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Abstract 
 

A wide variety of conditional and stochastic variance models has been used to estimate 

latent volatility (or risk). In this paper, we propose a new long memory asymmetric 

volatility model which captures more flexible asymmetric patterns as compared with 

existing models. We extend the new specification to realized volatility by taking account 

of measurement errors, and use the Efficient Importance Sampling technique to estimate 

the model. As an empirical example, we apply the new model to the realized volatility of 

Standard and Poor’s 500 Composite Index to show that the new specification of 

asymmetry significantly improves the goodness of fit, and that the out-of-sample 

forecasts and Value-at-Risk (VaR) thresholds are satisfactory. Overall, the results of the 

out-of-sample forecasts show the adequacy of the new asymmetric and long memory 

volatility model for the period including the global financial crisis.  

 

 

Keywords: Asymmetric volatility, long memory, realized volatility, measurement errors, 

efficient importance sampling. 
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1 Introduction 
 
The accurate specification and modelling of risk are integral to optimal portfolio selection 

and risk management using high frequency and ultra high frequency data. In this context, 

a wide variety of conditional and stochastic variance models has been used to estimate 

latent volatility (or risk) using high frequency data, while the availability of tick data has 

led to alternative models of realized volatility to estimate integrated volatility in analysing 

ultra high frequency data (see McAleer (2005) for a comprehensive review of univariate 

and multivariate, and symmetric and asymmetric, conditional and stochastic volatility 

models, and Asai, McAleer and Yu (2006) for a detailed review of alternative 

specifications and estimation algorithms for multivariate stochastic volatility models).  

 

In the framework of diffusion processes, the daily variance of stock return is expressed as 

an integral of the intraday variance, which is called the integrated variance. If the 

microstructure noise is ignored, we may estimate the integrated variance by the sum of 

squared returns of ultra high frequency data. Such an estimator is called the realized 

variance, which corresponds to an estimate of the integrated variance, namely the true 

daily variance. In this paper, we refer to the square root of the integrated variance and of 

the realized variance as the Integrated Volatility (IV) and Realized Volatility (RV), 

respectively. For a recent extensive review of the RV literature, see McAleer and 

Medeiros (2008), and Bandi and Renò (2008), Todorov (2009) and Shephard and 

Sheppard (2010), among others, for more recent developments regarding the modelling 

and estimation of stochastic volatility using high frequency data. 

 

Recent empirical results from the RV literature show two typical features in volatility, 

namely the asymmetric effect on volatility caused by previous returns, and the long-range 

dependence in volatility. The former issue has been investigated by Bollerslev and Zhou 

(2006), Bollerslev, Litovinova and Tauchen (2006), Bollerslev, Sizova and Tauchen 

(2010), Chen and Ghysels (2008), Martens, van Dijk and de Pooter (2009), and Patton and 

Sheppard (2010), among others. With respect to the latter point, the autoregressive 

fractionally integrated model has been used by Andersen, Bollerslev, Diebold and Labys 

(2001), Koopman, Jungbacker and Hol (2005) and Pong, Shackelton, Taylor and Xu 

(2004), among others, while other studies have used the heterogeneous autoregressive 

model of Corsi (2009) to approximate the hyperbolic decay rates associated with long 

memory models. 
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The purpose of the paper is to propose a new specification of the asymmetric and long 

memory volatility model, which allows flexible patterns in order to capture empirical 

regularities. Based on the general specification, we examine alternative stochastic 

volatility models that have recently been developed and estimated. Some of the 

corresponding SV models are in Harvey and Shephard (1996), Danielsson (1994), and 

Asai and McAleer (2005, 2010), with similar attempts having been considered by 

Bollerslev, Sizova and Tauchen (2010), Martens, van Dijk and de Pooter (2009), and 

Corsi and Renò (2010). Bollerslev, Sizova and Tauchen (2010) develop an equilibrium 

model with a continuous time long memory process, while our paper takes a discrete-time 

approach. Compared with Martens, van Dijk and de Pooter (2009) and Corsi and Renò 

(2010), our model incorporates a more general specification of the asymmetric effect and 

exact long memory process. 

 

Upon estimating RV by using ultra high frequency data, one of the major problems that 

has arisen is that of microstructure noise. Several authors have proposed alternative 

methods for removing the microstructure noise (see, for example, Bandi and Russell 

(2006), Barndorff-Nielsen, Hansen, Lunde and Shephard (2008), Zhang, Mykland and 

Aït-Sahalia (2005), and Hansen, Large and Lunde (2008)). Some methods have provided 

bias-corrected and consistent estimators of the integrated variance, while other methods 

have not. Recently, Asai, McAleer and Medeiros (2009) have shown that, even when a 

bias-corrected and consistent estimator is used, non-negligible measurement errors 

remain in estimating and forecasting IV.  

 

Barndorff-Nielsen and Shephard (2002) considered the decomposition of RV as the sum 

of IV and measurement error, which they call the RV error. In other words, RV is 

considered to be a proxy for IV. With respect to the third of our aims, we propose a new 

asymmetric model for RV by extending the general asymmetric volatility model, with an 

additional term to capture RV errors. It should be noted that introducing a correction for 

measurement error in the RV process renders the true volatility process unobservable. In 

order to estimate the proposed model, we employ the efficient importance sampling (EIS) 

ML method proposed by Liesenfeld and Richard (2003, 2006). The EIS evaluates the 

log-likelihood function of the model, including the latent process, by using simulations, 

such as the Monte Carlo Likelihood (MCL) technique of Durbin and Koopman (1997). 

Compared with the MCL method, the EIS method is applicable to various kinds of latent 

models (see the discussion in Liesenfeld and Richard (2003)).  
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The remainder of the paper is organized as follows. Section 2 develops a general 

long-memory asymmetric volatility model, and examines five kinds of asymmetric SV 

models. By using the structure of asymmetric effects, Section 3 proposes a new model for 

RV based on correcting for RV errors. Section 4 discusses the EIS-ML method, while 

Section 5 presents the empirical results for the RV model using Standard and Poor’s 500 

Composite Index, and evaluates the new specification of asymmetry with respect to 

goodness of fit, out-of-sample forecasts, and Value-at-Risk (VaR) thresholds. Section 6 

gives some concluding remarks.  

