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SUMMARY

A periodic cointegration model is proposed to describe quarterly observed consumption. This model
allows the cointegrating vectors and the adjustment parameters to vary with the seasons. Its links are
discussed with an often considered standard economic theoretical model for macroeconomic variables like

consumption. A simple empirical model specification strategy is given and applied to Austrian
consumption and income data.

KEY WORDS time series; seasonality, periodic models

1. INTRODUCTION

Error comection models (ECMs) are regularly used to describe sets of macroeconomic time
series variables, which concern for example consumption, unemployment and money demand.
An important motivation for using error correction models is that they have strong links with
economic theoretical models. Furthermore, an error correction model is useful in practical
occasions since it assumes long-run relationships between trending time series variables, i.e. it
assumes cointegration—see Engle and Granger' for a discussion of the links between
cointegration and error correction. Given that many macroeconomic time series like
consumption and income are non-stationary in the sense that they contain a stochastic
trend—see Nelson and Plosser® inter alia—ECMSs provide a useful theoretical and practical
modelling framework.

Many applications of ECMs concemn annually or quarterly observed time series, where the
quarterly observations are usually considered in seasonally adjusted form. Recently, however,
there has been a growing interest in constructing ECMs for quarterly time series in seasonally
unadjusted form. The main reason for this is that there has been a growing consensus that seasonal
fluctuations in quarterly time series are worthwhile to study in their own right, and that such
fluctuations may convey information on the behaviour of economic agents—see Hylleberg® and
Miron.* One such BCM which allows for an explicit description of seasonal fluctuations is the so-
called seasonal cointegration model proposed by Engle et al.,’ which is applied to describe
consumption and income in Japan. This seasonal error correction model (SECM) extends the usual
ECM by investigating the presence of long-run relationships between stochastic seasonal trends.
As noted by Osbom,® and as we indicate in Section 3 below, a drawback of the SECM is that it
assumes that the cointegration relations vary with the lags, which may be hard to interpret
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meaningfully in terms of economic theory. In this paper, therefore, the authors propose an
alternative ECM for quarterly observed time series on consumption and income—the so-called
periodic error correction model (PECM). This PECM extends the standard ECM by, for example,
allowing the cointegration relations to vary with the seasons—see also Birchenhall et al.” for an
empirical mode] for consumption in the United Kingdom.

The outline of the paper is as follows. In Section 2, the authors sketch a theoretical economic
basis for ECMs that is useful for modelling consumption. In Section 3, the ECM is extended in
order to be able to describe seasonal fluctuations explicitly. Then the authors discuss the
seasonal and the periodic ECMs. In Section 4, the authors we present a step-wise empirical
model specification strategy for a PECM, thereby extending the material of Birchenhall et al’
In Section 5, the authors apply this specification strategy to quarterly consumption and income
data for Austria, 1954.1-1989.4, Finally, in Section 6, the paper is concluded with some
remarks.

2. ERROR CORRECTION MODELS

An economic theoretical motivation for the empirically useful ECM is the so-called linear-
quadratic adjustment cost model (LQAC)—see Nickell® and Gregory.® Applications of LQAC
models can be found in describing labour and money demand—see Sargent,'® Kennan'' and
Dolado et al'>—and in the present paper we assume the usefulness of this theoretical
framework for modelling consumption.

Consider an economic time series x,, t=1, ..., n, with its target value x|, where the target is
related to an (m x 1) vector of forcing explanatory variables z,, or

x=0'z,+u, )

where u, is assumed to be a standard white noise process, i.e. a zero-mean uncorrelated process
with constant variance. In this paper, x, is taken to be consumption and z, to be a univariate
income series. Assume that at time f, economic agents choose the sequence x,,;, with
7=0,1,2, ... in order to minimize the expected intertemporal loss function

L= E| 3 o0 =2 + (i = %iy2)) @
i=0

where E denotes the expectation at time ¢ on the basis of information set I,, p is a certain
discount factor and 6>0 is a weighting factor which reflects adjustment costs. The expression in
(2) corresponds to a linear quadratic adjustment cost (LQAC) model—see Sargent® and
Gregory,® inter alia. The first term in (2) concerns the adjustment to the target of x,, and the
second term reflects the adjustment costs.

