acid oxidation possibly due to less protein remodeling [40]. Of interest is 

that in humans the term placenta probably does not release ammonia into the fetal 

circulation, but instead extracts it from the fetal side [41].  

A drawback of the here presented study is that the placentas in the premature group are 

mostly from multiplets; this issue has already been described above. Additionally, the well-

known problem of choosing the correct precursor pool must be discussed. Most likely due 

to placental protein breakdown very soon after removal from the uterus, we did not 

successfully measure the true placental intracellular free enrichments. However, 

considering that the bound pool size (protein) is magnitudes larger than the free 

intracellular pool, an enrichment that is just one-fourth of maternal enrichment indicates 

that the proteolytic rate was not that large. Nevertheless, our used surrogate precursors 

(umbilical arterial plasma amino acid enrichments) were previously shown to be close to the 

intracellular aminoacyl tRNA enrichments [16]. Should we have chosen a faulty precursor, 

the results in the premature and term group would probably only be affected absolutely, 

whereas the relative differences would have been likely to persist. 

So far, all in vivo and most of the in vitro measurements of placental FSRs were 

performed on placentas sampled at a single time point. Although we sampled at a single 

time point as well, our multiple staggered infusion protocol enables calculations on three 

separate enrichment ratios which theoretically should benefit the accuracy of the 

experiments. The great advantage of our employed model was previously demonstrated 

in measuring the fetal albumin synthesis rates. The model showed great accuracy as  

reflected by correlation coefficients (r2) amounting approximately 0.99 [15]. Unfortunately, 
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the coefficients in this study are slightly lower, approximately 0.96. This is probably due to 

the fact we could not directly sample the precursor pool. 

To conclude, we showed that placental activity in terms of protein turnover slightly 

decreases towards term. However, it remains speculative whether this is a result of 

diminished placental growth, ontogenetic changes in metabolic rate, or even placental 

exhaustion. Besides, since placentas of small-for-gestational-age infants are relatively 

smaller than those of appropriate-for-gestational-age counterparts [18], further research is 

necessary to explore potential differences in placentas of growth-restricted fetuses or 

affected by other diseases. 
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INTRODUCTION 

 

As stated in introductory Chapter 1, the problem of premature birth is significant as it not 

only affects the individual’s health, but also his or her direct environment and society in 

several ways, both emotionally and economically. Whereas it not only has appeared to be 

extremely difficult to counteract the causes of premature birth, improved fetal monitoring 

has even led to a trend towards earlier delivery [1,2]. Although research has helped to 

improve the outcome of premature birth drastically during the last several decades, still too 

many infants end up with some form of disability. 

Normally, a human fetus has nine months to develop from a fertilized oocyte to a 

healthy individual whose gastrointestinal and respiratory systems should be ready to extract 

and metabolize the right substances for normal further growth and development. After 

premature birth, the neonatologist is responsible to deliver the right metabolites, but is 

faced with underdeveloped digestive organs and lungs. Besides, a premature infant cannot 

be regarded just as an extrauterine fetus, as a newborn also has to cope with its own 

thermoregulation and fluid balance, increased muscle activity due to breathing and gravity, 

and an environment full of microorganisms. These processes and which all demand extra 

energy and oxygen. Yet, the most prominent function of intrauterine life, and thus also after 

premature birth, is to grow and develop normally for which the right amounts of nutrients 

and oxygen are necessary.  

Because of the often unanticipated situation of premature delivery, the focus in care in 

the immediate postnatal phase is on immediate life threatening situations. For this reason, 

much research have been done and major advances have been made in the field of neonatal 

respiratory medicine, although still many infants end up having respiratory problems [3]. 

Nutrition has been studied much less than several other areas probably because not 

considered immediately life-threatening which is indeed true. However, considered from a 

more developmental perspective, optimal nutrition is a key element in accomplishing 

undisturbed lung, bowel, immune defense, and brain maturation. To minimize the transition 

from intrauterine tot extrauterine life, the right nutrition in the very early phase after 

premature birth could prove essential and might even set the clinical course on the NICU. 

One can easily imagine that being in a catabolic state in the first phase of life is not a good 

start. 

 

 

EARLY AMINO ACID ADMINISTRATION 

 

The sudden change from a usually well-fed intrauterine state to the extrauterine 

environment makes the sick premature very vulnerable and therefore in urgent need of 

optimal nutrition. Both growth and disease elicit very high protein turnover rates, necessary 

for continuous remodeling and net accretion. Although Van Goudoever et al. and Murdock 
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et al. were the first in the mid 1990s to show that low birth weight infants tolerated low 

dose amino acids from birth onwards with beneficial effects on growth, it did not result in 

clinical implementation in the NICUs for unknown reasons. In 2003, when we also started 

with our trial as described in Chapter 2 [4], reports started to appear again that 1-kg 

weighing infants benefit from high dose amino administration soon after birth. Results of 

these and our trials are summarized in Table I (4-6). 

These three studies indicate that a catabolic state during the very first stage of postnatal 

life can be prevented by infusing high dose amino acids. Additional benefits of early amino 

acid administration in these studies included increased plasma amino acid and decreased 

blood glucose concentrations that both better fit reference ranges [4,5]. A potential 

negative side effect in the study by Ibrahim et al. was an increased mean peak serum 

indirect bilirubin concentration (104 versus 132 μmol/L); this was without any clinical 

implications [6]. We found besides a lower base excess on the second day also slightly lower 

bicarbonate levels 12 hours after birth and on day two in the supplemented group. These 

findings did not have clinical implications because they did not require increased exogenous 

bicarbonate administration [4]. 

 Although some groups did not find higher urea concentration in the high dose amino 

acid supplemented groups [5-7] and Ridout et al. did not find a correlation between urea 

concentrations and protein intake in premature infants [8], we found higher urea 

concentrations in the supplemented group (9.6 ± 2.8 mmol/L) [4]. In addition, Blanco et al. 

infused extremely premature infants (25.7 ± 2.0 wks gestation) with high dose amino acids 

soon after birth (up to 4 g/(kg·d) on day 3 of life) [9]. Whereas the mean peak urea 

concentration was already very high (19.6 mmol/L), it even ranged up to 36 mmol/L in the 

most immature infants (� 24 wks). Ammonia concentrations were elevated as well in these 

Study 

Number 

of  

infants 

Birth 

weight (g) 

mean ± SD 

Start of 

protein 

administration 

Protein 

intake 

(g/(kg·d)) 

Study 

age 

(day) 

N balance 

(mg/(kg·d)) 

mean ± SD 

Thureen 

et al. 

(2003) 

13 945 ± 187 24 h 0.85 2 �42 ± 63 

15 947 ± 232 24 h 2.65 2 186 ± 93 
       

Ibrahim 

et al. 

(2004) 

14 968 ± 244 - 0 1 �203 ± 78 

15 846 ± 261 <2 h 3.5 1 384 ± 78 
       

69 989 ± 252 36 h 0.4 2 �84 ± 70 

66 1039 ± 235 <2 h 2.4 2 145 ± 104 

Te Braake 

et al. 

(2005) 

TABLE I: Summary of recently published studies on the effects of supplemented amino acids shortly 

after birth on nitrogen balance [4-6]. 
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infants (~100 μmol/L), where normal values during early life in premature infants in the 

absence of parenteral nutrition are 70 ± 25 μmol/L [10]. The fact that very high levels of 

ammonia are neurotoxic is well established [11]. However, with normal liver functioning, 

ammonia should readily be transformed into urea, even in premature infants. On the other 

hand, whether uremia is problematic remains unsolved. Although to my knowledge urea 

toxicity has not been tested in infants, it has been studied in animals and men. In 

unilaterally nephrectomized dogs for example, high dose continuous intermittent urea 

injection (10 g/(kg·d)) for 45 consecutive days resulted in plasma concentrations ranging 

between 200 and 250 mmol/L [12]. Except for a mild drowsiness and increased diuresis, 

urea did not induce any severe toxic symptoms. Nor was bleeding time altered. In humans 

suffering from renal failure, however, deliberate loading with high dose urea for two to 

three months resulted in malaise, vomiting, weakness, lethargy, and bleeding if plasma 

concentrations started to rise above 50 mmol/L [13]. Another short-term (24h) experiment 

in healthy humans observed drastic reduction of platelet aggregation if serum urea 

concentrations were between 20 and 40 mmol/L already [14]. Whereas diuresis is closely 

monitored on a NICU, adverse blood coagulation is problematic in these infants who are for 

example very vulnerable to intraventricular hemorrhages. Furthermore, it is not known 

whether the very high urea concentrations directly affect the growing brains of neonates.  

