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Abstract. This paper investigates convergence in left-right ideological positions in The Nether-
lands using cointegration techniques. Our sample consists of 765 weekly observations on those
positions as well as on the corresponding political party preference. The time series data display
nonstationary patterns in the sense that their means are not constant over time. Therefore, we
rely on recently developed techniques in the analysis of multivariate nonstationary time series
to study convergence. One of our results is that the ideological positions, when considered
relative to a benchmark, can be described by trend-stationary processes. This means that we
cannot reject the presence of convergence. Implications of this result are discussed.

1. Introduction

For decades political scientists have summarized the ideological orientation
of voters in Western Europe by their position on a single left-right continuum.
This position is considered to reflect a general attitude towards the socio-
economic structure of society: a position on the left indicates a favourable
attitude towards changes in the direction of greater (social, political, and
economic) equality, while a location on the right side represents opposition
to such changes. The terms left and right are thus related to proletarian and
bourgeois interests and traditionally these interests have been advanced by
main class parties. In modern industrial societies, however, the relevance of
class and class conflicts for political parties has declined. In addition, the
mainline political parties have changed their character and electoral
strategies: they have become ‘catch-all’ organizations targeting different soc-
io-economic groups. Several political scientists have therefore suggested that
the political expression in terms of left-right dimension is losing its relevance
for political party preference and that the once considerable left-right distinc-
tions between different groups of voters are gradually disappearing, resulting
in an ideological more homogeneous electorate.

Unfortunately, however, there has as yet been no empirical attempt to
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test this hypothesis of convergence in ideological positions, an important
reason being the lack of both longitudinal data and an appropriate method
to study convergence. This study draws upon 765 independent, national
surveys spanning 15 years to examine convergence in the ideological left-
right position of voters for six (combinations of) political parties in the
Netherlands for the 1978-1992 period. It puts the convergence hypothesis
onto a firm basis and its shows that for an appropriate analysis of the
data, we need to rely on recently developed econometric techniques in
cointegration analysis.

The paper is organized as follows. Section 2 discusses the data used in this
study and analyses the univariate time series. Section 3 considers some
concepts in cointegration analysis, summarizing the results we use in testing
convergence. Section 4 applies the method we propose to the data on left-
right position and concluding remarks are offered in Section 5.

2. The data

The data are given by NIPO’s Omnibus Survey, a weekly survey based on
personal interviews of a random probability sample of the Dutch voting age
population living in private households, that has been running with a
relatively fixed design since the early 1950s. Next to topics that are rotated
into the weekly surveys periodically and those that are included on an oc-
casional basis, the surveys also contain a series of standardized questionnaire
items. These items include, among others, the respondents’ current political
party preference and their left-right ideological position. We have extracted
these characteristics from all weekly surveys conducted during the past four
decades. The survey that first measured left-right position was conducted in
1978. Therefore our analysis is restricted to the 765 weekly surveys — with
a total of 571,482 valid responses — conducted between week 1 of 1978 and
week 53 of 1992, A detailed guide to this mammoth data file can be found
in the documentation of Eisinga and Felling (1992). To measure political
party preference the surveys asked respondents how they would vote if an
election were held at the day of the interview. The variable has been col-
lapsed into six responses, hereafter labelled KR, (minor right-wing religious
parties), VVD, (liberal-conservative party), CDA, (Christian democratic
party), D66, (left-liberal party), PvdA, (social democratic party), and KL,
(minor left-wing nonreligious parties). Left-right ideological position was
measured by the respondent’s self-placement on a 7-point scale, with end
points labelled ‘left’ and ‘right’, respectively.
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Univariate analysis

To examine the convergence hypothesis the mean values for each of the six
groups of voters on the left-right continuum were obtained. The univariate
time series with a total of 765 weekly observations are displayed in Figure
1. The graphs or the data reveal that the univariate time series show nonsta-
tionary patterns, i.e., there seems to be a trending behaviour. To get a first
impression of the data, we have calculated the autocorrelations at lags 1, 2,
3, 4, 5, 10, 15, and 20. The last three autocorrelations should give an
indication of the pace at which the autocorrelations die out. When the values
of these correlations die out slowly, we have an indication that the time
series should be first order differenced, see Box and Jenkins (1970).

