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ABSTRACT

Recent empirical research into the seasonal and trend properties of macro-
economic time series using periodic models has resulted in strong evidence
in favour of periodic integration (PI). PI implies that the differencing filter
necessary to remove a stochastic trend varies across seasons and, hence,
that seasonal fluctuations are related to the stochastic trend. Previous
studies finding evidence of PI have used classical econometric techniques.
In this paper, we investigate the possible sensitivity of this empirical result
by using Bayesian techniques. An application of posterior odds analysis
and highest posterior density interval tests to several quarterly UK macro-
economic series suggests strong evidence for PI, even when we allow for
structural breaks in the deterministic seasonals. A predictive exercise
indicates that PI usually outperforms other competing models in terms of
out-of-sample forecasting. © 1997 John Wiley & Sons, Ltd.
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INTRODUCTION AND MOTIVATION

Periodic autoregressive (PAR) models have proved to be useful in modelling the seasonal and
stochastic trend behaviour of time series (see e.g. Birchenhall ez al., 1989; Osborn, 1988; Franses,
1994; Franses, 1996b, inter alia). PAR models extend conventional autoregressive (AR) models
by allowing the AR parameters to take different values across seasons. This extension yields the
related concept of periodic integration (PI). Intuitively, in order to remove the stochastic trend in
PI models, a differencing filter that varies with the seasons must be used. In contrast, the periodic
unit root hypothesis has a first differencing filter applied to all seasons. Boswijk and Franses
(1996) proposes a formal test for periodic integration of order one. An application of this test to a
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variety of UK macroeconomic series yields widespread evidence of PI (Franses and Paap, 1994).
In fact, other plausible specifications tend to receive very little support relative to PI. The purpose
of this paper is twofold: (1) to develop Bayesian methods for investigating the periodic integra-
tion hypothesis; and (2) to apply these methods to a wide variety of UK series to investigate
whether the rather strong empirical evidence of Franses and Paap (1994) is robust to the adoption
of a different methodological perspective (and also to the inclusion of structural breaks).

Before introducing the PAR model, it is useful to motivate interest in such models. The last few
years have witnessed a growing interest in analysing quarterly observed macroeconomic quan-
tities in raw format (i.e. not seasonally adjusted). A key motivation for this practice is that
economists have come to recognize that seasonal variation seems to be worth while to study in its
own right. Specifically, it may contain relevant information that helps us to explain the behaviour
of economic agents (see e.g. Ghysels, 1994; Miron, 1996, inter alia). A casual look at (the graphs
or the estimated autocorrelation functions of) many quarterly observed macroeconomic time
series readily reveals that seasonal variation is often quite large. In fact, it seems that for
detrended time series, seasonal variation amounts to the dominant source of variation. The
results of regressions of growth rates of such variables on four seasonal dummy variables in
e.g. Barsky and Miron (1989) and Miron (1996), suggest that over 80% of the variation in a
detrended series usually comes from seasonality. This large amount has motivated economic
theorists to revise economic models like Real Business Cycle models, as, for example, is done in
Braun and Evans (1995) and Chatterjee and Ravikumar (1992). In these theoretical models,
seasonality is usually represented as a set of deterministic components which take on different
values in different quarters.

In addition to the observation that seasonal variation is substantial in many macroeconomic
aggregates, several empirical studies have shown that seasonality is not constant over time (see
e.g. Hylleberg, 1994). That is, the amount of seasonal variation may well be still over 80%, but
the relative importance of the observations in each quarter may have changed over time. For
example, it may be that third quarter observations were highest in the 1960s, while in the 1980s it
is the fourth quarter that peaks. Obviously, such changing seasonality cannot be captured by
time-series models with constant parameters (e.g. for the model with seasonal dummies). In fact,
below we will find that constant parameter models will indeed be outperformed by models with
more flexible structures. A class of models that if often used to describe changing seasonality are
the seasonal unit root models (see, e.g. Hylleberg et al., 1990; Harvey and Scott, 1994). Such
seasonal unit roots correspond with stochastic trends at the seasonal frequencies. Strictly speak-
ing, such unit roots allow for wildly fluctuating seasonality. Given the nature of a seasonal unit
root test, it may well be that any changing seasonality is not fluctuating enough in order for one
to find seasonal unit roots. Hence, even when seasonality is changing, one may not find that it can
be characterized by seasonal unit roots (see, e.g. the findings in Beaulieu and Miron, 1993).
However, when one reverses the null hypothesis (i.e. the unit root is no longer the null, but rather
the alternative) as is done in e.g. Canova and Hansen (1995), much more evidence of changing
seasonality can be found.

A third (and more recently established) feature of many macroeconomic variables is that
seasonal variation and nonseasonal variation (in the form of trends and cycles) are often not
independent (see Canova and Ghysels, 1994; Franses, 1995, 19964, inter alia). For example, the
first two studies show that seasonal variation differs across the business cycle. In Franses (1996a)
it is shown through an analysis of consumer confidence indices (which are based on presumably
detrended situations) that consumers tend to face difficulties in disentangling trends from
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seasonals. Notice that, when seasonal variation and non-seasonal variation cannot be separated,
the key assumption underlying seasonal adjustment methods is violated. Indeed, in cases where
separation is not possible, one may find traces of seasonality in the presumably adjusted time
series. Ooms and Franses (1996) show, for two unemployment series, that there are strong
correlations between their estimated seasonal and non-seasonal components. These correlations
are in fact so strong that one can make quite precise forecasts of the seasonal component in the
next quarter using the ‘adjusted’ series in the current quarter. Additionally, these correlations
imply that the adjusted series can be too optimistic in some seasons and too pessimistic in others.
This suggests that, even when one claims only to be interested in forecasting seasonality-free data,
one should take into account that the links between seasonal and non-seasonal variation may
severely bias forecasts and conclusions.

