

A genome-wide association study identifies a susceptibility locus for refractive errors and myopia at 15q14

Abbas M. Solouki^{1,2#}, Virginie J.M. Verhoeven^{1,2#}, Cornelia M. van Duijn², Annemieke J.M.H. Verkerk³, M. Kamran Ikram^{1,2,4}, Pirro G. Hysi⁵, Dominiek D.G. Despriet^{1,2}, Leonieke M. van Koolwijk^{1,6}, Lintje Ho^{1,2}, Wishal D. Ramdas^{1,2}, Monika Czudowska^{1,2}, Robert W.A.M. Kuijpers¹, Najaf Amin², Maksim Struchalin², Yurii S. Aulchenko², Gabriel van Rij¹, Frans C.C. Riemsdag⁷, Terri L. Young⁸, David A. Mackey⁹, Timothy D. Spector⁵, Theo G.M.F. Gorgels¹⁰, Jacqueline J.M. Willemse-Assink¹¹, Aaron Isaacs², Rogier Kramer¹², Sigrid M.A. Swagemakers^{3,13,14}, Arthur A.B. Bergen^{10,15,16}, Andy A.L.J. van Oosterhout^{2,17}, Ben A. Oostra¹⁷, Fernando Rivadeneira^{2,18}, André G. Uitterlinden^{2,18}, Albert Hofman², Paulus T.V.M. de Jong^{2,10}, Christopher J. Hammond⁵, Johannes R. Vingerling^{1,2}, Caroline C.W. Klaver^{1,2}

¹Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands

²Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands

³Department of Bioinformatics, Erasmus Medical Center, Rotterdam, the Netherlands

⁴Department of Neurology, Erasmus Medical Center, Rotterdam, the Netherlands

⁵Department of Twin Research and Genetic Epidemiology, King's College London School of Medicine, London, United Kingdom

⁶The Rotterdam Eye Hospital, Rotterdam, the Netherlands

⁷Bartiméus, Institute for the Visually Impaired, Zeist, the Netherlands

⁸Center for Human Genetics, Duke University, Durham, North Carolina, United States of America

⁹Lions Eye Institute, University of Western Australia, Centre for Ophthalmology and Visual Science, Perth, Australia

¹⁰Department of Clinical and Molecular Ophthalmogenetics, Netherlands Institute of Neurosciences (NIN), An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands

¹¹Department of Ophthalmology, Amphia Hospital, Breda, the Netherlands

¹²Department of Ophthalmology, Fransiscus Hospital, Roosendaal, the Netherlands

¹³Department of Genetics, Erasmus Medical Center, Rotterdam, the Netherlands

¹⁴The Cancer Genomics Center, the Netherlands

¹⁵Department of Clinical Genetics, Academic Medical Center, Amsterdam, the Netherlands

¹⁶Department of Ophthalmology, Academic Medical Center, Amsterdam, the Netherlands

¹⁷Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands

¹⁸Department of Internal Medicine and Clinical Chemistry, Erasmus Medical Center,

Rotterdam, the Netherlands

[#]These authors contributed equally to this work.

Correspondence should be addressed to: Dr. C.C.W. Klaver (C.C.W.K.), Dept. of Ophthalmology, Erasmus Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, Telephone: (+31) 6-51934491; Fax: (+31) 10-7033692; E-mail: c.c.w.klaver@erasmusmc.nl

45 **Refractive errors are the most common ocular disorders worldwide, and may lead to**
46 **blindness. Although this trait is highly heritable, identification of susceptibility genes has**
47 **been challenging. We conducted a genome-wide association study testing single**
48 **nucleotide polymorphisms for association with refractive error in 5,328 unrelated**
49 **individuals of a Dutch population-based study, and replicated findings in four**
50 **independent cohorts (10,280 persons). We identified a significant association at**
51 **chromosome 15q14 with $P=2.21\times 10^{-14}$ for rs634990. The odds ratio of myopia versus**
52 **hyperopia for the minor allele (MAF 0.47) was 1.41 (95% CI 1.16-1.70) for**
53 **heterozygous, and 1.83 (95% CI 1.42-2.36) for homozygous subjects. The associated**
54 **region lies in the vicinity of genes which are expressed in the retina, *GJD2* and *ACTC1*,**
55 **and appears to harbor regulatory elements which may influence transcription of these**
56 **genes. Our data suggest that common variants at 15q14 influence susceptibility for**
57 **refractive errors in the general population.**

58

59 Refractive errors are by far the most common cause of visual impairment in humans¹⁻⁵. They
60 result from aberrant coordinated effects of the ocular biometric components, most notably of
61 axial length. Elongation of the eye axis leads to myopia (nearsightedness), while a shortened
62 axis causes hyperopia (farsightedness). Refractive errors often cause alterations in the
63 anatomical structure of the eye, increasing the risk of complications⁶. Myopia may lead to
64 ocular morbidity such as glaucoma and retinal detachment, and high myopia in particular can
65 cause posterior staphyloma and macular degeneration⁷⁻¹¹. Treatment options for myopia are
66 limited; it is the fifth most common cause of impaired vision, and the seventh most common
67 cause of legal blindness worldwide^{10,11}.