In the first panel of Table 1, we present the estimated autocorrelations for
each of the six series. It can be observed that the values remain high, even
at 20 lags. Given the graphs in Figure 1, one may conjecture that this long
memory in the time series may be caused by a deterministic trend. Hence
in the second panel of Table 1, we report the autocorrelations calculated
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Table 1. Autocorrelations for the ideological position series

Series
Autocorrelation at lag CDA PvdA VVD D66 KL KR
1 0.821* 0.607* 0.565% 0.117*  0.265% 0.493*
2 0.821* 0.559* 0.561* 0.140*  0.243* 0.474*
3 0.812* 0.570* 0.548* 0.135%  0.266* 0.486*
4 0.805* 0.580* 0.551* 0.044  0.235% 0.476*
5 0.794* 0.558* 0.541* 0.081*% 0.251* 0.453*
10 0.777* 0.533* 0.547* 0.177%  0.225* 0.476*
15 0.749* 0.474* 0.502* 0.039  0.221* 0.458*
20 0.747* 0.456*% 0.493* 0.109*  0.168* 0.413*

After regression on a deterministic trend variable

1 0.261* 0.348* 0.192% 0.087* 0.121% 0.108*
2 0.263* 0.273* 0.185* 0.110*  0.096* 0.078*
3 0.236* 0.300* 0.158% 0.106%  0.124* 0.100*
4 0.231* 0.316* 0.167* 0.012  0.086* 0.079*
5 0.193* 0.284* 0.150% -0.053  0.108* 0.044
10 0.205* 0.260* 0.166* 0.154*  0.087* 0.109*
15 0.159* 0.176* 0.092* 0.014  0.086* 0.095*
20 0.206* 0.158* 0.098* 0.089*  0.027 0.018

* Significant at a 5% level, since the value exceeds twice the standard error. The approximate
standard error is /72, which is about 0.036 here.

after each time series has been regressed on a deterministic trend variable
t=1,2,...,T. Again, one can observe that the autocorrelations do not die
out rapidly, even though their values reduce substantially. In sum, from
Table 1 it can be concluded that the inclusion of a deterministic trend variable
does not remove the trending pattern completely. In that case, it seems
useful to remove the trend using the first order differencing filter A, where
Ay is defined by A Z,=(1 - BYZ,=Z,~ Z,_, where B is the familiar
backward shift operator, see Box and Jenkins (1970). If exactly the A, filter
is needed to remove the nonstationary patterns in a time series, such a
variable is called (1), i.e., integrated of order 1. If no filter is needed, a
variable is 1(0).

We now proceed with the construction of univariate time series models
for the A; transformed variables. Before we start analyzing multivariate time
series processes, it seems useful to study the univariate properties of the
individual variables. This construction closely follows the standard guidelines
as proposed in Box and Jenkins (1970), and which consists of four steps:
identification using the autocorrelation function, estimation, testing, and
modification. The model class we consider is the autoregressive-moving aver-
age model [ARMA], which for I(1) time series becomes ARIMA., In Table
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Table 2. Adequate univariate models for the ideological position series

Variable Mode!® Estimate of 6° Diagnostics®

KR, IMA(L,1) ~0.931 (0.017) BP(20) =30.18 JB = 25.91%
VVD, IMA(L,1) ~0.896 (0.018) BP(20) = 12.75 JB = 4.960

CDA, IMA(1,1) —0.889 (0.017) BP(20) =22.23 JB =7.118*
D66, ARIMA(7,1,1) ~0.910 (0.017) BP(20) = 15.11 JB =23.34*
PvdA, IMA(L,1) ~0.849 (0.203) BP(20) = 14.21 J13 = 1.229
KL, IMA(1,1) —0.921 (0.017) BP(20) = 15.89 JB = 14.55*

349

* Significant at a 1% level.