Lastly, when comparing urea concentrations between various studies, one should be 

careful as various measurements are performed, yet these are not always converted 

correctly. In Europe concentrations are usually measured in plasma and expressed as mmol/

L. However, in the USA, the nitrogen content of urea is measured and accordingly expressed 

as mg N/dL. Converting to a concentration in mmol/L should thus be done with a conversion 

factor of 28 mg/mmol (equaling 2 times the molar mass of nitrogen), rather than taking the 

complete molar mass of urea, i.e. 60 mg/mmol. Besides, while in the past, urea was 

measured in whole blood, it is currently measured in plasma only. Yet, the terms blood urea 

nitrogen and plasma (or serum) urea nitrogen are used arbitrarily and thus often wrongly. 

Potentially, this gives some misinterpretation as the blood urea nitrogen concentration is on 

average 12% lower than the plasma concentration. 

To conclude, the most prominent benefit of the early amino acid infusion studies is that 

an anabolic situation can be achieved soon after birth upon amino administration. A 

breakeven point is observed when approximately 1 g AA/(kg·d) are administered so that the 

nitrogen balance is neutral. This can be concluded if available data [4-7,15-18] are 

summarized in a graph (Figure 1). A major additional benefit was that most of the amino 

acid concentrations better resemble those of the healthy fetus or the healthy breast-fed 

term newborn. Furthermore, we could not detect any major disadvantages of amino acid 

administration starting the immediate postnatal phase. Yet, one should be cautious if the 

urea concentrations get too high as we do not know when these start to elicit 

disadvantageous side effects. 
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ENERGY AND QUALITY OF PROTEINS 

 

The ideal nutritional strategy provides for amounts of amino acids and energy that satisfy 

the needs for both growth and metabolism. There is ongoing controversy whether amino 

acids should be regarded as metabolic fuel or not. Their main function lies in protein 

synthesis and thus tissue growth, but it remains unsolved in neonatal medicine to what 

extent it is physiological for amino acids to be used as an energy source. Reasons for amino 

acids to be oxidized not only include energy generation in general but also are to avoid 

accumulation of amino acids in relative excess to other scarce amino acids so that ongoing 

protein synthesis is hampered. 

As already discussed in this thesis, it is questionable whether large urea formation 

should be regarded as a sign of amino acid intolerance. More likely, it is the result of 

uncomplicated amino acid oxidation and subsequent ammonia disposal by the liver. 

Because urea concentrations are a rather crude measurement of amino acid oxidation, we 

aimed to measure it directly by using a stable isotope of the essential amino acid leucine 

(Chapter 3) [19]. Besides, we could determine whether the improvements in nitrogen 

balance were due to decreased proteolysis rates, increased protein synthesis, or a 

combination. It turned out that upon amino acid administration whole body protein 

breakdown remained unaltered, and synthesis was increased to an average of 182 μmol 

leucine/(kg·h). Under assumption that 1 gram of fetal protein at 28 weeks gestation 

contains on average 560 μmol leucine [20], this translates to 7.8 g of protein that are daily 

synthesized per kg body weight. These high rates of protein synthesis have also been 

observed by using other tracers. Yet if the body composition of a premature infant contains 

FIGURE 1: Summarizing graph of studies investigating the effects of different levels of parenteral 

amino acid administration starting during any of the first two postnatal days in premature neonates 

on the nitrogen balance [4-7,15-18]. Primary authors including the number of studied infants in the 

low and high dose amino acid groups are indicated by symbols. 
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on average 8.8 % protein [21], the fractional protein synthesis rate of a premature infant 

amounts 8.9 %/d. 

However, only half of the administered amino acids was used for extra protein synthesis, 

whereas the other half was oxidized. Although we did not measure ammonia 

concentrations, the high leucine oxidation rate and urea concentrations suggest that amino 

oxidation occurs uncomplicated in premature infants. However, efficacy in terms of anabolic 

usage was thus rather low, which was in fact the primary purpose of the amino acid 

administration. The question therefore remains why not more amino acids were 

incorporated into proteins. 

On the other hand, in the ovine fetus, the umbilical supply of amino acids also highly 

exceeds the amount deposited for tissue growth. Oxidation contributes 25–50% of fetal 

amino acid uptake [22,23]. To what extent this also holds true for the human fetus is largely 

unknown, although significant intrauterine urea production has been demonstrated [24]. 

Thus, although we should not consider postnatal amino acid oxidation or slightly elevated 

urea concentrations as an unphysiological situation, a more anabolic usage would be more 

desirable and we should thus investigate if we can increase the proportion of anabolic 

usage. 

A first potential mechanism would be to improve the quality of the used amino acid 

solution. Currently commercially available solutions are not specifically designed for 

premature infants. Besides, tyrosine is in fact the only amino acid for which the 

requirements in parenterally fed premature infants are known [25]. It turned out that 2.4 g 

AA/(kg·d) with present-day solutions provide only 15% of total tyrosine demands, due to 

poor aqueous solubility. Therefore, the remaining sufficiency needs to be fulfilled through 

endogenous synthesis through hydroxylation of phenylalanine. Unfortunately, the latter 

metabolic conversion might be hampered due to metabolic immaturity.  Requirements for 

all other individual amino acids in parenterally fed infants are unknown. Cysteine, one of the 

other amino acids, is also suspected to be too low in concentration in some parenteral 

solutions. In 2-week-old term-born post-surgical infants who were parenterally fed, total 

sulfur amino acid requirements (methionine + cysteine) were approximately 50 mg/(kg·d) 

[26]. Although these requirements are easily met through the infusion of 2.4 g amino acids/

(kg·d) of the solution we use in Rotterdam (i.e. Primene 10%, Baxter), the needs of a 

premature infant, especially in the direct postnatal phase, might be completely different 

from those in term infants. Whereas in the trial by Blanco and colleagues [9] the amount of 

administered cysteine-HCl was 40 mg/(kg·d) and thus reasonable in total, it is only 10 mg 

cysteine-HCl per gram of amino acids. Assuming fetal porcine protein to be the same as 

human [27], 10 mg cysteine-HCl provides only half of the cysteine required for one gram of 

protein (cysteine content in human fetal protein has never been determined). Besides, 

especially during the very first postnatal phase while adapting to extrauterine life, cysteine 

requirements could be higher for example to increase glutathione synthesis to cope with 

increased postnatal oxygen exposure resulting in higher amounts of free radicals.  
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Any absent cysteine thus needs to be endogenously synthesized through conversion 

from methionine. Whereas Riedijk et al. showed cysteine should not be considered a (semi-)

essential amino acid, their studies were performed in premature infants who were enterally 

fed [28,29]. This should thus not necessarily lead to the same conclusions in parenterally fed 

premature infants during early life. Although data obtained in the latter category of infants 

came out very recently, I doubt their conclusions. Thomas et al. observed that besides a 

cysteine-HCl supplementation of 124 mg/(kg·d), cysteine was produced from methionine 

with a rate of 25 μmol/(kg·h) [30]. Combined, this yields 168 mg of cysteine/(kg·d), which 

appears too high. Besides, methionine intake in these infants equaled the transsulfuration 

rate so that no methionine is left for net protein synthesis or growth. At an intake of 3 g 

amino acids/(kg·d), this does not seem plausible.  

To conclude, we still must be careful to administer enough cysteine to parenterally fed 

infants as long as it has not been unequivocally demonstrated that these infants are able to 

synthesize cysteine endogenously. Insufficient amounts of cysteine, tyrosine, or any of the 

other (semi-)essential amino acids in parenteral solutions could thus be causative of 

increased oxidation of all other amino acids which will then result in the elevated urea 

concentrations. 