In Franses (1996b) it is argued that these three features of raw quarterly observed macro-
economic time series (i.e. substantial though changing seasonal variation with possible links with
cycles and trends) can be captured by so-called periodic integration models in the univariate case
and periodic cointegration models in the multivariate case. In brief, periodic integration is defined
by the requirement of a seasonally varying differencing filter to remove the stochastic trend.
Osborn (1988) shows that simple periodic integration models may correspond with the permanent
income—life cycle hypothesis for consumption once one allows for seasonally varying utility. For
the multivariate case, Birchenhall er al. (1988) and Franses (1996b) show that periodic
cointegration corresponds with the common linear quadratic adjustment costs model with the
modification that targets and adjustment costs are allowed to vary seasonally (see also Todd,
1990; Hansen and Sargent, 1995). In particular, modifications to the model in Todd (1990)
(to allow for trend) can lead to theoretical models within which non-seasonal shocks may change
the behaviour of agents in some seasons though not in others. Simulation results in Franses
(1996b) and Ooms and Franses (1996) among others show that, when one neglects periodic
parameter variation in the periodically integrated autoregressions (PIAR), one may or may not
find seasonal unit roots and may face under- or overadjustment of the ‘adjusted’ time series.
Furthermore, the recent results in Ghysels, Hall, and Lee (1996) and Boswijk, Franses, and
Haldrup (1996) show that once one allows for periodicity any evidence for seasonal unit roots
tends to disappear. To summarize, the empirical results in Franses and Paap (1994) and Franses
(1996b) suggest rather strong empirical evidence of periodic integration in many univariate
macroeconomic time series.

The present paper uses a Bayesian approach which offers many different ways to compare
models or to test hypotheses. The most common test procedure is to use posterior odds. Posterior
odds are essentially weighted likelihood ratios where the weights are given by the prior distribu-
tion. As a prior becomes flat, more and more weight is placed in regions of the parameter space
where the likelihood is negligible. Hence when working with exact restrictions (such as that
implied by the periodic integration hypothesis, as will be shown in the next section), the prior
distribution must be informative and proper (i.e. integrate to one). Improper priors typically lead
to posterior odds that always favour the restricted model (see Leamer, 1978, pages 110—14 for
details). To avoid this problem, we use informative natural conjugate priors for our posterior
odds analysis. Given the controversy surrounding the use of informative priors we carry out a
sensitivity analysis with respect to the prior hyperparameters. Furthermore, we consider other
methods for shedding light on the periodic integration hypothesis which do not require proper
priors. In particular, we calculate highest posterior density intervals for the unrestricted periodic
model and see whether they contain the PI and periodic unit root models.
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Given the criticism often levelled (by both Bayesians and non-Bayesians) at standard hypo-
thesis testing in econometrics, we feel that it is important to supplement conventional test
procedures with a predictive analysis. For this reason we compare the predictive power of our
models relative to some withheld data.

The paper is organized as follows. After a brief introduction to periodic models is given in the
next section and the third section describes the Bayesian methods used in this paper. The fourth
section applies these methods to several different quarterly UK series. The final section presents
conclusions.

PERIODIC AUTOREGRESSIVE MODELS

The periodic autoregressive model of order p (PAR(p)) for a quarterly univariate time series,
y,(t=1,..., n), is given by

Vi :,US"‘(ISUJ/,_] +”'+¢p.ryr—p+81 (D

The ¢,’s are assumed to be Normal white noise.! Note that p is the maximum length of the AR
orders in each season (i.e. p =max{p }). For detailed accounts of properties of, and estimation
methods for, PAR models, the reader is referred to Pagano (1978) and Tiao and Grupe (1980)
inter alia. Boswijk and Franses (1996) give a detailed discussion of stochastic trends and model
selection.

The PAR(p) process can also be written in differenced form:

Vi =M+ (psytfl + lpls(ytfl - ¢571yt72) +ot l//pfl,s(ytf(pfl) - qssf(pfl)yrfp) +é 2

where ¢,y = fork=0,1,2,...ands=1, 2, 3, 4. Note that the J’s and ¢ s are non-linear
functions of the ¢,’s in equation (1). The series y, has a stochastic trend when the non-linear
restriction ¢,$,P,p, =1 holds. When the ¢ s are not all equal to one, y, is called periodically
integrated. In fact, Boswijk and Franses (1996) shows that, given ¢,¢,¢,¢, = 1, the multivariate
model for the 4 x 1 vector series Y= (Y, Y,7, Y37, Y,;), where Y is the observation for
season s in year 7, has a single unit root. If this restriction holds, we call equation (2) a PIAR(p)
process. In the case where ¢ =1 for all s, the periodic integration model reduces to:

V=V =M+ 0y =y e, O pmny — Ysp) T g 3)

which we refer to as the periodic unit root model. The main difference between the PI process and
the periodic unit root process given in equation (3) is that, for the PI model, the impact of the
stochastic trend varies with the season since the appropriate differencing filter, (1 — ¢ B),
depends on 5.2 In other words, the ‘seasonal pattern’ can change because of the accumulation of
shocks, and shocks in different seasons have different impacts on the future pattern of the time
series.

