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Abstract. This paper investigates convergence in left-right ideological positions in The Nether- 
lands using cointegration techniques. Our sample consists of 765 weekly observations on those 
positions as well as on the corresponding political party preference. The time series data display 
nonstationary patterns in the sense that their means are not constant over time. Therefore, we 
rely on recently developed techniques in the analysis of multivariate nonstationary time series 
to study convergence. One of our results is that the ideological positions, when considered 
relative to a benchmark, can be described by trend-stationary processes. This means that we 
cannot reject the presence of convergence. Implications of this result are discussed. 

1. Introduction 

For decades political scientists have summarized the ideological orientation 
of voters in Western Europe by their position on a single left-right continuum. 
This position is considered to reflect a general attitude towards the socio- 
economic structure of society: a position on the left indicates a favourable 
attitude towards changes in the direction of greater (social, political, and 
economic) equality, while a location on the right side represents opposition 
to such changes. The terms left and right are thus related to proletarian and 
bourgeois interests and traditionally these interests have been advanced by 
main class parties. In modern industrial societies, however, the relevance of 
class and class conflicts for political parties has declined. In addition, the 
mainline political parties have changed their character and electoral 
strategies: they have become 'catch-all' organizations targeting different soc- 
io-economic groups. Several political scientists have therefore suggested that 
the political expression in terms of left-right dimension is losing its relevance 
for political party preference and that the once considerable left-right distinc- 
tions between different groups of voters are gradually disappearing, resulting 
in an ideological more homogeneous electorate. 

Unfortunately, however, there has as yet been no empirical attempt to 
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test this hypothesis of convergence in ideological positions, an important 
reason being the lack of both longitudinal data and an appropriate method 
to study convergence. This study draws upon 765 independent, national 
surveys spanning 15 years to examine convergence in the ideological left- 
right position of voters for six (combinations of) political parties in the 
Netherlands for the 1978-1992 period. It puts the convergence hypothesis 
onto a firm basis and its shows that for an appropriate analysis of the 
data, we need to rely on recently developed econometric techniques in 
cointegration analysis. 

The paper is organized as follows. Section 2 discusses the data used in this 
study and analyses the univariate time series. Section 3 considers some 
concepts in cointegration analysis, summarizing the results we use in testing 
convergence. Section 4 applies the method we propose to the data on left- 
right position and concluding remarks are offered in Section 5. 

2. The data 

The data are given by NIPO's Omnibus Survey, a weekly survey based on 
personal interviews of a random probability sample of the Dutch voting age 
population living in private households, that has been running with a 
relatively fixed design since the early 1950s. Next to topics that are rotated 
into the weekly surveys periodically and those that are included on an oc- 
casional basis, the surveys also contain a series of standardized questionnaire 
items. These items include, among others, the respondents' current political 
party preference and their left-right ideological position. We have extracted 
these characteristics from all weekly surveys conducted during the past four 
decades. The survey that first measured left-right position was conducted in 
1978. Therefore our analysis is restricted to the 765 weekly surveys - with 
a total of 571,482 valid responses - conducted between week 1 of 1978 and 
week 53 of 1992. A detailed guide to this mammoth data file can be found 
in the documentation of Eisinga and Felling (1992). To measure political 
party preference the surveys asked respondents how they would vote if an 
election were held at the day of the interview. The variable has been col- 
lapsed into six responses, hereafter labelled KRt (minor right-wing religious 
parties), VVDt (liberal-conservative party), CDAt (Christian democratic 
party), D66t (left-liberal party), PvdAt (social democratic party), and KL~ 
(minor left-wing nonreligious parties). Left-right ideological position was 
measured by the respondent's self-placement on a 7-point scale, with end 
points labelled 'left' and 'right', respectively. 
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Univariate analysis 

To examine the convergence hypothesis the mean values for each of the six 
groups of voters on the left-right continuum were obtained. The univariate 
time series with a total of 765 weekly observations are displayed in Figure 
1. The graphs or the data reveal that the univariate time series show nonsta- 
tionary patterns, i.e., there seems to be a trending behaviour. To get a first 
impression of the data, we have calculated the autocorrelations at lags 1, 2, 

3, 4, 5, 10, 15, and 20. The last three autocorrelations should give an 
indication of the pace at which the autocorrelations die out. When the values 
of these correlations die out slowly, we have an indication that the time 
series should be first order differenced, see Box and Jenkins (1970). 