Studies have demonstrated that amino acids administration together with as little as 

30 non-protein kcal/(kg·d) can turn the nitrogen balance from negative to zero or even 

positive [15,31]. The energy to protein ratio in our study was however lower than in many 

other studies (~15 kcal of non-protein energy per gram protein). As this is not an ideal 

proportion of energy for optimal protein synthesis, a considerable amount of the amino 

acids will be oxidized. An intake of 25-40 kcal of non-protein energy per gram of protein will 

enhance optimal protein deposition [32], although this is not feasible with glucose alone in 

early preterm life at larger protein intakes. However, the effect of increasing energy intakes 

on protein deposition will be greatest below 50-60 kcal/(kg·d), above which the beneficial 

effect of extra energy ceases and the amount of administered amino acids itself will have a 

higher correlation with anabolism [33]. Early lipid administration, with its high caloric 

content of 9 kcal/g, might be beneficial in delivering calories for the cost of protein 

synthesis. Furthermore, the infant is dependent on essential fatty acids (mainly DHA 

(docosahexaenoic acid)) for its brain maturation. At the beginning of the third trimester  

the fetus receives only a small amount of lipid, which raises the question whether the  

very preterm infant is suited to metabolize lipids in large amounts. Supposed metabolic 

intolerance and a relationship with chronic lung disease have led to their delayed 

introduction, often beyond the first 24 h postnatally, although just as many positive and 

protective effects of lipids on lung development have been observed [34]. A recent meta-

analysis on the effects of early as compared to late lipid administration could not detect any 

positive or negative effects of an early start [35]. However, for example in one of the 

included studies questioning the safety of early lipid administration, only lipids and glucose 

were infused during first few days, whereas amino acids were withheld [36]. Also, in the 
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other studies the amount of infused amino acids was either not mentioned [37] or lower 

than the amount of administered lipids [38]. Possibly, concomitant amino acid infusion is 

necessary to properly metabolize and dispose of the infused lipids. For example, albumin 

plays an important role in the transport of fatty acids to and from the various tissues and 

organs [39]. As we have shown, amino acids stimulate the synthesis of albumin and could 

thereby also improve tolerance to infused lipids [40]. 

If in combination with amino acid infusion premature infants indeed tolerate 

intravenous lipids, the latter delivers not only essential fatty acids, but also the urgent 

calories that can support protein synthesis even more. This prevents that amino acids have 

to be oxidized because of a lack of energy and the infant is not faced with a high urea 

production. Indeed,  in the study by Ibrahim et al., infants were infused not only with high 

dose amino acids (3.5 g/(kg·d)), but also with 3.0 g lipids/(kg·d) within 2 hours after birth [6]. 

No elevated urea concentrations were observed and a very high proportion of nitrogen was 

retained within the body (Figure 1). On the other hand, Forsyth and colleagues did not 

observe any improvement in nitrogen balance upon the administration of an extra 15 kcal/

(kg·d) in the form of glucose [16]. A cause for the lack in improvement could be that only 1.5 

g amino acids/(kg·d) were administered in combination with an already reasonable caloric 

intake of 58 kcal/(kg·d) in the control group. Nevertheless, the many theoretical benefits of 

early lipid administration to premature infants warrant new large trials [41]. 

 

 

ALBUMIN 

 

The first two studies we just described, measured metabolism at a ‘whole body’ level. In 

other words, it is the average of all metabolic processes in all organs. For example, changes 

in one or more of the splanchnic organs could be counterbalanced by opposite changes in 

muscles, so that on a whole body level no difference is seen. However, ethical constraints of 

course prevent direct tissue biopsies in the human neonate to study single organ kinetics 

and therefore we are limited to the plasma compartment which can be sampled more 

easily. Albumin is one of the few plasma proteins that is sufficiently high in concentration to 

permit research by obtaining small blood volumes. Measuring the albumin synthesis rate 

gives good indication of general liver activity and is more responsible to nutrition than 

simple concentrations are. Whereas albumin forms over half of the total plasma protein 

content, albumin plasma concentrations are an insensitive marker of nutritional status. Only 

40% of the total albumin mass resides intravascular. However, during reduced albumin 

synthesis, which elicits a lowering effect in plasma albumin concentration, albumin from the 

interstitium increases its lymphatic return into the intravascular compartment, so that a 

measurable drop in albumin concentration will not be observed initially [39]. 

On the other hand, during inflammatory events, the transcapillary albumin escape rate 

might be well increased so that albumin concentrations decrease despite an increase in the 
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albumin production rate by the liver [42]. Correlations between albumin concentrations in 

premature neonates and mortality [43] or necrotizing enterocolitis [44] thus do not 

necessarily result from decreased liver activity. Studying the latter by means of the albumin 

synthesis rate provides more detailed information on the specific organ effects of 

supplemented nutrition. Amino acid administration did not only elicit positive effects on 

nitrogen and leucine as aforementioned, but also stimulated the albumin synthesis rate on 

the second postnatal day (Chapter 4) [40]. In fact, we also found that there was no 

preferential use of leucine for either albumin synthesis or any of the other anabolic 

processes in the body. In both the unsupplemented and supplemented groups, 

approximately 4% of the whole body protein synthesis rate was dedicated to albumin 

synthesis. 

Unfortunately, the albumin concentrations remained low. This triggered our question 

whether the relative hypoalbuminemia was the result of the fact a maximum in synthesis 

rate was reached upon the amino acid administration already or that hypoalbuminemia was 

the result of a high transcapillary escape rate so that all synthesized albumin left the 

intravascular compartment. Therefore, despite a physiological situation is per definition not 

applicable to a premature infant, we aimed to measure the albumin synthesis rate under 

optimal circumstances. Intrauterine counterparts of similar gestational ages thereby provide 

good comparison. Although the intrauterine circumstances are entirely different from those 

on a neonatal intensive care unit, they give well insight into the metabolic capabilities of a 

young individual during undisturbed gestation. 

Using a relatively new multiple tracer infusion protocol (modified from Dudley et al. 

[45]), we were able to measure the albumin synthesis rates in fetuses from different 

gestational ages in a single sample taken from the umbilical cord immediately after birth 

(Chapter 6) [46]. In Figure 2, these synthesis rates are depicted together with those from 

premature neonates as described in chapter 4. Although there was a wide range, especially 

premature fetuses showed surprisingly high albumin synthesis rates. As described in the 

concerning chapter, from a physiological developmental point of view we cannot figure out 

why premature fetuses have such high albumin synthesis rates. Many of the functions of 

albumin, such as fatty acid and bilirubin transport or anti-oxidant defense, pertain more to 

the postnatal than the prenatal phase. Nevertheless, the most important finding is that the 

liver of a premature fetus is capable of synthesizing albumin at very high rates. Thus, 

premature infants should theoretically also be able to achieve these high rates as they also 

did while still in utero. It seems however, that the postnatal values are lower than 

prenatally, and that it thus should be possible to raise the synthesis rates. Since albumin 

synthesis rate already have shown to be responsive to parenteral nutrition, it seems logic 

that more nutrition would indeed simulate the albumin synthesis rates even more. 

As will also be described in the forthcoming section, were able to measure the protein 

synthesis rate in the feto-maternal dyads at term using a phenylalanine isotope. This 

enables us to calculate the percentage of protein synthesis that is spent on albumin, just as 
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we did in premature infants (chapter 4). Since albumin contains 6.87% phenylalanine on a 

weight basis, combination of the results in chapter 6 and 7 yields that 3.4 (3.1 – 4.4) and 5.2 

(4.4 – 5.9) % of total protein synthesis is albumin synthesis in term fetuses and their 

mothers, respectively. These values are close to the values we found in premature infants 

(~4%). These figures are not only interesting from a metabolic point of view, but also give 

extra credence to our methods used in the fetal study as they are entirely different from 

those used in the neonate, yet give similar values.  

 

 

FETAL AMINO ACID METABOLISM 

 

Quantitative data on human in vivo fetal amino acid metabolism are very scarce [47], 

although Battaglia and colleagues provided a lot of qualitative data. By interpreting 

enrichment ratios, ideas were formed on intrauterine growth restriction and placental 

transport characteristics [48-51]. The large advantage of most of their study designs was 

that they did not require steady state assumptions and blood was often sampled in a 

relatively unstressed situation by cordocentesis from the umbilical vein. Quantitative 

balance studies such as those performed by Chien et al. [47] and us in Chapter 7 and 

Chapter 8, however, require blood sampling both types of umbilical blood vessels, i.e. vein 

and arteries. Therefore, the type of research we performed is limited to the metabolism just 

prior to birth. Cesarean sections are thereby probably less stressful to the infant, but most 

of all, if elective, they are of course scheduled. At the same time, the electivity therefore 

FIGURE 2: Albumin absolute synthesis rates (ASR) in premature infants with or without amino acid 

(AA) administration and in fetuses of different gestational ages [40,46]. * p<0.05 (Mann Whitney). 

Differences between neonates and fetuses were not statistically tested because of different 

methodology and different model assumptions.  
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largely constraints to the study of infants at term. Most research in the fetal phase so far 

has therefore probably been limited to research animals. Whereas neonatal research in 

large animals is often performed in pigs because of the many similarities with human 

neonates, fetal research in non-rodents occurs predominantly in sheep. Reasons are that, 

contrary to pigs, ovine pregnancy rears mostly singletons and allows fetal surgical 

manipulation without instigating litter death. Besides, animal models allow the study in an 

(almost) completely unstressed and physiologic situation by the insertion of multiple 

catheters into various fetal and maternal blood vessels that allow, after a few days recovery, 

for blood sampling and flow measurements from all sites simultaneously. Even more so, this 

can be done during different periods of gestation and of course during numerous 

experimental settings, e.g. during fasting, hormonal infusion, and after priorly induced fetal 

growth restriction.  

