
JOURNALOF 
Econometrics 

ELSEVIER Journal of Econometrics 63 (1994) 133-15 1 

A multivariate approach to modeling univariate seasonal 
time series 

Philip Hans Franses 

Econometric Institute, Erasmus University, 3000 DR Rotterdam. The Netherlands 

(Received October 1993) 

Abstract 

A seasonal time series can be represented by a vector autoregressive model for the 
annual series containing the seasonal observations. This model allows for periodically 
varying coefficients. When the vector elements are integrated, the maximum likelihood 
cointegration method can be used to check for the presence of, possibly restricted, 
cointegration relations between these annual series. In this paper it is shown that this 
application generalizes a test procedure for seasonal unit roots. Simulations and exam- 
ples illustrate its empirical performance. 
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1. Introduction 

Common assumptions for models of a seasonally observed economic time 
series are, e.g., (a) the series is seasonally integrated, (b) seasonal patterns can be 
represented by deterministic dummies, and (c) a variable is periodically inte- 
grated (see, e.g., Osborn, 1988). The Hylleberg et al. (1990) [HEGY] method is 
designed to discriminate between models implied by assumptions (a) and (b). 
Thus, the HEGY approach considers only a subset of possible models, and, in 
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particular, does not allow for periodically varying coefficients. This calls for 
a model selection strategy in a class of models that considers models of types (a), 
(b), and (c). In the present paper it is argued that a vector autoregressive [VAR] 
model with cointegrating restrictions for the annual series of seasonal observa- 
tions can provide such an extended class. The reason for choosing a VAR 
specification is that several models for the univariate series imply the presence 
of, and restrictions on, cointegration relations between these annual series. Each 
model assumes a different number of cointegrating relations, and therefore an 
estimate of that number is of importance. Further, since the validity of certain 
parameter restrictions in the cointegrating vectors are to be tested, the Johansen 
(1988) test procedure seems to be most suitable for model selection. 

Section 2 discusses model representation issues. Particularly, the focus is 
on writing autoregressive models for a univariate series as a VAR for the vector 
of stacked observations. The relations between cointegrated annual series and, 
e.g., (non) seasonal unit roots and periodic integration are also highlighted. 
For notational convenience and illustrative purposes, I deal with quarterly 
time series only. Section 3 proposes a model selection strategy which is based 
on applying the Johansen method to this VAR model. In Section 4 this 
strategy is compared with the HEGY method via some Monte Carlo simula- 
tions. In Section 5 the proposed model selection method is applied to 
the Japanese consumption and income series studied in Engle et al. (1993). 
More examples can be found in Franses (1990). The final section concludes with 
some remarks. 

2. Model representation 

Consider a univariate quarterly time series x,, t = 1, , n, when it is generated 
by an autoregressive process of order p [AR(p)], 

(b,(B)& = s + c,, (1) 

where 6 is a constant and 4,(B) is a polynomial of order p in the backward shift 
operator B. This operator is defined by Bkx, = .qk. The I-:, denotes a standard 
white noise process, i.e., an uncorrelated zero mean process with constant 
variance. In case the polynomial 4,,(B) can be decomposed as 4,*-,( B)(l - B4), 

the X, series is said to be seasonally integrated. Since (1 - B4) equals 
(1 - B)(l + B)( 1 - iB)(l + iB), this means that X, then contains a nonseasonal 
unit root 1 and the seasonal unit roots - 1, - i, and + i. Hylleberg et al. (1990) 
propose a procedure to test for the presence of these roots. 

Although the constant 6 can be replaced by seasonally varying constants, one 
of the properties of model (1) is that its dynamic parameters do not vary with the 
seasons. This variation can be introduced by adding a subscript s to the elements 
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of (1) (see also Osborn, 199 1). A simple example is the first-order autoregressive 

model 

x, = &Xt- 1 + Est, (2) 

where the values of the autoregressive parameter and the variance of the error 
process vary with the season, and where s = 1,2,3,4. This process is called 
a periodic process (see Pagano, 1978; Troutman, 1979; inter ah). Strictly 
speaking, periodic processes like (2) are not stationary since they treat each 
season differently, and variances and correlations therefore vary with the sea- 
sons. The latter suggests an alternative representation of a periodic autoregres- 
sive process, which is given by a multivariate process for the (4 x 1) vector XT 
containing the annual series XsT, or XT = (XIT, XZT, X3T, XdT)‘, where XsT is 
the observation in season s in year T. The annual index T runs from 1 to N, 
where N = n/4. This multivariate process is 