68 The etiology of refractive errors and myopia is complex and largely unknown. The
69 current notion is that eye growth is triggered by a visually evoked signaling cascade, which

70 begins in the retina, traverses the choroid, and subsequently mediates scleral remodeling.
71 Established risk factors are education, reading, outdoor exposure, and familial
72 predisposition¹¹⁻¹⁴. Familial aggregation studies quantified a strong genetic basis; the
73 estimated sibling recurrence risk (λ_s) varied between 1.5-3.0 for low myopia- and between
74 4.9-19.8 for high myopia, and heritability estimates (h^2) ranged from 0.60-0.90¹⁵. Segregation
75 analyses suggested the involvement of multiple genes rather than a single major gene
76 effect^{11,13,15}. In an attempt to identify causal genes, previous mapping studies mainly focussed
77 on highly myopic probands with multiple affected relatives, and thereby identified at least 20
78 putative genetic loci¹¹. Replication of these results has been limited, and proposed loci were
79 shown to have little to no effect in unselected populations. Genome-wide mapping has not
80 been conducted in refractive error studies of the general population. Hence, the genetic basis
81 of common refractive errors and myopia remains to be elucidated.

82 We performed a genome-wide association study (GWAS) in the population-based
83 Rotterdam Study (RS-I, $n=5,328$), and investigated refractive error as a quantitative trait.
84 Study design and baseline characteristics are provided in the **Online Methods** and
85 **Supplementary Table 1**. The mean spherical equivalent in this older population of European
86 descent was +0.86 (standard deviation (SD) 2.45) dioptres. Refractive errors occurred in 52%
87 ($n=2790$) of the participants, ranging from -19 to +10 diopters (D).

88 We genotyped the entire sample using the Illumina HumanHap 550k and 610Q arrays
89 (**Online Methods**). Genotypes for more than 2.5 million autosomal single nucleotide
90 polymorphisms (SNPs) were imputed with reference to the HapMap Phase II CEU build 36.
91 Comparison of the observed and expected distributions (Q-Q plot, **Supplementary Figure 1**)
92 showed modest inflation of the test statistics ($\lambda_{GC}=1.054$ for RS-1). Using an additive model,
93 we identified a novel genome-wide significant ($P=1.76 \times 10^{-8}$) locus on chromosome 15q14
94 (**Table 1, Figure 1**). Subsequently, we investigated 31 SNPs spread across four loci on

95 chromosome 15q14, 14q24, 1q41, and 10p12.3 reaching $P<10^{-6}$ (**Supplementary Table 2**)
96 for further investigation in four independent replication cohorts, i.e., RS-II ($n=2008$;
97 $\lambda_{GC}=1.012$), RS-III ($n=1970$; $\lambda_{GC}=1.012$), Erasmus Rucphen Family Study (ERF, $n=2032$;
98 $\lambda_{GC}=1.037$) from the Netherlands; and a twin study from the United Kingdom (TwinsUK;
99 $n=4270$; $\lambda_{GC}=1.04$). The designs of RS-II and RS-III were population-based; those of ERF and
100 TwinsUK family-based. Cohorts were not selected on a disease phenotype. All studies
101 consisted predominantly of individuals of European ancestry, and all used similar protocols to
102 evaluate refractive error (**Online Methods, Supplementary Table 2**).

103 At validation, meta-analysis confirmed a significant association between refractive
104 errors and locus 15q14 (**Table 1**). Frequencies of the risk alleles at this region were similar
105 across the studies. The P -values were nominally significant for the 14 top SNPs in RS-II, RS-
106 III, and TwinsUK, and the direction of the effect (regression coefficient beta) of the minor
107 alleles was consistent. The strongest signal in the meta-analysis was observed for rs634990
108 ($P=2.21\times 10^{-14}$; **Table 1**), and this SNP accounted for 0.5% of the variance in spherical
109 equivalent.

110 To determine the impact of this locus on the risk of clinically relevant outcomes, we
111 compared subjects with myopia to those with hyperopia in a logistic regression analysis. We
112 found strong evidence that the C allele of rs634990 carried a higher risk of myopia (**Figure**
113 **2**). The odds ratio (OR) of mild or severe myopia versus mild or severe hyperopia was 1.41
114 (95% Confidence Interval (CI) 1.16-1.70) for heterozygous individuals, and 1.83 (95% CI
115 1.42-2.36) for homozygous persons.

116 The 15q14 region of highly significant SNPs (**Figure 3**) lies in an intergenic region in
117 the vicinity of the genes *GJD2* (39 kb from rs634990 at 3' end), *ACTC1* (74 kb at 3'end), and
118 *GOLGA8B* (180 kb at 5'end). We investigated a potential function for these genes in eye
119 growth development by examining gene expression levels in the retina of postmortem human

120 eyes (**Supplementary Table 3**), and observed a moderate to high expression for *GJD2* and
121 *ACTC1*, and a much lower expression for *GOLGA8B*. *GOLGA8B* (Golgi autoantigen golgin-
122 67) encodes a 67 kDa protein, belongs to a family of Golgi auto-antigens, and is localized at
123 the cytoplasmic surface of the Golgi complex¹⁶. A specific function of this gene in the retina
124 has not been reported. *ACTC1* (cardiac muscle alpha actin 1) encodes a 42 kDa smooth
125 muscle actin. The functional role of *ACTC1* in the eye is currently unclear, but actins which
126 are similar, such as α -SMA, have been shown to be increased in developing myopic eyes¹⁷. α -
127 SMA influences the number of contractile myofibroblasts in the sclera, and contributes to
128 extracellular matrix remodelling. As these are key factors occurring in eye enlargement, it is
129 intriguing to know whether *ACTC1* has these characteristics as well.