Boswijk and Franses (1996) propose a sequential model selection strategy to investigate trend
and seasonal properties of univariate time series using models like equation (1). The first step

1 One may want to extend equation (1) by allowing for seasonal heteroscedasticity. For simplicity, this extension is
excluded here, but could be incorporated in a relatively straightforward manner.
2 B is the familiar backshift or lag operator.
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involves using a Likelihood Ratio-based test statistic for the non-linear restriction ¢,¢,$,¢, =1
(which follows a Dickey—Fuller type distribution under the null hypothesis). If the null
hypothesis of ¢,¢,¢,¢, = 1 cannot be rejected, the second step is a test for the restrictions ¢ = 1
for s=1,..., 4. The relevant test statistic follows a ¥%(3) distribution.

Franses and Paap (1994) apply this model selection strategy to a large set of UK macro-
economic time series, and find widespread evidence in favour of ¢,¢,¢5¢, = 1. Moreover, even
though ¢ typically lies near 1 (i.e. values of ¢, in the interval [0.90, 1.10] are usual) the restriction
¢,=...=¢,=1 is invariably massively rejected (typical p-values for this test do not exceed
0.0001).

In the present paper, we employ Bayesian techniques to investigate whether the rather strong
results in Franses and Paap (1994) are robust to the assumed statistical methodology and
structural breaks. Although many hypotheses involving PAR models can be analysed,® we focus
our attention on:

H,: ¢,, ¢,, ¢ and ¢, unrestricted
Hy: 134, =1
H3Z ¢1=¢2=¢3:¢4:1

Note that H; is nested within H,. Given that Franses and Paap (1994), using standard order
selection criteria, found that p=1, 2, or 3 for the series considered, we use p=1 and 4. In
practice, our results for these two choices are generally similar.

As noted previously, the periodic integration model allows for the stochastic trend to have a
varying impact on the series (i.e. an accumulation of shocks can change the seasonal pattern).
Changing seasonal patterns can also be generated by a model which has a structural break in the
seasonal dummies. Hence, for series which appear to be periodically integrated, we also consider
specifications with such a break. That is, we analyse H,, H,, and H; in light of the model:

Y= Hy +55Dr>r + ¢syt—1 +l/jls(yt—1 - ¢s—1yt—2)+

“4)
+ lppfl,s(yrf(pfl) - ¢S,(p,1)y[,p) + &

where D,_ =1 for t > v and =0 otherwise. Given that we do not know the exact breakpoint, 7,
we perform our analysis over all possible breakpoints. Within this context, the Bayesian method
facilitates empirical inference.

BAYESIAN METHODS

In this section we propose Bayesian techniques to analyse the hypotheses H,, H,, H;. The
periodic integration restriction is non-linear. In order to reduce the computational burden we
sometimes use an approximation to ensure linearity. A full Bayesian analysis which explicitly
incorporated the non-linearity would be possible, but would require computationally intensive
techniques such as Gibbs sampling. Since we wish to consider the properties of many series and
to carry out a careful prior sensitivity analysis for each series, it is necessary to avoid such
computationally burdensome techniques.

3 Given the overwhelming evidence against standard linear AR models with seasonal dummies, we do not consider such
models.
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The periodic integration restriction, ¢,¢,$,¢, = 1, can be linearized by taking logs and noting
that log(1l 4 x) is approximately x for small x. In practice, the ¢/s are near one so that the
approximation is a good one. Under this approximation, the periodic integration hypothesis
involves the linear restriction ¢, 4+ ¢, + ¢5 + ¢, = 4. For the PIAR(1) model this approximation
is adequate to ensure linearity.

The PAR(p) model is non-linear in the parameterization we have used for p > 1 (see equation
(2)). This parameterization is convenient since it ensures that the periodic unit root restriction
remains ¢, ¢3¢, =1 for all p. To eliminate this non-linearity we replace the y,’s, which are
nuisance parameters, by maximum likelihood estimates. ThlS amounts to workmg with the
conditional density p(¢, o2|Data, ¥ = ™) instead of [p(¢, a2, y|Data) dy, where ¢ = (¢,, ¢,,
¢+, ¢,). In practice, the former can be expected to be a good approximation to the latter.
Asymptotically, these two densities will be identical.

Posterior odds analysis

If we proceed conditionally on p initial observations, then the linear time-series models can be
treated as standard linear regression models. Assuming a natural conjugate prior,* posterior odds
can be calculated analytically using the formula, for instance, in Judge et al. (1985), page 129.
Throughout this paper, we adopt natural conjugate or flat priors. As noted, for posterior odds
informative priors are required, so the flat prior is not suitable.

Let y=(y,,..., yp) and X; be the appropriate T x K; matrix containing all the explanatory
variables under H, (j=1, 2, 3). Then the three models can be written as y = X [3 +¢; where & is
N(O, o; 2] r). The natural conjugate prior is the Normal-gamma, i.e. we assume p(ﬂ . 0; 2) =
fN(ﬁ |ﬂoj, a7 Q )fG(o |s0] ,vol) where f(-|a, B) is the multivariate Normal dlstrlbuuon with
mean a and covariance matrix B and f(-|c, d) denotes the Gamma distribution with mean ¢
and variance 2¢?/d. The prior hyperparameters ﬁol, Q; So, and vo; must be elicited. Throughout
this paper we choose hyperparameters centred over the per1odlc unit root model (e.g. we set
By =1(0,0,0,0, 1, 1, 1, 1)). In doing so, we stack the odds, so to speak, in favour of the periodic
unit root model H;.

