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ABSTRACT

A periodically integrated (PI) time series process assumes that the
stochastic trend can be removed using a seasonally varying differencing
filter. In this paper the multi-step forecast error variances are derived for
a quarterly PI time series when low-order periodic autoregressions
adequately describe the data. The forecast error variances display seasonal
variation, indicating that observations in some seasons can be forecast
more precise than those in others. Two examples illustrate the empirical
relevance of calculating forecast error variances. A by-product of the
analysis 1s an expression for the seasonally varying impact of the
stochastic trend.
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INTRODUCTION

A useful model for seasonal time series that allows seasonal fluctuations to depend on the
stochastic trend is a periodically integrated autoregression (PIAR). A PIAR process describes a
time series by a periodic autoregression (PAR) and it assumes that a seasonally varying
differencing filter is needed to remove the stochastic trend. Hence, periodic integration (PI)
assumes that the appropriate differencing filter for a quarterly time series is (1 — ¢ B), where B
1S the familiar backward shift operator. The ¢ is a seasonally varying parameter, and typical
empirical values of ¢ are close but unequal to unity. Given that not all ¢, are equal to 1, PI
allows multiplicativity between the seasonal fluctuations and the stochastic trend. Clearly, PI
nests the standard integration case since the (1 — ¢ B) filter nests the (1 — B) filter. The first
(empirical) example of a PI process is given in Osborn (1988). Recently, Boswijk and Franses
(1994) discuss several further aspects of PI processes as, for example, model selection and
testing. Additional examples of the empirical adequacy of PI processes for macroeconomic
time series are given in Franses and Paap ( 1994).

In the present paper, we provide forecast error variances for the multi-step out-of-sample
forecasts for the levels of a PI time series. Since the differencing filter for a PI time series
varies with the season, the forecast intervals display seasonal fluctuations. We limit our
analysis to periodic autoregressions of low orders to save space and also since Franses and
Paap (1994) document that these models often emerge 1n practice. In principle, extensions to
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higher-order models are straightforward. Furthermore, the focus here 1s on quarterly time
series, although similar results can readily be obtained for monthly or other seasonal variables.
Finally, strictly speaking, the (1 — ¢ B) filter reflects periodic integration of order I. Our
analysis can routinely be extended to periodic integration of higher orders, but we do not
pursue this here.

The outline of our paper is as follows. In the next section we first discuss some
preliminaries. In the third section we describe the moving average representation which 18
useful to derive the forecast error variances presented in the fourth section. For a PIAR(1)
process we also discuss a by-product of the analysis in this paper, which 1s an expression for
the matrix displaying the seasonally varying impact of stochastic trends. In the fifth section we
calculate empirical forecast error variances for PIAR processes for quarterly non-durable
consumption in the UK and for real quarterly GNP in Germany. In the final section we present
conclusions.

PRELIMINARIES

In this section we discuss some notational issues for PIAR processes. Consider a quarterly
observed time series y,, where ¢ runs from 1 to n, and consider the corresponding skip-sampled
vector series Y, which is the (4 x 1) vector series (Y7, Yar, Yar, Y4r)' where Y denotes the
observation in season s in year T and where T runs from 1 to N = n/4. Furthermore, consider a
standard white-noise process g, which is a zero-mean uncorrelated process with constant
variance o’. Similar to y,, this €, process can be skip-sampled. This results in the (4 x 1) vector
process €,= (&1, €7, E37» E47)', Where &, is a drawing from the white-noise process &, In
season s and in year 7. To calculate empirical forecast intervals, we may assume that & 1s a
Gaussian white-noise process, and hence that &, ~ N(O, o’l,), where I, is the (4 x 4) identity
matrix.

Notation and purpose of analysis

In this paper we assume that y, can, at most, be described by a periodic autoregression of order
2, (PAR(2)), which can be denoted as

yf=ﬂ5+¢l.:yr—l+¢25yr-2+8r (1)

where¢,. and ¢,, are periodically varying parameters. The u; 1s a seasonally varying constant
term which does not necessarily reflect that the underlying mean of the series y, varies with the
season. The 1y, process displays seasonal heteroscedasticity because of the periodic
autoregressive parameters. Sometimes it may be useful to consider additional seasonal
heteroscedasticity by allowing the variance of &, to vary with the seasons. For notational
convenience this modification is not pursued here, but if needed, the expressions below can all
be easily modified accordingly.

