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Impulse response functions for periodic integration

Jorg Breitung®, Philip Hans Franses®'*

*Institut fiir Statistik und Okonometrie, Humboldt Universitit zu Berlin, Berlin, Germany
®Econometric Institute, Erasmus University, Rotterdam, Holland

Received 31 May 1996; received in revised form 7 August 1996; accepted 14 January 1997

Abstract

A quarterly observed time series is said to be periodically integrated [PI} if the stochastic trend needs to be removed by a
seasonally varying differencing filter. In this paper we consider the impulse response functions [IRF] for such a PI time
series. © 1997 Elsevier Science S.A.
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1. Introduction

Recently there have appeared several empirical studies which suggest that quarterly observed time
series may be usefully described using periodic time series models, see, e.g., Osborn, Smith (1989)
and Franses, Paap (1994). The typical feature of the class of periodic autoregressive [PAR] models is
that the autoregressive parameters can take different values in different seasons. This periodic
variation introduces the possibility that the stochastic trend can be removed using a seasonally varying
differencing filter. The time series is then called periodically integrated [PI]. A consequence of the
usefulness of a periodic differencing filter is that the stochastic trend is related to the seasonal
fluctuations, see Franses (1996). In the latter study it is also found that quarterly observed
macroeconomic time series tend to have only a single stochastic trend, which can be removed either
by regular first order differences or by periodic differences.

In the present letter we focus on the impulse response functions [IRF] for periodically integrated
time series. In Section 2 we briefly discuss periodic integration. In Section 3 we present a simple
method to estimate the empirical IRF: In Section 4 we apply our method to quarterly observed
industrial production in the USA.
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2. Periodic integration

Consider a quarterly observed time series y,, where =1, 2, ..., n and consider its corresponding
skip-sampled vector series Y;, which is a (4 X 1) series with ¥, = (Y, ., Y, ;, Y, 1, ¥, ;)’, where Y, , is
the observation in season s in year T, where s =1,2,3,4and T=1, 2,..., N. We assume that the
Y, ; observations are the y, data in case ¢ equals 1, 5,..., n — 3, the Y, , observations concern ¢ is 2,
6,..., n—2, and so on. The notion of skip-sampling a (periodic) time series was introduced in
Gladyshev (1961), and it is useful for the analysis of stochastic trends in y,, see Osborn (1991) and
Franses (1996).

In case a quarterly series y, is described by a periodic autoregression of order p [PAR(p)], it can be
represented by

y1=#‘x+¢l.vyt—l + o +¢p.s‘yr4[’+‘9)’ (1)

where ¢, is a standard white noise process with variance o°. The M, is a seasonally varying intercept
term. The ¢, are seasonally varying parameters, where i=1, 2, ..., p. The parameters in (1) can be
estimated using least squares techniques. The regression model then concerns all terms on the
right-hand side of (1) after multiplying them by seasonal dummies D_,, for s=1, 2, 3, 4, see, e.g.,
Pagano (1978).

Before one can analyze the presence of stochastic trends in y, using extensions of the familiar
Dickey-Fuller type test statistics, one should decide on the model order p. The simulation results in
Franses, Paap (1994) indicate that an F-type test for the significance of the ¢, ., , parameters is most
useful in selecting between PAR(p+ 1) and PAR(p) processes. The empirical applications in that
paper and also in Franses (1996) show that in practice it usually holds that p =<4. Hence, we confine
further analysis to such model orders.

To investigate the presence of stochastic trends, it is useful to write (1) in vector notation, i.e. to
write the PAR(p) model for y, (with p=4) as an AR(1) model for ¥,:

5.0

EYr=ut+EY_ +e&, @

where w=(u,, p,, iy, )" and £.=(&, 1, & 1, & 1. & 1), With £ ;. is the observation on the error
process in season s in year T. The = and 5| are (4 X4) parameter matrices containing the parameters
¢., in (1). Since model (2) is a model for annually observed time series, the parameter matrices do not
contain seasonally varying parameters. Model (2) can be used to investigate the presence of the
common stochastic trend in Y, by checking the solutions to the characteristic equation | =, — =,z| =0,
see also Liitkepohl (1991).

