Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Minimal Residual Disease

Preemptive alloimmune intervention in high-risk pediatric acute lymphoblastic leukemia patients guided by minimal residual disease level before stem cell transplantation

Abstract

Relapse of pediatric acute lymphoblastic leukemia (ALL) remains the main cause of treatment failure after allogeneic stem cell transplantation (alloSCT). A high level of minimal residual disease (MRD) before alloSCT has been shown to predict these relapses. Patients at risk might benefit from a preemptive alloimmune intervention. In this first prospective, MRD-guided intervention study, 48 patients were stratified according to pre-SCT MRD level. Eighteen children with MRD level 1 × 10−4 were eligible for intervention, consisting of early cyclosporine A tapering followed by consecutive, incremental donor lymphocyte infusions (n=1–4). The intervention was associated with graft versus host disease grade II in only 23% of patients. Event-free survival in the intervention group was 19%. However, in contrast with the usual early recurrence of leukemia, relapses were delayed up to 3 years after SCT. In addition, several relapses presented at unusual extramedullary sites suggesting that the immune intervention may have altered the pattern of leukemia recurrence. In 8 out of 11 evaluable patients, relapse was preceded by MRD recurrence (median 9 weeks, range 0–30). We conclude that in children with high-risk ALL, immunotherapy-based regimens after SCT are feasible and may need to be further intensified to achieve total eradication of residual leukemic cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Pui CH, Evans WE . Acute lymphoblastic leukemia. N Engl J Med 1998; 339: 605–615.

    Article  CAS  PubMed  Google Scholar 

  2. Pui CH, Robison LL, Look AT . Acute lymphoblastic leukaemia. Lancet 2008; 371: 1030–1043.

    Article  CAS  PubMed  Google Scholar 

  3. Balduzzi A, Valsecchi MG, Uderzo C, De LP, Klingebiel T, Peters C et al. Chemotherapy versus allogeneic transplantation for very-high-risk childhood acute lymphoblastic leukaemia in first complete remission: comparison by genetic randomisation in an international prospective study. Lancet 2005; 366: 635–642.

    Article  PubMed  Google Scholar 

  4. Borgmann A, von Stackelberg A, Hartmann R, Ebell W, Klingebiel T, Peters C et al. Unrelated donor stem cell transplantation compared with chemotherapy for children with acute lymphoblastic leukemia in a second remission: a matched-pair analysis. Blood 2003; 101: 3835–3839.

    Article  CAS  PubMed  Google Scholar 

  5. Bader P, Hancock J, Kreyenberg H, Goulden NJ, Niethammer D, Oakhill A et al. Minimal residual disease (MRD) status prior to allogeneic stem cell transplantation is a powerful predictor for post-transplant outcome in children with ALL. Leukemia 2002; 16: 1668–1672.

    Article  CAS  PubMed  Google Scholar 

  6. Knechtli CJ, Goulden NJ, Hancock JP, Grandage VL, Harris EL, Garland RJ et al. Minimal residual disease status before allogeneic bone marrow transplantation is an important determinant of successful outcome for children and adolescents with acute lymphoblastic leukemia. Blood 1998; 92: 4072–4079.

    CAS  PubMed  Google Scholar 

  7. van der Velden VHJ, Joosten SA, Willemse MJ, van-Wering ER, Lankester A, van Dongen JJM et al. Real-time quantitative PCR for detection of minimal residual disease before allogeneic stem cell transplantation predicts outcome in children with acute lymphoblastic leukemia. Leukemia 2001; 15: 1485–1487.

    Article  CAS  PubMed  Google Scholar 

  8. Krejci O, van der Velden VHJ, Bader P, Kreyenberg H, Goulden N, Hancock J et al. Level of minimal residual disease prior to haematopoietic stem cell transplantation predicts prognosis in paediatric patients with acute lymphoblastic leukaemia: a report of the Pre-BMT MRD Study Group. Bone Marrow Transplant 2003; 32: 849–851.

    Article  CAS  PubMed  Google Scholar 

  9. Sramkova L, Muzikova K, Fronkova E, Krejci O, Sedlacek P, Formankova R et al. Detectable minimal residual disease before allogeneic hematopoietic stem cell transplantation predicts extremely poor prognosis in children with acute lymphoblastic leukemia. Pediatr Blood Cancer 2007; 48: 93–100.

    Article  PubMed  Google Scholar 

  10. Weisdorf DJ, Nesbit ME, Ramsay NK, Woods WG, Goldman AI, Kim TH et al. Allogeneic bone marrow transplantation for acute lymphoblastic leukemia in remission: prolonged survival associated with acute graft-versus-host disease. J Clin Oncol 1987; 5: 1348–1355.