130 The functional properties of *GJD2* make this gene an interesting candidate to explain
131 our findings. *GJD2* (gap junction protein delta 2) encodes the 36 kDa connexin36 (CX36),
132 which is a neuron-specific protein belonging to a multi-gene family of integral membrane
133 proteins¹⁸. CX36 forms gap junction channels between adjacent membranes of neuronal cells,
134 is present in photoreceptors, amacrine, and bipolar cells, and plays a critical role in the
135 transmission process of the retinal electric circuitry by enabling intercellular transport of
136 small molecules and ions¹⁸⁻²¹. Further exploration of *GJD2* using Ingenuity analysis (**Online**
137 **Methods, Supplementary Figure 2**) alluded to a role in eye growth regulation as well as lens
138 fiber maturation in knock-out animals^{22,23}. To identify possible causal variants in this gene,
139 we performed direct sequencing of all exons and intron-exon boundaries of *GJD2* in 47
140 subjects with either high myopia, high hypermetropia, or emmetropia. We found neither new
141 mutations nor frequency differences of variants between groups (**Supplementary Table 4**),
142 and conclude that linkage disequilibrium with common functional variants in *GJD2* is
143 unlikely to explain the observed association.

144 The next step was to assess whether the intergenic region itself can have functional
145 consequences. We evaluated the expression of SNPs of our associated region in
146 lymphoblastoid cell lines. At least two of our most associated SNPs significantly altered
147 expression, providing evidence that elements of our locus are transcribed and may alter cell
148 function (**Supplementary Table 5**). Subsequently, we searched for regulatory elements^{24,25} in
149 the entire 53 kb locus of highly significantly correlated SNPs using UCSC Genome Browser,
150 and found the predicted presence of seven DNase I hypersensitive sites, six enhancers based
151 on experimentally validated H3 chromatin signatures in Hela and K562 cells^{24,25}, 20 peaks of
152 sequence conservation in alignments of multiple species of placental mammals, and one
153 insulator site (**Supplementary Figure 3**)²⁵. Enhancers are known to facilitate transcription of
154 distal genes, and its range of activity is confined by insulators²⁵. Remarkably, the greatest
155 peak of our association coincided with an insulator site. Precedents of genomic alterations of
156 insulators causing hereditary disease have been reported^{26,27}. We speculate that variants or
157 mutations in regulatory elements at 15q14 may lead to illegitimate transcription of genes in
158 the area, e.g., of *ACTC1* and *GJD2*.

159 In GWA studies, sources of heterogeneity may cause spurious findings. To address
160 this issue and minimize potential biases, we applied genomic control to the cohort-level test
161 statistics in the population cohorts, and correction using the identity by descent structure for
162 the family-based cohorts. Three studies significantly replicated our initial findings. The fourth
163 study, ERF, showed the same direction of association, albeit non-significant, and revealed
164 similar risks of myopia for carriers of the risk allele (**Figure 2**). Thus, the observed effects of
165 the genetic variants at 15q14 are relatively homogeneous among the 5 studies, enhancing
166 credibility of the findings.

167 In the same issue of this journal, Hysi et al. report the results of a GWAS for refractive
168 errors in the TwinsUK study²⁸. The authors find genome-wide significance (best combined

169 $P=1.85\times10^{-9}$ for rs939658 and $P=2.07\times10^{-9}$ for rs8027411) for a locus on chromosome 15q25,
170 explaining 0.81% of the variance in spherical equivalent. The locus includes the promoter of
171 the *RASGRF1* gene. This gene is known to be functionally involved in eye development²⁹,
172 and, similar to *GJD2*, is involved in synaptic transmission of photoreceptor responses³⁰.
173 TwinsUK and RS-I are two of the largest existing refractive error cohorts with GWAS data.
174 Our studies identified different genome-wide significant tophits in terms of *P*-values, and we
175 both estimated the variation in refractive error explained by these SNPs to be small.
176 Therefore, it is likely that common variants with a substantial disease risk do not play a role in
177 the pathogenesis of this trait. The findings of our studies suggest that the genetic variance of
178 refractive error is mostly determined by multiple variants with a low to moderate penetrance,
179 resembling traits such as height³¹.

180 Nevertheless, the mutual validation of the direction and beta of the effect of variants at
181 15q14 and 15q25 suggests that alterations at these genomic loci lead to refractive error and
182 myopia. To unravel the mechanism, next steps should include comprehensive resequencing of
183 the entire associated regions and flanking genes, validation in cohorts of other ethnicities,
184 functional assays, and study of risk modulation by environmental factors. This may help to
185 launch new pathogenic pathways for refractive errors, and may eventually lead to novel
186 strategies to reduce the sight-threatening consequences of myopia.