To ensure the empirical usefulness of (2), we need to make additional assumptions on the
time series process z. When we assume that these forcing variables can each be described by
random walks, i.e. A;z, =g, for i=1, ..., mand ¢, are each white noise error processes, with A,
defined by Ax,=(1-B*)x,=x,~x,,, it can be shown that the solution of the problem of
minimizing L, in (2) can be represented by the ECM

Axy=alx_ - 0'z_)+ p'Ajz,+ Pt 3

where @, is again a white noise error process—see, for example, Gregory.? In case the Az,

process can be described by some vector autoregressive process (VAR), (3) should be modified
by including additional lags of A,x,and A, z,
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The a parameter in (3) is related to the ¢ parameter in (2) in the sense that if >0 it holds
that ¢ <0. In case the time series x, and z, are both non-stationary, i.e. both time series contain a
stochastic trend, the model in (3) assumes the presence of cointegration between x, and z,—see
Engle and Granger.! The cointegration vector is (1, —8'). The adjustment parameters a ‘correct’
the errors from being out of equilibrium.

3. SEASONAL AND PERIODIC ERROR CORRECTION

In this section, two possible extensions are discussed of the ECM in (3), which can be
considered when describing time series with pronounced and possibly non-constant seasonal
fluctuations. Without loss of generality, we assume that z, is a univariate process for notational
convenience, The first model we discuss is the seasonal error correction model (SECM), which
has been proposed by Engle et al.’* The second is the periodic ECM.

3.1. Seasonal error correction

The SECM is motivated by the fact that quarterly observed time series may have stochastic
trends at the non-seasonal and at the seasonal frequencies. Such a trend at the non-seasonal
frequency, i.e. the familiar unit root 1, can be removed using the first-order differencing filter.
However, for quarterly time series, one may use the A, = (1 — B*) filter—see Box and Jenkins."
This fourth-order differencing filter can be decomposed as

(1-B%=(1-B)(1+B)(1+iB)(1 ~iB)
=(1-B)1+B)(1+B?»
=(1-B)(1+B+B*+B? @

where i is defined by i*= —1, and where (1 + B) corresponds to the seasonal unit root —1 and
(1 + B?) to the seasonal unit roots xi—see Hylleberg et al.'* The seasonal unit roots correspond
to the stochastic trends at seasonal frequencies. Hence, when a time series has seasonal unit
roots, its seasonal fluctuations change over time. Hylleberg et al.'* have proposed a test strategy
for the presence of seasonal unit roots.

In the case of multivariate time series, one may, similar to the non-seasonal cointegration
case, investigate whether sets of time series have seasonal unit roots in common. In the case of
two time series x, and z, that both need to be differenced by A, and which are cointegrated at all
non-seasonal and seasonal frequencies, the SECM can be written as

A, =y, [(1+B+B*+B*x,_,— a;;(1+ B+ B*+B*z,_,]
+y,[(-1+B—B*+B¥)x,_,— ap(—1+B—-B*+B*z_,]
— (Yia+ YuB) (=14 B))x, 5 — a5, (=14 BY)z,,
—a,(-1+B*, ;- auy(-1+BY)z,_;]+¢, (5)
where the notation is similar to that of Engle et al.’ The first cointegration term on the right-

hand side corresponds to cointegration at the non-seasonal frequency, the second and third
terms to cointegration at seasonal frequencies. The adjustment parameters are j,;, with
j=1,2,3,4.

With respect to the target relation (1), the target relations in (5) are written in terms of
transformed x, and z, series. For example, the target relation at the non-seasonal frequency
equals (1 +B+B?+B%)x}=a,(1 + B + B2+ B?)z. In a comment on the work of Engle et al.,’



162 P. H. FRANSES AND T. KLOEK

Osborn® demonstrates that (5) corresponds to

4
Ax= ) a5 = 0z,.) + & ©)
i=1

indicating that the SECM implies four different target relationships associated with different
lags. Indeed, such parameter variation may be hard to interpret in terms of economic
behaviour.

3.2. Periodic error correction

An alternative model for seasonal observed time series that explicitly takes into account the
seasonal variation in such variables is the periodic ECM, a simple version of which is given by

4
A=) s = 67_0) + fAiz + 5, 9

i=1

where a, and 6, are periodically varying adjustment and cointegration parameters, respectively.
There are four different target relations similar to (1) of the form x; = ,z,+ u,, which in this
case for the PECM vary with the season. These time-varying target relationships may originate
from the time-varying availability of certain goods and services or from seasonally varying
utility. Osborn®® has derived a univariate consumption model in which it is assumed that
consumers have a periodically varying utility function. Hence, the mode] in (7) in a sense
amounts to a multivariate extension of the Osborn model.* Furthermore, seasonally varying
adjustment parameters may reflect that adjustment is more easy in some seasons than in others.
Additionally, economic agents may want to correct disequilibrium errors in some seasons more
than in other seasons.

The model in (7) differs from most models for consumption which can be found in the
literature, although it bears several similarities with the model due to Birchenhall et al.” For
example, the model of Davidson et al.® assumes that 6,= 1 and a,= a for all s.