In the first panel of Table 1, we present the estimated autocorrelations for 
each of the six series. It can be observed that the values remain high, even 
at 20 lags. Given the graphs in Figure 1, one may conjecture that this long 
memory in the time series may be caused by a deterministic trend. Hence 
in the second panel of Table 1, we report  the autocorrelations calculated 
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Table I. Autocorrelations for the ideological position series 

Series 

Autocorrelation at lag CDA PvdA V V D  D66 K L  K R  

1 0.821' 0.607* 0.565* 0,117" 0.265* 0.493* 
2 0.821" 0.559* 0.561' 0,140" 0.243* 0.474* 
3 0.812' 0.570* 0.548* 0.135" 0.266* 0.486* 
4 0.805* 0.580* 0.551" 0.044 0.235* 0.476* 
5 0.794* 0.558* 0.541' 0.081' 0,251' 0.453* 

10 0.777* 0.533* 0.547* 0.177' 0.225* 0.476* 
15 0.749* 0.474* 0.502* 0.039 0,221" 0.458* 
20 0.747* 0.456* 0.493* 0.109' 0,168" 0.413" 

After regression on a deterministic trend variable 

i 0.261" 0.348* 0.192" 0.087* 0.121' 0.108" 
2 0.263* 0.273* 0.185' 0.110" 0.096* 0.078* 
3 0.236* 0.300* 0.158" 0.106" 0.124" 0,100" 
4 0.231' 0.316' 0.167' 0.012 0.086* 0.079* 
5 0.193" 0.284* 0.150" -0.053 0.108" 0.044 

10 0.205* 0.260* 0.166" 0.154" 0.087* 0.109' 
15 0,159" 0,176' 0.092* 0.014 0.086* 0.095* 
20 0.206* 0,158' 0.098* 0.089* 0.027 0,018 

* Significant at a 5% level, since the value exceeds twice the standard error. The approximate 
standard error is 1/T 1/2, which is about 0.036 here. 

after each time series has been regressed on a deterministic trend variable 
t = 1 , 2 , . . . ,  T. Again, one can observe that the autocorrelations do not die 
out rapidly, even though their values reduce substantially. In sum, from 
Table 1 it can be concluded that the inclusion of a deterministic trend variable 
does not remove the trending pattern completely. In that case, it seems 
useful to remove the trend using the first order differencing filter At, where 
Ak is defined by AkZ~ = ( 1 -  Bk)Zt = Z t -  Z~-k, where B is the familiar 
backward shift operator, see Box and Jenkins (1970). If exactly the A1 filter 
is needed to remove the nonstationary patterns in a time series, such a 
variable is called I(1), i.e., integrated of order 1. If no filter is needed, a 
variable is I(0). 

We now proceed with the construction of univariate time series models 
for the A1 transformed variables. Before we start analyzing multivariate time 
series processes, it seems useful to study the univariate properties of the 
individual variables. This construction closely follows the standard guidelines 
as proposed in Box and Jenkins (1970), and which consists of four steps: 
identification using the autocorrelation function, estimation, testing, and 
modification. The model class we consider is the autoregressive-moving aver- 
age model [ARMA], which for I(1) time series becomes ARIMA. In Table 
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Variable Model a Estimate of 0 b Diagnostics ~ 

KR, IMA(1,1) -0.931 (0.017) BP(20) = 30.18 JB = 25.91" 
VVD, IMA(1,1) -0.896 (0.018) BP(20) = 12.75 JB = 4.960 
CDA t IMA(1,1) -0.889 (0.017) BP(20) = 22.23 JB = 7.118" 
D6G ARIMA(7,1,1) -0.910 (0.017) BP(20) = 15.11 JB = 23.34* 
PvdAt IMA(1,1) -0.849 (0.203) BP(20) = 14.21 J13 = 1.229 
KL~ IMA(1,1) -0.921 (0.017) BP(20) = 15.89 JB = 14.55" 

* Significant at a 1% level. 
a The models a r e  q~(B)AIZ t = ~ + 0 ~ - 1 ,  where ~b(B) is the autoregressive polynomial. For all 
variables, except D66,, this ~b(B) = 1. For D6G the q~(B) includes terms up to B y. 

b The estimate of the 0 parameter in the MA(1) part of the models. 
~ The Box-Pierce test for residual autocorrelation up to lag 20, distributed as X2(20 - k), where 
k is the number of ARMA terms in the model. The Jarque-Bera test checks for residual 
normality, and is  X2(2) distributed under the null hypothesis. 