 
 
2 Structure of Asymmetric Volatility Models with Long Memory 
 
In this section, we propose a new asymmetric volatility model, and compare it with 

stochastic volatility (SV) models that have recently been developed and estimated. 

 
The return process is given by 

 

  , ~ i.i.d. 0,1t t t t tr m V z z  , 

 

where tm  and tV  are the time-varying mean and volatility processes, respectively, and 

tz  is the standardized disturbance. We assume that the log-volatility follows an 

ARFIMA(p,d,q) process, 

 

      1
1ln 1

d

t tV L L L  
      , (1) 

 

where L is the lag-operator,  L  and  L  are the lag polynomials for the AR and 

MA coefficients, and  1
d

L  is the fractional difference operator. As suggested by 

Nelson (1990, 1991) for conditional volatility models, the innovation term in the volatility 

equation plays an important role in considering asymmetry and leverage effects.  

 

We suggest a generalized error, such that 
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2

1 2 3 3

, ~ 0, ,

0 ,

t t t t t

t t t t t t

E N

z z z I z I z

     

       

 



  

      

 (2) 

 

where 1 , 2  and 3  are parameters, and  0I z    is the indicator function, which 

takes the value of one if 0 z   , and zero otherwise. The first two terms in t
  play 

similar roles as in the EGARCH model. As shown in Harvey and Shephard (1996), the 

negative sign of the coefficient of tz  produces the dynamic relationship between current 

return and future volatility, which is called the ‘leverage’ effect. Generally, a sufficient 

condition for univariate SV models to have a leverage effect is that t  is negatively 

correlated with tz . For our new model, a negative sign for 1  is expected. Hence, 1 tz  

controls the leverage effect in the new model. On the other hand, 2 tz  governs the size 

effect. When 1 3 0   , the term makes the log-volatility increase according to the size 

of the standardized error. 

 

Turning to the last two terms in t
 , they contribute to capturing asymmetric effects with 

greater flexibility. Figure 1 shows the relationship between   and z, and implies that 

negative shocks and large positive shocks increase future volatility via  , but small 

positive shocks decrease volatility. Such a phenomenon has recently been observed in 

Chen and Ghysels (2008) with a semi-parametric method for realized volatility. Recently, 

Patton and Sheppard (2010) also attempt to explain it by considering the sign of jumps on 

the realized volatility measure. 

 

We consider five special cases as follows: 
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Model (i) Equations (3) and (4), with restrictions 1 2 3 0     . 

 

Model (ii) 

 

Equations (5) and (6), with restrictions 1 0   and 2 3 0   . 

 

Model (iii) 

 

Equations (7) and (8), with 3 0   and tz  replaced by t tr m . 

 

Model (iv) 

 

Equations (9) and (10), with  3 0   and 2 tz  replaced by 

2 t tr m  . 

 

Model (v) 

 

Equations (11) and (12), with 3 0  . 

 

 

In order to understand these concepts, it is convenient to consider a simple AR(1) model 

of log-volatility. Setting 0d  ,   1L L   , and   1L   in (13), we have  

 

  1ln 1 lnt t tV V        . (14) 

 

Taking tV  as the latent process for the stochastic volatility, we may find the following 

correspondence. Model (i) is the basic SV model of Taylor (1982), which is symmetric as 

positive and negative shocks to returns have identical effects on future volatility. Model 

(ii) corresponds to the SV model suggested in Harvey and Shephard (1996), and 

re-examined by Yu (2005) (see also Asai and McAleer (2009) for a correction of Yu’s 

(2005) news impact function). Model (iii) was proposed in Danielsson (1994), and was 

estimated in Asai and McAleer (2005). Model (iv) was suggested in Asai and McAleer 

(2005) to capture both leverage and asymmetric effects. Model (v) adapts the EGARCH 

model of Nelson (1991) to the SV literature, and was suggested and estimated in Asai and 

McAleer (2010). In contrast to Model (iii), Model (v) uses the standardized returns in 

forecasting future volatility, and can capture various types of asymmetric and leverage 

effects. 

 

As compared with existing models, the new model in (15) and (16) allows log-volatility to 
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follow the ARFIMA process, and incorporates more flexible asymmetric effects. 

 

 

3 Model Specification for Realized Volatility 
 

Let )( tp  be the logarithmic price of a given asset at time    0 1   on day t 

 1,2,t   . We assume that )( tp  follows a continuous time diffusion process, 

 

 ( ) ( ) ( ) ( )dp t t d t dW t            , (17) 

 

where  t   is the drift component, ( )t   is the instantaneous volatility (or 

standard deviation), and ( )W t   is a standard Brownian motion. Let tr  be the daily 

return, defined as )1()(  tptprt . Conditionally on 

  1

0
( 1), ( 1)t t t




    


       ,  

which is the -algebra (information set) generated by the sample paths of   1t    

and  ( 1)t     0 1  , we have 

 

  1 1 2

0 0
~ ( 1) , ( 1)t tr N t d t d           . 

 

The term 
1 2

0
( 1)t d     is known as the integrated variance, which is a measure of 

the day-t ex post volatility. The integrated variance is typically the object of interest as a 

measure of the true daily volatility. 

 

With respect to the model of the instantaneous volatility, there are several specifications, 

which are called “continuous-time Stochastic Volatility (SV)” models (see Ghysels, 

Harvey and Renault (1996), for example). Hull and White (1987) allow the squared 
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volatility to follow a diffusion process: 

 

 2 2 2d d dB     , (18) 

 

where B is a second Brownian motion, and   and   are parameters. Here, we have 

omitted ( )t   in order to simplify the notation. Hull and White (1987) assume a 

negative correlation between W and B, thereby incorporating leverage effects. The model 

in (19) is closely related to the GARCH diffusion, which is derived as the diffusion limit 

of a sequence of GARCH(1,1) models (see Nelson (1990)).  

 

Wiggins (1987) assumes that the log-volatility follows a Gaussian Ornstein-Uhlenbeck 

(OU) process: 

 

  2 2 2log logd d dB         . (20) 

 

In the specification, we may introduce leverage effects by assuming a negative correlation 

between W and B. The asymmetric SV model of Harvey and Shephard (1996) is 

considered to be an Euler-Maruyama approximation of the continuous-time model (21), 

with negative correlation. Three major extensions of such diffusion-based SV models 

incorporate jumps to volatility process (Eraker, Johannes and Polson (2003)), model 

volatility as a function of a number of factors (Chernov et al. (2003)), and allow the 

log-volatility to follow a long memory process (Comte and Renault (1998)). 