187

188

189 **Acknowledgments:** Lameris Ootech Major funding of the work performed in the Netherlands
190 came from the Netherlands Organisation of Scientific Research (NWO); Erasmus Medical
191 Center and Erasmus University, Rotterdam; Netherlands Organization for the Health
192 Research and Development (ZonMw); UitZicht; the Research Institute for Diseases in the
193 Elderly; the Ministry of Education, Culture and Science; the Ministry for Health, Welfare and
194 Sports; the European Commission (DG XII); the Municipality of Rotterdam; the Netherlands
195 Genomics Initiative (NGI)/NWO; Center for Medical Systems Biology of NGI; Lijf en
196 Leven; MD Fonds; Prof. Dr. Henkes Stichting; Oogfonds Nederland; Stichting Nederlands
197 Oogheelkundig Onderzoek; Swart van Essen; Bevordering van Volkskracht; Blindenhulp;
198 Landelijke Stichting voor Blinden en Slechtzienden; Rotterdamse Vereniging voor
199 Blindenbelangen; OOG; Algemene Nederlandse Vereniging ter Voorkoming van Blindheid;
200 the Rotterdam Eye Hospital Research Foundation; Laméris Ootech BV; Topcon Europe BV;
201 Heidelberg Engineering. We thank Ada Hooghart, Corina Brussee, Riet Bernaerts-Biskop,
202 and Patricia van Hilten, Pascal Arp, Mila Jhamai, Michael Moorhouse, Jeannette Vergeer,
203 Marijn Verkerk, Sander Bervoets, and Peter van der Spek for help in execution of the study.

204 TwinsUK acknowledges the Wellcome Trust, the EU MyEuropia Marie Curie
205 Research Training Network, Guide Dogs for the Blind Association, the European
206 Community's Seventh Framework Programme (FP7/2007-2013)/grant agreement HEALTH-
207 F2-2008-201865-GEFOS and (FP7/2007-2013), ENGAGE project grant agreement
208 HEALTH-F4-2007-201413 and the FP-5 GenomEUtwin Project (QLG2-CT-2002-01254);
209 Dept of Health; Biotechnology and Biological Sciences Research Council (G20234); National
210 Institutes of Health National Eye Institute grant RO1EY018246; Center for Inherited Disease
211 Research. TwinsUK thanks Gabriela Surdulescu, Leena Peltonen, Panos Deloukas, Mark
212 Lathrop, David Goldstein, Aarno Palotie, Camilla Day for help in execution of the study and
213 analyses.

214

215 **Figure 1. Genome-wide signal intensity (Manhattan) plot of discovery cohort Rotterdam**

216 **Study-I**

217 The statistical significance values across the 22 autosomes of each SNP association with
218 refractive error (measured as spherical equivalent) are plotted as $-\log_{10} P$ -values. SNPs with
219 minor allele frequency ≥ 0.01 were included. The blue horizontal line indicates P -value of
220 10^{-5} ; the red line P value of 5×10^{-8} .

221

222 **Figure 2. Forest plot of associations for myopia (SE ≤ -3 D) versus hyperopia (SE \geq
223 +3D)**

224 Forest plot of the estimated per-genotype odds ratio for topSNP rs634990 for the 5 studies
225 separately, and for the meta-analysis of all studies. Abbreviations: RS-I, Rotterdam Study I;
226 RS-II, Rotterdam Study II; RS-III, Rotterdam Study III; ERF, Erasmus Rucphen Family
227 Study; TwinsUK, the Twin Cohort recruited in the UK; OR, odds ratio; 95%CI, 95%
228 Confidence Interval.

229

230 **Figure 3. Regional plot at chromosome 15q14**

231 Log₁₀ P -values from the discovery cohort Rotterdam Study-I as a function of genomic
232 position (HapMap release 22 build 36). The P -value for the top SNP is denoted by the large
233 diamond; P -values for other genotyped and imputed SNPs are shown as smaller diamonds. P -
234 values for SNPs of unknown type are presented as squares. Superimposed on the plot are gene
235 locations (green) and recombination rates (blue).

Table 1. Genome-wide association and replication for refractive error at locus 15q14

Abbreviations: RS-I, Rotterdam Study I; RS-II, Rotterdam Study II; RS-III, Rotterdam Study III; ERF, Erasmus Rucphen Family Study; TwinsUK, the Twin Cohort recruited in London; SNP, single nucleotide polymorphism; MA, Minor Allele; MAF, Minor Allele Frequency; Beta, effect size on spherical equivalent in diopters; sem, standard error of the mean.