&XT = AlXT-l + “’ + &XT-, + p + ET, (3) 

where the Ai, i = 0, 1, . . . , m, are (4 x 4) parameter matrices, and where the p is 
a (4 x 1) vector of constants and ~~ is a (4 x 1) vector white noise process. The 
model in (3) can be called a vector of quarters [VQ] representation. Note that 
this model only allows the parameters to be periodic, and that they do not 
necessarily have to be seasonally varying, i.e., models like (1) can also be written 
as (3). The idea of stacking has been introduced in Gladyshev (1961) and is also 
considered in, e.g., Tiao and Grupe (1980) and Osborn (1991). As an example, 
the univariate model in (2) can be represented as 

1-i _i _ih -x;Ll[;!=i;!, (4) 

where the backward shift operator L is similarly defined as B, i.e., 
LkXT = XT-k, and it refers to annual time series. 

The vector series XT generated by (3) is stationary when the roots of the 
characteristic equation, 

IA0 - A,z - “’ - A&ml = 0, (5) 

are outside the unit circle. For the example in (2) and (4) this means that the 
solution to 

I/& - A,zl = (1 - (~1~*cz3cz4)z) = 0 (6) 

should exceed one, i.e., that C(,CI~M~CY_, < 1. When c(~c(~c(~~~ = 1, the system for 
XT has one unit root, and the corresponding univariate process x, is said to be 
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periodically integrated (see Osborn, 1988). Note that at least one of these c(, 
exceeds one. 

Alternative to (5), the presence of unit roots in the system for XT can be 
checked by analyzing a rewritten version of the VQ model. For that purpose the 
VQ model is written in a vector autoregressive form, i.e., 

XT = n,x,-, + “’ + n,x,-, + u + or, (7) 

where I7i = Ai’Ai, i = 1, . . ..m. v = A,‘p, and or = AileT. This model can 
again be written as 

dX, = z-rLlxr_r + ... + rm-rdXr-m+l + flXr-, + 2, + or; (8) 

see Johansen (1988). The A = 1 - L is the first-order differencing filter for 
annual data and it corresponds to the A4 = (1 - B4) filter for quarterly series. 
The matrices rj, j = 1, . , m - 1, are functions of the L’i in (7). The Ii’ matrix in 
(8) conveys information on stationarity and on the cointegration relations 
between the elements of Xr. When three of the solutions of (5) are outside the 
unit circle and one of the solutions is z = 1, the process (5) has one unit root, and 
hence the matrix Zl has rank 4 - 1 = 3. This means that there are three 
cointegration relations between the XsT, s = 1, . . . ,4. For example, the model in 
(4) can be rewritten as AXT = Zi’XT_ 1 + wT, or 

-1 0 0 x1 

0 -1 0 Ml M2 

0 o-1 @l c(2a3 

0 0 0 c(lc(2a3%4- 1 

XIT-l 

x2T-l 

x3TFl 

x4T- 1 

It is now easily seen that the Z7 matrix in (9) has rank 3 when CI~ C(~CC~CC~ = 1. 
This means that a periodically integrated first-order autoregressive time series 
assumes three cointegration relations between the XsT variables. From (9) it 
can also be observed that these relations are simply Xrr - c$~X~~, 
X2r - 42X4T, and X3T - c#I~X~T, where not all C$j, j = 1,2,3 are equal to 
unity. Note that when the c(, are all equal to 1, i.e., when the model Alx, = E, 
is appropriate, there are also three cointegration relations for which now 
all the dj are equal to 1. Of course, when the rank of n is equal to 0, it can 
be seen from (8) and (9) that the A4 filter for the x, series may be 
adequate. 