    Article  CAS  PubMed  Google Scholar 

  11. Atra A, Miller B, Shepherd V, Shankar A, Wilson K, Treleavan J et al. Donor lymphocyte infusion for childhood acute lymphoblastic leukemia relapsing after bone marrow transplantation. Br J Haemat 1997; 97: 165–168.

    Article  CAS  Google Scholar 

  12. Passweg JR, Tiberghien P, Cahn JY, Vowels MR, Camitta BM, Gale RP et al. Graft-versus-leukemia effects in T lineage and B lineage acute lymphoblastic leukemia. Bone Marrow Transplant 1998; 21: 153–158.

    Article  CAS  PubMed  Google Scholar 

  13. Sullivan KM, Weiden PL, Storb R, Witherspoon RP, Fefer A, Fisher L et al. Influence of acute and chronic graft-versus-host disease on relapse and survival after bone marrow transplantation from HLA-identical siblings as treatment of acute and chronic leukemia. Blood 1989; 73: 1720–1728.

    CAS  PubMed  Google Scholar 

  14. Horowitz MM, Gale RP, Sondel PM, Goldman JM, Kersey J, Kolb HJ et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood 1990; 75: 555–562.

    CAS  PubMed  Google Scholar 

  15. Locatelli F, Zecca M, Rondelli R, Bonetti F, Dini G, Prete A et al. Graft versus host disease prophylaxis with low-dose cyclosporine-A reduces the risk of relapse in children with acute leukemia given HLA-identical sibling bone marrow transplantation: results of a randomized trial. Blood 2000; 95: 1572–1579.

    CAS  PubMed  Google Scholar 

  16. Bader P, Kreyenberg H, Hoelle W, Dueckers G, Handgretinger R, Lang P et al. Increasing mixed chimerism is an important prognostic factor for unfavorable outcome in children with acute lymphoblastic leukemia after allogeneic stem-cell transplantation: possible role for pre-emptive immunotherapy? J Clin Oncol 2004; 22: 1696–1705.

    Article  PubMed  Google Scholar 

  17. Kolb H-J, Schattenberg A, Goldman JM, Hertenstein B, Jacobson N, Arcese W et al. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood 1995; 86: 2041–2050.

    CAS  PubMed  Google Scholar 

  18. Veerman AJ, Kamps WA, van den BH, van den BE, Bokkerink JP, Bruin MC et al. Dexamethasone-based therapy for childhood acute lymphoblastic leukaemia: results of the prospective Dutch Childhood Oncology Group (DCOG) protocol ALL-9 (1997–2004). Lancet Oncol 2009; 10: 957–966.

    Article  CAS  PubMed  Google Scholar 

  19. Peters C, Schrauder A, Schrappe M, von SA, Stary J, Yaniv I et al. Allogeneic haematopoietic stem cell transplantation in children with acute lymphoblastic leukaemia: the BFM/IBFM/EBMT concepts. Bone Marrow Transplant 2005; 35 (Suppl 1): S9–S11.

    Article  PubMed  Google Scholar 

  20. Vossen JM, Heidt PJ, van den Berg H, Gerritsen EJA, Hermans J, Dooren LJ . Prevention of infection and graft-versus-host disease by suppression of intestinal microflora in children treated with allogeneic bone marrow transplantation. Eur J Clin Microbiol Infect Dis 1990; 9: 14–22.

    Article  CAS  PubMed  Google Scholar 

  21. Slaper-Cortenbach IC, Wijngaarden-du Bois MJ, Vries-van Rossen A, Borst HP, van der LH, van Heugten HG et al. The depletion of T cells from haematopoietic stem cell transplants. Rheumatology (Oxford) 1999; 38: 751–754.

    Article  CAS  Google Scholar 

  22. Glucksberg H, Storb R, Fefer A, Buckner CD, Neiman PE, Clift RA et al. Clinical manifestations of graft-versus-host disease in human recipients of marrow from HLA-matched sibling donors. Transplantation 1974; 18: 295–304.

    Article  CAS  PubMed  Google Scholar 

  23. Verhagen OJ, Willemse MJ, Breunis WB, Wijkhuijs AJ, Jacobs DC, Joosten SA et al. Application of germline IGH probes in real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia. Leukemia 2000; 14: 1426–1435.

    Article  CAS  PubMed  Google Scholar 

  24. van der Velden VHJ, Wijkhuijs JM, Jacobs DC, van Wering ER, van Dongen JJ . T cell receptor gamma gene rearrangements as targets for detection of minimal residual disease in acute lymphoblastic leukemia by real-time quantitative PCR analysis. Leukemia 2002; 16: 1372–1380.