To select the other prior hyperparameters we begin by eliciting a prior under H, . Since we have
little prior information about o2, prior degrees of freedom are set to 3 (which is the lowest
possible value consistent with the existence of the marginal prior mean and covariance of ), and
sy = 10,000. In other words, the prior mean of the error precision is 10,000 and its standard
deviation is around 5000. Loosely speaking, we are saying we expect the standard deviation of the
error to be around 0.01, but are very uncertain about the precise value. The matrix of prior
hyperparameters, €, can be elicited by noting that the marginal prior covariance matrix for f3,
is vO]sng01 /(vg; — 2). To aid in our prior sensitivity analysis we set

(8 0
o= (4 )

where 6, and J, are scalars. That is, we assume the regression parameters are, a priori, independ-
ent of each other but allow for the seasonal dummy coefficients to have a different prior standard

4 Phillips (1991) suggests using Jeffreys’ prior for time-series models. However, this prior is improper and has several
undesirable properties (see the discussion following Phillips, 1991). This prior and other candidate priors all have the
drawback that analytical results for posterior odds are not available and hence they require the use of computationally
intensive methods such as Importance Sampling. We do not make use of these priors here.
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deviation than the periodic autoregressive parameters. We focus on prior sensitivity with respect
to 6,. In particular, we let §, take values between 33.333 and 3333.333, values which imply prior
standard deviations between 0.1 and 1. We set 6, = 3333.333 (i.e. prior standard deviation equal
to one) for the seasonal dummy coefficients to reflect the relative lack of prior knowledge of these
parameters, which are common to all models. There are, of course, other directions in which we
could carry out a prior sensitivity analysis, but the spread of the prior is a key aspect we wish to
focus on.

In theory, we can use any prior we want for H, and H,. However, it makes sense to select
priors which are consistent with that elicited under H, . In particular, we use priors of the form
P(ﬁzs 052) = p(ﬂ]a 0?2 | (l')] + ¢2 + ¢3 + ¢4 =4) and P(ﬁ3v 052) = P(ﬁls sz | (151 = ¢2 = 4)3 =
¢, = 1). Since the restrictions are both linear, priors for all models are Normal-Gamma
(see Raiffa and Schlaifer, 1961 or Poirier, 1985 for details).

Highest posterior density intervals
Since the use of informative priors is somewhat controversial, we also construct Highest Posterior
Density Intervals (HPDIs) using the unrestricted model, H,, and the standard flat prior:
p(B,, o)) x ol_l. The marginal posterior for 8, takes the form of a multivariate Student-# distri-
bution, so HPDISs can easily be calculated. We can then check whether the restriction implied by
H, lies in the relevant HPDIs. H; is a test of a joint hypothesis, so HPDIs will be multi-
dimensional. To surmount this problem, note that, since v, is typically quite large, the posterior
for B, is approximately Normal, as is R f,, where R, is a 4 x K| matrix and the unit root
restriction is written as R,f; = (1 1 1 1)". Taking the inner product of standardized Normals, we
obtain a y*(4) distribution which can be used for the joint test that o =0, =p;=¢,=1.

We present ‘Bayesian p-values’ based on these HPDIs. For instance, for PI we calculate
(1o, + ¢y + ¢35+ ¢, — M| <4 — M|Data), where M is the posterior mean of ¢, + ¢, +
b3+ 9,0

Predictive distributions

In this paper, we consider the predictive performance of our three models by withholding
ten years of data.® That is, we work with Py, HY), prry v, Hy), and p(y4, |y, Hy). Note,
however, that while analytical expressions for these densities do not exist it is easy to calculate
their properties using simple Monte Carlo integration. These predictive densities may be of
interest in and of themselves (e.g. whether they vary significantly over the seasons). As to more
formal investigation of the periodic integration hypothesis, we calculate the following predictive
mean-square error criteria:

PMSE(n) = 3 E(ry, — 15, )
i=1

where y*T +; 1s the actual realization of the random variable y_ ;.

3 This can be thought of as a two-sided test. For the joint test of H; we present one-sided Bayesian p-values.
¢ Note that our posterior odds and HPDI analysis use the complete data set.
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EMPIRICAL RESULTS

In this section we apply our Bayesian methods to nine major UK macroeconomic time series. All
data are in logs and observed from 1955:1 to 1988 :4 (except for the stock price series which
starts in 1963 : 1: details are given in Table I). These data have been analysed using the periodic
model in Franses and Paap (1994) and Franses (1996b). We begin by presenting a few basic
properties of the periodic model, following which we present results from HPDI tests, posterior
odds, and the prediction exercise.