Boswijk, Franses (1996) study the case where y, has one stochastic trend. There is a single
stochastic trend in y, when the differencing filter (1 — ¢ B) with ¢, ¢,h,¢, =1 is needed to render
(periodic) stationarity, where B is the backward shift operator. Note that this (possibly periodic) filter
nests the (1 — B) filter. Boswijk, Franses (1996) show that a useful test is based on a rewritten version
of (1), where the (1 — ¢ B) filter is imposed. For example, the PAR(2) model can be written as

V=&Y =T Uy, by, T e, (3

where ¢, = ¢,. Obviously, the ¢, and ¢, (s=1, 2, 3, 4) parameters are nonlinear functions of the ¢,.
The 12 parameters in (3), i.e. u, ¢, and ¢ for s=1 to 4, can be estimated using non-linear least
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squares. A test for a single unit root in the y, process is given by comparing the residual sums of
squares [RSS] of (3) with or without the restriction ¢, ¢, ¢, ¢, = 1. Boswijk, Franses (1996) show that
a Likelihood Ratio test for this hypothesis follows the square of the familiar Dickey—Fuller
distribution. If the hypothesis ¢, $,¢p,, =1 cannot be rejected, a next step is to apply a Likelihood
Ratio test for the hypothesis that ¢ = ¢ for all s, where ¢ typically is 1. As expected, this test has a
standard y’-distribution under the relevant null hypothesis. Franses, Paap (1994) apply this test
procedure to a large set of UK macroeconomic time series and find that many series are periodically
integrated.

3. Computing impulse responses

One of the most important features of PI time series, i.e. time series that need the (1 — ¢ B) filter to
remove the stochastic trend, is that the seasonal fluctuations and the stochastic trend are not
independent, see Franses (1996), (Chapter 8) for details. In other words, the response to impulse
shocks varies over the seasons. A useful measure to document how shocks affect future patterns of
periodic time series is the impulse response function [IRF]. In this section we discuss the construction
and estimation of such an IRF, where we explicitly take account of the fact that there are three
cointegrating relations between the elements of the (4X1) vector Y.

In order to derive impulse response functions we need to specify the interesting type of shocks.
Since we assume three cointegrating relations, there is a single type of permanent shock and there are
three types of transitory shocks. Following Johansen (1991), (1994), the cointegrated system has the
following stochastic trend representation

Ay, = ﬁJ_(a_L'GBL)_la:_nT + CB)1 — By, 4)

where @, and B, are (4X 1) matrices obeying a’, & =0 and B’ B=0, and A is the first differencing
filter. C(B) is a (4X4) lag polynomial having all roots outside the unit circle. The matrix G is a
nonsingular (4 X 4) matrix, which is of no specific interest here. In fact, the precise form of G can be
found in Johansen (1991). For (2), we have G=1,. From (4) we obtain the stochastic trends as

T
m=n+ e, )
i=1
Accordingly, the permanent shocks are defined by Ar,=a 'n;.

To estimate «,, several methods have been proposed in the literature. First, one can obtain an
estimate of a, by solving an eigenvalue problem similar to the one encountered when estimating S,
see Johansen (1994). Second, Proietti (1994) presents a formula which allows one to estimate a
using the parameters of the error correction representation of (2).

In case of a single common stochastic trend, however, it is appealing to apply the simpler procedure
proposed in Breitung (1994). Since the permanent shock is only identified up to a scalar
transformation, one may normalize one element of the vector &, to unity. Letting a, =(ar, ,", 1)’ and
a=(a,, a})', where @, and a, are of order (3X3) and (1X3), respectively, we have

a'a, =aja, , +a,=0. (6)
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From this system of equations the vector @, , can be estimated from o ,=—(a;) 'aj, by
substituting estimates of a=(a|, a,)’.

The permanent shocks are the driving forces pushing the series along the ‘‘attractor set”, while the
“disequilibrium error”” B'Y, reflects the distance to the attractor set, see Johansen (1994). Thus, it is
natural to define the transitory shocks #; as shocks to the disequilibrium error so that v, = 'n,. This
identification gives the ‘‘structural” errors

AT, a,’
Ur= v, = 8’ 1y + Ry (7)
Using the techniques in Johansen (1995), (page 40), we can derive the impulse response functions for
a PAR model of order less than four as

IRFof Ar, - Y, B.(a,'B)"" (8)

IRFof v, 5 Y, a(B'a) ', + B'a). (9)
We observe that the permanent shocks do not affect the equilibrium errors 3'Y;. Thus, the permanent
shocks A7, push the variables along the attractor line so that such shocks will not be “‘error
corrected” by the system. Furthermore, the permanent shock does not induce any short-run dynamics
and, thus, the expected time path of the variables is shifted permanently by a certain amount.