Nevertheless, despite all advantages of animal research, we wished to explore human 

fetal metabolism due to the many interspecies differences and the feasibility of direct 

comparisons to postnatal research results, just like we did with the albumin synthesis rates. 

In chapter 7 for example, we determined the fetal whole body protein synthesis rate on the 

basis of phenylalanine kinetics. In fetuses around term, we calculated that protein synthesis 

amounted 9.0 g/(kg·d). Therefore, under the assumption that the term fetus contains on 

average 120 g protein per kg body weight, a fractional synthesis rate of fetal proteins at 

term of 7.4 %/d can be calculated. This fractional protein turnover rate seems to be slightly 

lower than that of the premature infant on the second day of life (8.9%/d) as calculated 

earlier in this discussion. 

Since in the fetuses, studied at 38.5 weeks gestation, protein synthesis was higher than 

breakdown, they were still accreting proteins at a median rate of 1.7 g/(kg·d). On average 1 

gram of fetal term protein contains 158 μmol tyrosine [20], in order that (1.7×158×24-1) 11 

μmol tyrosine/(kg·h) would be necessary to fulfill this demand. From their mothers, 

however, they only received 2.4 μmol tyrosine/(kg·h), so that the remaining requirement 

must met by endogenous synthesis through the hydroxylation of phenylalanine. Often, it 

was questioned whether the required enzymes in the liver and kidneys of a newborn 

(premature) infant are fully capable of doing so, making tyrosine a conditionally essential 

amino acid [52-54]. Yet, we found an in vivo hydroxylation rate of 7.5 μmol/(kg·h), which 

yields together with the umbilical uptake approximately just enough of required tyrosine to 

be deposited in net protein synthesis. 

Due to the insolubility of tyrosine in aqueous solutions, parenteral nutrition delivers per 

gram protein/(kg·d), only 1 μmol tyrosine/(kg·h). A desired tissue growth rate of 15 g/(kg·d) 

or 2.1 g protein(kg·d), necessitates 14 μmol tyrosine/(kg·h), so that parenteral nutrition only 

marginally attributes to tyrosine requirements and hydroxylation capacities in the 

premature infant are pulled. Fortunately, these hydroxylation rates have indeed been 

confirmed in premature infants [55-57]. Nevertheless, we must be precarious to definitively 

remove tyrosine from the list of conditionally essential amino acids as we do not have 
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information on hydroxylation rates in growth-restricted infants and in extremely premature 

neonates. 

From animal research, mostly in sheep, we know that the fetus receives large amounts 

of amino acids that are well in excess of those necessary for protein deposition or growth 

[22,23]. Oxidation of the amino acids in excess can, together with oxidation of glucose, 

lactate, and fructose, provide the calories at which rapid ovine fetal growth is financed (4 

times faster than in humans). Reliable quantitative data in humans lack although there are 

indeed indications that amino acids are oxidized to some extent as reflected by higher 

ammonia, urea, and leucine-derived CO2 concentrations in the umbilical arteries than in the 

vein [24,47,58]. Our data in Chapter 8 also seem to suggest considerable oxidation of the 

branched-chain amino acids leucine and valine since their uptakes far exceed the amounts 

necessary for protein accretion. The great advantage of being intrauterine, however, is of 

course that the placenta can filter out ammonia and urea whereas postnatally only the liver 

and kidneys are responsible for doing so. 

 

 

PLACENTA 

 

The placenta is the most variable between different species of all mammalian organs [59]. 

Observation made in one species may or may not pertain to another. As described above, 

we experienced this ourselves in that it was well-known from ovine research that the keto-

acid of leucine (�-ketoisocaproate) is transported towards the fetus, whereas we showed 

transport in the opposite direction. This example and many other differences must be taken 

into account when extrapolating results from animal research to the human situation. 

Moreover, it stresses the importance of research in humans. It is striking that we know so 

little about an organ that is available for research so easily. Although a lot of research has 

gone into for example all the different types of amino acid transporters that direct 

substrates from both the maternal as well as fetal membranes the trophoblast inwardly, we 

barely know how amino acids exit the placenta into the fetal circulation [60]. 

In our research on the placenta (Chapter 9), we focused on its protein turnover rate. As 

outlined in the concerning chapter, the placenta is a highly metabolically active organ in 

order to ensure optimal nutrient transport to the fetus. Yet, the cost for doing so is high. 

The oxygen and glucose consumption far outweigh that of the fetus on a weight basis. Large 

part is undoubtedly used for the high rates of protein synthesis we observed. In the 

placentas of prematurely delivered babies, approximately one-fourth of all structural 

proteins was renewed daily. Towards the end of gestation this slightly decreased to about 

18 %/d. In fact these protein turnover rates are almost three times as high as in the 

premature infant as calculated earlier in this discussion. These high rates are probably 

necessary for the maintenance of placental integrity and physiological function. 
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OUTCOMES OF EARLY AMINO ACID ADMINISTRATION 

 

Ultimately, all studies regarding prematurity, including those described in this dissertation, 

are aimed to ameliorate the outcome of prematurely born infants to a level that is 

comparable to healthy term born infants. Regarding early amino acid administration, most 

studies have only investigated the effects in the direct postnatal phase; only a few 

considered medium- or long-term outcome parameters. Outcome criteria can be based on 

different aspects, such as growth based on intrauterine growth charts [61] or growth charts 

obtained from premature infants [62-64], incidence of a specific disease, hospital stay, 

neurodevelopmental outcome and so on. Suboptimal nutrient intake in preterm infants has 

many theoretical adverse consequences. Besides impaired growth, under- or malnutrition in 

premature infants can lead to for example an increased vulnerability to infectious disease 

arising from suboptimal immune defense, free-radical-mediated damage caused by 

impaired glutathione production, a greater need for ventilatory support, partially due to 

muscle weakness, and general underdevelopment of all organs including the brain. 

Most of the long-term outcome effects are multifactorial and thus difficult to detect and 

ethically hard to test. Yet, some studies found favorable effects of early and/or high amino 

acids supplementation in the neonatal period on the incidence of bronchopulmonary 

dysplasia (BPD) [65,66] and retinopathy of prematurity [65]; others did not [67,68]. In 

almost all studies, anthropometric measurements at discharge had improved [67-69]. 

However, whether suboptimal nutrition is solely and primarily responsible for the impaired 

growth or potential adverse outcome is less clear. Disease itself is also likely to affect 

nutritional intake, growth, and perhaps also brain function independently. For long, we 

know that there is a significant relation between body growth and brain development. In 

fact, proteins appear to be the nutritional component most critical to development of 

neurological functions [70]. In infants who died of severe malnutrition during the first year 

of life, brain analysis showed decreased cellularity [71]. But also mild protein malnutrition in 

the prenatal phase induced altered neuronal density in rats [72]. In a study of premature 

infants, however, postnatal growth pattern during the first nine months, rather than SGA 

status at birth, was found to be significantly associated with adverse neurodevelopmental 

outcome at age two, even after statistical correction of certain diseases [73]. Also, the 

growth velocities during a premature infant’s NICU hospitalization exerted a significant, and 

possibly independent, effect on neurodevelopmental and anthropometric outcome [74]. 

Famous is the trial by Lucas at al. in which four weeks of enriched formula versus standard 

formula supplementation to premature infants led to improved outcome 18 months post 

term [75]. Follow-up at age 7.5 years reconfirmed improved cognitive function in these 

same infants [76]. A recent reevaluation in a subset of the former premature infants at age 

16 revealed larger volumes of the caudate nucleus measured using MRI and higher verbal 

IQs in the group that had received the enriched diet during a single month in early life [77]. 

In a recent study, premature and term neonates with significant perinatal brain damage 
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received during the first 12 months post term 20% extra energy and proteins as opposed to 

the control group [78]. After this year, not only weight and length were larger, but also 

occipitofrontal circumference and axonal diameters in the corticospinal tract. 

Recently, a few studies appeared that questioned the safety of early amino acid 

supplementation. Clark et al. increased the amino acid intake in premature infants during 

the first 28 days with 0.6 g/(kg·d) on average in half their studied subjects [79]. No 

significant changes in growth rates could be observed between groups. Besides, serious 

concerns were expressed regarding slightly elevated urea concentrations and amino acid 

concentrations. It remains indeed true that we do not have appropriate reference ranges for 

several metabolites, including those aforementioned, simply because prematurity is not a 

physiological situation. Nevertheless, the study design Clark et al. used can be questioned 

[80] and we doubt whether the results obtained in this study validate the results the 

authors arrived at, although we agree that safety should always be closely monitored. 