Table I. Variable notation and definitions (all data are quarterly from
1955:1 to 1988 :4, except stock prices which run from 1963:1 to 1988:4)

GDP = GDP at 1985 prices

TOTCONS = total consumption at 1985 prices
CONSDUR = consumption of durables at 1985 prices
NONDUR = consumption = of non-durables at 1985 prices
TOTINV = total investment at 1985 prices

EXPORTS = exports at 1985 prices

IMPORTS = imports at 1985 prices

PRICES = index of retail prices (1985 = 100)

STOCKP = FT index stock prices (1 July 1985 =100)

VXA h W=

Properties of periodic model
Equation (2) presents the unrestricted PAR model. Under a flat prior and the assumptions given

above, the posterior distribution of ¢ is multivariate-¢. Since it is simple to take random draws
from this distribution, it is easy to simulate the properties of any function of ¢. Accordingly, we
use Monte Carlo integration” to plot the distribution of ¢,¢,¢;¢,. If the value 1 lies in a region
that receives appreciable posterior probability, then this is informal evidence in favour of PI.
Figures 1(a)-1(i) plot these posteriors for the PAR(4) model for the nine series. Results for
PAR(1) are qualitatively similar and are omitted for the sake of brevity. The graphs also include
the marginal posteriors for the individual ¢;s. Note that this is the only part of the empirical
work where we do not rely on the ¢, + ¢, + ¢; + ¢, =4 approximation for the PI model.

An examination of the figures reveals widespread evidence of PI. All the series yield posteriors
for ¢,¢,p5¢, which include one in regions of non-negligible probability. Furthermore, with the
exception of prices and stock prices (and possibly imports), there is little evidence for the periodic
unit root model, H,. That is, at least one of the ¢;’s tends to have a distribution which is located
far from one. A common pattern in several of the series (especially the major macroeconomic
quantity aggregates—GDP, components of consumption and investment) is that dynamics in the
second quarter seem stationary (¢, around 0.92) while the third quarter exhibits explosive
behaviour (¢, around 1.05).

Overall, we draw the following informal conclusions from these figures:

(1) The variables which measure quantities (GDP, consumption, consumption of durables,
consumption of non-durables, investment, exports, and imports) all support H,, while the
variables which measure prices support H;.

(2) With the exception of prices and stock prices, all the series seem to have dynamics which
differ across the seasons.

7 For all the Monte Carlo integrations carried out in this paper we used 10,000 replications.

J. forecast, Vol. 16, 509-532 (1997) © 1997 John Wiley & Sons, Ltd.



A Bayesian Analysis of Periodic Integration 517

o]
o T T Y T T T
(=] Prod of phi's
i — — phi(1)
L | phi(2) ]
N -~ = phi(3)
- phi(4) 4
(=]
S8 4
(=]
[Y=]
S i
~N
St
«Q
(= = 4
=} \
I i
1
-
- B Y
g \ ﬂ
L . ‘\ 4
8. L JURER i L il L L7 . .\ i !
© 0.80 0.84 0.88 0.92 0.96 1.00 1.04 1.08 1.12 1.16 1.20
(a)
Figure 1. Posterior pdfs based on PAR(4)
Figure 1(a) GDP
o~
M T T T T T T
(=4 ~——— Prod of phi's
ol _ — phig1g
NI - phi(2 E
1 - - - phi(3) N
| | e phi(4) )
St v ]
]
(o]
o B .
o
©
S J
- J
S .
[0}
Q- .
<
<
- =
o
= — . A < . , ,
© 0.80 0.84 0.88 Q.92 Q.96 1.00 1.04 1.08 1.12 1.16 1.20
(b)

© 1997 John Wiley & Sons, Ltd.

Figure 1(b) total consumption

J. forecast, Vol. 16, 509532 (1997)



518 P. H. Franses and G. Koop
o~
S Prod of phi's ' ' ' ’ ' '
- — — phi(1) ]
ol phi(2)
St - -~ phi(3) .
vvvvvvvvvvvvv phi(4)
- v
S .
<
L r=
© /
=i S
of Y.
. J // \ d
; ™~
St / / .
(=} -— /
/
L / ,
St / /! i
(=] Ve
Ve
B 4
=} & . -
(j_ M L i LTTEN PRLITITN A — L = - 1 i
< 0.80 0.84 Q.88 0.92 0.96 1.00 1.04 1.08 1.12 1.16 1.20
(c)
Figure 1(c) consumption of durables
w
"’. T L ¥ T T LS
<l Prod of phi's ]
o — — phi(1)
ar | phi(2) 1
ol - -~ phi(3)
NE ] e phi(4) _
o -
-
(\! - -
(=]
(=]
t\{ - -
(=)
(4=
S
N
S
[s2]
Sl 4
o -
-
ol i
e -
O' . 1 A ik L ol k O 1 i
< 0.80 0.84 0.88 0.92 Q.96 1.00 1.04 1.08 1.12 1.16 1.20
(d)

Figure 1(d) consumption of non-durables

J. forecast, Vol. 16, 509-532 (1997)

© 1997 John Wiley & Sons, Ltd.



A Bayesian Analysis of Periodic Integration 519

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18

| ———— Prod of phi's ' ' ‘ ' ' '

— — phi(1)
i - phi(2) 7
I - =~ phi(3)
j ............. ph'(%) I /\\ -
N \ .
i v, |
L \“ ]
| \\‘

\y i
I b ]
i Yy
" \Y i
L 10
- \\\ i
i ) , Ll — , . ,\\\,Q -
0.80 0.84 0.88 Q.92 Q.96 1.00 1.04 1.08 1.12 1.16 1.20
(e)

Figure 1(e) total investment

~
N T T T T T T
(= Prod of phi's
- — — phi(1)
8 ....... phi(z)
s ~ == phi(3) b
I R phi(4)
©
poe .
o~
O. [~ -
©
S} = R
=)
<+
Q- -
=}
(=]
q ) A i —l o - 1 1
© 0.80 0.84 0.88 0.2 0.96 1.00 1.04 1.08 1.12 1.16 1.20

© 1997 John Wiley & Sons, Ltd.