2 we display the results of  our  univariate mode l  building strategy. Except  

for  the D6G series, we find that  IMA(1 ,  1) models  like 

Zt  - Z t -1  = et + Oct-1 (1) 

are adequa te  data  descriptions. The  Et process in (1) is assumed to be a zero 

mean  uncorre la tcd  process with constant  variance,  i .e. ,  a s tandard  white 

noise process.  For  the D66t series we obtain  an A R I M A ( 7 , 1 , 1 )  model .  The  

adequacy  of  the various models  is checked using the B o x - P i e r c e  test for  the 

significance of  the first 20 residual autocorre la t ions  and the J a r q u e - B e r a  test 

for  residual normali ty.  All  models  do not  show residual correlat ion,  but  for  

four  of  the six models  normal i ty  can be rejected.  One  may  now proceed  with 

the inclusion of  a few d u m m y  variables to r emove  outlying observat ions,  but  

we do not  pursue  this strategy. The  only conclusion we draw f rom the 

n o n n o r m a l  errors  is that  the est imated s tandard  errors  for the MA(1)  para-  

meters  0, r epor ted  in the four th  co lumn of  Table  2, should be t rea ted  with 

care. 

The  not iceable aspect f rom the univariate results in Table  2 is that  the 

est imates for  0 in (1) are typically close, a l though not  equal  to, - 1 .  These  

high values indicate that  the processes have slowly decaying autocorre la t ion  

pat terns ,  see Wichern  (1973), which was also observed  in Table  1. Fur ther-  

more ,  a l though we do not  formally test for  it, it is unlikely that  the 0 values 

are exactly equal to - 1 .  This is because  the mode l  (1) then would  b e c o m e  

Zt  = e~, i .e. ,  Zt  is a white noise process,  since the (1 - B) filter cancels out  
f rom bo th  sides. Given  the autocorre la t ions  in Table  1, this does no t  seem 

to be the case for the six t ime series at hand.  
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3. Econometric  issues 

This section discusses several econometric issues. We first consider the mea- 
surement of convergence. Next, we focus on the analysis of nonstationary 
time series in a multivariate model, and on the implications of such a model 
for the univariate time series. Finally, we propose a procedure to test for 
the convergence hypothesis which uses tests for trend stationarity in a multi- 
variate time series model. 

C o n v e r g e n c e  

The issue of convergence has stimulated much research in recent years in 
empirical economics. The possible usefulness of the European Monetary 
System, for example, depends on the convergence of financial measures of 
several European countries. Furthermore, the convergence of developing 
and industrialized countries is a topic of ample investigation. 

The obvious question with respect to convergencc is how to measure it. In 
fact, one can typically consider two closely related hypotheses, i.e., whether a 
system has c o n v e r g e d  or whether it is converg ing .  The first hypothesis in- 
volves an investigation of the properties of the system in the beginning and 
at the end of a sample period. These properties can be derived from qualities 
as stability, i.e., whether at the end of the period the system is more stable 
in some sense, or from forecast intervals, i.e., whether forecasts initially are 
less precise and get more precise as time proceeds. In our case, however, it 
seems more interesting to test the hypothesis whether the variables are 
converging. 

If one has two variables, say Xt and Yt, which are measured at time t, 
where t -- 1, 2 , . . . ,  T, one can say that these variables show a converging 
pattern if ( X t / Y t )  ~ 1 when T--+ ~. Taking natural logarithms on both sides, 
this means that l o g ( X t / Y t ) ~ 0 ,  when T--~o~. Assuming that the starting 
values for Art exceed those of Y,, a simple test for converging patterns 
amounts to checking the significance of the deterministic trend term t in the 
model 

r  - ao - a l t ]  = e , ,  (2) 

where the sign of a 1 should be negative. The ao and al  are unknown para- 
meters and ~b(B) is a polynomial in B. Hence, we assume that ~b(B) can be 
written as oh(B) = 1 - chlB - ~ B  2 . . . . .  4)pB p. Finally, we assume that all 
roots of ~b(B) lie outside the unit circle. If one of the roots is on the unit 
circle, then, loosely speaking, the proccss log(XJY~) does not revert to its 
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deterministic trend pattern, and hence there is no convergence. We will get 
back to this issue in the discussion of unit roots and cointegration. 