    Article  CAS  PubMed  Google Scholar 

  25. van der Velden VH, Willemse MJ, van der Schoot CE, Hahlen K, van Wering ER, van Dongen JJ . Immunoglobulin kappa deleting element rearrangements in precursor-B acute lymphoblastic leukemia are stable targets for detection of minimal residual disease by real-time quantitative PCR. Leukemia 2002; 16: 928–936.

    Article  CAS  PubMed  Google Scholar 

  26. van Dongen JJ, Langerak AW, Bruggemann M, Evans PA, Hummel M, Lavender FL et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 2003; 17: 2257–2317.

    Article  CAS  PubMed  Google Scholar 

  27. Bruggemann M, van der Velden VHJ, Raff T, Droese J, Ritgen M, Pott C et al. Rearranged T-cell receptor beta genes represent powerful targets for quantification of minimal residual disease in childhood and adult T-cell acute lymphoblastic leukemia. Leukemia 2004; 18: 709–719.

    Article  CAS  PubMed  Google Scholar 

  28. van der Velden VH, de BM, van Wering ER, van Dongen JJ . Immunoglobulin light chain gene rearrangements in precursor-B-acute lymphoblastic leukemia: characteristics and applicability for the detection of minimal residual disease. Haematologica 2006; 91: 679–682.

    CAS  PubMed  Google Scholar 

  29. van der Velden VH, Cazzaniga G, Schrauder A, Hancock J, Bader P, Panzer-Grumayer ER et al. Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real-time quantitative PCR data. Leukemia 2007; 21: 604–611.

    Article  CAS  PubMed  Google Scholar 

  30. van Dongen JJ, Seriu T, Panzer-Grumayer ER, Biondi A, Pongers-Willemse MJ, Corral L et al. Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet 1998; 352: 1731–1738.

    Article  CAS  PubMed  Google Scholar 

  31. Flohr T, Schrauder A, Cazzaniga G, Panzer-Grumayer R, Van der Velden V, Fischer S et al. Minimal residual disease-directed risk stratification using real-time quantitative PCR analysis of immunoglobulin and T-cell receptor gene rearrangements in the international multicenter trial AIEOP-BFM ALL 2000 for childhood acute lymphoblastic leukemia. Leukemia 2008; 22: 771–782.

    Article  CAS  PubMed  Google Scholar 

  32. van der Velden V, Hoogeveen PG, Pieters R, van Dongen JJ . Impact of two independent bone marrow samples on minimal residual disease monitoring in childhood acute lymphoblastic leukaemia. Br J Haematol 2006; 133: 382–388.

    Article  PubMed  Google Scholar 

  33. Putter H, Fiocco M, Geskus RB . Tutorial in biostatistics: competing risks and multi-state models. Stat Med 2007; 26: 2389–2430.

    Article  CAS  PubMed  Google Scholar 

  34. Bader P, Kreyenberg H, Henze GH, Eckert C, Reising M, Willasch A et al. Prognostic value of minimal residual disease quantification before allogeneic stem-cell transplantation in relapsed childhood acute lymphoblastic leukemia: the ALL-REZ BFM Study Group. J Clin Oncol 2009; 27: 377–384.

    Article  PubMed  Google Scholar 

  35. Takami A, Okumura H, Yamazaki H, Kami M, Kim SW, Asakura H et al. Prospective trial of high-dose chemotherapy followed by infusions of peripheral blood stem cells and dose-escalated donor lymphocytes for relapsed leukemia after allogeneic stem cell transplantation. Int J Hematol 2005; 82: 449–455.

    Article  CAS  PubMed  Google Scholar 

  36. Huck K, Laws HJ, Meisel R, Traeger A, Bernbeck B, Schonberger S et al. Three cases of renal relapse after allogeneic hematopoietic stem cell transplantation for childhood acute lymphoblastic leukemia. Haematologica 2006; 91 (5 Suppl): ECR07.

    CAS  PubMed  Google Scholar 

  37. Choi SJ, Lee JH, Lee JH, Kim S, Seol M, Lee YS et al. Treatment of relapsed acute myeloid leukemia after allogeneic bone marrow transplantation with chemotherapy followed by G-CSF-primed donor leukocyte infusion: a high incidence of isolated extramedullary relapse. Leukemia 2004; 18: 1789–1797.

    Article  CAS  PubMed  Google Scholar 

  38. Chong G, Byrnes G, Szer J, Grigg A . Extramedullary relapse after allogeneic bone marrow transplantation for haematological malignancy. Bone Marrow Transplant 2000; 26: 1011–1015.

    Article  CAS  PubMed  Google Scholar 

  39. Zeiser R, Bertz H, Spyridonidis A, Houet L, Finke J . Donor lymphocyte infusions for multiple myeloma: clinical results and novel perspectives. Bone Marrow Transplant 2004; 34: 923–928.