Follow-up results of the trial by Blanco et al. [9] that was also earlier discussed, were 

recently presented at an international convention [81]. At birth and at hospital discharge, 

anthropometric measurements in both study groups were similar. However, after 18 

months corrected age, cognitive scores as well as anthropometric measurements were 

worse in infants that had received early high dose amino acids after premature birth. 

Whether these results are directly related to the applied nutritional regimens, remains to be 

elucidated in larger trials. 

In our trial regarding early amino acid administration, we did not encounter any negative 

effects in the intervention group or any measurable beneficial effect at age two (Chapter 5). 

The difference in amino acid intake between both groups was only 4.8 g/(kg·d) in total 

divided over 2.5 days, and thus not very large in order to expect a long-term effect at first 

sight. However, the difference was realized immediately after birth, which might well be the 

most critical period in a premature infant’s life. Therefore, considering both the many 

theoretical advantages of amino acid supplementation on organ development and the many 

short-term beneficial effects (more plasma amino acid concentrations between reference 

ranges, a positive nitrogen balance and improved albumin synthesis), we highly recommend 

the implementation of our protocol. Besides, Te Braake and colleagues recently showed 

beneficial increased glutathione synthesis in a very similar setting [82].  

Poindexter et al. analyzed outcome of over 1000 premature infants stratified by whether 

they were provided more than 3.0 g amino acids/(kg·d) earlier than postnatal day six or not 

[67]. After day 8 of life, amino acid intakes were similar in both groups. At 36 weeks 

postmenstrual age, weight, length, and head circumference were larger in the high-dose 

amino acid group, also after adjustment for major neonatal morbidities. At 18 months 

corrected age, no differences could be observed anymore in term of weight and length. 

However, especially male infants in the low protein intake group were twice as likely to have 

head circumferences less than the tenth percentile. Yet, no differences in the mental and 

psychomotoric indexes as well as the occurrence of handicaps between both groups were 
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observed. Due to the retrospective nature of the study it remains questionable whether the 

observed anthropometric differences were entirely due to increased amino acid intake or 

not. Despite correction for major neonatal morbidities and several other variables, it  

could be that a lower amino acid intake was due to secondary variables, such as disease,  

so that these influenced outcome more than solely nutrition. Nevertheless, the major 

conclusion of the concerning study is that amino acids during early life do not influence 

neurodevelopment negatively. 

 

 

FUTURE PERSPECTIVES 

 

As research continues, we will learn more about energy and protein metabolism in 

neonates. However, we should acknowledge that most studies concern ‘healthy’ or stable 

preterm infants and that little is known about the metabolic impact of particular diseases, 

and how all this affects the needs of the infant [83-86]. Although some research has been 

done regarding the metabolic differences and capabilities between small- and appropriate-

for-gestational-age infants this has not lead to a comprehensive nutritional strategy which 

suits their specific demands. In fact, pediatricians are in two minds. Indications exist that 

livers of growth-restricted infants are not able to metabolize large amounts of protein 

correctly [87-89], whereas on the other hand these infants are already small by definition 

and have limited body reserves so that anabolism should be advanced as soon as possible. 

If conclusive studies about specific diseases or ailments will evolve in the future, this can 

fine-tune the current nutritional protocols that exist for premature infants in general. 

Nevertheless, present data provide strong evidence for the beneficial effect of rapid 

initiation of relatively high dose amino acid administration to the average premature infant. 

However, we should be precarious about the occurrence of very high urea concentration in 

the most immature group of infants (<26 wks) [9] and liver function in severely 

intrauterinely growth-restricted infants. Probably, improvement in the composition of the 

individual amino acids in the parenteral solutions (protein quality) should overcome these 

problems at least partially. Furthermore, hypothetically all premature infants will benefit 

from a lower protein/energy ratio in that higher amounts of energy are supplemented 

immediately after birth additionally to the amino acids. Perhaps then, we can even increase 

the amount of supplemented amino acids further. Lipids are an attractive candidate to 

provide these non-protein calories as they also prevent episodes of essential fatty acid 

depletion which might otherwise soon occur after birth and is detrimental to for example 

ongoing brain development [90]. An additional benefit of providing intravenous lipids after 

birth is that the binding of fatty acids to albumin protects the albumin from being broken 

down [39]. Completely fat-free albumin molecules are more susceptible to degradation than 

those bearing one or two long chain fatty acids. 

Besides putting more effort in trying and testing new nutritional regimens, we must also 
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continue to follow the path of observational studies regarding intrauterine amino acid 

metabolism. If we are able to learn more on normal human fetal metabolism during 

different periods of gestation, then we might also better understand the capabilities and 

incapabilities of postnatal metabolism, growth, and development. Whereas most research 

regarding protein metabolism in the human fetus so far was of qualitative nature [49-

51,91], we must also focus on quantitative results like we, and previously Chien et al. [47], 

did, despite all drawbacks. Apart from all stable isotope research, we still do not know the 

exact net umbilical uptakes of carbohydrates, most amino acids, and lipids in humans. With 

our very recently developed methods and new machinery, we are now able to very 

accurately measure for example all individual amino acids in umbilical cord blood so that the 

net uptake can be calculated. In our fetal studies, we have also shown that it is feasible to 

perform studies with many simultaneously administered stable isotope tracers. This 

strategy should also be implemented in the new trials in premature neonates. Several 

tracers are available to investigate whole-body protein metabolism. This should provide 

additional accuracy and information above the infusion of a single tracer as we did in our 

clinical trial. Liver function can well be studied by investigating urea metabolism, 

phenylalanine hydroxylation capabilities, and albumin synthesis rates. Hepatic function 

should be closely monitored now that higher amounts of nitrogen are administered to more 

immature infants. Unfortunately, studies on a whole-body level will predominate in 

neonates due to ethical restraints amongst which small blood volume limitations fall. 

Therefore, albumin and glutathione as studied more recently are very nice models in which 

nutritional manipulation can be studied more precisely. 

To conclude, based on current knowledge it is probably too early to infer whether fetal 

food is the preemie’s prerequisite or not. Yet, as more information is gained on normal and 

abnormal fetal metabolism during different periods of gestation, this might be incorporated 

in new nutritional strategies and tested in large trials. 
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SUMMARY 

 

 

CHAPTER 1 

 

Growth and development is all about optimal nutrition. During normal fetal development an 

extensive interplay between the gravida, placenta, and fetus ensure an optimal substrate 

delivery. After premature birth, however, the neonatologist is responsible for doing so.  

In the introductory chapter of this dissertation, an overview of epidemiology of 

premature birth and its consequences is given. Subsequently, some background is described 

on the metabolism of proteins and amino acids including applicable methods of research. 

Then, insight in nutrition for the fetus and nutrition for the premature infant throughout the 

last 100 years is given 

Finally, the aims and outline of this dissertation are covered. 

 

 

CHAPTER 2 

 

Up to the advent of this dissertation, common practice was to delay the initiation of 

parenteral amino acids to premature infants, and to provide only carbohydrates until at 

least 48 hours after birth. This strategy evolved after the recognition that prompt 

administration of amino acids from so-called previous generations caused metabolic 

disturbances. During the absence of a exogenous source of nitrogenous compounds, infants 

lose 1% per day of their body protein stores where the daily intrauterine accretion would 

have been 1.5%.  

Our hypothesis was that currently available amino acid solutions would, however, well 

be tolerated by premature infants from birth onwards. To test, we divided 135 infants with 

a birth weight less than 1500 gram into two groups; a control group receiving amino acids 

starting on postnatal day two at a rate increased stepwisely to 2.4 g/(kg·d) at day three of 

life and an intervention group receiving 2.4 g/(kg·d) within two hours after birth. During the 

first week of life, infants were biochemically closely monitored and nitrogen balances were 

constructed after urinary analysis. 