 

If the underlying process of the instantaneous volatility is a continuous-time SV model, 

the resulting integrated variance is still a stochastic process. At this stage, it may be useful 

to distinguish the differences and similarities among the conditional variance, stochastic 

variance, and integrated variance. As shown in Nelson (1990), it is possible to consider 

the diffusion limits of typical conditional variance models, such as the GARCH model 

and the exponential GARCH model of Nelson (1991). Hence, conditional variance 

models are considered to be approximations of continuous-time SV models. Alternative 

approximations are the (discrete-time) SV models of Taylor (1982) and Harvey and 

Shephard (1996), which are obtained by the Euler-Maruyama discretization of the 

continuous-time SV models. Compared with the class of GARCH models, discrete-time 

SV models give better approximations in the sense that the latter can be derived 

straightforwardly from continuous-time SV models. Therefore, the conditional and 
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(discrete-time) stochastic variance can be considered as approximations of the integrated 

variance obtained by continuous-time SV models.  

 

In the literature, there have been numerous extensions of GARCH models, while 

extensions of SV models are still being developed. There are many cases where it is not 

straightforward to consider a continuous-time SV model which corresponds to such an 

extension. For this reason, in the previous section we considered asymmetric 

long-memory models of the integrated volatility directly. 

 

Although the integrated variance is unobservable, it is possible to estimate it using high 

frequency data. Such estimates are called “Realized Volatility (RV)”. Zhang, Mykland 

and Aït-Sahalia (2005) and Barndorff-Nielsen, Hansen, Lunde and Shephard (2008) have 

proposed consistent estimator of the integrated variance, under the existence of 

microstructure noise (for extensive reviews of the RV literature, see Bandi and Russell 

(2006) and McAleer and Medeiros (2008)). As observed in Barndorff-Nielsen and 

Shephard (2002), we can always decompose RV as the sum of IV and a measurement error, 

which they call the ‘RV error’. According to their analysis, even if we have a consistent 

estimator of IV, the RV contains a measurement error, which is not negligible. 

 

At this stage we should consider the possible confusion regarding ‘conditional’ volatility. 

The RV is an estimator of IV, which is the ex-post daily variance of the price process 

conditional on the sigma algebra, defined after equation (22). However, this is quite 

different from the conditional volatility in the ARCH class, as the latter is conditional on 

the sigma algebra defined by past observed information, such as the return series (see the 

detailed discussion in Andersen, Bollerslev, Diebold and Labys (2001) and Andersen, 

Bollerslev and Diebold (2010)). Therefore, the conditional volatility based on the 

extensions of the ARCH models contains less information as compared with the IV. 

 

Now, we specify the new asymmetric model for realized volatility (RV), noting the 

correspondence that 
1

0
( 1)tm t d     , 

12 2

0
( 1)tV t d      and  ~ 0,1tz N .

Assume that the RV is a consistent estimator of integrated volatility (IV). 

Barndorff-Nielsen and Shephard (2002) refer to the measurement error, defined by the 

difference between RV and IV, as the RV error. Barndorff-Nielsen and Shephard (2002), 

Bollerslev and Zhou (2002) and Asai, McAleer and Medeiros (2009) showed it is useful to 

employ an ad-hoc approach which accommodates an error term with constant variance. 
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Let ty  be the daily log RV, in which RV is a consistent estimate of IV. The new 

asymmetric model for RV to be analysed in the paper is given by 

 

 

   

     

   

   

2

1
1

2
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ln , 0, ,
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 (23) 

 

where tz  is the standardized return and follows the standard normal distribution. This 

specification enables tU  to capture the measurement errors in RV. We will refer to this 

model as the “RV-ARFIMA(p,d,q)-AS  1 2 3, ,   -noise” model. The model allows 

various types of symmetric and/or asymmetric effects, long-memory property, and takes 

account of the realized volatility errors. If the measurement errors are neglected, we will 

have a special case with 0u  . It should be noted that we consider the mean subtracted 

return, tr , instead of return. 

 
 
4 EIS-ML Estimation 
 

The likelihood function for the asymmetric model in equation (24) includes 

high-dimensional integration, which is difficult to calculate numerically. We employ the 

Efficient Importance Sampling (EIS) method developed by Liesenfeld and Richard (2003, 

2006) for evaluating the log-likelihood.  

 

The pilot method for the EIS is the Accelerated Gaussian Importance Sampling (AGIS) 

approach, as developed in Danielsson and Richard (1993). The AGIS approach is 

designed to estimate dynamic latent variable models, where the latent variable follows a 

linear Gaussian process. While the AGIS technique has limited applicability, the EIS is 
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applicable to models with more flexible classes of distributions and specifications for the 

latent variables. As in the case of AGIS, EIS is a Monte Carlo technique for the evaluation 

of high-dimensional integrals. The EIS relies on a sequence of simple low-dimensional 

least squares regressions to obtain a very accurate global approximation of the integrand. 

This approximation leads to a Monte Carlo sampler, which produces highly accurate 

Monte Carlo estimates of the likelihood. 

 

4.1 Likelihood Evaluation via EIS 

 

Let ty  be an observable variable and lnt th V  be a latent variable. We denote the joint 

density of   1

T

T t t
Y y


  and   1

T

T t t
H h


  as  , ;T Tf Y H  , indexed by the unknown 

parameter vector  . In dynamic latent variable models, the joint density is typically 

formulated as: 

 

        1 1 1 1 1
1 1

, ; , , , , , , ,
T T

T T t t t t t t t t t t
t t

f Y H f y h Y H g y h Y p h H Y       
 

   , 

 

where  g  denotes the conditional density of ty  given  1,t th y  , and  p  the 

conditional density of th  given  1 1,t tH Y  . For ease of notation, it is assumed that the 

initial conditions are known constants, but EIS can easily accommodate alternative 

(stochastic) assumptions. It should be noted that we excluded the density of return series. 

This approach is not efficient, but the loss in efficiency is minor, by construction. 