SNP	Position	Discovery cohort:				Replication				ERF (n = 2032)				TwinsUK (n = 4270)				Meta-analysis (n = 15608)	
		RS-I (n = 5328)				RS-II (n = 2008)				RS-III (n = 1970)		ERF (n = 2032)		TwinsUK (n = 4270)		Meta-analysis (n = 15608)			
		MA	MAF	Beta (sem)	P	Beta (sem)	P	Beta (sem)	P	Beta (sem)	P	Beta (sem)	P	Beta (sem)	P	Beta (sem)	P		
rs688220	32786167	A	0.45	-0.27 (0.05)	1.76x10 ⁻⁸	-0.28 (0.08)	3.80x10 ⁻⁴	-0.22 (0.08)	9.27x10 ⁻³	-0.03 (0.07)	6.24x10 ⁻¹	-0.15 (0.07)	2.60x10 ⁻²	-0.20 (0.0009)	2.79x10 ⁻¹¹				
rs580839	32786121	A	0.44	-0.27 (0.05)	1.89x10 ⁻⁸	-0.27 (0.08)	4.96x10 ⁻⁴	-0.22 (0.08)	7.95x10 ⁻³	-0.03 (0.07)	6.34x10 ⁻¹	-0.16 (0.07)	1.92x10 ⁻²	-0.20 (0.0009)	2.53x10 ⁻¹¹				
rs619788	32782398	A	0.44	-0.27 (0.05)	1.92x10 ⁻⁸	-0.27 (0.08)	4.94x10 ⁻⁴	-0.22 (0.08)	7.72x10 ⁻³	-0.03 (0.07)	6.27x10 ⁻¹	-0.16 (0.07)	1.85x10 ⁻²	-0.20 (0.0009)	2.53x10 ⁻¹¹				
rs4924134	32781857	G	0.44	-0.27 (0.05)	2.04x10 ⁻⁸	-0.27 (0.08)	4.76x10 ⁻⁴	-0.27 (0.08)	6.58x10 ⁻³	-0.06 (0.07)	4.10x10 ⁻¹	-0.16 (0.07)	1.85x10 ⁻²	-0.21 (0.0009)	1.36x10 ⁻¹²				
rs560766	32788234	A	0.44	-0.26 (0.05)	4.27x10 ⁻⁸	-0.28 (0.08)	4.54x10 ⁻⁴	-0.21 (0.08)	1.29x10 ⁻²	-0.03 (0.07)	6.65x10 ⁻¹	-0.18 (0.07)	7.68x10 ⁻³	-0.20 (0.0009)	2.49x10 ⁻¹¹				
rs7176510	32786771	T	0.45	-0.26 (0.05)	5.16x10 ⁻⁸	-0.28 (0.08)	5.10x10 ⁻⁴	-0.22 (0.08)	9.62x10 ⁻³	-0.02 (0.07)	7.51x10 ⁻¹	-0.16 (0.07)	1.76x10 ⁻²	-0.20 (0.0009)	6.25x10 ⁻¹¹				
rs7163001	32777866	A	0.44	-0.26 (0.05)	5.23x10 ⁻⁸	-0.28 (0.08)	4.08x10 ⁻⁴	-0.23 (0.08)	5.89x10 ⁻³	-0.07 (0.07)	3.01x10 ⁻¹	-0.16 (0.07)	1.87x10 ⁻²	-0.21 (0.0009)	5.61x10 ⁻¹²				
rs11073060	32777143	A	0.44	-0.26 (0.05)	5.76x10 ⁻⁸	-0.28 (0.08)	4.05x10 ⁻⁴	-0.23 (0.08)	5.82x10 ⁻³	-0.08 (0.07)	2.72x10 ⁻¹	-0.16 (0.07)	1.91x10 ⁻²	-0.21 (0.0009)	3.65x10 ⁻¹²				
rs8032019	32778782	G	0.40	-0.26 (0.05)	6.09x10 ⁻⁸	-0.28 (0.08)	5.57x10 ⁻⁴	-0.13 (0.09)	1.30x10 ⁻¹	-0.05 (0.07)	5.12x10 ⁻¹	-0.16 (0.07)	1.96x10 ⁻²	-0.19 (0.0009)	3.71x10 ⁻¹⁰				
rs685352	32795627	G	0.44	-0.25 (0.05)	8.80x10 ⁻⁸	-0.25 (0.08)	1.28x10 ⁻³	-0.19 (0.08)	1.98x10 ⁻²	-0.07 (0.07)	3.06x10 ⁻¹	-0.24 (0.07)	4.43x10 ⁻⁴	-0.21 (0.0009)	4.19x10 ⁻¹²				
rs524952	32793178	A	0.47	-0.25 (0.05)	1.03x10 ⁻⁷	-0.30 (0.08)	2.09x10 ⁻⁴	-0.19 (0.08)	2.56x10 ⁻²	-0.06 (0.07)	4.13x10 ⁻¹	-0.32 (0.07)	4.15x10 ⁻⁶	-0.23 (0.0009)	3.18x10 ⁻¹⁴				
rs634990	32793365	C	0.47	-0.25 (0.05)	1.03x10 ⁻⁷	-0.30 (0.08)	2.15x10 ⁻⁴	-0.20 (0.08)	2.03x10 ⁻²	-0.05 (0.07)	5.11x10 ⁻¹	-0.33 (0.07)	2.93x10 ⁻⁶	-0.23 (0.0009)	2.21x10 ⁻¹⁴				
rs11073059	32776966	A	0.44	-0.25 (0.05)	1.20x10 ⁻⁷	-0.28 (0.08)	3.96x10 ⁻⁴	-0.23 (0.08)	5.83x10 ⁻³	-0.08 (0.07)	2.72x10 ⁻¹	-0.16 (0.07)	1.91x10 ⁻²	-0.20 (0.0009)	8.45x10 ⁻¹²				
rs11073058	32776918	T	0.44	-0.25 (0.05)	1.30x10 ⁻⁷	-0.28 (0.08)	3.93x10 ⁻⁴	-0.23 (0.08)	5.84x10 ⁻³	-0.08 (0.07)	2.71x10 ⁻¹	-0.16 (0.07)	1.90x10 ⁻²	-0.20 (0.0009)	8.45x10 ⁻¹²				

Online methods

Participants

Discovery cohort

The Rotterdam Study (**RS-I**) is a prospective population-based cohort study of 7,983 residents aged 55 years and older living in Ommoord, a suburb of Rotterdam, the Netherlands³². The baseline examination for the ophthalmic part took place between 1991 and 1993, and included 6,775 persons. Subjects were excluded if they had undergone bilateral cataract surgery, laser refractive procedures, or other intra-ocular procedures which might alter refraction. Complete data on refractive error and genome-wide SNPs were available on 5,328 persons, of whom 99% were of European ancestry.