Results showed that infants in the intervention group were clinically not more acidotic 

than infants in the control group. Plasma urea concentrations were higher in the amino acid 

supplemented group which indicated that amino acid oxidation had increased. Despite, 

nitrogen balances were still significantly higher in that same group and a catabolic state was 

prevented. In addition, plasma concentrations of most amino acids were higher in the 

intervention group and better fitted reference ranges. To conclude, providing parenteral 

amino acids from birth onwards to very premature infants is safe and effective in terms of 

anabolism during the first few days  of life. 
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CHAPTER 3 

 

The study described in this chapter shows the mechanism behind the increase in nitrogen 

retention that was demonstrated in the previous chapter. In a subset of infants who were 

ventilated and had an arterial catheter (n=8 in each group), [1-13C]leucine was continuously 

administered on the second day of life and plasma was analyzed to measure the enrichment 

of �KIC (a leucine metabolite indicative of intracellular metabolism). In breath samples, 
13CO2 was measured. From these measurements revealed protein synthesis, breakdown, 

and oxidation rates could be quantified. In another subset of infants (also n=8 in each 

group), [U-13C6]glucose was infused to determine if the extra energy that increased protein 

synthesis costs was derived from increased glucose oxidation. Accordingly, plasma glucose 

was measured and breath samples were also analyzed for the relative amount of enriched 

carbon dioxide.  

The protein breakdown rate turned out to be unaltered upon amino acid administration, 

so that the anabolic effect was primarily derived from an increased protein synthesis rate. In 

fact, the net effect of the administered amino acids was an almost similar absolute increase 

in both protein synthesis and amino acid oxidation. Glucose kinetics did not show a clear 

increase in glucose oxidation that could account for higher energy needs. 

 

 

CHAPTER 4 

 

In plasma of the same infants as studied in the labeled leucine study in the previous chapter, 

albumin was purified to measure the increase of incorporated tracer leucine over time. 

Doing so enabled the quantification of the albumin synthesis rate by the infant´s liver and 

thus gives information on organ kinetics instead of those on a whole-body level as described 

in chapter 3. Observing low albumin concentrations in these critically ill newborns, yet 

considering the many important roles of albumin, we speculated that albumin synthesis 

rates would rise upon amino acid administration.  

Mass-spectrometry analysis revealed that the albumin synthesis rate had indeed 

increased and also led to higher concentrations. Yet, there was no preferential use by the 

infant´s metabolic system to increase the synthesis of albumin relatively more than that of 

all other proteins in the body. 

 

 

CHAPTER 5 

 

This chapter provides an exploratory overview of the outcome at age two of the infants that 

were included in chapter 2. Some other studies, that were not always well-designed, started 

to doubt the safety of so-called aggressive nutritional strategies for premature infants. For 
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as long as our power would be sufficient, we thoroughly assessed follow-up data at age two 

to detect any difference at a mid-long term outcome between both groups. No significant 

differences were observed, but a trend towards better neurological and anthropometric 

outcome could be observed in the early amino acid supplemented group, especially in boys. 

 

 

CHAPTER 6 

 

From this chapter until chapter 9, a series of studies is described where amino acid 

and protein metabolism is measured in feto-maternal dyads just prior to birth. These 

exploratory studies give insight in the physiological metabolic capabilities of an individual 

during early life.  

In this chapter the fetal albumin synthesis rate was measured in a fetuses at term and 

preterm gestation (n=8 in each group). To do so, a relatively new model was applied 

whereby multiple tracers were administered to pregnant women starting at different times 

in the hours prior to cesarean section. From a single blood sample, taken at birth from the 

umbilical cord, the fetal albumin synthesis rates could be quantified. Whereas the functions 

of albumin during intrauterine life are not as clear as during postnatal life, fetuses 

synthesized very large amounts of albumin, especially earlier in gestation. The fact that a 

fetus of approximately 30 weeks gestation synthesizes under physiological circumstances 

large amounts of albumin but does not seem to continue this rate after birth (chapter 4), 

could indicate that postnatal nutritional strategies for premature infants do not provide 

enough substrates necessary for the high albumin synthesis rate. 

 

 

CHAPTER 7 

 

In the study described in this chapter, whole-body protein metabolism was measured in 8 

fetuses that were at term gestation. By measuring the umbilical blood flow using ultrasound 

and infusing appropriate tracers of phenylalanine and tyrosine prior to cesarean section, 

several metabolic rates could be quantified amongst which the protein synthesis and 

breakdown rates. In addition, we could measure the conversion (hydroxylation) of 

phenylalanine into tyrosine, a process which is said to be hampered in young and critically ill 

individuals.  

Where fetuses showed considerable net uptake of phenylalanine from the placenta, 

tyrosine uptake was negligible. Fetal phenylalanine uptake was even responsible for one-

fourth of the net catabolic state the mother was at while fasting prior to cesarean section. 

The fetus used the amino acids for high protein synthesis rates. Converted to tissue, fetuses 

with a gestational age of 38 weeks had a net accretion rate of 12 g/(kg·d). Furthermore, 

  



summary & samenvatting 

CH
A

PT
ER

 X
I 

189 

the fetuses showed considerable tyrosine production, indicating that phenylalanine 

hydroxylation occurs unproblematically. 

 

 

CHAPTER 8  

 

The same pregnant women as described in the previous chapter were also infused with 

stably labeled leucine, valine, and methionine to study several metabolic pathways of these 

essential amino acids in the fetus. A fairly surprising uptake by the placenta from the fetus 

was found of �KIC, a leucine metabolite, as one of the examples of the metabolic routes 

studied. Furthermore, results seemed to indicate that the fetus oxidizes large amounts of 

amino acids to generate energy besides the role of amino acids in protein synthesis. 

 

 

CHAPTER 9 

 

The placenta is a metabolically very active organ with high rates of oxygen and glucose 

consumption. On a weight basis, these are even larger than the utilization by the fetus. In 

this chapter we quantify the placental protein turnover rates in the same feto-maternal 

dyads as in chapter 6. This was possible after analysis of the amount of incorporated amino 

acid tracers in placental tissue samples collected after birth. It turned out that 

approximately 30 weeks gestation, one-fourth of all proteins in the placenta is broken down 

and resynthesized daily. At term, the turnover rate slightly decreased to about 20% per day. 

The high turnover rates are probably necessary to facilitate ongoing high nutrient transport 

to the fetus for optimal growth and development. 

 

 

CHAPTER 10 

 

This chapter provides a general discussion in which all results of this dissertation are again 

critically analyzed against the current literature. Furthermore, some considerations for 

future research are presented. 
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SAMENVATTING 

 

 

HOOFDSTUK 1 

 

Groei en ontwikkeling begint bij een optimale voeding. Gedurende de normale foetale 

ontwikkeling een uitgebreid samenspel tussen de zwangere vrouw, placenta, en foetus zorgt 

voor een optimale opname van voedingssubstraten. Na vroeggeboorte [prematuriteit], 

echter, draagt de neonatoloog die zorg.  

In het inleidend hoofdstuk van dit proefschrift, wordt een overzicht gegeven in de 

statistieken en gevolgen van premature geboorte. Vervolgens wordt de achtergrond 

uiteengezet van stofwisseling van eiwitten en de bouwstenen daarvan (aminozuren), 

inclusief de toepasbare onderzoeksmethoden. Hierna volgt een inzage in voeding voor de 

foetus en het premature kind gedurende de laatste 100 jaar. 

Ten slotte komen de doelstellingen en opbouw van dit proefschrift aan bod. 

 

 

HOOFDSTUK 2 

 

Voorafgaand aan de periode voordat de studies in dit proefschrift begonnen, was het in de 

kliniek gebruikelijk prematuur geboren kinderen te onthouden van aminozuren en alleen 

suikers te geven gedurende de eerste paar dagen na geboorte. Dit aangezien toediening van 

aminozuuroplossingen van mindere kwaliteit uit het verleden resulteerde in verstoringen 

bijvoorbeeld in het zuur-base evenwicht van deze kwetsbare groep kinderen. Echter, in 

afwezigheid van toediening van stikstofhoudende substraten, verliezen kinderen dagelijks 

1% van hun eiwitvoorraad en dat terwijl de eigenlijke groeisnelheid in de baarmoeder 1.5% 

per dag zou bedragen. 

Onze hypothese was echter dat de tegenwoordige generatie van aminozuuroplossingen 

goed verdragen zou worden bij toediening direct na geboorte in te vroeg geboren kinderen. 

Ter toetsing werden 135 kinderen met een geboortegewicht onder 1500 gram verdeeld in 2 

groepen. De controle groep onderging het standaard voedingsprotocol waarbij aminozuren 

op dag 2 na geboorte gestart werden en daarbij stapsgewijs verhoogd werden to 2.4 gram/

kg per dag en de interventiegroep kreeg vanaf direct na geboorte reeds 2.4 gram/kg per 

dag. Gedurende de eerste week na geboorte werden verscheidene biochemische  

bloedwaarden gecontroleerd en na analyse van urine twee keer een stikstofbalans 

geconstrueerd. 