? The models are ¢(B)A1Z, = ¢ + 0€_,, where ¢(B) is the autoregressive polynomial. For all
variables, except D66,, this ¢(B) = 1. For D66, the $(B) includes.terms up to B’.

® The estimate of the § parameter in the MA(1) part of the models.

¢ The Box~Pierce test for residual autocorrelation up to lag 20, distributed as x*(20 — k), where
k is the number of ARMA terms in the model. The Jarque—Bera test checks for residual
normality, and is x*(2) distributed under the null hypothesis.

2 we display the results of our univariate model building strategy. Except
for the D66, series, we find that IMA(1, 1) models like

Zi—Zi1=¢€+ 0e 4 (1)

are adequate data descriptions. The ¢, process in (1) is assumed to be a zero
mean uncorrelated process with constant variance, i.e., a standard white
noise process. For the D66, series we obtain an ARIMA(7,1,1) model. The
adequacy of the various models is checked using the Box-Pierce test for the
significance of the first 20 residual autocorrelations and the Jarque-Bera test
for residual normality. All models do not show residual correlation, but for
four of the six models normality can be rejected. One may now proceed with
the inclusion of a few dummy variables to remove outlying observations, but
we do not pursue this strategy. The only conclusion we draw from the
nonnormal errors is that the estimated standard errors for the MA(1) para-
meters 6, reported in the fourth column of Table 2, should be treated with
care.

The noticeable aspect from the univariate results in Table 2 is that the
estimates for € in (1) are typically close, although not equal to, —1. These
high values indicate that the processes have slowly decaying autocorrelation
patterns, see Wichern (1973), which was also observed in Table 1. Further-
more, although we do not formally test for it, it is unlikely that the 6 values
are exactly equal to —1. This is because the model (1) then would become
Z,= ¢, i.e., Z;is a white noise process, since the (1 — B) filter cancels out
from both sides. Given the autocorrelations in Table 1, this does not seem
to be the case for the six time series at hand.
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3. Econometric issues

This section discusses several econometric issues. We first consider the mea-
surement of convergence. Next, we focus on the analysis of nonstationary
time series in a multivariate model, and on the implications of such a model
for the univariate time series. Finally, we propose a procedure to test for
the convergence hypothesis which uses tests for trend stationarity in a multi-
variate time series model.

Convergence

The issue of convergence has stimulated much research in recent years in
empirical economics. The possible usefulness of the European Monetary
System, for example, depends on the convergence of financial measures of
several European countries. Furthermore, the convergence of developing
and industrialized countries is a topic of ample investigation.

The obvious question with respect to convergencc is how to measure it. In
fact, one can typically consider two closely related hypotheses, i.e., whether a
system has converged or whether it is converging. The first hypothesis in-
volves an investigation of the properties of the system in the beginning and
at the end of a sample period. These properties can be derived from qualities
as stability, i.e., whether at the end of the period the system is more stable
in some sense, or from forecast intervals, i.e., whether forecasts initially are
less precise and get more precise as time proceeds. In our case, however, it
seems more interesting to test the hypothesis whether the variables are

converging.
If one has two variables, say X, and Y;, which are measured at time ¢,
where r=1,2,..., T, one can say that these variables show a converging

pattern if (X,/Y,) — 1 when T -» «, Taking natural logarithms on both sides,
this means that log(X,/Y,}) -0, when T — o, Assuming that the starting
values for X; exceed those of Y,, a simple test for converging patterns
amounts to checking the significance of the deterministic trend term ¢ in the
model

HB)log(X,/Y,) — ap ~ aut] = €, )

where the sign of @; should be negative. The a, and «; are unknown para-
meters and ¢(B) is a polynomial in B. Hence, we assume that ¢(B) can be
written as ¢(B) =1 — ¢ B — ¢.B* — - - - — $,B”. Finally, we assume that all
roots of ¢(B) lie outside the unit circle. If one of the roots is on the unit
circle, then, loosely speaking, the proccss log(X,/Y,) does not revert to its
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deterministic trend pattern, and hence there is no convergence. We will get
back to this issue in the discussion of unit roots and cointegration.