Replication cohorts

The first three replication studies originated from the Netherlands. The first cohort was **RS-II**, an independent cohort which included 2,157 new participants aged 55+ years living in Ommoord since 2000³², who had good quality genotyping data. Baseline examinations took place between 2000 and 2002; follow-up examination from 2004 to 2005. The second replication cohort was **RS-III**, a study which included 2,082 new participants aged 45 and older living in Ommoord since 2006, who had good quality genotyping data. Baseline examination took place between 2006 and 2009. The third replication study was the Erasmus Rucphen Family (**ERF**) Study, a family-based study in a genetically isolated population in the southwest of the Netherlands. This study included 2,032 living descendants aged 18 years and older originating from 22 families who had at least six children baptized in the community church between 1880 and 1900, and who had good quality genotyping data. The fourth replication cohort was derived from the United Kingdom (**TwinsUK**). This study is an adult twin registry of over 10,000 healthy volunteer twins based at St Thomas' Hospital in London.

Participants were recruited and phenotyped between 1998 and 2008. A total of 4,270 Caucasian participants had complete data on ocular phenotype and genotype³³. As in the discovery cohort, participants in the four replication cohorts had been excluded if they had undergone bilateral surgery which inhibited evaluation of the original refractive error.

Measurements of refractive error

All studies used a similar protocol for phenotyping. Participants underwent an ophthalmologic examination which included non-dilated automated measurement of refractive error (RS I – III, ERF: Topcon RM-A2000 autorefractor; TwinsUK cohort: Humphrey-670 (Humphrey Instruments, San Leandro, CA) from 1998 to 2002; and then ARM-10 (Takagi Seiko, Japan), best-corrected visual acuity, and keratometry. Spherical equivalent (SE) was calculated from the standard formula: spherical equivalent = sphere + (cylinder/2). In addition to investigating SE as a quantitative trait, we stratified SE into categories of refractive error to evaluate findings from a clinical viewpoint. Myopia was categorized into low (SE -1.5 to -3 diopters (D)), moderate (SE -3 to -6D), and high (SE -6 D or lower). For hyperopia, these categories were mild (SE +1.5 to +3D), moderate (SE +3 to +6D), and high (SE +6D or higher), respectively. We considered SE -1.5 to +1.5D as emmetropia.

Ethics

All measurements in RS-I-III and ERF were conducted after the Medical Ethics Committee of the Erasmus University had approved the study protocols, and all participants had given a written informed consent in accordance with the Declaration of Helsinki. In the TwinsUK study, all twins gave fully informed consent under a protocol reviewed by the St Thomas' Hospital Local Research Ethics Committee.

Genotyping

Discovery cohort

All persons attending the baseline examination in 1990-1993 consented to genotyping, and had DNA extracted from blood leucocytes. Genotyping of autosomal SNPs was performed in persons with high-quality extracted DNA (n=6,449) using the Illumina Infinium II HumanHap550chip v3.0® array according to the manufacturer's protocols. Samples with low call rate (<97.5%, n=209), with excess autosomal heterozygosity (>0.336, n=21), and with sex-mismatch (n=36) were excluded, as were outliers identified by the identity-by-state (IBS) clustering analysis (>3 standard deviations from population mean, n=102 or IBS probabilities >97%, n=129). The total sample of individuals with good quality genotyping data was 5,974.

Replication cohorts

In RS-II, the majority of the 2,516 DNA samples were genotyped using the HumanHap 550 Duo Arrays; 133 (5%) were genotyped using the Human 610 Quad Arrays (Illumina). In the RS-III cohort, all DNA samples were genotyped using the Illumina Infinium II HumanHap550chip v3.0® array. In ERF, DNA was genotyped on four different platforms (Illumina 6k, Illumina 318K, Illumina 370K and Affymetrix 250K). Genotyping for the TwinsUK cohort took place in stages; in the first stage 1,810 individuals were genotyped using Illumina's HumanHap 300k duo chip, at a later stage 2,578 persons were genotyped using Illumina's HumanHap610 Quad.

Imputation

The set of genotyped input SNPs used for imputation in each study was selected based on highest quality GWA data. The callrate was set at >98% in Rotterdam Study I-III; the minor allele frequency at >0.01; and the Hardy-Weinberg $P > 10^{-6}$. We used the Markov Chain

Haplotyping (MaCH) package version 1.0.15 software (Rotterdam; imputed to plus strand of NCBI build 36, HapMap release #22) for the analyses. For each imputed SNP, a reliability of imputation was estimated (as the ratio of the empirically observed dosage variance to the expected binomial dosage variance: O/E ratio).

Statistical analysis

Discovery cohort

Refractive error measured at baseline as a continuous variable was used as outcome in the analysis. We calculated the mean SE for those with measurements on both eyes, and included the SE of only one eye if data from the other eye were missing. Linear regression models with 1-degree of freedom trend test were used to examine the associations between SNPs and SE, adjusted for age and gender. Using these linear regression models, we calculated regression coefficients with corresponding 95% confidence intervals (CIs). Odds ratios (ORs) of myopia and hyperopia were calculated with logistic regression analysis, adjusting for age and gender. GWAS analyses were performed using GRIMMP³⁴.

We used genomic control to obtain optimal and unbiased results, and applied the inverse variance method of each effect size estimated for both autosomal SNPs that were genotyped and imputed in both cohorts. A *P*-value $<5 \times 10^{-8}$ was considered genome-wide significant.