Altogether, this suggests that a method to select between several models for 
seasonal time series can be based on an estimate of the rank of II and on a test 
for the validity of restrictions on the parameters in the cointegration vectors. 
The Johansen (1988) maximum likelihood cointegration method may now be 
useful for this purpose (see also Johansen and Juselius, 1990). 
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3. Model selection 

The model selection method for a univariate seasonal time series x, is based 
on the VQ representation (3) its rewritten version (8), and an analysis of the 
properties of the matrix II. Consider the first-order VQ model 

AX, = flxTeI + V + UT, (10) 

where the matrix 17 will be estimated unrestrictedly, and assume that for the 
error process applies that UT - N,(O, A). Since this model is essentially a vector 
autoregression of order 1, the sixteen parameters in 17 can be estimated using 
ordinary least squares. Denote r as the rank of LI. 

The process XT is asymptotically stationary in case r equals 4. There is no 
cointegration between the elements of XT in case r is equal to 0. In case 
0 < r < 4, one can write ll = c@‘, where z and /I are (4 x r) matrices, of which the 
matrix B contains the cointegration vectors. Johansen (1988) developed test 
procedures for the value of r and for linear hypotheses in terms of CI and /I. For 
(lo), the method boils down to the choice of the r linear combinations of 
elements of XT which have the largest correlation with AX, after correcting for 
u. The eigenvectors of the relevant canonical correlation matrix are the columns 
of /I. The corresponding eigenvalues Ai, where li > 13i + 1, are used to construct 
statistics like Qi(r) = - NC;Zr+l log(1 - Ai) and Q2(r) = - Nlog(1 - 1,). 
The trace test statistic Q1 and the maximum eigenvalue test statistic Qz can be 
used to test for the number of cointegration vectors. 

Asymptotic fractiles for these statistics are displayed in Johansen and Juselius 
(1990). However, preliminary Monte Carlo simulations reported in earlier 
versions of my paper have indicated that for sample sizes as large as N = 25, 
these critical values may not be appropriate. Therefore, small-sample 
fractiles for the statistics Qi and Qz have been calculated on the basis of 10000 
replications for samples of 25 and 50 observations. Note that these sample 
sizes for annual data correspond to 100 and 200 quarterly data, respectively. 
In the Appendix the tables with fractiles are displayed. A comparison of these 
with the corresponding tables in Johansen and Juselius (1990) indicates that 
the critical values in small samples differ from the asymptotic ones although 
a convergence can be observed as sample size grows, and that the differences 
across the distinct null hypotheses between the values for sample sizes 25 and 
50 are not very large. 

To test for linear restrictions on the cointegrating vectors /I, define a (4 x 4) 
matrix H, where r G q 6 4, which reduces p to the parameters cp, or p = Hcp. 
For brevity, I shall denote these restrictions by their matrix H. Assuming the 
validity of the restrictions H, one compares the corresponding eigenvalues 5i 
of the canonical correlation matrix with the ii via the test statistic 
Q = N II= 1 log{(l - ti)/(l - ii)}. Under the null hypothesis, the test statistic 
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Q asymptotically follows a ~‘(r(4 - q)) distribution. Whether this distribution 
is valid in small samples will be investigated below. 

An application of the Johansen cointegration method to the model in (10) 
gives an opportunity to gain insights in the properties of the univariate quarterly 
x, series. No differencing filter is needed for x, in case r is equal to 4. In case there 
are no cointegration relationships between the elements of XT, each XsT series is 
an integrated process (see also Osborn, 1993). Hence, r = 0 implies that the filter 
d, for x, may be appropriate. If r is 3 and pairs of successive XsT are cointe- 
grated with parameters (1, - I), a transformation di for x, is required. This di 
filter assumes the cointegration relations (X2r - Xir), (X3T - XZT), and 
(XdT - X3=). In terms of model (10) this means that the restrictions on the 
columns of /j’. given by 

-1 0 0 

H3, = 

0 0 1 

(11) 

are not rejected. In terms of (I), this means that x, has a nonseasonal unit root 1. 
The A 1 x, series may now be described by an autoregressive model with sea- 
sonally varying parameters. Whether all the parameters are periodic indeed can 
then be tested along standard lines. 