 

The likelihood function is given by the T-dimensional integral: 

 

    ; , ;T T T TL Y f Y H dH   , 

 

and a natural MC estimate of  ; TL Y  is given by 

 

     1
1 1

1ˆ ; , ,
TN

i
T t t t

i t

L Y g y h Y
N

 
 

 
  

 
   , (25) 
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where     
1

T
i

t
t

h 


  denotes a trajectory drawn from the sequence of T densities. Each 

   i
th   is drawn from the conditional density     1 1, ,i

t t tp h H Y  
 . 

 

In order to understand the EIS, we first note that EIS searches for a sequence of samplers 

that exploits the sample information on th  conveyed by ty . Let   1 1
,

T

t t t t
m h H x 

 

denote a sequence of auxiliary samplers, indexed by the auxiliary parameters   1

T

n t t
X x


 . 

Regardless of the values of the auxiliary parameters, the likelihood function,  ; TL Y , is 

rewritten as 

 

    
   1 1

1
1 11

, , ,
; ,

,

T T
t t t t

T t t t T
t tt t t

f y h Y H
L Y m h H x dH

m h H x


  


 

 
  

  
  , 

 

and the corresponding importance sampling MC estimate of the likelihood is given by 

 

  
        
        

1 1 1

1 1 1 1

, , ,1
; ,

,

i i
TN t t t t t t

T T i i
i t t t t t t

f y h x Y H x
L Y X

N m h x H x x




  

   

  
         

 
 


 

, (26) 

 

where     
1

T
i

t t
t

h x


  denotes a trajectory drawn from the sequence of auxiliary importance 

samplers, m. 

 

The EIS chooses a sequence of m densities by selecting values of the auxiliary parameters, 

TX , which provide a good match between the product in the numerator and that in the 

denominator in equation (26) to minimize the MC sampling variance of  ; ,T TL Y X . In 

order to implement EIS, it requires constructing a positive functional approximation, 

 ;t tk H x , for the density  1 1, , ,t t t tf y h Y H   , with the requirement that it be 
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analytically integrable with respect to th . In Bayesian terminology,  ;t tk H x  plays a 

role of a density kernel for  1,t t tm h H x , which is then given by 

 

    
 1

1

;
,

,
t t

t t t
t t

k H x
m h H x

H x


 , (27) 

 

where     1, ;t t t t tH x k H x dh    . Then, the EIS requires solving a back-recursive 

sequence of low-dimensional least squares problems of the form: 

 

 

                
    

1 1 1
1

2

ˆ arg min ln , , , ,

ln ; ,

t

N
i i i

t t t t t t t
x i

i
t t t

x f y h Y H H x

c k H x

     



  


 

  

   



 (28) 

 

for : 1t T  , with  1, 1T TH x   . As in equation (25),     
1

T
i

t
t

h 


  denotes a trajectory 

drawn from the p densities, and the tc  are unknown constants to be estimated jointly with 

tx . If the density kernel  ;t tk H x  is chosen within the exponential family of 

distributions, the EIS least squares problems become linear in tx  under the canonical 

representation of exponential kernels. 

 

The EIS estimate of the likelihood function for a given value of   is obtained by 

substituting   
1

ˆ
T

t t
x 


 for   1

T

t t
x


 in equation (26). In order to obtain maximally efficient 

importance samplers, a small number of iterations of the EIS algorithm is required, where 

the natural samplers p are replaced by the previous stage importance samplers. For such 
iterations to converge to fixed values of the auxiliary parameters, ˆtx , which are expected 

to produce optimal importance samplers, it is necessary to apply the technique of 

Common Random Numbers (CRNs). 

 

4.2  Implementation Issues 
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As we consider the nonlinear ARFIMA(p,d,q) process, it is not straightforward to 

incorporate it in the likelihood function. Hence, we suggest using an AR(J) approximation 

of the AR    representation of the ARFIMA part, which is similar to the MA(J) 

approximation of the FIEGARCH model by Bollerslev and Mikkelsen (1996), in the 

sense that the coefficient of the J-th lagged term is almost zero and is negligible for large 

J, such as J = 1000. 

 

Based on the above truncation, we have the distributions of ty  and th . The 

RV-ARFIMA(p,d,q)-AS  1 2 3, ,   -noise model in equation (29) assumes that RVs, ty , 

given the latent log-volatility, th , follow the normal distribution: 

 

   2

2

1
, exp

2t t t tg y h y h


    
 

. 

 

Conditional on  1 1,t tH r  , the log-volatility,  lnt th V , follows the normal 

distribution: 

 

   2

1 1 2

1
, , exp ,

2t t t t t
t

p h H r h l 
 

 
    

 
 

 

where  

 

    

   

1

1 1
1

1 1
1

0 for 1

for 2, ,

for 1, ,

t

t i t i t t
i

J

i t i t t
i

t

l h E t J

h E t J T

   

   


 

  


 
  




 


    



    










 

 

and 
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2
, ,

2 2
, 1 ,

2

for 1

for 2, ,

for 1, ,

J J J J J

t t J J t t J

C t

C t J

t J T








 


 

    
     
  





 

 

where    1 2 3 30t t t t th h h h h
t t t t t tr e r e re I re I re                   , 2

  is the 

variance of t  determined by  2
1 2 3, , , ,      ,  , 1, , ,t J t t J  

   , and jC  is the 

unconditional covariance matrix of  1, , jh h  . Note that it is assumed that  1p h  

follows the normal distribution with mean zero and the unconditional variance of th . 

Regarding the initial distributions for 2, ,t J  , we used the decomposition: 

 

     1 1 1 1 1 1
2

, , , , , , ,
J

J t t t
t

p h h p h p h h h r r 


    . 

 

which produces the combination of the conditional and unconditional mean and variance 

given above.  

 

We chose m as the parametric extension of the natural samplers, p. Hence, the 

parameterization for k is given by 

 

      1 1 1; , , , ,t t t t t t t tk H x r p h H r h x    , 

 

where the auxiliary function  ,t th x  is itself a Gaussian density kernel. Under this 

parameterization, the natural sampler, p, cancels out in the least squares problem in 

equation (28), to the effect that  ln ,t th x  serves to approximate  1 1ln , , ,t t t tg y h Y r    

 1ln , ,t t tH x r  . In particular, the appropriate auxiliary function for the asymmetric 

model is given by    1 2ln , expt t t t t th x x h x h   , with  1 2,t t tx x x , and the density 

kernels of the importance samplers have the form 



 17 

 

  
2

2
1 1 22 2

1 1
; , exp 2 2

2
t t

t t t t t t t
t t t

l
k H x r x h x h

 
  

                    
         

. 