Of course, this approach can only be applied when the time series X, and
Y, have not yet converged. In fact, when they have converged, the signifi-
cance of e; in (2) indicates that eventually the processes will diverge. Hence,
(2) is only useful when the processes are converging. Furthermore, note that
(2) implies that the difference between log X, and log Y, is a trend-stationary
process since we do not need the A, filter to remove the nonstationarity in
log(X,/Y,). To simplify notation in the sequel of this section, we use x, =
log X; and y, = log Y,.

Multivariate time series and stationarity

If one has two time series x, and y,, one may consider a multivariate time
series model for the (2 X 1) vector process (x,,y.)’. For expositional con-
venience we assume that such a multivariate model is given by the following
first order vector autoregression [VAR]:

= 2]+ [] o

where we assume that €, and e, are two independent white noise processes,
which implies that e, and e, are uncorrelated for any j=0, £1, =2, ...
The variances of €, and e, are denoted by o? and o3. Using the backward
shift operator B, we rewrite (3) as

1- BIB _BZB |:xt — [Elt:l
[ -B3B 1—B4B} y,] €l @)

where the (2 X 2) matrix on the left-hand side is labelled as 8(B) below.
The process (x,,y,)’ is stationary if the solutions to | 8(¢)| =0, i.e.,

1= (B1+ Ba)E+ (B1Ba— B2B3)E* =0, (%)

lie outside the unit circle. When one solution to (5) is on the unit circle,
there is one unit root in the multivariate system. A single unit root emerges
when 8, + B4 — B1Bs+ B2B3=1, i.e., when B,8;= (1 — B:1)(1 — By), for
example. Two unit roots emerge, for example, when B; = 8,=1 and B, =
B> = 0 since (5) then becomes (1 — &)
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Implied univariate time series models

Given the adequacy of a multivariate model like (3), it is possible to derive
the implied univariate time series models for x, and y,, see Granger and
Newbold (1986). This can be done by recognizing that (B(B))~'=
B*(B)/|B(B)|, with B*(B) denoting the adjoint matrix of B8(B). For the
bivariate case in (3) this amounts to

-1

[1 Py ] = U[1 = (B1 + Bs)B + (B1B4 — B285)B]

—BsB  1-p.B

% [1 - B4B BB ]

BB 1-pB.B ©

Premultiplying (4) on both sides with (6), and then multiplying both sides
by |B(B)| gives

[1 = (Bi+ BB+ (B1B4— B2B3)B%] [Xt}

t

_ I:l — B4B B:B ][Glt}’ (7)
ﬁ3B 1 - BlB €

i.e., ARMA(2,1) processes for the univariate x, and y, series. When there
is a single unit root in the multivariate system, these models become
ARIMA(1,1,1) because 1 — (81 + B4)B + (8184 — B2B3)B? can be written
as (1 -BY1—-(B:+ Bs—1)B).