Of course, this approach can only be applied when the time series X, and 
Y, have not yet converged. In fact, when they have converged, the signifi- 
cance of al  in (2) indicates that eventually the processes will diverge. Hence, 
(2) is only useful when the processes are converging. Furthermore, note that 
(2) implies that the difference between log X, and log Y~ is a trend-stationary 
process since we do not need the A1 filter to remove the nonstationarity in 
log(XJYt). To simplify notation in the sequel of this section, we use x, = 
log X~ and y~ = log Y~. 

Multivariate time series and stationarity 

If one has two time series x, and y, ,  one may consider a multivariate time 
series model for the (2 x 1) vector process (xt,y~)'. For expositional con- 
venience we assume that such a multivariate model is given by the following 
first order vector autoregression [VAR]: 

Yt /33 /343 Ly,-la LE2t3' 

where we assume that El, and E2, are two independent white noise processes, 
which implies that Ett and Ez,-j are uncorrelated for any j = 0, +1, -+2, . . .  
The variances of El, and E2, are denoted by o-~ and o-~. Using the backward 
shift operator B, we rewrite (3) as 

-/33B 1 - /34B]  Yt kEztJ' 

where the (2 x 2) matrix on the left-hand side is labelled as/3(B) below. 
The process (xt, yt) '  is stationary if the solutions to I fl(~)l = 0, i.e., 

] - (/31 + / 3 4 ) r  + (/3 /34 -/32/33)  = = 0, (5) 

lie outside the unit circle. When one solution to (5) is on the unit circle, 
there is one unit root in the multivariate system. A single unit root emerges 
when/31 +/34 -/31/34 +/32/33 = 1, i.e., when/32/33 = (1 -/31)(1 - /34) ,  for 
example. Two unit roots emerge, for example, when/31 = / 3 4  = ] and/32 = 
/33 = 0 since (5) then becomes (1 - ~)2. 
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Implied univariate time series models 

Given the adequacy of a multivariate model like (3), it is possible to derive 
the implied univariate time series models for xt and y~, see Granger and 
Newbold (1986). This can be done by recognizing that (/3(B)) - 1 =  

/3*(B)/I/3(B)[, with /3*(B) denoting the adjoint matrix of /3(B). For  the 
bivariate case in (3) this amounts to 

1 - fliB -/32B ] 
-/33B i - / 3 4 B J  

-1 
= 1/[1 - (/31 +/34)B + (/31/34 --/32/33)B 2] 

1 -/34B /32B ] 
x /33B 1 - / 3 1 B  J" (6) 

Premultiplying (4) on both sides with (6), and then multiplying both sides 

by [/3(B)] gives 

[1-(/31 ~- /3 4)B -I- ( /31/3 4 - /32/33)B2] I xt ] 
yt 

= [1 -/34B /3zB ]1-~I,] 
/33B 1 - /31BJLe2,J '  

(7) 

i.e., ARMA(2,1)  processes for the univariate x, and y, series. When there 
is a single unit root in the multivariate system, these models become 

ARIMA(1,1,1)  because 1 - (/31 +/34)B + (/31/34 -/32/33)B 2 can be written 
as (1 - B)(1 - (/3~ +/34 - 1)B). 

As a simple example, consider the following additional assumptions on 
the error processes: o .2 = 0 .22 = 1, and write the MA(1) processes on the 

right-hand side of (7) as (1 - OzB)q~=~, where z = x or y and 0z, is again a 
standard white noise process. It is not difficult to observe from (7) that the 
first order  autocorrelation of  O~t is -/34/(1 +/32 +/322) and 

-/31/(1 +/3~ +/33:), respectively. When we set, for example, /3~ =/34 = 0.9 
and/32 -- 133 -- 0.1, it is easy to derive that the two models are approximately 
(1 - 0.gB)Alzt = (1 - 0.86B)0zr where z~ is either x~ or y, .  Notice that the 
MA(1) component  of these models bears similarities with the models we 
estimated in the previous section, in the sense that the 0 parameter  is quite 
close to - 1. 
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Cointegration 

A natural procedure after finding univariate I(1) processes, i.e., processes 
that have to be filtered using A1 to obtain stationarity, is to construct models 
for multiple time series where one includes only the first differenced time 
series. For our example in (3), which we can write as 