 

Accordingly, the conditional mean and variance of th  on m are given by 

  

 
2

2 2
, , 1 ,2 2

2

, ,
1 2

t t
m t m t t m t

t t t

l
x

x

   
 

 
     

 (30) 

 

respectively. Integrating  1; ,t t tk H x r   with respect to th , and omitting irrelevant 

multiplicative factors, leads to the following expression for the integrating constant: 

 

    22
,

1 1 2 2
,

, , exp
2 2

m t t
t t t

m t t

l
H x r

 


  

    
  

. (31) 

 

Based on these functional forms, the computation of an EIS estimate of the likelihood for 

the asymmetric model requires the following steps: 

 

Step (0): Use the natural samplers, p, to draw N trajectories of the latent variable, 

    
1

T
i

t
t

h 


 . 

 

Step (t):  : 1t T  : Use these random draws to solve the back-recursive sequence of 

least squares problems, as defined in equation (28). The step t least squares 

problem is characterized by the following linear auxiliary regression: 
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where  i
tu  denotes the regression error term. The initial condition for the 

integrating constant (in equation (31)) is given by  1, , 1T T Th x r   . 

 

Step (T + 1): The EIS samplers,    1
1

ˆ,
T

t t t
t

m h H x 


, which are characterized by the 

conditional mean and variance given in equation (30), are used to draw N 

trajectories      
1

ˆ
T

i
t t

t
h a 



 , from which the EIS estimate of the likelihood is 

calculated according to equation (26). 

 

We set 50N  , as Liesenfeld and Richard (2003) reported that 50 is sufficient for 

univariate and nonlinear latent variable models, such as SV. After 7-10 iterations, 

 ; , ,T T TL Y X R  converged for each  . The next section gives the EIS-ML estimates for 

the asymmetric model of RV. 

 

For the case of neglecting measurement errors (that is, 0u  ), th  is observable, so it is 

possible to perform maximum likelihood estimation without simulations. By comparing 

the log-likelihood with the EIS log-likelihood above, we have the conventional likelihood 

ratio test statistics, which follows the  2 1  distribution under the null hypothesis that 

0u  . 

 

4.3  Monte Carlo Experiments 

 

In this subsection we present the results of a Monte Carlo study to investigate the small 

sample performance of the estimation procedure presented in subsection 4.1. We generate 

R simulated time series for RV-ARFIMA(1,d,0)-AS  1 2 3, ,   -noise model in equation 

(32) and for some given ‘true’ parameter vector  . Subsequently, we treat   as unknown 

and estimate it for each series using the EIS maximum likelihood method described in 

subsections 4.1 and 4.2. We compute the sample mean, standard deviation and root mean 

squared error (RMSE) and compare it with the ‘true’ parameter value. 
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The ‘true’ parameter values for generating Monte Carlo samples are given in the first 

column of Table 1, which is obtained by our empirical analysis in Section 5. The results 

given in Table 1 are for the typical sample size T = 2500 with the number of iterations set 

to R = 300. Table 1 shows that the most of the values of the standard deviation are close to 

those of the RMSE, indicating that the bias in finite samples is negligible.  

 

5 Empirical Results 
 
5.1  Data and Preliminary Results 

 
The empirical analysis focuses on the RV of Standard and Poor’s 500 Composite Index. In 

order to estimate the daily realized volatility, we use the two time scales estimator (TTSE) 

of Zhang, Mykland and Aït-Sahalia (2005) with five-minute grids, which is a consistent 

estimator of the daily realized volatility. The sample period is Jan/3/1996 to 

March/29/2007, giving T = 2796 observations of RV.  

 

As a preliminary analysis, we consider the new Fractional Integrated EGARCH-t models 

given in Section 3 as 

 

 

 

     

 

   

2 1
1

1 2 3 3

, ~ ,

ln 1 ,

,

0 ,

t t t t

d

t t

t t t

t t t t t t

r z z St

L L L

E

z z z I z I z

 

  

  

       

 


 





    

 

      

 (33) 

 

where  St   denotes the standardized t distribution, with degrees of freedom given by  

v. Note that this model implicitly specifies that 0  , so that t  is determined by the 

past information. We denote this as the FIEGARCH(p,d,q)-t-AS  1 2 3, ,    model and, 

for the case d=0, as the EGARCH(p,q)-t-AS  1 2 3, ,    model. 
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We estimated two kinds of models, namely EGARCH(1,1)-t-AS  1 2 3, ,   and 

FIEGARCH(1,d,1)-t-AS  1 2, ,0  . Table 2 shows the ML estimates of these models, with 

initial values of 1000. For the former model, all the estimated parameters, except for   

and 3 , are significant at the five percent level. The estimate of   is close to 0.99, 

showing high persistence in volatility. The estimate of 1  is negative, while that of 2  is 

positive. The estimate of 1   is 0.08, indicating that the estimate of   is close to 13. The 

results are typical for the EGARCH-t specification. For the long memory model, all the 

estimated parameters, except for 1  and 1  , are significant. This specification shows 

the lack of importance of asymmetric effects and heavy-tailed conditional distributions. 

The AIC and BIC favour the FIEGARCH(1,d,1)-t-AS  1 2, ,0   model. Similar results 

are also found in the literature with the FIEGARCH-t specification.  

 

5.2  Estimates for RV Models 

 

In the following, we will show that the empirical results for RV models are substantially 

different from those associated with EGARCH models. It should be noted that it is 

inadequate to compare the log-likelihood of EGARCH models with that of RV models as 

the former is based on tr  while the latter is based on the RV, ty . Furthermore, the fat tails 

of the conditional distribution of tr  are irrelevant for the estimation of the RV model. 

 

Table 3 shows the EIS-ML results of the RV-AR(1)-AS  1 2 3, ,   -noise model. 

Regarding asymmetry, we consider four specifications, namely AS  0,0,0 , AS  1,0,0 , 

AS  1 2, ,0  , and AS  1 2 3, ,   . All the estimated parameters are significant at the 5% 

level. As the AS  1 2 3, ,    model has the smallest AIC and BIC, we report the empirical 

results only for this specification.  