As a simple example, consider the following additional assumptions on
the error processes: oi = 03 = 1, and write the MA(1) processes on the
right-hand side of (7) as (1 — 8,B)y,, where z =x or y and s, is again a
standard white noise process. It is not difficult to observe from (7) that the
first order autocorrelation of ¢, is —BJ/(1+Bi+ B3 and
—B./(1 + Bi + B3), respectively. When we set, for example, 8; = B4 = 0.9
and B, = B5 = 0.1, it is easy to derive that the two models are approximately
(1 —0.8B)A;z, = (1 — 0.86B)1,,, where z, is either x, or y,. Notice that the
MA(1) component of these models bears similarities with the models we
estimated in the previous section, in the sense that the @ parameter is quite
close to —1.
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Cointegration

A natural procedure after finding univariate I(1) processes, i.€., processes
that have to be filtered using A, to obtain stationarity, is to construct models
for multiple time series where one includes only the first differenced time
series. For our example in (3), which we can write as

[Alxz} — |:.Bl -1 B2 :||:xh1:| + [elt} (8)
Ay, Bs Ba—1lLy:— €2 ’

this approach amounts to restricting (8) to

L l=L2] ©

When we denote the (2 X 2) matrix on the right-hand side of (8) as II, the
model in (9) corresponds to rank(Il} = 0. In other words, we have reduced
the model in (8) via a reduction of the rank of I[I. When the rank of II is
equal to 2, there are no possibilities to reduce the rank of II. This implies
that each of the univariate series x, and y, is stationary. However, there is
an intermediate case, i.¢., when the rank of IT is equal to 1. This is the case
when, e.g., the restriction 8,85 = (1 — 81)(1 — B4) holds since then

[61—1 B2 }z[ﬁzﬁsf(.&x_l) B2 ]

.33 34 -1 '83 B !
_ [3233/(& - ﬂ[l, (1 - BaYIBs), (10)
B3

i.e., II can be decomposed into a3’ where o and B are (2 X 1) vectors. Given
this decomposition in (10), one can rewrite (8) as

Avx, = (B2B3/(Bs— 1))xe—1 — [(1 — B4)/Bs)y:-1] T €1 (1)

Ay = Balxi—1 — [(1 = Ba)/B3]y 1] + e, (12)

Since the error processes €, and e, and the A, transformed time series are
1(0), the variable x,—; — [(1 — B4)/B3]y.—1 is I(0) as well. This variable is
called the error correction variable. It is now said that x, and y, are cointe-
grated, see Engle and Granger (1987). The cointegrating vector is
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(1, —(1 = B4)/B3) and (B.Bs/(B+—1)) and B; are the adjustment para-
meters. The model in (11) and (12) is called an error correction model.

When we consider our numerical example again, where we set 8, = B, =
0.9 and B, = B3 = 0.1, the models in (11) and (12) become

Ayx, = =0.1(x,—1 — yt—l) + €1y

Alyt = O.l(x,_l - yt——l) + €.

Notice that this simple bivariate error correction model yields quite com-
plicated univariate time series models, like ARIMA(1,1,1), as we have seen
above. Hence, this example suggests that if one is interested in a multivariate
analysis anyhow, then one may start with such an analysis straightaway.

Consider now the (m X 1) vector process W, and assume that it can be
described by a VAR process of order %, i.e.,

Wt = F1Wt_1 + 0+ FkWt—k + M + Vi (13)

where I'; through I'y are (m X m) matrices, p is an (m X 1) vector process
containing intercept terms and v, is an (m X 1) vector white noise process.
Analogous to (8), this process in (13) can be rewritten as

A1Wt = ]--[lAth—l +oe + Hk_lAlwt_(k._l) + HWt_k + M~ + v, (14)

where II; through II,_; and II are functions of the I'; in (13),i=1,2, ...k,
and where II contains useful information on possible cointegration properties
of the elements in W,. When the rank of Il equals m, the W, process is
stationary. When the rank of II equals 0, the model in (14) reduces to a
model for first differenced time series only. When 0 < rank I1 < m, there is
cointegration between the elements of W,. In other words, a test procedure
for the presence of cointegration may be based on an estimate of the rank
of Il in (14).