It is also possible to test for the presence of seasonal unit roots (see Hylleberg 
et al., 1990). When r = 3, one can check for the presence of root - 1 by testing 
the restrictions 

(12) 

If both the hypotheses Hxl and H32 are rejected, one has encountered three 
general cointegration relationships between the elements of XsT. Specific re- 
strictions on the parameters in ll can now imply the appropriateness of the 
periodically integrated model like x, = 1,x1_ 1 + e,, with c(i c(~c(~Q = 1 but not 
all ‘M,~ = 1 as in (2). When r is equal to 1 or 2, one can proceed along similar lines 
to test for the presence of nonseasonal and/or specific seasonal unit roots. In 
Table 1 the relevant restriction matrices H are given. 

Summarizing, an application of the Johansen cointegration method to a VAR 
model for the XT vector generalizes the HEGY approach since it allows for the 
presence of periodically varying parameters. When each of the hypothes es H in 
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Table 1 is rejected, the time series x, can be said to be periodically integrated. 
A possibly suitable model for such a series is a univariate periodic error 
correction model like (10) where Ll is replaced by r/?‘. The ‘error’ of over- 
differencing is then corrected by fi’X,_ 1, which represents linear relationships 
between the annual series. The results in Engle and Yoo (1987) suggest that 
a forecasting gain can be expected when this model is used for forecasting. In 
Franses and Romijn (1993) it is illustrated that such forecasts compare favour- 
ably with those obtained from a model for a A4 transformed x, series. 

Alternatively, one may also want to construct a model containing more than 
one time series. In case of periodically integrated time series, it may then be 
worthwhile to consider a periodic cointegration model, which is a model where 
the cointegration vectors, as well as the adjustment parameters, are allowed to 
vary over the seasons (see, e.g., Birchenhall et al., 1989; Franses and Kloek, 
1991). 

4. A Monte Carlo study 

The model in (lo), which is the simplest VQ model, contains 16 + 14 param- 
eters to be estimated. When some of these parameters are in fact equal to 0, as 
for example in (9), this may have an impact on the empirical performance of the 
cointegration method. Further, nonperiodic models like (1) imply parameter 
restrictions on the elements of Ll, and this can also effect size and power of the 
test strategy. This section reports on the results of a Monte Carlo study in which 
small periodic and nonperiodic, possibly integrated, time series are the data- 
generating processes. In the simulations below, only the trace test statistic Qi 
will be used in the VQ method. Further, the VQ model selection approach will 
be compared with the HEGY method. To save space, it is assumed that the 
reader is familiar with the details of the latter approach. 

Issues of interest are whether the empirical power of the procedure is reason- 
ably high, also in cases where the model in (10) is overparameterized, and 
whether the asymptotic x2 distribution for the tests for restrictions is valid in 
samples as small as 25 observations. In the simulations the maintained regres- 
sion model is (lo), i.e., the model includes a constant term. Below, this model will 
be called a VQ model of order 1. The relevant critical values are obtained from 
Table A.1 in the Appendix. For comparability reasons, I consider an auxiliary 
regression for the HEGY method when it includes seasonal dummies and 
a deterministic trend. The significance level for each step of the HEGY method is 
set equal to 5%. To gain insight in the performance of the VQ method itself, 
I report on the results obtained at a 5% and at a 10% level. 

In case the data-generating process is a periodically integrated process in (2) 
which is a process not captured by the HEGY method, i.e., (2) with the imposed 
restriction that CZ~Z~C(~U~ = 1, the differences between the two methods are most 
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Table 2 
Monte Carlo comparison based on 5,000 replications of the VQ and HEGY methods when the DGP 

is a periodically integrated process: X, = 1, Y, ~, + t:,, with 

I: rl = 1.25. rz = 0.8. a3 = 0.9, r? = I.1 I, E,, - N(0, cr,) 

II: rl = 2. rL = 0.5, YIP = 1.5. r4 = 0.67. E,,~ - N(0. 0,) 

100 quarterly observations 

DGP 

VQ” HEGYb 

100/o 5% 1 -1 *i - A, 44 

I: or. = 1 0.588 0.438 0.96 1 0.196 0.196 0.026 0.753 0.159 
0, = 1.25,0.8,0.5, 2.0 0.595 0.44 1 0.960 0.225 0.215 0.023 0.727 0.179 

II: fJn= 1 0.619 0.488 0.948 0.859 0.272 0.020 0.1 17 0.247 

0, = 1.25. 0.8, 0.5, 2.0 0.630 0.49 1 0.949 0.904 0.302 0.023 0.072 0.280 

“The values m the cells report the number of times the correct decision is made, i.e.. r equals 3 and 

the filter AI is not appropriate. 
bThe values in the cells report the number of times the presence of the roots I. ~ 1, +i cannot be 

rejected. The outcomes are based on the r tests for zI and zz and the joint F test for z3 and z4 in the 

auxiliary regression (3.8) in HEGY, which here contains a constant. seasonal dummies, and a trend. 