 

The estimate of u  is close to 0.4, showing that the RV errors are not negligible. The 

estimate of   is 0.986, while that of   is 0.11, which are typical of SV models. The 
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estimate of 1  is negative, while that of 2  is positive. Unlike the estimates of the 

EGARCH model, the estimate of 3  is negative and significant. Figure 2 gives the news 

impact from tz  to 1ln tV  , showing that negative shocks and large positive shocks 

increase future volatility, but small positive shocks decrease volatility.  

 

Table 4 presents the EIS-ML results for the RV-ARFIMA(1,d,0)-AS  1 2 3, ,   -noise 

model. As before, we consider four kinds of asymmetric effects. The AIC and BIC 

selected the AS  1 2 3, ,    model, so we will concentrate the empirical analysis on this 

model. All the estimated parameters are significant at the five percent level. The estimate 
of u  is close to 0.4, indicating that the RV errors are not negligible. The estimate of d is 

0.47, showing that the log-volatility has long memory and is a stationary process. The 

estimate of   is positive and close to 0.4, which is against the typical value of -0.1 in the 

RV literature. The difference can be explained by the existence of RV errors, 
lnt t tU y V  . As shown in the Monte Carlo experiments of Asai, McAleer and Medeiros 

(2009), even minor RV errors can cause bias in the estimates if the RV error is neglected in 

estimation. The signs of 1 , 2  and 3  are the same as in the case of Table 3. Figure 3 

shows the news impact from tz  to 1ln tV  .  

 

From Tables 2 and 3, we find that the RV-ARFIMA(1,d,0)-AS  1 2 3, ,   -noise model

has the smallest AIC, while BIC chooses the RV-AR(1)-AS  1 2 3, ,   -noise model. 

These tables indicate that having the additional term, 3 , significantly improves the 

goodness of fit of the model.  

 

5.3  Forecasting Analysis 

 

Regarding the RV-ARFIMA(1,d,0)-AS  1 2 3, ,   -noise model, we examine the 

performance of the out-of-sample forecasts using the following four approaches: (i) test 

for equal forecast accuracy; (ii) test model specification; (iii) test the forecasts of the VaR 

thresholds; (iv) model selection. The benchmark model is the Leverage Heterogeneous 

Autoregressive (LHAR) model, suggested in Corsi and Renò (2010). The LHAR model is 

based on the Heterogeneous Autoregressive (HAR) model of Corsi (2009), which 
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approximates a long memory process, with an extension regarding the leverage effect. 

Hence, the LHAR model accommodates both long range dependence and the leverage 

effect. The LHAR model is given by 
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and  t t h
r


 is defined by the same manner.  0I r   is the indicator function which take 

one if r is negative, and zero otherwise. A similar model is suggested by Martens, van Dijk 

and de Pooter (2009). Note that it is possible to include the positive part of heterogeneous 

returns, but they are usually insignificant. 

 

Fixing the sample size at 2,500, we re-estimated the model and computed one-step-ahead 

forecasts of log-volatility for the last 150 days.  

 

First, we report the result for the Harvey, Leybourne, and Newbold (1997) modification of 

the Diebold and Mariano (1995) test of equal predictive accuracy. The new asymmetric 

and long-memory volatility model is compared against the LHAR model. The test statistic 

follows the standard normal distribution asymptotically under the null hypothesis of equal 

accuracy. Table 5 shows the test results, indicating the difference between the two 

forecasts. 

 

Second, we test the model specification, based on the Mincer-Zarnowitz regression, 

namely 

 

| 1ˆ , 1, 2, ,150t t t tx a bx e t      

 

where tx  can be the observed RV or log-RV on day t, and | 1ˆt tx   is the one-step-ahead 
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forecast of tx  on day t. If the model is correctly specified, then 0a   and 1b  . Table 6 

show the estimates of the coefficients and the heteroskedasticity-consistent F test 

statistics for the joint null hypothesis, regarding the LHAR model and the 

RV-ARFIMA(1,d,0)-AS  1 2 3, ,   -noise model, respectively. With respect to the LHAR 

model, the F tests in both cases rejected the null hypothesis that the model is correctly 

specified. However, for the new asymmetric and long-memory model, the F test did not 

reject the null hypothesis. As the new model is based on log-RV, the estimates for log-RV 

are very close to the values expected under the null hypothesis.  

 

Third, we calculated the VaR thresholds, accommodating the filtered historical simulation 

(FHS) approach, which is an effective method for predicting VaR thresholds (see Kuester 

et al. (2006) for some recent studies regarding the FHS approach). In short, the FHS 

approach estimates the empirical distribution of the standardized returns, then obtains the 

100p percentiles to compute the 100p percent VaR thresholds. In our analysis, each time 

we estimated the model with 2,500 observations, we computed the 100p percentiles of the 

empirical distribution based on the last 500 observations, discarding the first 2,000 

observations. Combined with the one-day-ahead forecasts of log-volatility, we computed 

the 100p percent VaR thresholds. 

 

In order to assess the estimated VaR thresholds, the unconditional coverage and 

independence tests developed by Christoffersen (1998) are widely used. A drawback of 

the Christoffersen (1998) test for independence is that it tests against a particular 

alternative of a first-order dependence. The duration-based approach in Christoffersen 

and Pelletier (2004) allows for testing against more general forms of dependence but still 

requires a specific alternative. Recently, Candelon et al. (2010) have developed a more 

robust procedure which does not need a specific distributional assumption for the 

durations under the alternative. Consider the “hit sequence” of VaR violations, which 

takes a value of one if the loss is greater than the VaR threshold, and takes the value zero 

if the VaR is not violated. If we could predict the VaR violations, then that information 

may help to construct a better model. Hence, the hit sequence of violations should be 

unpredictable, and should follow an independent Bernoulli distribution with parameter p, 

indicating that the duration of the hit sequence should follow a geometric distribution The 

GMM duration-based test developed by Candelon et al. (2010) works with the J-statistic 

based on the moments defined by the orthonormal polynomials associated with the 

geometric distribution. The conditional coverage test and independence test based on q 
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orthnormal polynomials have asymptotic 2
q  and 2

1q   distributions under their 

respective null distributions. The unconditional coverage test is given as a special case of 

the conditional coverage test with q = 1. 