4. AN EMPIRICAL MODEL SPECIFICATION STRATEGY

In this section, an empirical model specification strategy is proposed for the PECM as in (7),
possibly with the inclusion of additional lags of Ax, and A,z,. This strategy follows the well-
known two-step strategy given by Engle and Granger,' with one additional step for testing
whether the various cointegration and adjustment parameter values are indeed periodically
varying.

Consider the two quarterly observed time series x, and z, and the two (4 x 1) vector time
series Xp= (X,r, Xo7, Xar, X4r) and Zr =(Z,r Zyr, Zsr, Z47), where X, and Zg are the
observations on x, and z, in season s and year T, where T=1,..., N. Hence, the X, and Z;
vector time series are observed annually. Periodic error correction as in (7) amounts to four
cointegration relationships between x, and z, i.e. one cointegration relation per quarter. It is
clear that these cointegration relations can be written as X, — 6 Z,, for s=1, 2, 3,4. A first step
in specifying models like (7) is then to regress X on a constant and Z, for each of the
seasons. In case of cointegration between X, and Z, the residuals of one or more of these
four regressions should be stationary time series. Of course, it can occur that only for a few
seasons one obtains stationary residuals. In this case, the PECM can be called a partial PECM.



PERIODIC COINTEGRATION MODEL 163

When all four residual series are stationary, one has a full PECM,

To test for cointegration between X, and Z,, we choose to check the value of the
cointegrating regression Durbin—-Watson (CRDW,) statistic for each season s and the
Dickey-Fuller (DF,) test. The asymptotic distributions of these test statistics can be derived
from the asymptotic distributions in cases where the parameters do not vary over the seasons.
This is caused by the orthogonality of the regressors. For example, the DF, test should have the
same distribution as the well-known cointegration Dickey—Fuller test in the case of two non-
periodic variables—see Engle and Granger.! To verify these asymptotics, especially for small
samples, we display some simulated critical values for these test statistics in Table I for the
cases where z, should be transformed using a A, filter or a A, filter. One can infer that the critical
values for these two cases are similar and that the conjecture on the distributional results seem
valid.

In case one obtains evidence that there is indeed cointegration in each season, a next step is
to check whether the estimated parameters in the cointegration vectors, as well as the
adjustment parameters, do indeed vary over the seasons. In other words, one may want to test
the hypotheses 6,= 6 and a,= a. The test for 6,= 6 can be performed by comparing the
residual sums of squares (RSS) of the four regressions of X, on a constant and Z . with the
RSS of the regression of x, on four seasonal dummies and z,. Assuming cointegration, one can
construct an F test for the hypothesis 0,= 9, which follows a standard F distribution under the
null hypothesis. This result follows from Theorem 3.1 due to Johansen.'” This test will be
denoted as F(8,= ). Furthermore, in the case of cointegration, the F test for the hypothesis
that a,=a also follows a standard F distribution, since x,_,~ 68z, are stationary
variables—see Engle and Granger.' This test will be denoted as F(a,= a). Similar test
statistics can be constructed in case of partial instead of full PECMs, although one should
then make sure that the F tests for restrictions on the @, and «, are only calculated for those
seasons where one obtains cointegrating relationships. Otherwise these F tests do not follow
standard F distributions.

Finally, a test for the weak exogeneity of z, for the cointegration relations can be performed
via testing the significance of the periodic error correction variables in a model for Az, Again,
since these error correction variables are stationary variables, the relevant F test follows a
standard F distribution under the null hypothesis—see Boswijk.!®

Table I. Critical values of several test statistics for a sample of
25 years of quarterly observations, based on 20 000 Monte Carlo
replicationst

Significance level

Test statistic 0-20 0:10 0:05 0.01
A= v{ CRDW, 0-86 1-08 126 1-63

=Vl DF, -270 =313 =350 -4.27
Asey { CRDW, 0-86 1-09 127 1-63
1%=Vi| DF, 271 =312 348 -4.31

tThe CRDW, for s=1,2,3,4, as well as the Dickey—Fuller ¢ test
statistic DF,, for the null hypothesis of no cointegration are found by
estimating the model: X, =4, +60,Z,+ &, for s=1,2,3,4, where
Ax, =g, Az, =v,0or Az, =y, and where £,, v,~N(0,1).
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5. CONSUMPTION AND INCOME IN AUSTRIA 1954.1 TO 1989.4

To illustrate the steps of empirically specifying a periodic cointegration model for consumption
and income, we consider two time series for Austria. The series are real private consumption
and real disposable income for the period 1954.1 to 1989.4, which we use after taking natural
logarithms, In 1964, the Austrian measurement system has been changed. Therefore, we ignore
the observations for the period 1964.1 to 1965.1 by including five dummy variables in all
forthcoming regressions, The estimation results for the periodic cointegration parameters &, and
the related test outcomes are displayed in Table II. The values of the CRDW, and the DF,
statistics indicate that the hypothesis of no cointegration can be rejected for three of the four
quarters, and that the evidence for cointegration in quarter 1 is weak, though not extremely
weak. Since the power of cointegration tests is usually low, especially for small samples, we
assume the presence of cointegration in all four seasons.