No filter (-) is chosen when all rr[, # 0. A, when n, = 0 and the other n[, are not, and A, when all n, 
equal 0. The test outcomes for the n, are based on a 5”/0 significance level. The number of additional 

lags in the test equation is set equal to that number p ( p = 12,. (0) for which there appeared to be 

no significant residual autocorrelation. 

striking. Some simulation results relevant to this case, where only two sets of 
parameter values have been chosen for which applies that the product equals 1, 
are reported in Table 2. In about 50% of the cases the VQ method selects the 
correct model, i.e., r is equal to 3 and the restrictions Hjl are rejected. One reason 
for this somewhat low value of the power is that the VQ model is over- 
parameterized. This seems to be confirmed by the unreported fact that, next to the 
50% of the cases that Y is found to be equal to 3, generally in about 35% of the 
cases this r is estimated to be 2. Another cause may be that the asymptotic x2 
distribution may not apply to samples as small as 25 annual observations. In fact, 
at a nominal level of 5%, the rejection rate of the Q test statistic is about 20%. It 
can be expected that the results for higher-order periodic autoregressive models 
estimated for longer time series will show an improvement of the test performance. 
The HEGY method indicates that in several cases one is inclined to opt for the d 1 
filter, although also the A4 filter can often be found to be appropriate. Further, it 
can be seen that a likely outcome of the HEGY method is that the root - 1 or the 
roots k i seem to be present. Of course, given the choice of the parameters, this 
may not come as a surprise. The performances of the two methods do not seem to 
be effected by a seasonally heteroscedastic error process. 
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Table 3 

Monte Carlo evaluation of HEGY and VQ procedure; 100 quarterly observations 

VQ 

Data-generating process HEGY 10% 5% 

(I) x, = rrxt-, + E,g, ~st - N(O, 07) 

r, = 0, 6, = 1 0.926 0.916 0.774 

2, = 0.5, Us = 1 0.802 0.865 0.697 

rs = 0.9, 6, = 1 0.121 0.323 0.174 

XS = 0.5, CT, = 1.1.0.9, 1.5, 0.7 0.789 0.875 0.699 

rr = 0.5, cr, = 1.25, 0.8, 0.5, 2.0 0.758 0.853 0.683 

rS = 0.2, 0.4, 0.6, 0.8, (T, = 1.25, 0.8, 0.5, 2.0 0.812 0.893 0.731 

rr = 0.6, 0.7, 0.8, 0.9, (T, = 1.25, 0.8, 0.5, 2.0 0.440 0.694 0.486 

(II) d,u, = r,dix,_, + E,,, a,, - N(0, 0,) 

S!, = 0, 6, = 1 0.890 0.422 0.365 

c(, = 0.5, 0, = I 0.900 0.482 0.461 

iy, = 0.5, U, = 1.25, 0.8, 0.5, 2.0 0.890 0.530 0.512 

c(, = 0.2, 0.4, 0.6, 0.8, gS = 1.25, 0.8, 0.5, 2.0 0.889 0.460 0.427 

(111) d,x, = 0.5.4,x,_ I + a,, E, - N(0, 1) 0.584 0.774 0.875 

The values in the cells report the frequencies that the method selects the correct filter. For case I, this 

should be no filter or, in terms of VQ, r equals 4. For case II this filter is d,, and for case 111 it is Ad, 

The evaluation is based on 5,000 replications of series of length 100. All HEGY test outcomes are 

based on a 5% significance level, while all results for a VQ model of order 1 consider 5% as well as 

10% significance levels. The critical values for the VQ method are those displayed in the Appendix. 