A,x, ]  = [ / 3 1 - 1  /32 ][xt-1]_l_ FElt] , 
AlytJ /33 /34- 1 Lyt-lJ Le2tJ 

(8) 

this approach amounts to restricting (8) to 

[m[xt]=IElt ] , (9) 
Aly,J LEatJ 

When we denote the (2 x 2) matrix on the right-hand side of (8) as II, the 
model in (9) corresponds to rank(H) = 0. In other words, we have reduced 
the model in (8) via a reduction of the rank of II. When the rank of II is 
equal to 2, there are no possibilities to reduce the rank of II. This implies 
that each of the univariate series xt and Yt is stationary. However, there is 
an intermediate case, i.e., when the rank of II is equal to 1. This is the case 
when, e.g., the restriction f 1 2 f i 3  • (1 -/31)(1 - f f i 4 )  holds since then 

133 134 - 1 L fig /34-  1 

= [/32/33/(/34- 1)J[1,-(1 -/34)//33], 
L f3  

(10) 

i.e., II can be decomposed into a/3' whcre a and/3 are (2 x 1) vectors. Given 
this decomposition in (10), one can rewrite (8) as 

mint : (/32/33/([~4 -- 1))[Xt-1 -- [(1 -- /3#/331Y,-,1 + I~lt (11) 

A l y  t =/33[Xt_l - -  [ ( 1  - -  /34)]/331Yt-11 + ~2t, (12) 

Since the error processes elt and eat, and the A1 transformed time series are 
I(0), the variable xt-1 - [(1 -/34)//33]yt-1 is I(0) as well. This variable is 
called the error correction variable. It is now said that xt and Yt are cointe- 
grated, see Engle and Granger (1987). The cointegrating vector is 
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(1 , - (1- /34) / /33)  and (/32/33/(/34- 1)) and /33 are the adjustment para- 
meters. The model in (11) and (12) is called an error correction model. 

When we consider our numerical example again, where we set/3 a =/34 = 
0.9 and/32 =/33 = 0.1, the models in (11) and (12) become 

Alxt = --O.l(xt-1 --Yt-1) + eat 

A l Y t  = 0 . 1 ( x t - 1  - Y t - 1 )  + E2t. 

Notice that this simple bivariate error correction model yields quite com- 
plicated univariate time series models, like ARIMA(1,1,1), as we have seen 
above. Hence, this example suggests that if one is interested in a multivariate 
analysis anyhow, then one may start with such an analysis straightaway. 

Consider now the (m x 1) vector process Wt and assume that it can be 
described by a VAR process of order k, i.e., 

W t  = F 1 W t - ~  + �9 �9 �9 + F k W t - k  + I x + v t ,  (13) 

where F1 through Fk are (m x m) matrices, /~ is an (m x 1) vector process 
containing intercept terms and vt is an (m x 1) vector white noise process. 
Analogous to (8), this process in (13) can be rewritten as 

A a W t  = I I 1 A a W t - 1  + �9 �9 �9 + 1-Ik-~A1Wt-(k-1) + HWt-k +/z  + vt (14) 

where I I  1 through IIk-a and II are functions of the Fi in (13), i = 1, 2 , . . . ,  k, 
and where 1I contains useful information on possible cointegration properties 
of the elements in Wt. When the rank of II equals m, the Wt process is 
stationary. When the rank of 17 equals 0, the model in (14) reduces to a 
model for first differenced time series only. When 0 < rank II < m, there is 
cointegration between the elements of Wt. In other words, a test procedure 
for the presence of cointegration may be based on an estimate of the rank 
of g in (14). 

The cointegration testing method proposed in Johansen and Juselius (1990) 
considers the rank of 17. For this purpose, one has to rely on reduced rank 
regression. This amounts to the following computations. First, one regresses 
A~Wt and Wt-~,  on a constant and the A1Wt-a through A~Wt-(k-1) variables, 
giving the (m • 1) residual vector processes rot and r,t and their (m x m) 
residual product matrices 
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T 

Sij = (I/T) ~ ritr)t, for i , j  = 0, 1. (15) 
t = l  

The next step is to solve the eigenvalue problem 

] A S 1 1  - SloSoolSol]  = O, (15) 

which gives the eigenvalues Xl > �9 �9 �9 > Am and the corresponding eigenvec- 
tors 9~ through Om. A test for the rank of II amounts to testing whether the 
(1 - A i )  are equal to unity. Hence, the vectors vi that correspond to the 
largest 1i may correspond to the most stationary relationships between the 
elements of W~. 