Replication analyses

The topSNPs with *P*-value $<1 \times 10^{-6}$ from the discovery analysis were examined in the replication cohorts RS-II, RS-III, ERF and TwinsUK cohorts using SPSS version 15.0.0 for Windows (SPSS inc., Chicago, IL, USA; 2006), and R statistical package version 2.8.1 for Linux. A meta-analysis was performed on all 5 studies using Metal for Linux.

GRIMP³⁴ was used for the analysis of the population-based replication cohorts. To adjust for family relationships, the GenABEL package³⁵ was used in the ERF study, and Merlin in the TwinsUK Study³⁶. SNPs which deviated significantly from Hardy-Weinberg equilibrium ($P<10^{-6}$), or which had minor allele frequency <0.01 were excluded.

Gene expression data in human eye tissue

Human gene expression data were obtained essentially as described³⁷. In short, postmortem eye bulbs (RPE: 6 donor eyes, choroid: 3 donor eyes, photoreceptors: 3 donor eyes), provided by the Corneabank Amsterdam, were rapidly frozen using liquid N2. Donors were between 63 and 78 years old and had no known history of eye pathology.

Cryosections were cut from the macula, and histology confirmed a normal histological appearance. RPE, photoreceptor and choroidal cells were isolated from macular sections using a Laser Microdissection System (PALM, Bernried, Germany). Total RNA was isolated and the mRNA component was amplified, labelled, and hybridized to a 44k microarray (Agilent Technologies, Amstelveen, The Netherlands)³⁸. At least 3-6 microarrays were performed per tissue. Sample isolation, procedures, and expression microarray analysis were carried out according to obligatory MIAMI guidelines and the relevant expression data are deposited in the GEO database (2010) with accession number GSE20191. As a measure of the level of expression we sorted all the genes represented on the 44k microarray by increasing expression and calculated the corresponding percentiles (**Supplementary Table 3**).

Ingenuity database search

We explored the Ingenuity knowledge database using the keyword ‘eye development’ for all genes involved in ‘function or diseases’. This search provided approximately 100 genes, which formed a new network for eye development. We subsequently added the *GJD2* gene to

the network, and used the Path Explorer tool to search for possible functional relationships between *GDJ2* and these eye development genes in human, mouse, rat, and in vitro models (**Supplementary Figure 2a**). We continued the search using the keyword ‘eye growth’ for all genes involved in ‘function or diseases’, and investigated functional links between molecules using the connect tool and upstream-downstream analysis (**Supplementary Figure 2b**).

References

1. Bourne, R.R., Dineen, B.P., Ali, S.M., Noorul Huq, D.M. & Johnson, G.J. Prevalence of refractive error in Bangladeshi adults: results of the National Blindness and Low Vision Survey of Bangladesh. *Ophthalmology* **111**, 1150-60 (2004).
2. Dandona, R. et al. Population-based assessment of refractive error in India: the Andhra Pradesh eye disease study. *Clin Experiment Ophthalmol* **30**, 84-93 (2002).
3. Kempen, J.H. et al. The prevalence of refractive errors among adults in the United States, Western Europe, and Australia. *Arch Ophthalmol* **122**, 495-505 (2004).
4. Sawada, A. et al. Refractive errors in an elderly Japanese population: the Tajimi study. *Ophthalmology* **115**, 363-370 e3 (2008).
5. Vitale, S., Ellwein, L., Cotch, M.F., Ferris, F.L., 3rd & Sperduto, R. Prevalence of refractive error in the United States, 1999-2004. *Arch Ophthalmol* **126**, 1111-9 (2008).
6. McBrien, N.A. & Gentle, A. Role of the sclera in the development and pathological complications of myopia. *Prog Retin Eye Res* **22**, 307-38 (2003).
7. Saw, S.M. et al. How blinding is pathological myopia? *Br J Ophthalmol* **90**, 525-6 (2006).
8. Curtin, B.J. & Karlin, D.B. Axial length measurements and fundus changes of the myopic eye. *Am J Ophthalmol* **1**, 42-53 (1971).
9. Saw, S.M., Gazzard, G., Shih-Yen, E.C. & Chua, W.H. Myopia and associated pathological complications. *Ophthalmic Physiol Opt* **25**, 381-91 (2005).
10. Tano, Y. et al. Pathologic myopia: where are we now? *Am J Ophthalmol* **134**, 645-60 (2002).
11. Young, T.L. et al. Molecular genetics of human myopia: an update. *Optom Vis Sci* **86**, E8-E22 (2009).
12. Dirani, M. et al. Outdoor activity and myopia in Singapore teenage children. *Br J Ophthalmol* **93**, 997-1000 (2009).
13. McBrien, N.A. et al. Myopia: Recent Advances in Molecular Studies; Prevalence, Progression and Risk Factors; Emmetropization; Therapies; Optical Links; Peripheral Refraction; Sclera and Ocular Growth; Signalling Cascades; and Animal Models. *Optom Vis Sci* (2008).
14. Saw, S.M., Hong, C.Y., Chia, K.S., Stone, R.A. & Tan, D. Nearwork and myopia in young children. *Lancet* **357**, 390 (2001).
15. Young, T.L., Metlapally, R. & Shay, A.E. Complex trait genetics of refractive error. *Arch Ophthalmol* **125**, 38-48 (2007).