Figure 1(f) exports

J. forecast, Vol. 16, 509-532 (1997)



520 P. H. Franses and G. Koop

Prod of phi's

[~}
~N
o
=4 — — phi(1)
s[ | phi(2) 7
of ———. phi(3) 1
sy | phi(4) ]
- ]
=3 _
~ )
=3 ]
o ]
S{ N
o«
Q- -
=1
©w B -
<k -
d -
- ]
ol i
o -
o™~
I -
O. -
8_ 2 " ! - s , ) .
© 0.80 0.84 0.88 0.92 0.96 1.00 1.04 1.08 1.12 1.16 1.20
(¢)]
Figure 1(g) imports

'\' T T L T L] T
e ——— Prod of phi's

i — — phi(1) ]
© .

an - phi(2) i

S - -~ phi(3)

BT phi(4)
| 4
=}
<+ -
=t
e} B
[
o~ N
(=]
St i
S R P N \
“0.80 0.84 0.88 0.92 1.12  1.16  1.20

J. forecast, Vol. 16, 509-532 (1997)

(h)

Figure 1(h) prices

© 1997 John Wiley & Sons, Ltd.



A Bayesian Analysis of Periodic Integration 521

Prod of phi's '_

i — — phi(1) ;o |
- pi(2) AN ]
F |- - pni(®) AN ‘ ‘
O phi(4) . / § /[:ﬂ\ ‘\ -

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

N -7 N Tyl g N
0.80 0.84 0.88 Q.92 0.96 1.00 1.04 1.08 1.12 1.16 1.20

®

Figure 1(i) stock prices

0.00 0.01
4

Highest posterior density interval tests

Table II presents Bayesian p-values based on highest posterior density intervals as described in
the previous section. This table strongly reinforces the informal conclusions drawn in that
section, which is not surprising since the results are based on the same flat prior. That is, there is
strong evidence of PI for all of the quantity series for both the PAR(1) and PAR(4) models.
Furthermore, although some individual ¢;’s are near one, the hypothesis that ¢, =1 for all i can
be safely rejected for all the quantity series. There is much more evidence of a periodic unit root
for the stock price series. The only possible discrepancy between the results in Figures 1(a)—1(i)
and those in Table II is for prices. A visual inspection of Figure 1(h) indicates that H, has
significant support. However, the joint test that ¢, =1 for all 7 receives little support. This is
undoubtedly largely due to the joint nature of the test, since each of the individual ¢;’s seems to
be near 1. Nevertheless, we will pay extra attention to this variable in the next empirical
investigation.

An informal measure of fit

Table III presents results for an informal measure of fit: how well does a model explain the
growth rate of the series being considered? Using the flat prior of the previous section, we
calculate the following ‘Bayesian R”’:

E(c? | Data)

R =1
var(Ay,)

where 6% = var(e,). As its name implies, it has an interpretation analogous to the standard R°.
Results in Table III are supportive of the general pattern found previously: as compared to the

PIAR model, the PAR model adds little explanatory power in most cases. However, in many

© 1997 John Wiley & Sons, Ltd. J. forecast, Vol. 16, 509-532 (1997)
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Table II. Bayesian p-values based on PAR(1) and PAR(4)

H, H, ¢ =1 $,=1 $y=1 $y=1
PAR(])
GDP 0.71 2.5E-8 0.77 2.6E-7 1.3E-3 0.43
TOTCONS 0.52 2.7E-19 1.4E-3 2.9E-12 5.1E-6 0.75
CONSDUR 0.85 1.6E-7 1.8E-4 1.3E-6 3.5E-5 1.3E-6
NONDUR 0.44 2.8E-19 0.57 4.6E-12 4.8E-4 8.2E-6
TOTINV 0.30 6.7E-11 0.04 1.4E-9 0.02 0.44
EXPORTS 0.61 3.3E-3 1.3E-3 0.10 0.21 0.48
IMPORTS 0.87 7.3E-3 0.05 0.03 0.12 0.12
PRICES 2.0E-3 0.01 0.17 6.6E-3 0.07 0.71
STOCKP 0.94 0.94 0.80 0.88 0.43 0.82
PAR(4)
GDP 0.94 2.3E-21 0.59 8.2E-6 2.0E-6 0.41
TOTCONS 0.25 7.1E-22 1.8E-3 9.2E-13 4.4E-7 0.74
CONSDUR 0.12 6.1E-37 4.7E-3 1.2E-8 4.9E-6 8.4E-6
NONDUR 0.26 3.5E-20 0.62 1.7E-11 1.4E-4 1.5E-5
TOTINV 0.44 8.5E-11 0.04 5.5E-9 9.0E-3 0.58
EXPORTS 0.64 1.6E-4 4.5E-4 0.29 0.01 0.60
IMPORTS 0.62 5.7E-3 0.02 0.03 0.52 0.11
PRICES 0.34 3.2E-4 0.47 0.21 0.27 0.72
STOCKP 0.73 0.77 0.86 0.60 0.61 0.32
Table I1I. ‘Bayesian R?: 1 — E(¢?|Data)/var(Ay)