Uit de resultaten bleek dat kinderen in de interventiegroep klinisch gezien niet meer 

acidotisch waren dan kinderen in de controle groep. De plasma ureum concentraties waren 

hoger in de groep gesupplementeerd met aminozuren wat aangaf dat aminozuur oxidatie 

verhoogd was. Desondanks was de stikstofbalans hoger in de betreffende groep en een 
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katabole staat werd verkomen. Hiernaast waren de plasma concentraties van de meeste 

aminozuren hoger in de interventiegroep en pasten deze beter binnen de 

referentiewaarden.  Concluderend, het geven van parenterale aminozuren aan premature 

kinderen vanaf de geboorte is veilig en effectief wat betreft anabolisme gedurende de 

eerste paar dagen na geboorte. 

 

 

HOOFDSTUK 3 

 

Dit hoofdstuk beschrijft het mechanisme achter de verhoging van stikstofretentie welk 

gedemonstreerd was in het vorige hoofdstuk. In een deel van de eerder geïncludeerde 

kinderen welke beademd werden en een arteriële lijn hadden (n=8 in iedere groep) werd 

een stabiele isotoop ([1-13C]leucine) als tracer voor een aantal uren toegediend op dag twee 

na geboorte. Vervolgens werd in het plasma de verrijking van �KIC (een leucine metaboliet 

indicatief voor intracellulair metabolisme) geanalyseerd en in de uitademingslucht de 

verrijking van koolstofdioxide gemeten. Hieruit konden de eiwitsynthese, -afbraak, en -

oxidatie berekend worden. In een ander deel van de eerder geïncludeerde kinderen (ook 

n=8 per groep), werd stabiel gelabeld [U-13C6]glucose gegeven om te bestuderen of er extra 

glucose verbrand werd als energiebron voor een verhoogde eiwitsynthese. Hiervoor werd 

de glucose plasma verrijking gemeten en in uitademingslucht eveneens de verrijking van 
13CO2. 

De eiwitafbraaksnelheid bleek onveranderd te zijn als aminozuren direct na geboorte 

werden, zodat het anabole effect primair het effect was van verhoogde eiwitsynthese. In 

feite was het netto effect van de toegediende aminozuren een ongeveer vergelijkbare 

stijging van zowel eiwitsynthese als aminozuuroxidatie. Analyse van de glucose kinetiek liet 

geen duidelijke veranderingen zien die konden worden gewijd aan een verhoogde 

energiebehoefte als gevolg van extra eiwitsynthese. 

 

 

HOOFDSTUK 4 

 

Uit het plasma van dezelfde kinderen als die hiervoor meededen met de leucine studie werd 

albumine gezuiverd. Hierin kon vanuit de stijging van de hoeveelheid in albumine 

geïncorporeerde leucine-tracer gedurende de infusieduur, de albumine synthese snelheid 

berekend worden. Waar in hoofdstuk 3 de eiwitsynthese berekend kon worden als 

gemiddelde van alle lichaamsprocessen, is de albuminesynthese een maat voor alleen de 

leveractiviteit. Aangezien de albumine concentraties in te vroeg geboren kinderen vaak erg 

laag zijn, terwijl albumine talrijke functies heeft, was onze hypothese dat de synthese 

snelheid zou stijgen als gevolg van de aminozuurtoediening. 

Massa-spectrometrie analyse liet zien dat de albumine synthese inderdaad was gestegen 
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en bovendien ook leidde tot hogere concentraties. Echter, er was geen preferentieel gebruik 

van aminozuren voor albuminesynthese ten opzichte van het gebruik voor alle andere 

eiwitten in het lichaam. 

 

 

HOOFDSTUK 5 

 

Dit hoofdstuk geeft een exploratief overzicht van de outcome op twee-jarige leeftijd van de 

kinderen die bestudeerd waren in hoofdstuk 2. Enkele andere studies, die niet altijd 

optimaal uitgevoerd waren, begonnen te twijfelen aan de veiligheid van de zogenoemde 

agressieve voedingsstrategieën voor prematuur geboren kinderen. Voor zover onze power 

groot genoeg is, hebben we de follow-up data op twee-jarige leeftijd grondig geanalyseerd 

om eventuele verschillen op middellange termijn tussen beide groepen te bestuderen. Er 

werden geen significante verschillen gevonden. Echter er was een trend, vooral in jongens, 

richting een betere outcome wat betreft zowel neurologische als groei parameters. 

 

 

HOOFDSTUK 6 

 

Vanaf dit hoofdstuk tot hoofdstuk 9 wordt een serie studies beschreven waar het aminozuur 

en eiwit metabolisme wordt gemeten in de foeto-maternale twee-eenheid vlak voor 

geboorte. Deze exploratieve studies geven inzicht in de fysiologische metabole precessen 

van een individu gedurende het vroege leven.  

In dit hoofdstuk wordt de albumine synthese snelheid gemeten in foetussen na 

ongeveer driekwart en aan het einde van de normale zwangerschapsduur (n=8 in iedere 

groep). Dit was mogelijk met behulp van een relatief nieuw onderzoeksmodel waarbij 

verscheidene tracers werden geïnfundeerd aan zwangere vrouwen en welke startten op 

verschillende tijdstippen in de uren voor een keizersnede. Door bloed af te nemen na 

geboorte vanuit de navelstreng, kon de foetale albumine synthese snelheid berekend 

worden. Terwijl de functies van albumine gedurende het foetale leven niet zo duidelijk 

omschreven zijn als gedurende het leven na geboorte, werden zeer grote hoeveelheden 

albumine geproduceerd door de foetus, vooral in de maanden voor de uitgerekende datum. 

Het feit dat de foetus zoveel albumine synthetiseert bij ongeveer 30 weken 

zwangerschapsduur, maar deze snelheid niet lijkt te continueren na premature geboorte 

(hoofdstuk 4), kan een aanwijzing zijn dat de voedingsstrategieën voor prematuren niet 

genoeg substraten leveren voor een snelle albumine synthese. 
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HOOFDSTUK 7 

 

In de studie beschreven in dit hoofdstuk werd het eiwitmetabolisme op geheel 

lichaamsniveau gemeten in 8 foetussen dicht bij de uitgerekende datum. Dit was mogelijk 

door zowel de bloedstroomsnelheid in de navelstreng te meten als de geschikte tracers van 

phenylalanine en tyrosine aan zwangere vrouwen te geven in de uren voor een keizersnede. 

Uit het navelstrengbloed konden we de eiwitsynthese en –afbraak snelheden berekenen. 

Tevens was het mogelijk de omzetting (hydroxylatie) van phenylalanine in tyrosine te 

meten, een proces dat mogelijk minder verloopt in jonge en zeer zieke individuen. 

Terwijl de foetus een behoorlijke opname vanuit de placenta liet zien, was de opname 

van tyrosine verwaarloosbaar klein. De foetale phenylalanine opname was zelfs 

verantwoordelijk voor één vierde van de netto katabole toestand van de moeder terwijl zij 

aan het vasten was als voorbereiding op de keizersnede. De foetus gebruikte de aminozuren 

voor een hoge eiwitsynthesesnelheid. Omgerekend naar weefsel, foetussen hadden een 

netto groeisnelheid van 12 gram/dag per kilo lichaamsgewicht bij een zwangerschapsduur 

van 38 weken. Voorts lieten de foetussen een aanzienlijke tyrosine productie zien, welke 

indicatief was dat de phenylalanine hydroxylatie onproblematisch verliep. 

 

 

HOOFDSTUK 8 

 

Dezelfde vrouwen als beschreven in het vorige hoofdstuk werden ook geïnfundeerd met 

stabiel gelabeld leucine, valine, en methionine om verscheidene metabole pathways van 

deze essentiële aminozuren in de foetus te bestuderen. Een redelijk verrassende opname 

van �KIC (een leucine metaboliet) door de foetus werd waargenomen, als een van de 

voorbeelden van de bestudeerde metabole routes. Verder lijken de resultaten in dit 

hoofdstuk te wijzen op een hoge oxidatie van aminozuren in de foetus welke zo een 

alternatieve energiebron had. 

 

 

HOOFDSTUK 9 

 

The placenta is een metabool zeer actief orgaan met een hoog verbruik van zuurstof en 

glucose. Op gewichtsbase is dit gebruik zelfs groter dan dat van de foetus. In dit hoofdstuk 

kwantificeren we de eiwit-turnover van de eiwitten in de placenta in dezelfde personen als 

bestudeerd in hoofdstuk 6. Dit was mogelijk door analyse van de hoeveelheden ingebouwde 

tracers in stukjes placentaweefsel verzameld na geboorte. Het bleek dat bij een 

zwangerschapsduur van ongeveer 30 weken, één vierde van alle eiwitten in de placenta 

dagelijks afgebroken wordt en weer opgebouwd. Aan het einde van een normale 

zwangerschapsduur, daalt deze turnover snelheid naar ongeveer 20% per dag. De hoge 
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turnover snelheden zijn waarschijnlijk noodzakelijk om een continu hoog voedingstransport 

richting de foetus te waarborgen, welke nodig is voor optimale groei en ontwikkeling. 