The PAR(2) process in equation (1) is a non-stationary process in the sense that its
autocovariance function varies with the seasons. Therefore, a more convenient representation of
equation (1) in order the check for the presence of stochastic trends in y, 1s the so-called vector
of quarters (VQ) representation

—

AGYT=M+A|YT*-|+ET (,))
where u is the (4 x 1) vector stacking the u, (see Tiao and Grupe, 1980, and Osborn, 1991,
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inter alia). For the PAR (2) process in equation (1), the A, and A, are

BER 0 0 ¢ ¢,
=Qiz. i1 0.7 .0 0,0 110V, ¢
An = and A, = 22 3
. ~03  —Pi3 I 0f "5 ? 0200 0 -
0 —¢ -9 1 0 (Tt (0 st

where A, is a full-rank matrix. Note that the expressions for A, and A, in equation (3) indicate
that a VQ model of order 1 as in equation (2) is sufficient to capture the dynamics of a PAR(p)
process with p <4.

In the present paper the focus is on the forecast error variances corresponding to the multi-
step ahead out-of-sample forecasts Y, , » where h=1,2, ... This means that a PAR model like
equation (1) is estimated for n observations. i.e. year NV 1s the final year within the sample, and
that forecasts are generated from year N onwards. We assume that the PAR model is estimated
using all observations until quarter 4 in year N, and hence that the first forecast concerns quarter
I in year N+ 1. If one wants to have a different starting point, one can rearrange the four
elements in the Y; vector accordingly and again make use of the expressions below. In
calculating the forecast error variances we further assume that the parameters ¢, and o’ are
known, i=1,2. On practical occasions, we use ¢ and & to calculate the empirical forecast
error variances. The inclusion of the uncertainty caused by parameter estimation into the
construction of forecast error variances is considered to be outside the scope of this paper.
Finally, to construct the forecast intervals for multi-step ahead forecasts, we use the method
proposed by Box and Jenkins (1970), i.e. we analyse equation (2) in a vector moving average
(VMA) representation.

Periodic integration

Before we turn to the VMA representation in the next section, we first focus on the issue of unit
roots in PAR models like equation (1). The presence of such roots can be investigated by
checking the solutions of the characteristic equation

IAO_AIE‘zo (4)

The process y, is said to be periodically integrated when there is only one unity solution to
equation (4) while all other solutions are outside the unit circle, and when the differencing filter
for y, to remove the single stochastic trend equals (1 — ¢ B), where not all ¢ = 1. Boswijk and
Franses (1994) propose a nested testing strategy for periodic integration in PAR processes.
Using this method, Franses and Paap (1994) document that quarterly observed macroeconomic
time series often have only a single unit root and that the hypothesis ¢ .= ¢ for all s can be
rejected.

Given that periodic integration assumes the presence of three cointegration relations between

the four elements of Y, it can easily be derived that a periodically integrated autoregression of
order 2 (PIAR(2)) can be written as

ye’_—¢j.y."—|=#.‘i+ﬁj(yf—|_¢)5—ny—2)+£! (5)

where ¢, ¢.¢;¢,=1 and where we denote @ oj=iPasy for.ji 18505 1,2 .- - The »8; :and g
parameters are functions of the ¢,, and ¢, parameters in equation (1). The restriction
P @.03¢,=1 can be understood by representing equation (5) in the VQ notation similar to
equation (2), i.e. equation (5) can be written as

Y(B) DY, -V, | 1=u+e; (6)
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with
1 O 0. - =b:B
WY(B) = )
B=10 8 1 0 (7)
0 0 -8, 1
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Note that the backward shift operator B also operates on annual time series. The characteristic
equation (4) for the process in equation (6) is equal to

(I'= 515253543)(1 - P D,9:¢0,2)=0 (9)

Hence, any periodically integrated time series can be differenced to obtain (periodic)
stationarity using the (1 — ¢ B) filter with the restriction that the product of the ¢ . is equal to 1.
Again, note that in this paper we focus on periodic integration of order 1, 1.e. we only consider
the case where ¢, ¢,¢-¢, =1 and we abstain from the case where additionally B.8,8:8,=1.