One of the tests for the rank of II is the so-called trace test statistic 
Tr[rank(II) = r], which is calculated as 

Tr[rank(II) = r I = - T  ~ log(1 - i i ) .  (17) 
i = r + l  

This test statistic is useful to test the hypothesis that the rank of II equals r 
versus r + 1. Hence, rejection implies that the rank may equal r + 1. Critical 
values for this test statistic if the estimated model is (13), with only the 
constant te rm/x  included, are tabulated in Johansen and Juselius (1990). 

Testing for  convergence 

Now we return to our case of interest, where we wish to investigate whether 
the linear combinations of the log transformed time series are trend-station- 
ary processes as in (2), prior to testing whether the relevant dl are signifi- 
cantly negative. A convenient approach to this problem is to construct the 
time series log(KRflD66~), l og (VVDJD 66 t ) ,  log(CDAtlD66~),  
log(PvdA/D66t )  and log(KLflD66~),  which constitute the (5 x 1) vector pro- 
cess V,  Since we wish to allow for trend stationarity of each of these 
processes, we consider an extension of model (14), i.e., 

A1Vt = IIIA1V~_I + �9 �9 �9 + 1-ik_lA1V~_(k_l) + IIVr + 3t + I x + vt (18) 

where 6 is a (5 x 1) vector of parameters and t is the deterministic trend. 
Given that we want to allow for univariate trend-stationary time series, 

and do not want to consider quadratic trend-like patterns (which may appear 
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when the rank of II in (18) equals 0 and 6 4 0), we have to modify the 
aforementioned calculation steps slightly. See Johansen (1994) for further 
details of the role of the constant and trend terms in cointegration analysis. 
A first step~ is that one regresses A~Vt and (Vt-k, t) on a constant and the 
hiVt_l  through A~Vt_(k_x) variables, giving the (5 • 1) residual vector pro- 
cess r*~ and the (6 • 1) vector process r*t and their residual product matrices 

T 

sg (a/r) E * *' = ritrjt , for i , j  = 0, 1, (19) 
t = l  

where S*o is a (5 • 5) matrix, S'1 is a (6 • 5) matrix and S'1 is a (6 • 6) 
matrix. The next step is to solve the eigenvalue problem 

[A'S*1 c*  c * - l c *  I - -  o 1 0 0 0 0  o 0 1 [  = O ,  (20) 

which gives the eigenvalues A* > �9 > A* > 0 and the corresponding eigenvec- 
tors 0* through 9". 

The test for the rank of the II matrix in (18) is equal to that in (17), where 
the zero-valued eigenvalue is not included. The critical values of this trace 
test are tabulated in Johansen (1994, Table V, p. 227). There is convergence 
amongst our six ideological position series if we find that the rank of the II 
matrix is equal to 5, i.e., when our (5 x 1) vector series Vt is a trend- 
stationary process. An analysis of the individual series using the model in 
(2) yields an indication as to which pairs of ideological positions series are 
converging more rapidly ~han others. 

4. Results 

In this section we report the empirical results obtained from estimating a 
VAR(k)  process like (18) for the (5 • 1) vector Vt, and from estimating 
models like (2) to the various linear combinations. 

After some experimentation with lag lengths k for the V A R  process, we 
set k equal to 4. For this model order, the residual autocorrelations in the 
five model equations are not significant, while they get significant when k is 
set equal to 3 or 2. The results of the calculation of the eigenvalues h* and 
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Table 3. A p p l i c a t i o n  of the  J o h a n s e n  co in t eg ra t i on  m e t h o d  to the  (5 x 1) vec tor  p rocess  conta in-  

ing log(KRt/D66t), log(VVDt/D66t), Iog(CDAJD66t), log(PvdA/D66~) and  log(KLt/D66t). The  

e s t ima t ion  m o d e l  is (18). 