To further investigate how the VQ method performs in case the generating 
processes are simple (non) periodic processes, which imply overparameterized VQ 
models, consider the results in Table 3. In the cases in which the process x, does 
not need to be differenced, i.e., the cases in the upper part of the Table 2, the VQ 
method detects that the Zl matrix is of full rank in a large amount of the cases, and 
it sometimes performs better than the HEGY method does. As expected, the 
power of the method decreases when the root of the process approaches unity. For 
example, for an rS parameter of 0.9 for all s, in only 12.1% of the cases the HEGY 
method finds that the roots 1, - 1, i, and - i are not present jointly, and in only 
14.1% of the cases the VQ approach detects that the correct r is equal to 4. Again, 
allowing for a periodic error process does not dramatically effect the perfor- 
mances. Finally, when the first-order autoregressive parameter can vary with the 
seasons, this does not effect the outcomes to a great extent either. 

When the dr filter for the x, series is appropriate, the VQ method does not 
perform extremely well, as can be seen from part II of Table 3. The empirical 
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powers in these cases are similar to those in Table 2. In about 45% of the cases 
the filter is found back. This can imply that the 20% significance level for the 
trace test may be more useful and that, e.g., a 1% level for the Q test for 
restrictions in the cointegration parameters may be more appropriate. 

When the data-generating process is a first-order autoregressive model for 
a series that needs a A4 filter to reach stationarity, as in panel III of Table 3, the 
VQ method detects the correct filter in more cases than the HEGY method. 
Note that the empirical success rate in this case is higher for the 5% significance 
level. This counterintuitive result is caused by the fact that the figures in the cells 
correspond to 1 minus the size of the tests. The HEGY approach finds in about 
40% of the cases that the A4 is not appropriate. This suggests that the size of the 
VQ method is not much effected by lagged A4x, terms. 

In summary, the VQ and HEGY approaches can yield similar outcomes in 
case the data-generating processes are close to those assumed for the HEGY 
method. Hence, even when the multivariate time series model to which the VQ 
method is applied is highly overparameterized, the VQ method performs reas- 
onably well. A suggestion for practical use of this approach is to consider also 
a nominal size of 20% for the trace test statistic, and to test restrictions on the 
cointegration relations using a 1% significance level. When one allows for 
periodically nonstationary processes, it appears that the VQ approach is a useful 
generalization of the HEGY method, since the latter method can only suggest 
the use of inappropriate filters. 

5. Applications 

To empirically illustrate the VQ approach, I consider the Japanese consump- 
tion c, and income y, series for 1961.1 to 1987.4 as they are analyzed in Engle 
et al. (1993). From their graphs it emerges that the series clearly do not show 
constant patterns. In Franses (1990) it is argued that graphs of the four 
XsT series can give useful insights in seasonal patterns. The graphs of the 
XsT series for income in Fig. 1 show patterns of pairs of quarters which seem to 
evolve similarly over time, and also the distances between the individual lines 
look rather constant. Furthermore, there is only a brief period where one of the 
inequalities X4r > X3r > X2r > Xir is violated. From Fig. 2, where the 
XsT graphs for consumption are displayed, it can be seen that for the ct series 
similar patterns emerge, although now none of these inequalities is violated. 
Hence there seems to be visual evidence for the presence of cointegration 
relations between the elements of XT for both series. 

The order of a reasonably adequate vector autoregressive model appears 
to be equal to 1 for both series, i.e., a model as in (10) can be analyzed. This 
choice is based on the very small number of parameters which are significant in 
a VQ model of order 2, and on the insignificance of almost all the residual 
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Fig. 1. Real disposable income in Japan per quarter, 1961-1987 
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Fig. 2. Total real consumption in Japan per quarter, 1961-1987 
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autocorrelations of order 1 and 2; see Table 4. Note that the incorrect assump- 
tion of too large a model decreases the empirical power of many cointegration 
methods (see, e.g., Boswijk and Franses, 1992). The VQ model for consumption 
contains a dummy for 1974 in all four equations to capture a sequence of 
outliers. The relevant estimation results of the unrestricted models are displayed 
in Table 4. These are the estimates of II,, see (7) and of the standard deviations 
of the residual processes. Furthermore, it is clear that periodic models may well 
describe the time series considered since the elements in several rows of the Ui 
are quite different and the values of A,:,!’ vary across the seasons. 