A PI process assumes that there is one stochastic trend driving the time series, and that this
trend is affecting the intra-year patterns. This can be observed again from the differencing filter
(1 — ¢ .B) which allows for a multiplicative relation between stochastic trend and seasons. This
also implies that seasonal patterns may change over time and that these changes may correspond
to changes in the underlying stochastic trend. In the next section we derive an explicit expression
for this relationship between changing seasonal fluctuations and the stochastic trend.

VECTOR MOVING AVERAGE REPRESENTATIONS

In this section we derive the vector moving average representation for the PIAR (2) process 1n
equation (5) using the VQ expression in equation (6). Given that the PIAR (1) model is nested
within the PIAR (2) model and emerges when setting §,=0 for all s, the expressions for the
PIAR(1) process immediately follow from those for the PIAR (2) process.

PIAR(2)
To derive the forecast error variances, we write equation (6) in a vector moving average
representation. First, we obtain that

(¥(B))'=(1-BB) " (£2+2,B) (10)
with = §,,P;5, and
,Bl ? 8 8 0 BBB: BB B
2! 2 =l 0 0 B\B.B: BB
= B, B By 1 0 A 0 0 0 B, 8,0, HLi
B.BsBs BiBs Bs 1 0 0 0 0
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In case of a PIAR(1) process, Q,=I,, 2,=0, B=0, and hence (¥(B)) '=1,. Using equations
(10) and (11), the process in equation (6) can be written as

QoYr=@Yr_ +u" =(1-BB)" (Qer+Qer_,) (12)
where 4™ = (1 - B) ' (Q,+Q,)u. Premultiplying equation (12) with ®;' results in
Yr=TYr_+u " +®5'(1- BB) " (Qoer+Q,er_,) (13)

where I'=®;'®,, and ™™ = ®;' ™. Given the restriction ®19,03¢0,=1, the expressions for
the I and ®;' matrices are

000 &,
F-[0 00 g9, "y
0 0 0 ¢|¢2¢’3
OETOLCEE VAT
and
] 0 O @
2 Q‘)z 1 0 0
" Sliddetin X 6 43
D3P D3y, Py 1

Note from equation (14) that I is an idempotent matrix, i.e. " =T for m = 52 3=
The process in equation (13) is a vector moving average process for ¥, (VARMA). The MA
part of this model is of infinite order as can be observed from rewriting equation (13) as

@, (1 - BB) T (Quer+Q,6,_,)
=(1+8°+p8°B*+ B°B* + --- )0 Qe+ Q,e,_,)
=¢6IQUET+¢'EIQIET-1 "'ﬁ((DE!QUET-I +®;'Qe7_,)
+ B ( Dy ' Qe + D; Qe _3) + B (D;'Qoer 5+ Dy 'Qer_y)+ -
= 0£T+HIET-I+JBHIET-2+'"+)5E-1H!ET—4£ (16)
with

H(}:(Dﬁlgo
IT, = ®;'Q, + fd;'Q,

where I, 1s a lower triangular matrix because Y r precedes Y., r for i=1,2,3. In the PIAR(1)

case it holds that ITy = ®;"', IT, =0 and z™~ equals ®;'u. When we combine equations (13) and
(16), the PIAR (2) process can be written as

Yr=TY;_  +u™" tloer+ ILier_  + Bller o+ -+ B ' e, (17)

This expression can be easily used to derive the infinite vector moving average representation
for the Y, vector process. In fact, recursively substituting lagged Y in equation (17), while
taking account of the fact that ' =T, yields

T=1
Yr=Yo +Tu™ T+ Eer_, (18)

1=0
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where

= = ([T, +I1,) =TE, + I,
=, = ([T, + I'TI, + AI1,) =T, + fII,

- Ty 1 -
=,=T&,+p'"'Il,

where T is the deterministic trend and Y, is the starting value of the Y process.