 

 

HOOFDSTUK 10 

 

In dit hoofdstuk wordt een algemene discussie gegeven waarin alle resultaten uit deze 

dissertatie nogmaals kritisch bekeken worden in het licht van de huidige literatuur. Verder 

worden er enkele aanbevelingen gedaan voor toekomstig onderzoek. 
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De laatste punt in dit proefschrift was op de vorige pagina nog niet gezet. Aangezien velen 

hebben meegewerkt aan de totstandkoming van deze dissertatie, wil ik graag bij deze 

iedereen hier ontzettend voor bedanken. Echter, in het bijzonder mogen de volgende 

personen niet overgeslagen worden. 

Allereerst natuurlijk de ouders van de te vroeg geboren kinderen; veel respect heb ik voor 

de beslissing jullie pasgeboren kind mee te laten doen aan het vele onderzoek op de 

afdeling neonatologie. Maar ook de ouders van de kinderen welke nog niet eens geboren 

waren en waarbij ik al onderzoek mocht doen, wil ik op deze plek van harte bedanken. 

Ongetwijfeld zullen veel van de kinderen die in de nabije toekomst te vroeg geboren 

worden veel baat hebben van de kennis die wij hebben opgedaan door jullie deelname. 

En dan natuurlijk de initiator van dit onderzoek, Prof. dr. J.B. van Goudoever; beste Hans, de 

mogelijkheden die ik bij het onderzoek bij jou doen kreeg, zijn ongekend. Na een gesprek of 

overleg met jou was ik altijd weer meer geënthousiasmeerd, geïnspireerd, en optimistischer 

dan op het moment dat ik je kamer inliep. Ontzettend bedankt voor dit alles, voor de 

congressen, en voor alle kansen die je bood! 

Ook mijn andere promotor, Prof. dr. E.A.P. Steegers ben ik erkentelijk; beste Eric, dank voor 

de hulp bij het opzetten van het foetale gedeelte van dit proefschrift en het welkom heten 

op de afdeling obstetrie. 

Zonder een ‘akkoord’ van de leescommissie zou ‘11 december’ niet door hebben kunnen 

gaan. Prof. dr. H.J.G. Boehm, Prof. dr. A.J. van der Heijden, en Prof. dr. T.J.M. Helmerhorst, 

dank voor de snelle beoordeling van het manuscript. Prof. dr. G. Buonocore, Prof. dr. H.N. 

Lafeber, Prof. dr. H.P. Sauerwein, en Prof. dr. G.H.A. Visser dank ik bij deze voor hun 

bereidheid tot zitting in de grote commissie. 

Vele uren zijn gespendeerd in het massa-spectrometrie lab. Gelukkig was ik daar niet alleen; 

niet alleen voor alle kennis die er aanwezig was, maar ook voor de gezelligheid! Gardi, 

Kristien, Trinet, Darcos, en bovenal natuurlijk Henk: ik kon jullie (ogenschijnlijk) niet vaak 

genoeg storen als ik weer eens iets niet wist of er weer eens wat verkeerd was gegaan. Dank 

voor al het geduld, meedenken, en integreren van alle pieken! 

Ineke, zeker in het begin heb je me veel geholpen, waarvoor mijn dank; Alle METC 

administratie verliep door jou soepeltjes en het A4’tje statistiek voor dummies heb ik nog 

vaak kunnen gebruiken. Daniëlla, top dat je altijd wel weer een klein gaatje voor me in de 

baas zijn agenda wist te ritselen! Tevens vond ik het fijn dat je kamer altijd een warm 

welkom is voor een korte en gezellige stop by. 

De verpleegkundigen en artsen op de afdeling neonatologie legden de basis voor de eerste 

hoofdstukken van dit proefschrift. Dank voor het tijdig aanhangen van de voeding en het 

verzamelen van alle gaasjes met urine. 
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Beste Andras, jij en je medewerkers in de apotheek zorgden voor de talloze tracer-flacons 

waarvoor zeer veel dank. Ik waardeer je striktheid, en prettige en zeer snelle communicatie. 

Beste dr. Duvekot, beste Hans, dank voor het mee-enthousiastmeren van iedereen op de 

afdeling en van patiënten! Ook Joke en Wilma horen op deze plek genoemd te worden voor 

het meedenken over de praktische details. Voor het feit dat ik vaak op de meest 

onverwachte momenten belde, maar we toch altijd een geschikt moment voor een echo 

vonden, wil ik je bij deze nogmaals bedanken, Ernst! 

Verder wil ik iedereen van OK 1 bedanken: de gynaecologen, anesthesiologen, arts-

assistenten, en operatie-assistenten waren onmisbaar in hun soepele medewerking bij het 

verzamelen van alle monsters. Voor het feit dat de medewerkers in het AKC-Sophia uiterst 

behulpzaam waren bij de verwerking van een deel van de vele monsters, wil ik hen hartelijk 

bedanken.  

Rogier, bij deze veel dank voor het op weg helpen met de lay-out van dit boekje; heeft een 

hoop puzzelen gescheeld! 

Beste Frans, in 2003 samen als student op de afdeling begonnen en sindsdien ‘het bureau 

gedeeld’. Vele pieken en dalen hebben we in het onderzoek meegemaakt waarbij als het 

even tegenzat, we met elkaar ook heerlijk konden dramatiseren, maar vooral door stevige 

discussies, humor, zangsessies, en andere hilariteiten elkaar een stuk verder konden helpen. 

Echter, that’s what good colleagues do. De vele lol ook buiten het Sophia, bv ergens in de 

kroeg, squashbaan, of op congres is natuurlijk het mooist en zal zeker blijven. Thnx Mate! 

Deels van bovenstaande geldt natuurlijk ook voor de rest van alle recente SK-2210 

bewoonsters: Maaike & Maaike, Willemijn & Karien, en Hester, Denise & Anne. De SK is een 

topkamer! Maar ook elders gezelligheid met de collega’s: met Carine, Heleen, Janine, 

Joanne, Nanda, en Patrycja voor een regelmatige lunch, met de bezoekers van de VOBS met 

als initiatoren natuurlijk Emile en Ralph, met de onderzoekers bij kerstdiners en op 

weekenden, en verder met Jan-Erik, Jeroen, Sascha, en alle andere artsen voor het 

grandioze vermaak op congres!  

Paranimfen Maaike & Erik: een vaste steun en toeverlaat tijdens de afgelopen jaren. Het wel 

en wee gedurende de laatste jaren van mijn onderzoek hebben jullie vaak van me aan 

moeten horen. Ik heb jullie met veel plezier gevraagd dit nog één maal te doen, en wel op 

11 december. Dank dat jullie de afsluiting van de afgelopen jaren met wij willen meevieren. 

Ouders, zussen, broer en alle vrienden wil ik danken voor de betrokkenheid en steun 

gedurende de afgelopen jaren: eigenlijk hadden jullie allemaal prima mijn paranimf kunnen 

zijn!  

Ik zie jullie allemaal graag verschijnen bij het promotie-slotfeest! 
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Chris van den Akker was born in Zevenaar, the Netherlands on the 16th of October, 1980. 

After having completed grammar school at Liemers College in Zevenaar in 1998, he went to 

Santa Barbara, CA, USA for one year to attend an international language school. After his 

return, he started his medical training at Erasmus University in Rotterdam, the Netherlands 

in 1999. 

As a graduation project he started in 2003 to work on a study on early amino acid 

supplementation to premature infants under the supervision of Prof. dr. J.B. van Goudoever 

at the neonatal division of the department of pediatrics in the Erasmus MC – Sophia 

Children’s Hospital in Rotterdam, the Netherlands. In 2004 he then postponed his rotations 

for his medical training to continue doing research as part of a PhD-project. The focus of his 

research was directed more towards amino acid and protein metabolism in the human 

fetus. Again under the supervision Prof. dr. J.B. van Goudoever, studies were performed in 

collaboration with Prof. dr. E.A.P. Steegers of the department of obstetrics and gynecology 

(division obstetrics and prenatal medicine) at the Erasmus MC, and have resulted in this 

dissertation. 

In June 2008, he continued his medical training and started his rotations, which he will finish 

in 2010. 
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