PAR(4) PIAR(4) UNIT(4) PAR(1) PIAR(1) UNIT(1)

GDP 0.867 0.867 0.837 0.814 0.814 0.720
TOTCONS 0.940 0.939 0.917 0.932 0.932 0.879
CONSDUR 0.651 0.644 0.552 0.466 0.466 0.086
NONDUR 0.971 0.971 0.963 0.969 0.969 0.946
TOTINV 0.731 0.729 0.661 0.693 0.691 0.565
EXPORTS 0.520 0.520 0.461 0.354 0.352 0.262
IMPORTS 0.363 0.362 0.311 0.252 0.252 0.190
PRICES 0.670 0.665 0.628 0.203 0.137 0.122
STOCKP 0.306 0.305 0.285 0.112 0.112 0.103

cases the PIAR model adds significant explanatory power relative to the periodic unit root
model (labelled UNIT in Table III). In most (but not all cases), adding extra lags provides
significant improvements in the Bayesian RZ.

The last column in Table III (labelled UNIT(1)) is of particular interest. This provides a useful
benchmark since the periodic unit root model with p = 1 reduces to a model where the seasonal
variation in the growth rate of the series is explained solely by seasonal dummies as is the case in
e.g. Barsky and Miron (1989). Hence, this column measures the role of purely deterministic
seasonality. In some cases (TOTCONS and CONSDUR) seasonal dummies can explain a great
deal, but in most cases (especially CONSDUR, PRICES and STOCKP) the addition of
stochastic periodicity greatly improves the fit. For a key series like GD P, going from the purely
deterministic model to the slightly less restrictive PIAR(1) model causes the Bayesian R? to rise
from 0.720 to 0.814.
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Table IV. Posterior model probabilities for H, (H, in parentheses) corresponding to different prior standard
deviations under H; in PAR models of order p

p=1 p=4
Prior st. dev. 0.10 0.20 1.00 0.10 0.20 1.00
GDP 0.81 0.89 0.98 1.00 1.00 0.96
(0.20) (0.11) (0.02) (0.00) (0.00) (0.00)
TOTCONS 0.83 0.90 0.98 1.00 1.00 1.00
(0.17) (0.10) (0.02) (0.00) (0.00) (0.00)
CONSDUR 0.65 0.79 0.95 1.00 1.00 1.00
(0.35) (0.21) (0.05) (0.00) (0.00) (0.00)
NONDUR 0.85 0.92 0.98 1.00 1.00 0.97
(0.15) (0.08) (0.02) (0.00) (0.00) (0.00)
TOTINV 0.64 0.78 0.95 1.00 1.00 1.00
(0.36) (0.22) (0.05) (0.00) (0.00) (0.00)
EXPORTS 0.77 0.83 0.13 1.00 0.98 0.32
(0.23) (0.12) (0.00) (0.00) (0.00) (0.00)
IMPORTS 0.79 0.80 0.06 0.83 0.47 0.01
(0.20) (0.10) (0.00) (0.06) (0.02) (0.00)
PRICES 0.00 0.00 0.00 0.03 0.00 0.00
(0.01) (0.01) (0.00) (0.00) (0.00) (0.00)
STOCKP 0.33 0.08 0.00 0.40 0.12 0.00
(0.19) (0.02) (0.00) (0.23) (0.00) (0.00)

Posterior odds

Table IV presents posterior model probabilities based on posterior odds (assuming equal prior
odds) for different values of 6,, for p =1 and 4.3 In particular, we choose 0, such that, under H,,
the prior standard deviation takes on one of three values: 0.1, 0.2 and 1. We believe that a prior
standard deviation of 0.2 is most reasonable; nevertheless we consider these other values in order
to investigate prior sensitivity of our results. Priors under H, and H; are induced from the prior
under H, as described in the previous section.

Results for the first five series can be dealt with quickly: there is overwhelming evidence for PI.
Exports and imports require a bit more care since the periodic unit root model (H,) gets
significant posterior probability when the prior standard deviation under H, is 1. Our tendency is
to dismiss this finding on the grounds that the resulting prior is very flat and, as indicated before,
tends to favour more restricted models such as Hj;.

Posterior odds also reinforce our informal intuition that stock prices and prices can be
described by a periodic unit root model. In fact, unlike with the HPDI tests, there is over-
whelming evidence for this hypothesis.’ This finding reinforces our initial mistrust of HPDI tests
in high-dimensional problems.

Overall, on the basis of all our in-sample analysis, we would conclude that periodic integration
occurs for all of our quantity variables, but not for our price variables. Prices and stock prices
exhibit simple periodic unit root behaviour. Note that these findings are similar to those given in
Franses and Paap (1994), who use classical methods and find periodic integration for all the series

8 We only present p(H,|Data) and p(H,|Data). p(H |Data) is, of course, one minus the sum of the previous two.
9 Although we do not con31der this extension, it is possible that this model may be reduced to a non-periodic unit root
model.
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considered here except the price and stock price series, which they find to exhibit non-periodic
unit root behaviour.