PIAR(1)
For illustrative purposes we briefly focus on the PIAR(1) case, i.e. equation (5) with B.=0 for
all 5. After some rewriting it is evident that the expression in equation (18) becomes

-1
Vo= Yo+ AuT +®D'er + A ) &, (19)
| = ]

where A=T®; "' i.e.

L D1 P3Ps 1Py @,
@ 1 P20y DD
A= 20
P> P; R 1 O P, 9P; -
D2P3Ps D3 Ps P4 ]

since @,¢,¢,¢,=1. This matrix A conveys the information on the impact of the stochastic
trend in the four seasons, i.e. the impact of the accumulation of shocks in quarter s denoted by
>.T-1e, r_,. Given the three cointegration relations between the elements of Y, the rank of A 1s
equal to 1 (cf. Engle and Granger, 1987, Johansen, 1991), 1.e.

1

U
A= 5.0, (1 ¢1¢:0s &1Ps 1] (21)

P93P

Furthermore, it can be derived that A* = 2%A for k=1,2,3, ... Note that when all ¢ =1, the A
matrix contains only ones, indicating that the impact of the stochastic trend 1s equal for all
seasons.

From equations (19), (20) and (21) it can be observed, for example, that the impact of the
accumulation of shocks in the four seasons on the observations in quarter 1 1s

| =

T-1 -1 T-1 -1
E17-it P1P:3Ps Z E7-i T P1Pa Z €,7-i + P Z €4,7-1 (22)

I 1= 1 =] [ = |
Similar expressions can be derived for the other three quarters. This indicates that given ¢ ;# ¢
for all s, this impact varies with the seasons. Similarly, this applies to the parameters Au that
correspond to the deterministic trend component. The (1 x 4) vector [1 ¢, ¢;0, ¢, 9, ®,] In
equation (21) conveys information on the relative importance of the accumulation of shocks 1n

season s. If one wants to test whether some trend components have the same impact, the
relevant hypotheses can be formulated in terms of the ¢, parameters. Under the restriction that
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P19.93¢,=1, one can apply x* type test statistics for hypotheses like ¢, ¢, =1 or d,=1 (see
Boswijk and Franses, 1994, for formal proofs).

To conclude this section we note that the presence of three cointegration relations further
implies that taking first-order differences of Y., which is equivalent to taking annual differences

of Y, results in a non-invertible vector MA (1) model. In fact, from equation (19) we can
derive that

Yr—Yr \=Au+®;5'e;+ (A-B; e, (23)
with the characteristic equation for the moving average part

E(2)= @'+ (A-D5')| = (1- ¢,,03042)° = (1 -2)’=0 (24)

so that the vector model MA (1) has three unit roots.

FORECAST ERROR VARIANCES

In this section we derive explicit expressions for the multi-step-ahead forecast error variances in

case the parameters are assumed known. These expressions simply follow from equations (18)
and (19) for the PIAR (2) and PIAR (1) cases, respectively.

PIAR (2)
For the PIAR (2) process, we obtain

F s

YN+I T YN+1 = <0€N+)
YN+.'I = YN+2 = S0€n T S EN L

Fa

Vvon= Ynen=Bobnin + EEnapy + - + E4 1 Ena (25)
Under the assumption that £~ N(0,0°/,), it is obvious that for equation (25)

E(Yy.,—Yyv.,) =0 forall A (26)

Furthermore, since € is independent of &, , for any K+ 0, one easily obtains

/

E(PN+1 =3 Ywi)
E(FN+1 o Y’\F+2)

(27)

The diagonal elements of the matrices in equation (27) can now be used to calculate the forecast
error variances of y. The assumption of Gaussianity of &, allows us to construct the
conventional 90% or 95% forecast intervals.