4. An application

In this section we illustrate the estimation of the IRF for PI processes for (logs of) the US industrial
production index for the sample 1960.1-1991.4. Details of the specification strategy, of estimation
results, and of the diagnostic results can be obtained from Breitung, Franses (1995).

Franses (1996) finds that this variable can be adequately described by a periodically integrated
AR(2) model. For IT==;'5, —1,, we obtain

-1 0 —-0755 1784
| o -1 —093 1949
0 0 —-2047 2113
0 0 —1.047  1.081

and for the cointegration vector for the Y, process we get
. —0.981 1 0 0
B'= 0 — 1.047 1 0.
0 0 —0.969 1
Combining these, we obtain via the equality a=1I8(8'8) "

1.013 0.973 1.784
0 0.955 1.949
0 0 2,113 )
0 0 1.081

>
I
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This matrix is used to give &, =(0, 0, —0.512, 1).

We can now calculate the IJRFs with respect to permanent and transitory components and we
display these in Fig. 1. From these graphs it can be observed that the IRFs with respect to permanent
shocks seem about equal, as well as the IRFs with respect to the first and second equilibrium shock.

a) IRFs with respect to the permanent shock b) 1RFs with respect lo the first equilibrium shock
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Fig. 1. Impulse response functions to permanent and transitory components in a periodically integrated autoregression of order 2: Industrial
production in the USA.
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Only for the IRFs with respect to the third equilibrium shock, we observe some differences between
the seasons.

These empirical results seem to convey the following useful information. PAR models extend
nonperiodic AR models by allowing the dynamic parameters to vary with the seasons. On the other
hand, it is often found that the lag order in PAR models is reasonably small, see Franses, Paap (1994).
Hence, there appears to be a trade-off between lag length and periodic parameter variation. With
respect to the IRFs, it seems that periodically integrated AR models impose restrictions on the lag
length, which in turn impose constraints on the permanent component and on the effect of transitory
shocks. In summary, although periodic models serve well to approximate the stochastic process of
seasonal time series, such models may imply less appealing dynamic structures.

Acknowledgments

This research was partly carried out within the ‘‘Sonderforschungsbereich 373" at the Humboldt
University Berlin and was finished using funds made available by the “‘Deutsche Forschungsgemein-
schaft”. The second author thanks the Royal Netherlands Academy of Arts and Sciences for its
financial support.

References

Boswijk, H.P,, Franses, P.H., 1996. Unit Roots in Periodic Autoregressions. Journal of Time Series Analysis 17, 221-245.

Breitung, J., 1994. A Simultaneous Equations Approach to Cointegrated VARs. Unpublished Manuscript, Humboldt
University Berlin.

Breitung, J., Franses, PH., 1995. Impulse Response Functions for Periodic Integration. Discussion Paper 43, Institute of
Econometrics and Statistics, Humboldt University Berlin.

Franses, PH., 1996. Periodicity and Stochastic Trends in Economic Time Series. Oxford University Press, Oxford.

Franses, P.H., Paap, R., 1994. Model Selection in Periodic Autoregressions. Oxford Bulletin of Economics and Statistics 56,
421-439.

Gladyshev, E.G., 1961. Periodically Correlated Random Sequences. Soviet Mathematics 2, 385-388.

Johansen, S., 1991. Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models.
Econometrica 59, 1551-~1580.

Johansen, S., 1994. The Role of the Constant and Linear Terms in Cointegration Analysis of Nonstationary Variables.
Econometric Reviews 13, 205-229.

Johansen, S., 1995, Likelihood—based Inference in Cointegrated Vector Autoregressive Models. Oxford, University Press
Oxford.

Liitkepohl, H., 1991. Introduction to Multiple Time Series Analysis, Springer Verlag, Berlin.

Osborn, D.R., 1991. The Implications of Periodically Varying Coefficients for Seasonal Time-Series Processes. Journal of
Econometrics 48, 373-384.

Osborn, D.R., Smith, J.P., 1989. The Performance of Periodic Autoregressive Models in Forecasting Seasonal UK
Consumption. Journal of Business and Economic Statistics 7, 117-127.

Pagano, M., 1978. On Periodic and Multiple Autoregressions. Annals of Statistics 6, 1310-1317.

Proietti, T., 1994. Short-run Dynamics in Cointegrated Systems. Unpublished Manuscript, University of Perugia, Italy.