In Engle et al. (1993) it is found via the HEGY method that for y, the roots f 1, 
and fi and for c, the roots f 1 cannot be rejected. The results of the VQ 
procedure are displayed in Table 5. The number of observations equals 26, and 
hence the critical values in Table A.1 are used. The eigenvalues indicate that for y1 
the hypothesis r = 3 cannot be rejected. Moreover, the null hypothesis of cointeg- 
ration of the sequential quarters with parameters (1, - 1) can neither be rejected. 
This implies that a d 1 filter for the y, seems appropriate. For c, , the hypothesis 
that r = 2 cannot be rejected at a 10% level. The restrictions H21 and Hz2 are 
rejected, though. The univariate consumption series may therefore be described 
by a univariate periodically integrated model. Given this last result, one can easily 
recognize that the consumption and income series for Japan may not fit into 
a seasonal cointegration model as in Engle et al. (1993) but may possibly be more 
appropriately modeled with a periodic cointegration model. An estimation 
method for the latter model is proposed in Franses and Kloek (1991). 

Table 5 

VQ results for the Japanese income and consumption series, N = 26 

Income E., = 0.854” Qr(3) = 3.297 r=3 Q(Hal) = 0.753 
E., = 0.609h Q,(2) = 18.587’ Q(HjZ) = 23.167” 
E., = 0.445h Q,(l) = 42.989b 
i, = 0.119 Q, (0) = 93.052’ 

Consumption i, = 0.951” Q,(3) = 6.694“ r=2 Q(H,,) = 18.035” 
i, = 0.527d Q,(2) = 16.372“ Q(H2>) = 49.135” 
i., = 0.31 I Q,(l) = 35.854’ 

i., = 0.227d Q,(O) = 1 14.322h 

The expressions for Qi(r) and that related to the E., can be found in the text. Critical values are 
displayed in Table A. I of the Appendix. The Q statistics for the hypotheses H,, asymptotically follow 

x’(3) distributions, and the Q statistics for the hypotheses H,, asymptotically follow x’(4) distribu- 
tions, where i = I, 2. 

a Significant at a 1% level. 

h Significant at a 5% level. 
‘Significant at a 10% level. 

‘Significant at a 20% level. 
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6. Concluding remarks 

The multivariate approach to modeling univariate seasonal time series pro- 
posed in this paper amounts to considering an autoregressive model for the 
vector containing the annual observations per season. In case the elements 
of this vector are integrated, an application of the Johansen cointegration 
method yields insights in whether a time series contains a nonseasonal unit 
root and/or seasonal unit roots, or whether it is periodically integrated. 
Hence, this application extends the HEGY method by allowing for periodically 
varying coefficients. Since the critical values of the Johansen method are of 
an asymptotic nature, and our application deals with small samples, new critical 
values are tabulated. From Monte Carlo simulations it appears that the success 
rate of our method is satisfactory, even in cases where the multivariate time 
series model is highly overparameterized. An application to the Japanese data 
in Engle et al. (1993) yields new insights in the univariate properties of these 
series, i.e., the consumption and income series may not be seasonally integrated, 
and hence a seasonal cointegration model may not be adequately representing 
the bivariate series. 

An often applied transformation for nonstationary seasonal time series is the 
double filter, i.e., a seasonal and a first-order differencing filter. Such a filter is 
appropriate in case the annual time series are integrated of order 2 and certain 
restrictions on the cointegration relations between the first-order transformed 
annual series are valid. Further, an extension to, e.g., monthly time series is in 
principle relatively straightforward. The expressions in Beaulieu and Miron 
(1993) and Franses (1991) where the HEGY method is applied to the monthly 
case, can then be used. Similarly, an extension to, e.g., the bivariate case is easily 
made. However, as with all methods for testing for cointegration, the inclusion 
of more variables has a deteriorating effect on the empirical performance. 
Therefore, the VQ approach in the present paper may be most suitable as a tool 
for univariate data analysis, and serve as a starting-point for building periodic 
cointegration models. 