PIAR (1)
To highlight some specific properties of the forecast error variances from PIAR processes,
consider again the PIAR (1) process, for which we obtain that

Fa

YN+|"' N +1 =¢515w+| (28)
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which, using equation (15), can be decomposed as

-~

}il.NH e YI.N+I = E| N+
YZ.N+] el Y2.N+l = t:‘\f)Z"-::l,.~‘».l'+I h EE.N+I

Ysnar = Yanai = 020386 v + P38 841+ E3 x4
Yd.N+l - Yd,NH = ¢2¢3¢4£I,N+1 i ¢3¢4EZ.N+I T ¢483,N+| + E4,N+l

Obviously, given equation (26) 1t holds that
EY yvoi—Y.ne)=0;fors=1,2,3,4

Furthermore, given equation (27), the squared prediction errors for the forecasts for the
observations in season s in year N + 1 (SPES; ,,,) are the diagonal elements of

Fa

E(Yy, = Yn.)'=0® (@) (29)
1.e. these are

SEE iy

SPE; v, = [¢’?i+ 1]"3"2

SPE; v, = [¢303+ @3+ 1]o*

SPE, y., = [9303¢3+ ¢305+ @i+ 1]0°
Comparing these expressions for the SPEs with those of the non-periodic integrated pro-
cess y,=y,_, + €, which are o°, 20°, 30° and 40°, it is clear that a PI process allows
the forecast intervals to vary with the seasons. This property reflects the seasonal hetero-
scedasticity in the PIAR process that is present within sample. Note that the SPE 1s smallest 1n

the first quarter since all forecasts are generated from quarter 4 in year N onwards. In fact, if
one generates forecasts from quarter i in year N, the SPE in quarter i+ 1 will be smallest,
1 =1,2,3.

Using expressions (25) and (19) it can be derived that the PIAR(1) forecast errors for h years
ahead are

h-1
5 -1
YN+h o YN+h & (I)O ENsn T A ZEN'*'f
|

j:
Given equation (27), one can easily derive that
E(¥y.,— Yn.n) =0 [®;'(®@;') + (h—1)AA'], for h=2,3, ... (30)

and hence that the squared prediction errors SPE,  , ,, based on quarter 4 1n year N, are

SPE, y.= 0%+ (h= 1)[1 + ¢1¢3gi+ ¢ipl+ ¢llo°

SPE, y.,= [#3+ 1107+ (h— 1)[@3+ 1 + plpigh+ ¢ip3)0’

SPE, v, ,= [9303+ @3+ 1107+ (h— )[@ip3+ @5+ 1 + 919193]0°

SPE, v.» = [@39305+ 9303+ ¢i+ 1107+ (h— D[¢393¢4+ 9385+ di+ 1]o”
To conclude this section, we state that for PIAR processes of orders 3 and higher, one can
derive the expressions for the forecast error variances along similar lines as in this section. A

useful strategy is then to write such models as equation (6) since this facilitates the construction
of the expressions for the error varnances.
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TWO APPLICATIONS

In this section the empirical multi-step-ahead forecast error variances are calculated for a
PIAR(1) and a PIAR(2) process. The first model was found useful to describe the log of
quarterly non-durables consumption in the UK for the sample 1955.1-1988.4 (see Boswijk
and Franses, 1994). The PIAR (2) process was found adequate in describing the log of real
GNP in Germany for the sample period 1960.1-1990.4 (see Franses, 1995). In this section,
we re-estimate these models using the same observations except the last 7 years. These 28

quarterly observations will be used to evaluate the out-of-sample forecasting performance of
the models.

PIAR(1): UK consumption non-durables
For the UK non-durables consumption series the parameter estimates for the PIAR (1) process

Y= Mgt ¢syr—l+8rr with ¢l¢2¢3¢4=1 (31)
for the sample 1955.1-1981.4 are
w,=-0.104 i, =0.752 i, = -0.359 fy=—0.309

$,=1001  $,=0933  $,=1.036 $,=1.034

and o equals 0.01158. Formal tests on the equality of the @ , estimates and on the restriction that
all ¢ are equal to unity, result in rejections of the respective hypotheses. Hence, equation (31)
1s found to be more appropriate than a non-periodic I(1) model. Moreover, a range of diagnostic
tests indicates that equation (31) does not seem to be misspecified (see Boswijk and Franses,
1994, for additional details). The estimation results for equation (31) imply that the relevant
elements A and Au in equation (19) are estimated as

l 1.072 1.035 1001 0.021
« 0933 1 0.965 0.934 <~ 10.020
K= dAg =

0.967 1.036 1 0.967 | = o021

1.000 1.071 1.034 1 0.021

The elements of the A, matrix suggest that the accumulation of the second-quarter shocks is
most important since the elements in the second column take the highest values across all four
columns. Furthermore, the total accumulation of shocks has the highest overall impact on the
observations in the first and fourth quarters since these values are highest across rows.