16. Eystathioy, T., Jakymiw, A., Fujita, D.J., Fritzler, M.J. & Chan, E.K. Human autoantibodies to a novel Golgi protein golgin-67: high similarity with golgin-95/gm 130 autoantigen. *J Autoimmun* **14**, 179-87 (2000).
17. Jobling, A.I., Gentle, A., Metlapally, R., McGowan, B.J. & McBrien, N.A. Regulation of scleral cell contraction by transforming growth factor-beta and stress: competing roles in myopic eye growth. *J Biol Chem* **284**, 2072-9 (2009).
18. Kihara, A.H. et al. Connexin36, an essential element in the rod pathway, is highly expressed in the essentially rodless retina of *Gallus gallus*. *J Comp Neurol* **512**, 651-63 (2009).
19. Deans, M.R., Volgyi, B., Goodenough, D.A., Bloomfield, S.A. & Paul, D.L. Connexin36 is essential for transmission of rod-mediated visual signals in the mammalian retina. *Neuron* **36**, 703-12 (2002).
20. Striedinger, K. et al. Loss of connexin36 increases retinal cell vulnerability to secondary cell loss. *Eur J Neurosci* **22**, 605-16 (2005).
21. Guldenagel, M. et al. Visual transmission deficits in mice with targeted disruption of the gap junction gene connexin36. *J Neurosci* **21**, 6036-44 (2001).
22. Rong, P. et al. Disruption of Gja8 (a8 connexin) in mice leads to microphthalmia associated with retardation of lens growth and lens fiber maturation. *Development* **129**, 167-174 (2002).
23. White, W. Targeted Ablation of Connexin50 in Mice Results in Microphthalmia and Zonular Pulverulent Cataracts. *The Journal of Cell Biology* **143**, 815-825 (1998).
24. Heintzman, N.D. et al. Histone modifications at human enhancers reflect global cell-type-specific gene expression. *Nature* **459**, 108-12 (2009).
25. Heintzman, N.D. & Ren, B. Finding distal regulatory elements in the human genome. *Curr Opin Genet Dev* **19**, 541-9 (2009).
26. Delaloy, C. et al. Deletion of WNK1 first intron results in misregulation of both isoforms in renal and extrarenal tissues. *Hypertension* **52**, 1149-54 (2008).
27. Mihaly, J. et al. Dissecting the regulatory landscape of the Abd-B gene of the bithorax complex. *Development* **133**, 2983-93 (2006).
28. Hysi, P.G. & Young, T.L. Predisposition to Myopia and Refractive Error is Conferred by a Locus on Chromosome 15q25 Which Contains the RASGRF1 Gene. *Nat Genet* (2010).
29. Jones, C. & Moses, K. Cell-cycle regulation and cell-type specification in the developing *Drosophila* compound eye. *Semin Cell Dev Biol* **15**, 75-81 (2004).

30. Fernandez-Medarde, A. et al. RasGRF1 disruption causes retinal photoreception defects and associated transcriptomic alterations. *J Neurochem* **110**, 641-52 (2009).
31. Lettre, G. et al. Identification of ten loci associated with height highlights new biological pathways in human growth. *Nat Genet* **40**, 584-91 (2008).
32. Hofman, A. et al. The Rotterdam Study: 2010 objectives and design update. *Eur J Epidemiol* (2009).
33. Spector, T.D. & MacGregor, A.J. The St. Thomas' UK Adult Twin Registry. *Twin Res* **5**, 440-3 (2002).
34. Estrada, K. et al. GRIMP: A web- and grid-based tool for high-speed analysis of large-scale genome-wide association using imputed data. *Bioinformatics* (2009).
35. Aulchenko, Y.S., Ripke, S., Isaacs, A. & van Duijn, C.M. GenABEL: an R library for genome-wide association analysis. *Bioinformatics* **23**, 1294-6 (2007).
36. Abecasis, G.R., Cherny, S.S., Cookson, W.O. & Cardon, L.R. Merlin--rapid analysis of dense genetic maps using sparse gene flow trees. *Nat Genet* **30**, 97-101 (2002).
37. Booij J.C. et al. Functional annotation of the human retinal pigment epithelium transcriptome. *BMC Genomics* **20**, 10-164 (2009).
38. Van Soest S.S. et al. Comparison of human retinal pigment epithelium gene expression in macula and periphery highlights potential topographic differences in Bruch's membrane. *Mol Vis* **10**, 13:1608-17 (2007).

URL references

Ingenuity	http://www.ingenuity.com
MaCH	http://www.sph.umich.edu/csg/abecasis/MACH
R	http://www.r-project.org
Metal	http://www.sph.umich.edu/csg/abecasis/metal

Author contribution

A.M.S., V.J.M.V., and C.C.W.K. performed analyses and drafted the manuscript; C.M.van D., B.A.O., F.R., A.G.U., A.H., P.T.V.M.d.J., J.R.V., and C.C.W.K. designed the study and obtained funding; D.D.G.D., L.M.v.K., L.H., W.R., M.C., R.K., J.J.M.W.-A., T.G.M.F.G., F.C.C.R., and S.M.A.S. helped in data collection; A.J.M.H.V., M.K.I., N.A.M.S., Y.S.A., A.A.B.B., A.A.L.J.v.O., and A.I. participated in the genetic analyses; P.G.H., T.L.Y., D.A.M., T.D.S., and C.J.H. were responsible for data from the TwinsUK study; M.K.I., R.W.A.M.K., G.v.R., P.G.H., C.J.H., C.M.v.D., A.J.M.H.V., B.A.O., J.R.V., and A.A.B.B. critically reviewed the manuscript.

Competing financial interests

The authors declare no competing financial interests.