The evidence in Table IT suggests that the parameter values of 8, can be different from 1 as
well as from each other. The F (6, = 0) test yields a value of 12.289, which is significant at the
1% level. However, the F test for the restriction 6, = 68, = 8, obtains an insignificant value of
1.232. In sum, we restrict the periodic error correction term to ecm, = x, — 8z, — 0,z,.

An adequate pericdic cointegration model as in (7) is found after a short search in which a
general model is estimated, tested, and simplified. The model passes diagnostic checks for the
presence of residual autocorrelation of order 1 and 4, ARCH of order 1 and 4, and normality.
The simplified model for A.x, includes A.x,_,, A;Ax,_4, A4z, four error correction variables
ecm,_, for each of the seasons and four seasonal intercept terms corresponding to the error
correction terms. The values of the t statistics for the four a, adjustment parameters are
-2.955, —4.382, ~5-824 and —4-452 for the four quarters, respectively. Compared with the
standard normal distribution, these ¢ ratios suggest significant error correction in all four
seasons. The F(a,= a) test gives a value of 2.205, which is not significant at the 5% level.

Table II. Testing for cointegration per quarter
between consumption x, and income z, in
Austria for the sample 1954~1989 (N =36)

Quarter 8, CRDW, DF,

1 0-944 0-623 -2-387
(0-012)

2 0:923 0-946 -3.433%
(0-010)

3 1.007 1-353;  -4.144%
{0-008)

4 0-933 1-396%  —4-185%
(0:010)

+ Significant at a 10% level.

+Significant at a 5% level.

Note. The 8, refers to the estimated parameter for
Z of the regression of X, on 1 and Z,; per quarter
s. Estimated standard errors are given in parentheses
and should be treated with care since 8, is a
superconsistent estimator-—see Engle and Granger.!
The CRDW, is the cointegrating regression
Durbin—Watson statistic, and the DF, refers to the
Dickey—Fuller t ratio. The critical values of these
statistics are displayed in Table 1.
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Imposing the a,= a restriction, the final PECM for Austrian consumption is

Agx,=0-114D,,+0-107D,,~0-053D;,+ 0-156D,,+ 0-374A,z,
0-014)  (0-013) (0:009)  (0-019)  (0-071)
+0-213A,%,_, ~0-164 A,A,x,_, ~ 0.493[x — 0.933z - 0.074D,z],_, (8)
(0-067) (0-053) (0-062) (0-006) (0-013)

where D, is a seasonal dummy variable for season s, s=1, 2,3, 4. Model (8) is estimated for
144 observations, and the estimated standard errors are given in parentheses. Diagnostic test
statistics indicate that this model cannot be rejected. Chow forecast tests, one-step-ahead
forecast tests, CUSUM tests as well as the standard Chow split estimation tests do not indicate
any severe misspecification.

Finally, we test for weak exogeneity of income for the parameters in the error correction part
of (8). It appears that A,z, can be described by a first-order autoregressive model. Adding the
error correction variables for each of the seasons yields an insignificant F statistic of 0-655.
Hence, for this empirical example, we do not seem to need full system estimation methods like
that in, for example, Johansen'’

6. CONCLUDING REMARKS

In this paper, a periodic cointegration model has been proposed for quarterly consumption and
income. This model allows that each quarter shows its own equilibrium relation between these
variables, and that being out of equilibrium has distinct effects on future consumption. Hence
this model may be rationalized using economic arguments such as that consumers have
seasonally varying utility functions and adjustment costs within the theoretical framework of a
linear quadratic adjustment cost model. An empirical specification strategy is discussed and
applied to Austrian data on quarterly consumption and income. It appears that the proposed
model gives a satisfactory description of the relations between these variables for Austria, and
that the third quarter target relations for consumption relative to income is different from that in
other quarters.

Extensions of the proposed model are the inclusion of deterministic trends, as well as more
than two variables, into the periodically varying cointegration relations. Promising routes to test
for cointegration seem to be given by extending the Boswijk'® or Johansen methods'’, The
effects of seasonal adjustment on estimating and testing for periodic cointegration, as well as on
forecasting in cases where a periodic model is the most appropriate, are also worthwhile
investigating. Finally, a topic for future research is to develop simple test procedures to select
between seasonal and periodic cointegration models.
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