 

Table 6 shows the percentage of VaR violations and test results for the LHAR model and 

new asymmetric and long-memory volatility model, respectively. For both the LHAR 

model and RV-ARFIMA(1,d,0)-AS  1 2 3, ,   -noise model, the tests did not reject the 

null hypothesis for the 5% and 1% VaR thresholds, indicating that the estimated VaR 

thresholds are satisfactory. We also conducted the unconditional coverage and 

independence tests developed in Christoffersen (1998), and the results are unchanged. 

 

Finally, we select the forecasts using the following MZ equation: 

 

1 | 1 2 | 1ˆ ˆ , 1,2, ,150AS LHAR
t t t t t tx a b x b x e t        

 

where  | 1ˆ ,i
t tx i AS LHAR   is the one-step-ahead forecast of tx  on day t, based on the 

RV-ARFIMA(1,d,0)-AS  1 2 3, ,   -noise model (AS) and the LHAR model. We select the 

forecasts by the conventional t test. As before, we consider two dependent variables, 

namely volatility and log-volatility. Table 8 gives the results. In both cases, the 

coefficients of | 1ˆLHAR
t tx   are insignificant, indicating that the data prefer the forecasts of the 

RV-ARFIMA(1,d,0)-AS  1 2 3, ,   -noise model. Overall, the results of the out-of-sample 

forecasts favour our new asymmetric and long memory volatility model. 

 

5.4  Global Financial Crisis 

 

In addition to the previous analysis, we examine the adequacy of the new 

RV-ARFIMA(1,d,0)-AS  1 2 3, ,   -noise model for the period including the global 

financial crisis, starting from the bankruptcy of Lehman Brothers, that is, Sep/15/2008. 
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For the analysis, we chose IBM as the individual stock for the period Jan/03/2000 to 

April/27/2009, giving T = 2334 observations for RV. We obtained one-step-ahead 

forecasts as before for the last 150 observations corresponding to the period starting from 

the bankruptcy of Lehman Brothers. We use the LHAR model as a benchmark. 

 

Table 9 gives the estimates for the MZ equations. The new model does not reject the null 

hypothesis, 0a   and 1b  , showing the adequacy of the new model, while the LHAR 

model does reject the null hypothesis. The results with two forecasts show the 

significance of the forecast of the new model and insignificance for the LHAR model.  

 

We also conducted the HLN tests for volatility and log-volatility, producing values of the 

test statistics of 4.97 and 9.14, respectively. The results indicate the superiority of the 

RV-ARFIMA(1,d,0)-AS  1 2 3, ,   -noise model, rejecting equal predictive accuracy. For 

the forecasting period, the stock price of IBM is so volatile that there is no day in which a 

negative return exceeds the boundary of -1.98 times RV. Hence, we cannot conduct tests 

of the VaR thresholds. Thus, we report that the number of violations for the 1% threshold 

is zero for the new model, while it is 4 times (0.027%) for the LHAR model. Overall, the 

results of the out-of-sample forecasts show the adequacy of the new asymmetric and long 

memory volatility model for the period including the global financial crisis. 

 
6 Concluding Remarks 
 

We proposed a new asymmetric and long-memory volatility model. Regarding the 

leverage effect, the new model sensitively captures the effects of both large and small, and 

positive and negative, shocks. Based on the new specification, this paper examined 

alternative univariate volatility models that have recently been developed and estimated.  

 

We extended the specification of asymmetric and long memory volatility in order to 

model RV by taking account of the RV errors. This is a general model which includes not 

only various kinds of asymmetric effects, but also short and long memory specifications. 

We applied the EIS-ML method to estimate the model of RV, and reported the results for a 

Monte Carlo experiment.  

 

The empirical results for the RV of Standard and Poor’s 500 Composite Index showed the 

existence of RV errors. The estimates of the short and long memory models supported the 
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new specification of asymmetric effect, which satisfies the following three conditions: (i) 

negative shocks to returns increase future volatility; (ii) large positive shocks to returns 

increase future volatility, but a negative shock has a larger effect on volatility than does a 

positive shock of equal magnitude; and (iii) small positive shocks to returns decrease 

future volatility. Overall, the new specification of asymmetry significantly improved the 

goodness of fit, and the out-of-sample forecasts and VaR thresholds were satisfactory. 
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Table 1: Monte Carlo Results for EIS-ML Estimator for 

RV-AR(1)-AS  1 2 3, ,   -noise Model 

 

Parameters True Mean 
Standard 

deviation 
RMSE 

d 0.4727 0.4588 (0.0366) [0.0392] 

  0.4373 0.4453 (0.0655) [0.0660] 

  0.1739 0.1792 (0.0156) [0.0165] 

  0.0046 -0.0018 (0.0019) [0.0067] 

1  -0.0274 -0.0160 (0.0156) [0.0193] 

2  0.0511 0.1179 (0.0155) [0.0686] 

3  -0.2428 -0.2954 (0.0541) [0.0754] 

  0.8841 0.8413 (0.1262) [0.1332] 

u  0.3858 0.3845 (0.0089) [0.0090] 

 

 

 

Table 2: ML Estimates of the New EGARCH Class 

 

Parameters New EGARCH-t FIEGARCH(1,d,0)-t 

d   0.4067 (0.0256) 

  0.9877 (0.0038) -0.2651 (0.0450) 
  0.1397 (0.4560) 0.3101 (0.0777) 

1  -0.0936 (0.0138) 0.0115 (0.0441) 

2  0.0670 (0.0204) 2.4407 (0.0776) 

3  -0.0783 (0.0967)   

  0.7259 (0.4408)   

1  0.0784 (0.0191) 0.0004 (0.0410) 

Log-Like -2419.93  -1721.05  

AIC 4853.86  3454.09  

BIC 4892.31  3489.71  

Note: Standard errors are in parentheses. The first 1,000 

observations are used for the initial values for the FIEGARCH-t 

model. 
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Table 3: EIS Estimates of RV-AR(1)-AS  1 2 3, ,   -noise 

 

Parameters AS  0,0,0 AS  1,0,0 AS  1 2, ,0  AS  1 2 3, ,    

  
0.9747 

(0.0051) 

0.9728 

(0.0040) 

0.9870 

(0.0044) 

0.9856 

(0.0044) 

  
0.1478 

(0.0091) 

0.1111 

(0.0075) 

0.1110 

(0.0074) 

0.1103 

(0.00720) 

  
-0.3148 

(0.1091) 

-0.1795 

(0.0788) 

-0.8439 

(0.3227) 