In Figure 1 we display the estimated forecast error variances of the PIAR (1) process for UK
non-durables consumption, measured relative to the first quarter SPE. It can be seen from this
figure that the SPEs of this PIAR(1) process show seasonal patterns since, for example, the
SPE,-SPE, is constant and about 30°. It appears that, relative to quarters 1 and 4, the time series
can be forecast more precise in quarters 2 and 3. In Figure 2 we display the multi-step-ahead
forecasts yf, for 1982.1-1988.4 generated from the PIAR(1) model (31), the time series y,
itself and the 95% forecast confidence intervals. It is clear that all 28 forecasts lie within this
region, although the forecast for 1988.4 is close to the boundary.

PIAR(2): GNP in Germany
The second example is provided by a PIAR(2) process for the log of real GNP in Germany,
which 1s estimated for sample period 1960.1—-1983.4. The estimation results for this Process as
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Figure 1. Forecast error variances relative to first quarter. Quarter s denotes SPE -SPE,, for s=2,3,4.
PIAR (1) for UK non-durables
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Figure 2. Out-of-sample forecasts for a PIAR(1) process. y is the time series, yf is the forecasted time
series and yf+2se indicates the 95% forecast interval.
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in equation (5) with ¢, ¢,¢,¢, =1 are

ﬁl w— 0.004 Hz - 0.137 ﬁ'j — 0.560 ﬁ4 — _0646
$,=1030 $,=0954 $,=0892 ¢ =1.141
B| =0.309 B?. — —0.665 53 — 0.351 54 = _0221

and o =0.0145. Diagnostic test results reveal that the @, cannot be set equal to some ¢, and
hence that they are not all equal to 1. With these parameter estimates one can calculate the
estimated versions of I', IT, IT, IT, and Z; in equation (18).

In Figure 3 the estimated forecast error variances are displayed for this PIAR process of
order 2, relative to the first quarter. Again these intervals show a marked seasonal pattern. It can
be observed that, relative to the other quarters, the forecasts for the first quarter become
increasingly less precise. This reflects the dominance of the stochastic trend and deterministic
trend components in this quarter.

In Figure 4, we display the 28 forecasts and the forecast intervals. It is clear that the out-of-
sample forecasts are well within the 95% boundaries. In fact, it can be calculated that even for a
75% confidence interval, the true observations do not exceed the boundaries. Only when the

confidence interval is based on one standard error does the observation in 1987.1 not lie within
this interval.

Mo o f T o e SRR ORI e o quarter 4

Ng quarter 2

“~

‘« quarter 3
-6

1984 1985 1986 1987 1988 1989 1990 1991 1992

Figure 3. Forecast error variance relative to first quarter. Quarter s denotes SPE ~SPE-;"for §=2,3"4.
PIAR(2) for GNP Germany
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Figure 4. Out of sample forecasts for a PIAR(2) process. y is the time series, yf is the forecasted time
series and yf£2se indicates the 95% forecast interval.

CONCLUSIONS

In this paper the focus has been on constructing forecast error variances for the multi-step-ahead
forecasts for the levels of periodically integrated time series where the autoregressive order 1s
low. Such processes have seasonal heteroscedastic properties within sample, and it 1s shown that
the forecast error variances reflect similar properties. The multi-step-ahead forecasts themselves
are easily generated from the relevant infinite moving average representations of the processes,
and hence the results in this paper can be readily used to construct multi-step-ahead forecast
intervals. A by-product of the analysis in this paper is the matrix that conveys information on
the impact of the stochastic and deterministic trend components. It appears that this impact
varies with the seasons.

An obvious extension of the current analysis is the calculation of the impulse-response
functions for periodically integrated processes. These will give more insight in the seasonally
varying dynamic impact of shocks. It is also interesting to study similarities between two or
more time series with respect to their seasonally varying forecast intervals, 1.e to investigate
whether sets of PIAR time series have common properties.
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