Predictive analysis

Figures 2(a)-2(i) contain predictive mean squared errors (PMSEs) for different forecast horizons
as described in the previous section for models p = 4. Results for models with p =1 tend to be
qualitatively similar but provide more evidence in favour of the periodic integration hypothesis.
Before discussing these figures in detail, it should be stressed here that predictive analysis is very
different from the sort of in-sample measures considered previously. If the structure of the model
is changing in a way that is not captured by the model, then a good in-sample fit will not
guarantee good out-of-sample forecasts. Furthermore, results in this section use only a subset of
the data used previously. (With the exception of stock prices, for the in-sample calculations
n=136. Here we use n =136 — 40 =96 observations and reserve 40 observations of hold-out
data to compare with the predictions made using the 96 observations.) Note also, that we are
using data through 1978:4 to predict 1979:1 to 1988:4. In other words, we are using pre-
Thatcher data to try to predict behaviour during the Thatcher years.

With this in mind, consider the results in Figures 2(a)—2(i). The strongest impression is that the
unrestricted PAR model does very poorly (except for the investment series), probably due to
overparameterization. At short horizons, all the models have similar forecasting performance,
but at medium to long horizons differences appear. For most of the series (i.e. GDP, consump-
tion, consumption of non-durables, exports, and imports) the PI model does best or nearly best.
However, the periodic unit root model does very well for most of the series. In many cases, it
predicts just as well as the PI model, and in some cases (e.g. consumption of non-durables) it does
better. One possible reason for this finding is that some sort of structural break occurred, a
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possibility which will be examined shortly. However, a more likely reason is the superior
parsimony that the periodic unit root model has relative to the other models.

Structural break model

As discussed earlier, the structural break model given in equation (4) can possibly exhibit similar
behaviour to the PI model. We are interested in whether we have mistakenly chosen PI when in
reality equation (4) is the correct specification. This suggests the following strategy: choose the
breakpoint which yields the least evidence of periodic integration. To keep things simple, we use a
flat prior and report Bayesian p-values for PI as well as for the joint test that all seasons have no
structural break (i.e. 6,=0 in equation (4)). Furthermore, given the results of our predictive
analysis, we focus on p = 4. Results are reported in Table V. Note that we now use the full sample
again. For all series (except the two price series, for which there is little evidence of PI), allowing
for a structural break in the seasonal dummies decreases the evidence for P1. However, there still
is substantial evidence for PI for many series. Interestingly enough, with some exceptions, in the
last column of Table V there is no overwhelming evidence for a structural break.

The strategy used in Table V is liable to the criticism of data mining. That is, we are deliberately
looking over dozens of breakpoints for the one which will yield the strongest evidence against PI.
An alternative strategy would be to find the breakpoint which maximizes the likelihood function,
which is done in Table VI. In this table, there is much evidence for periodic integration—as well
as substantial evidence of the presence of a structural break. The conclusion of this table is that a

Table V. Bayesian p-values for structural break which minimizes evidence in
favour of periodic integration model

Breakpoint PI restriction Struct. break
GDP 1973:4 0.14 0.13
TOTCONS 1973:2 0.02 0.03
CONSDUR 1960: 3 0.11 0.25
NONDUR 1973:2 0.01 0.09
TOTINV 1982:2 0.05 0.03
EXPORTS 1968 : 1 0.00 0.00
IMPORTS 1974: 1 0.12 0.06
PRICES 1981:3 0.02 0.10
STOCKP 1980:3 0.01 0.09

Table VI. Bayesian p-values for structural break which maximizes likelihood

Breakpoint PI restriction Struct. break
GDP 1967:4 0.44 0.00
TOTCONS 1977:2 0.91 0.00
CONSDUR 1958 : 1 0.31 0.01
NONDUR 1977:2 0.81 0.00
TOTINV 1982:3 0.06 0.03
EXPORTS 1968:2 0.01 0.00
IMPORTS 1967: 1 0.96 0.03
PRICES 1961:2 0.62 0.00
STOCKP 1973:2 0.17 0.05
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structural break did occur (which could account for some of the predictive results noted before),
but that periodic integration still is a plausible hypothesis for most of the series.

The likelihood function tends to be a fairly flat and multimodal function of the breakpoint, so it
is hazardous to discuss its exact timing. Nevertheless, note that the timing of the breakpoint seems
(with a few exceptions) to be clustered around three points in time: (1) the increases in VAT which
occurred in 1968 and 1973; (2) the oil shock of 1973 : 4; and (3) the recession in the early years of
the Thatcher era. We take this as mildly supportive evidence that our analysis is reasonable; that is,
that sensible breakpoints have been found.

Overall, there seems to be significant evidence of a structural break in many of the series.
Although this weakens only slightly the evidence of periodic integration, the structural break
could account for the poor forecasting performance of the PI model in some cases.

CONCLUSIONS

In this paper we describe Bayesian methods for providing evidence for the presence of periodic
integration. Informal posterior analysis, HPDI tests, posterior odds, and prediction are all used
to shed light on this important hypothesis. A careful empirical analysis of the periodic integration
hypothesis in UK macroeconomic time series is carried out. Our in-sample findings support the
findings of Franses and Paap (1994) that many UK series seem to be periodically integrated. This
finding is of empirical relevance to UK macroeconomists. In PI models the seasonal and non-
seasonal components of the data are not independent of each other so that standard seasonal
adjustment procedures will produce inadequate seasonally corrected time series. Furthermore,
the finding of periodic integration means that traditional unit root models will be unsuited to
capturing the stochastic trend properties of the series.
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