1.2246 

(0.5127) 

1  
 -0.0681 

(0.0046) 

-0.0649 

(0.0043) 

-0.0418 

(0.0062) 

2  
  0.0424 

(0.0074) 

0.0561 

(0.0079) 

3  
   -0.1934 

(0.0471) 

  
   0.4902 

(0.0605) 

u  
0.4054 

(0.0073) 

0.4092 

(0.0067) 

0.4125 

(0.0067) 

0.4116 

(0.0067) 

Log-Like -1921.94 -1821.52 -1806.24 -1793.51 

AIC 3851.88 3653.04 3624.48 3603.03 

BIC 3875.63 3682.72 3660.10 3650.52 

Note: Standard errors are in parentheses. 
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Table 4: EIS Estimates of RV-ARFIMA(1,d,0)-AS  1 2 3, ,   -noise 

 

Parameters AS  0,0,0 AS  1,0,0 AS  1 2, ,0  AS  1 2 3, ,    

d 
0.4955 

(0.0039) 

0.4987 

(0.00089) 

0.4748 

(0.0090) 

0.4727 

(0.0076) 

  
0.3261  

(0.0603) 

0.3676 

(0.0438) 

0.4166 

(0.0538) 

0.4373 

(0.0291) 

  
0.2416 

(0.0225) 

0.1750 

(0.0147) 

0.1852 

(0.0157) 

0.1739 

(0.0080) 

  
-0.5832 

(0.2394) 

0.0021 

(0.0026) 

0.0051 

(0.0027) 

0.0046 

(0.0020) 

1  
 -0.0865 

(0.0061) 

-0.0827 

(0.0063) 

-0.0275 

(0.0075) 

2  
  0.0226 

(0.0077) 

0.0511 

(0.0076) 

3  
   -0.2428 

(0.0287) 

  
   0.8841 

(0.0196) 

u  
0.3648 

(0.01208) 

0.3844 

(0.0081) 

0.3827 

(0.0085) 

0.3858 

(0.0067) 

Log-Like -1908.27 -1819.30 -1811.37 -1792.16 

AIC 3826.54 3650.60 3636.75 3602.31 

BIC 3856.22 3686.22 3678.30 3655.74 

Note: Standard errors are in parentheses. 
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Table 5: HLN Tests for Equal Forecast Accuracy 

 

HLN  Test Stat. P-value 

Volatility 2.5688 0.0102 

Log-Volatility 4.8427 0.0000 

 

Note:  HLN is the test for equal forecast accuracy of Harvey, 

Leybourne, and Newbold (1997), where the new asymmetric 

volatility model is compared with LHAR. The test statistic follows 

the standard normal distribution asymptotically under the null 

hypothesis of equal accuracy. 

 

 

 

Table 6: Tests for Model Specification by MZ Equation 

 

| 1ˆt t t tx a bx e   

Model LHAR RV-ARFIMA(1,d,0)-AS  1 2 3, ,   -noise

Dependent 

variable 
Volatility Log-Volatility Volatility Log-Volatility 

Constant 
0.1899 

(0.0492) 

-0.4098 

(0.0740) 

-0.2352 

(0.1381) 

-0.0045 

(0.1305) 

Forecast 
0.6387 

(0.0798) 

0.6218 

(0.0753) 

1.758 

(0.4208) 

0.9838 

(0.1109) 

F test 
9.6675 

[0.0078] 

26.292 

[0.0000] 

4.1500 

[0.1256] 

0.2790 

[0.8698] 

 

Note: Heteroskedasticity-consistent standard errors are in parentheses, and p-values are 

in brackets. ‘F test’ denotes the value of the heteroskedasticity-robust F test for the null 

hypothesis 0 : 0, 1H a b  .  
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Table 7: Backtesting VaR Thresholds 

 

Model LHAR RV-ARFIMA(1,d,0)-AS  1 2 3, ,   -noise 

VaR 
% 

Violation 
UC ID CC 

% 

Violation
UC ID CC 

5% 0.0533 
0.0541 

[0.8160] 

0.6013 

[0.9630]

0.6009 

[0.9880]
0.0467 

0.0281 

[0.8669]

1.0801 

[0.8793] 

1.1930 

[0.9456]

1% 0.0133 
0.6146 

[0.4331] 

0.7976 

[0.8728]

1.2318 

[0.9418]
0.0267 

0.9961 

[0.3183]

0.4477 

[0.8408] 

1.4197 

[0.9222]

 

Note: ‘% Violation’ is the percentage of days when returns are less than the VaR threshold. 

UC, IND CC are the GMM duration-base tests for unconditional coverage, independence 

and conditional coverage, developed by Candelon et al. (2010). The number of 

orthonormal polynomials is set to 5. P-values are in brackets. 

 

 

 

Table 8: Model Selection by MZ Equation 

 

1 | 1 2 | 1ˆ ˆ , 1,2, ,150AS LHAR
t t t t t tx a b x b x e t       

 

Dependent Variable Const | 1ˆ AS
t tx   | 1ˆLHAR

t tx   

Volatility 
-0.2848 

(0.1831)

2.1334 

(0.8320)

-0.2123 

(0.2896)

Log-Volatility 
-0.0190 

(0.1346)

0.8628 

(0.1931)

0.1109 

(0.1226)

 

Note: Heteroskedasticity-consistent standard errors are in 

parentheses. 
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Table 9: Model Selection by the MZ equation for IBM data 

 

1 | 1 2 | 1ˆ ˆ , 1,2, ,150AS LHAR
t t t t t tx a b x b x e t       

 

Dependent Variable Const | 1ˆ AS
t tx   | 1ˆLHAR

t tx   

Volatility 
1.1367 

(1.3667)

1.1264 

(0.2285)
  

Volatility 
-1.4107 

(1.7943)
 

3.8264 

(0.7576)

Volatility 
-1.2534 

(1.6501)

0.8924 

(0.2271)

1.3978 

(0.7264)

Log-Volatility 
0.1854 

(0.1049)

0.9636 

(0.0603)
 

Log-Volatility 
1.1691 

(0.0801)
 

0.8098 

(0.0903)

Log-Volatility 
0.1856 

(0.1050)

0.9554 

(0.0781)

0.0153 

(0.0870)

 

Note: Heteroskedasticity-consistent standard errors are in 

parentheses. 
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