E i g e n v a l u e  T r [ r ank ( I I )  = r versus  r + 1] 1% cr i t ical  va lue  

A* = 0.200 r = 4 vs. r = 5: 48.95** 16.45 

A~' = 0.164 r = 3 vs. r = 4: 158.9"* 30.55 

h~' = 0.149 r = 2 vs. r = 3: 281.9"* 48.99 

A* = 0.135 r = 1 vs. r = 2: 418.4"* 70.63 
A~ = 0.062 r = 0 vs. r = 1: 588.4** 95.15 

** Signif icant  at  a 1% level.  The  cr i t ical  va lues  are  g iven  in Tab le  V (p. 227) in J o h a n s e n  

(1994). The  e igenva lues  are  ca lcu la t ed  by  solving (20). The  t race  tes t  s ta t is t ic  is g iven  in (17). 

The  n u m b e r  of effect ive  obse rva t ions  is 761. 

Table 4. E s t i m a t e d  p a r a m e t e r s  for l inear  t r end  in re la t ive  ideo log ica l  pos i t ion  series.  

R e l a t i v e  pos i t ion  Lag  o rde r  a d l ( x  1000) t ra t io  

log( KRt/VVDt) 0 - 0 . 0 6 6  - 8 . 5 8 7 *  

log( KRt/CDA, ) 0 0.011 1.574 

log(KRt/D66~) 11 - O. 197 - 9.404* 

log(KRt/PvdAt) 10 - 0 . 2 9 7  - 1 0 . 9 5 3 "  

log(KRt/KLt) 7 - O. 321 - 10.682 

log(VVDt/CDAt) 1 - 0 . 0 5 5  - 10.435" 

log(VVDt/D66t) 3 - 0 . 1 3 7  - 12.628* 

log(VVDt/PvdAt) 7 - 0 . 2 3 4  - 10.057" 

log(WDt/KLt) 7 - 0 . 2 6 4  - 9 . 0 9 4 *  

log(CDAt/D66t) 3 - O. 192 - 18 .051 '  

log(CDAt/PvdAt) 9 - 0 . 2 8 3  - 11.831" 

l o g ( C D A , / K L , )  7 - 0.317 - 11.663 * 

log(D66~/PvdAt) 10 - 0.107 - 4 . 1 7 6 "  

log(D66~/KL~) 9 - 0 . 1 3 3  - 4 . 9 2 1 '  

log(PvdAJKL~) 6 - 0 . 0 3 1  - 1.454 

* Signif icant  at  a 5% level.  

a The  e s t i m a t e d  m o d e l  is (2), w h e r e  the lag o rde r  is p .  N u m b e r  of effect ive obse rva t ions  in 

each  reg ress ion  is 765 -p .  

the trace test statistics in (17) are displayed in Table 3. Comparing the trace 
test results with the 1% critical values, we conclude that any rank reduction 
of II is rejected, and hence that lit seems a trend-stationary process. Notice 
that when log(Xt/Yt) and log(ZJYt) are I(0) stationary, that log(XJZ~) is 
I(0) too. 

The next step is to examine whether the six ideological positions converge 
by checking whether the estimates for oq in (2) are significantly negative for 
the log(X,/Yt) process when Xt usually exceeds Yr. The relevant estimation 
results for all pairs are displayed in Table 4. It can be observed that for 13 
of the 15 pairs the dl is negative and significant. For two pairs, i.e., 
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(KRt, CDA~) and (PvdA,, KLt), there appears to be no significant conver- 
gence. Table 4 also shows that the larger the differences in level between 
the series, the faster the pairs converge. Series with relatively low and high 
values on the left-right continuum, e.g., the pairs (KR,,KL~) and 
(CDAt, KLt) converge relatively fast, while pairs with more or less corres- 
ponding levels, e.g., (VVD,, CDAt), converge relatively slow. 

5. Concluding remarks 

This paper uses the Johansen and Juselius (1990) cointegration approach to 
show how convergence may be dealt with effectively when variables follow 
linear stochastic processes that are stationary in first differences rather than 
in levels. The method was applied to left-right ideological orientation in the 
Netherlands. It was found that the hypothesis of convergence, at least in the 
variant considered here, cannot be rejected. This finding can be interpreted 
as evidence of the assumption that the relevance of the left-right continuum 
as a generalized way of reference for political and ideological thinking is 
declining. The implication of this finding is that the Dutch voting population 
is gradually becoming more homogeneous in its ideological orientation. This 
process of de-ideologisation may ultimately result in an 'end-of-ideology'. 
Finally, from a pure practical perspective, the fact that simple multivariate 
error correction models can yield complicated univariate time series models 
suggests that researchers interested in a multivariate model may restrict 
themselves to a multivariate analysis. 
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