The cointegration testing method proposed in Johansen and Juselius (1990)
considers the rank of II. For this purpose, one has to rely on reduced rank
regression. This amounts to the following computations. First, one regresses
A;W, and W,_, on a constant and the A;W,_, through A;W,_(x_1) variables,
giving the (m X 1) residual vector processes ro, and ry, and their (m X m)
residual product matrices
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T
Si;=(UT) 2 rirfy,  fori,j=0,1. 15)
§=1

The next step is to solve the eigenvalue problem
|)\511 - 5105501501| =0, (15)

which gives the eigenvalues A; > - - - > A,, and the corresponding eigenvec-
tors ¥, through ¥,,. A test for the rank of II amounts to testing whether the
(1 — A;) are equal to unity. Hence, the vectors v; that correspond to the
largest A; may correspond to the most stationary relationships between the
elements of W,.

One of the tests for the rank of II is the so-called trace test statistic
Tr[rank(IT) = r], which is calculated as

Tr[rank(Il}) =] = ~T § log(1 = A;). 1an

i=r+

This test statistic is useful to test the hypothesis that the rank of II equals r
versus 7 + 1. Hence, rejection implies that the rank may equal » + 1. Critical
values for this test statistic if the estimated model is (13), with only the
constant term p included, are tabulated in Johansen and Juselius (1990).

Testing for convergence

Now we return to our case of interest, where we wish to investigate whether
the linear combinations of the log transformed time series are trend-station-
ary processes as in (2), prior to testing whether the relevant d&; are signifi-
cantly negative. A convenient approach to this problem is to construct the
time  series  log(KR./D66,), 1log(VVD,/D66,), log(CDA,/D66,),
log(PvdA/D66,) and log(KL,/D66,), which constitute the (5 X 1) vector pro-
cess V,. Since we wish to allow for trend stationarity of ecach of these
processes, we consider an extension of model (14), i.e.,

A1V, = HIAlVZ_l + -+ Hk_lAth_(kv]) + HV,_k + 8t + 124 + Vs (18)

where 6 is a (§ X 1) vector of parameters and ¢ is the deterministic trend.
Given that we want to allow for univariate trend-stationary time series,
and do not want to consider quadratic trend-like patterns (which may appear
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when the rank of II in (18) equals 0 and & # 0), we have to modify the
aforementioned calculation steps slightly. See Johansen (1994) for further
details of the role of the constant and trend terms in cointegration analysis.
A first step.is that one regresses AV, and (V,—, t) on a constant and the
AV, through A,V,_(,_1 variables, giving the (5 X 1) residual vector pro-
cess rg and the (6 X 1) vector process r}; and their residual product matrices

T
Sk=UT) 2 rir¥, fori,j=0,1, (19)
=1

where §& is a (5 X 5) matrix, S& is a (6 X 5) matrix and S7; is a (6 X 6)
matrix. The next step is to solve the eigenvalue problem

|A%S% — S5S& "S&] =0, (20)

which gives the eigenvalues A{ > - > A% >0 and the corresponding eigenvec-
tors ¥§ through v¢.

The test for the rank of the IT matrix in (18) is equal to that in (17), where
the zero-valued eigenvalue is not included. The critical values of this trace
test are tabulated in Johansen {1994, Table V, p. 227). There is convergence
amongst our six ideological position series if we find that the rank of the II
matrix is equal to 5, i.e., when our (5 x 1) vector series V, is a trend-
stationary process. An analysis of the individual series using the model in
(2) yields an indication as to which pairs of ideological positions series are
converging more rapidly than others.

4. Results

In this section we report the empirical results obtained from estimating a
VAR(k) process like (18) for the (5 X 1) vector V,, and from estimating
models like (2) to the various linear combinations.

After some experimentation with lag lengths & for the VAR process, we
set k equal to 4. For this model order, the residual autocorrelations in the
five model equations are not significant, while they get significant when k is
set equal to 3 or 2. The results of the calculation of the eigenvalues A and
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Table 3. Application of the Johansen cointegration method to the (5 X 1) vector process contain-
ing log(KR,/D66,), log(VVD/D66,), log(CDA,/D66,), log(PvdA/D66,) and log(KL,/D66,). The
estimation model is (18).