    Article  CAS  PubMed  Google Scholar 

  40. Vago L, Perna SK, Zanussi M, Mazzi B, Barlassina C, Stanghellini MT et al. Loss of mismatched HLA in leukemia after stem-cell transplantation. N Engl J Med 2009; 361: 478–488.

    Article  CAS  PubMed  Google Scholar 

  41. Collins RHJ, Shpilberg O, Drobyski WR, Porter DL, Giralt S, Champlin R et al. Donor leukocyte infusions in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation [see comments]. J Clin Oncol 1997; 15: 433–444.

    Article  PubMed  Google Scholar 

  42. Kolb HJ, Mittermuller J, Clemm C, Holler E, Ledderose G, Brehm G et al. Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood 1990; 76: 2462–2465.

    CAS  PubMed  Google Scholar 

  43. Riddell SR, Murata M, Bryant S, Warren EH . T-cell therapy of leukemia. Cancer Control 2002; 9: 114–122.

    Article  PubMed  Google Scholar 

  44. Klingebiel T, Bader P . Delayed lymphocyte infusion in children given SCT. Bone Marrow Transplant 2008; 41 (Suppl 2): S23–S26.

    Article  PubMed  Google Scholar 

  45. Kolb HJ, Schmid C, Barrett AJ, Schendel DJ . Graft-versus-leukemia reactions in allogeneic chimeras. Blood 2004; 103: 767–776.

    Article  CAS  PubMed  Google Scholar 

  46. van der Harst D, Goulmy E, Falkenburg JH, Kooij-Winkelaar YM, Luxemburg-Heijs SA, Goselink HM et al. Recognition of minor histocompatibility antigens on lymphocytic and myeloid leukemic cells by cytotoxic T-cell clones. Blood 1994; 83: 1060–1066.

    CAS  PubMed  Google Scholar 

  47. Cardoso AA, Seamon MJ, Afonso HM, Ghia P, Boussiotis VA, Freeman GJ et al. Ex vivo generation of human anti-pre-B leukemia-specific autologous cytolytic T cells. Blood 1997; 90: 549–561.

    CAS  PubMed  Google Scholar 

  48. D’Amico G, Bonamino M, Dander E, Marin V, Basso G, Balduzzi A et al. T cells stimulated by CD40L positive leukemic blasts-pulsed dendritic cells meet optimal functional requirements for adoptive T-cell therapy. Leukemia 2006; 20: 2015–2024.

    Article  PubMed  Google Scholar 

  49. Jedema I, Meij P, Steeneveld E, Hoogendoorn M, Nijmeijer BA, van de MM et al. Early detection and rapid isolation of leukemia-reactive donor T cells for adoptive transfer using the IFN-gamma secretion assay. Clin Cancer Res 2007; 13 (2 Part 1): 636–643.

    Article  CAS  PubMed  Google Scholar 

  50. Hartwig M, Weigel S, Bernig T, Bader P, Dolken R, Beck J . Maintenance immunotherapy by repetitive low-dose donor lymphocytes infusions in a child with relapse state AML after allogeneic stem cell transplantation. Pediatr Hematol Oncol 2007; 24: 137–140.

    Article  CAS  PubMed  Google Scholar 

  51. Bader P, Koscielniak E, Schlegel PG, Kors A, Lankester A, Kreyenberg H et al. Combined chemo-immunotherapy in children with ALL who relapse after allogeneic stem cell transplantation—an option to induce long term remission. Bone Marrow Transplant 2004; 33: s220.

    Article  Google Scholar 

  52. Berthou C, Leglise MC, Herry A, Balcon D, Hardy E, Lessard M et al. Extramedullary relapse after favorable molecular response to donor leukocyte infusions for recurring acute leukemia. Leukemia 1998; 12: 1676–1681.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Professor Dr M Tilanus for the analysis of chimerism, Dr CE van der Schoot and C Homburg for MRD analysis of selected samples and Monique ten Dam, Remy van der Hulst, Ada Struyk, Els Jol-van der Zijde, Maaike de Bie and Patricia Hoogeveen for technical assistance. We also acknowledge the support of the staff of the DCOG laboratory in The Hague, The Netherlands, for sample handling and analysis. This research was supported by Grant UL 2001-2515 from the Dutch Cancer Society (KWF, Amsterdam).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M W Schilham.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lankester, A., Bierings, M., van Wering, E. et al. Preemptive alloimmune intervention in high-risk pediatric acute lymphoblastic leukemia patients guided by minimal residual disease level before stem cell transplantation. Leukemia 24, 1462–1469 (2010). https://doi.org/10.1038/leu.2010.133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2010.133

Keywords

This article is cited by

Search

Quick links