Appendix 

Critical values of the Johansen cointegration tests 

This appendix contains the critical values of the Johansen cointegration tests 
for sample sizes 25 and 50. These quantiles are based on 10,000 replications, and 
the test statistics are computed from the original formulas in Johansen and 
Juselius (1990). For each sample size, the tables correspond to the tables 
numbered as A.2 and A.3 in Johansen and Juselius (1990). See also that paper for 
more details. 
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Table A.1 
Sample size is 25; the data-generating process contains no trend; and the constant term p is 
unrestricted 

Dim 50% 80% 

(A) Maximal eigenualue 

1 2.43 4.93 
2 7.86 11.38 
3 13.80 18.16 
4 20.36 25.56 

90% 95% 97.5% 

6.70 8.29 9.91 
13.70 15.75 17.88 
20.90 23.26 25.66 
28.56 31.66 34.47 

99% Mean Var 

12.09 3.06 7.36 
20.51 8.54 14.76 
28.57 14.46 22.80 
,37.61 21.07 32.97 

(B) Trace 

1 2.43 4.93 6.70 8.29 9.91 12.09 3.06 7.36 
2 9.78 13.99 16.56 18.90 21.26 23.70 10.45 20.64 
3 21.79 27.69 31.22 34.37 37.44 40.98 22.54 42.57 
4 39.32 47.10 51.59 55.92 59.60 64.33 40.09 77.08 

Table A.2 
Sample size is 25; the data-generating process contains no trend; and the constant term p is restricted 

by P = G, 

Dim 50% 80% 

(A) Maximal eigenualue 

1 3.55 6.01 
2 8.82 12.15 
3 14.56 18.89 
4 21.01 26.15 

90% 95% 97.5% 

7.72 9.35 10.97 
14.40 16.51 18.36 
21.56 23.90 26.21 
29.26 32.18 34.74 

99% Mean Var 

12.09 4.14 7.08 
20.56 9.36 14.33 
29.44 15.24 22.84 
38.12 21.69 32.79 

(B) Trace 

1 3.55 6.01 7.72 9.35 10.97 12.90 4.14 7.08 
2 11.95 16.09 18.63 20.96 22.78 25.71 12.55 20.8 1 
3 25.01 31.01 34.44 37.85 40.56 44.60 25.74 44.16 
4 43.40 51.38 55.78 59.98 63.51 67.74 44.20 78.19 

Table A.3 
Sample size is 50; the data-generating process contains no trend; and the constant term p is 
unrestricted 

Dim 50% 80% 90% 95% 97.5% 99% Mean Var 

(A) Maximal eigenualue 

1 2.44 4.89 
2 7.71 11.09 
3 13.34 17.44 
4 19.00 23.78 

6.40 8.09 9.54 11.39 3.02 6.73 
13.15 15.18 16.98 19.18 8.30 13.42 
19.94 22.29 24.3 1 26.98 13.92 20.61 
26.63 29.15 31.93 35.20 19.64 28.05 

(B) Trace 

1 2.44 4.89 
2 9.51 13.57 
3 21.07 26.78 
4 36.86 44.10 

6.40 8.09 9.54 11.39 3.02 6.73 
16.06 18.25 20.13 22.81 10.18 19.02 
30.07 32.94 35.59 39.10 21.75 38.87 
48.25 51.98 55.88 59.94 37.59 65.89 
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Table A.4 

Sample size is 50; the data-generating process contains no trend; and the constant term p is restricted 

by /’ = $0 

Dim 50% 80% 900/o 950/o 97.5% 99% Mean Var 

I 3.49 5.9 1 7.59 9.22 10.93 13.06 4.10 7.05 

2 8.58 12.05 14.05 15.99 17.92 20.60 9.19 13.94 

3 13.99 18.01 20.57 23.01 25.24 27.95 14.59 20.88 
4 19.63 24.44 27.23 29.79 32.47 35.33 20.32 27.78 

(B) Trace 

I 3.49 5.91 1.59 9.22 IO.93 13.06 4.10 7.05 

2 11.74 15.79 18.25 20.6 1 22.85 25.49 12.32 20.40 
3 24.16 29.91 33.08 36.33 39.28 45.58 24.79 40.81 

4 40.88 48.44 52.71 56.62 60.00 64.29 41.73 69.24 
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