Eigenvalue Tr[rank(II) = r versus r + 1] 1% critical value
AF=10.200 r=4vs. r=25 48.95%* 16.45
A =0.164 r=73vs. r=4: 158.9%* 30.55
A =10.149 r=2vs. r=3:281.9%* 48.99
AF=0.135 r=1vs. r=2: 418.4%* 70.63
AE=0.062 r=0vs. r=1:588.4%* 95.15

** Significant at a 1% level. The critical values are given in Table V (p. 227) in Johansen
(1994). The eigenvalues are calculated by solving (20). The trace test statistic is given in (17).
The number of effective observations is 761.

Table 4. Estimated parameters for linear trend in relative ideological position series.

Relative position Lag order® ;1 (x1000) t ratio
log(KR,/VVD,) 0 —0.066 —8.587*
log(KR./CDA,) 0 0.011 1.574
log(KR,/D66,) 11 -0.197 —9.404*
log(KR,/PvdA,) 10 —0.297 -10.953*
log(KR,/KL,) 7 ~0.321 —10.682
log(VVD,/CDA,) 1 —0.055 —10.435*
log(VVD,/D66,) 3 -0.137 —12.628*
log(VVD,/PvdA,) 7 —0.234 —10.057*
log(VVD,/KL,) 7 ~0.264 —9.094*
log(CDA,/D66,) 3 —-0.192 —18.051*
log(CDA,/PvdA;) 9 —0.283 —11.831*
log(CDA,/KL,) 7 -0.317 —11.663*
log(D66,/PvdA,) 10 ~-0.107 —4.176%
log(D66,/KL,) 9 —-0.133 —4.921*
log(PvdAJKLy,) 6 —0.031 —1.454

* Significant at a 5% level.
? The estimated model is (2), where the lag order is p. Number of effective observations in
each regression is 765-p.

the trace test statistics in (17) are displayed in Table 3. Comparing the trace
test results with the 1% critical values, we conclude that any rank reduction
of II is rejected, and hence that V, seems a trend-stationary process. Notice
that when log(X,/Y,) and log(Z,/Y,) are I(0) stationary, that log(X,/Z,) is
I{0) too.

The next step is to examine whether the six ideological positions converge
by checking whether the estimates for «; in (2) are significantly negative for
the log(X,/Y;) process when X, usually exceeds Y,. The relevant estimation
results for all pairs are displayed in Table 4. It can be observed that for 13
of the 15 pairs the «; is negative and significant. For two pairs, i.e.,
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(KR,, CDA,) and (PvdA,, KL,), there appears to be no significant conver-
gence. Table 4 also shows that the larger the differences in level between
the series, the faster the pairs converge. Series with relatively low and high
values on the left-right continuum, e.g., the pairs (KR,,KL,) and
(CDA,, KL,) converge relatively fast, while pairs with more or less corres-
ponding levels, e.g., (VVD,, CDA,), converge relatively slow.

5. Concluding remarks

This paper uses the Johansen and Juselius (1990) cointegration approach to
show how convergence may be dealt with effectively when variables follow
linear stochastic processes that are stationary in first differences rather than
in levels. The method was applied to left-right ideological orientation in the
Netherlands. It was found that the hypothesis of convergence, at least in the
variant considered here, cannot be rejected. This finding can be interpreted
as evidence of the assumption that the relevance of the left-right continuum
as a generalized way of reference for political and ideological thinking is
declining. The implication of this finding is that the Dutch voting population
is gradually becoming more homogeneous in its ideological orientation. This
process of de-ideologisation may ultimately result in an ‘end-of-ideology’.
Finally, from a pure practical perspective, the fact that simple multivariate
error correction models can yield complicated univariate time series models
suggests that researchers interested in a multivariate model may restrict
themselves to a multivariate analysis.
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