Skip to main content

Advertisement

Log in

O-GlcNAc modification of proteins affects volume regulation in Jurkat cells

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

An increasing amount of recent research has demonstrated that the hexosamine biosynthesis pathway (HBP) plays a significant role in the modulation of intracellular signaling transduction pathways, and affects cellular processes via modification of protein by O-linked β-N-acetylglucosamine (O-GlcNAc). Besides the many known and postulated effects of protein O-GlcNAc modifications, there is little available data on the role of O-GlcNAc in cellular volume regulation. Our objective was to test the effect of increased O-GlcNAc levels on hypotonia-induced volume changes in Jurkat cells. We pretreated Jurkat cells for 1 h with glucosamine (GlcN), PUGNAc (O-(2-acetamido-2-deoxy-d-glucopyranosylidene)-amino-N-phenylcarbamate) an inhibitor of O-GlcNAcase, or a high level of glucose to induce elevated levels of O-GlcNAc. We found that the response of Jurkat cells to hypotonic stress was significantly altered. The hypotonia induced cell-swelling was augmented in both GlcN and PUGNAc-treated cells and, to a lesser extent, in high glucose concentration-treated cells. Evaluated by NMR measurements, GlcN and PUGNAc treatment also significantly reduced intracellular water diffusion. Taken together, increased cell swelling and reduced water diffusion caused by elevated O-GlcNAc show notable analogy to the regulatory volume changes seen by magnetic resonance methods in nervous and other tissues in different pathological states. In conclusion, we demonstrate for the first time that protein O-GlcNAc could modulate cell volume regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ADC:

Apparent diffusion coefficient

DPH:

1,6-Diphenyl-1,3,5-hexatriene

EC:

Extracellular compartment

EGTA:

Ethylene glycol tetraacetic acid

ER:

Endoplasmic reticulum

FBS:

Fetal bovine serum

FITC:

Fluorescein isothiocyanate

Glc:

Glucose

GlcN:

Glucosamine

GlcNAc:

N-Acetyl-glucosamine

HBP:

Hexosamine biosynthesis pathway

Hanks’ BSS:

Hanks’ buffered salt solution

IC:

Intracellular compartment

NMR:

Nuclear magnetic resonance

O-GlcNAc:

O-Linked-N-acetylglucosamine

O-GlcNAcase:

O-GlcNAc hexosaminidase (EC 3.2.1.52)

OGT:

UDP-GlcNAc-polypeptide O-β-N-acetylglucosaminyltransferase (EC2.4.1.94)

PBS:

Phosphate buffered saline

PI:

Propidium Iodide

PUGNAc:

O-(2-Acetamido-2-deoxy-d-glucopyranosylidene) amino-N-phenylcarbamate

PVDF:

Poly(vinylidene fluoride)

SDS–PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

UDP-GlcNAc:

UDP-N-acetylglucosamine

References

  • Adak S, Chowdhury S, Bhattacharyya M (2008) Dynamic and electrokinetic behavior of erythrocyte membrane in diabetes mellitus and diabetic cardiovascular disease. Biochim Biophys Acta 1780:108–115

    CAS  PubMed  Google Scholar 

  • Bogner P, Csutora P, Cameron IL, Wheatley DN, Miseta A (1998) Augmented water binding and low cellular water content in erythrocytes of camel and camelids. Biophys J 75:3085–3091

    Article  CAS  PubMed  Google Scholar 

  • Bogner P, Miseta A, Berente Z, Schwarcz A, Kotek G, Repa I (2005) Osmotic and diffusive properties of intracellular water in camel erythrocytes: effect of hemoglobin crowdedness. Cell Biol Int 29:731–736

    Article  CAS  PubMed  Google Scholar 

  • Branco G (2000) An alternative explanation of the origin of the signal in diffusion-weighted MRI. Neuroradiology 42:96–98

    Article  CAS  PubMed  Google Scholar 

  • Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820

    Article  CAS  PubMed  Google Scholar 

  • Buse MG, Robinson KA, Marshall BA, Hresko RC, Mueckler MM (2002) Enhanced O-GlcNAc protein modification is associated with insulin resistance in GLUT1-overexpressing muscles. Am J Physiol Endocrinol Metab 283:E241–E250

    CAS  PubMed  Google Scholar 

  • Butkinaree C, Park K, Hart GW (2009) O-linked beta-N-acetylglucosamine (O-GlcNAc): extensive crosstalk with phosphorylation to regulate signaling and transcription in response to nutrients and stress. Biochim Biophys Acta. doi:10.1016/j.bbagen.2009.07.018

  • Champattanachai V, Marchase RB, Chatham JC (2007) Glucosamine protects neonatal cardiomyocytes from ischemia-reperfusion injury via increased protein-associated O-GlcNAc. Am J Physiol Cell Physiol 292:C178–C187

    Article  CAS  PubMed  Google Scholar 

  • Chatham JC, Marchase RB (2009) The role of protein O-linked beta-N-acetylglucosamine in mediating cardiac stress responses. Biochim Biophys Acta. doi:10.1016/j.bbagen.2009.07.004

  • Chou TY, Hart GW (2001) O-linked N-acetylglucosamine and cancer: messages from the glycosylation of c-Myc. Adv Exp Med Biol 491:413–418

    CAS  PubMed  Google Scholar 

  • Comer FI, Vosseller K, Wells L, Accavitti MA, Hart GW (2001) Characterization of a mouse monoclonal antibody specific for O-linked N-acetylglucosamine. Anal Biochem 293:169–177

    Article  CAS  PubMed  Google Scholar 

  • Ford JC, Hackney DB, Lavi E, Phillips M, Patel U (1998) Dependence of apparent diffusion coefficients on axonal spacing, membrane permeability, and diffusion time in spinal cord white matter. J Magn Reson Imaging 8:775–782

    Article  CAS  PubMed  Google Scholar 

  • Golks A, Tran TT, Goetschy JF, Guerini D (2007) Requirement for O-linked N-acetylglucosaminyltransferase in lymphocytes activation. EMBO J 26:4368–4379

    Article  CAS  PubMed  Google Scholar 

  • Hanover JA, Krause MW, Love DC (2009) The hexosamine signaling pathway: O-GlcNAc cycling in feast or famine. Biochim Biophys Acta. doi:10.1016/j.bbagen.2009.07.017

  • Hart GW (1997) Dynamic O-linked glycosylation of nuclear and cytoskeletal proteins. Annu Rev Biochem 66:315–335

    Article  CAS  PubMed  Google Scholar 

  • Heart E, Sung CK (2002) Glucose transport by osmotic shock and vanadate is impaired by glucosamine. Biochem Biophys Res Commun 292:308–311

    Article  CAS  PubMed  Google Scholar 

  • Hortelano S, García-Martín ML, Cerdán S, Castrillo A, Alvarez AM, Boscá L (2001) Intracellular water motion decreases in apoptotic macrophages after caspase activation. Cell Death Differ 8:1022–1028

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Clark AJ, Petty HR (2007) The hexosamine biosynthesis pathway negatively regulates IL-2 production by Jurkat T cells. Cell Immunol 245:1–6

    Article  CAS  PubMed  Google Scholar 

  • Jackson SP, Tjian R (1988) O-glycosylation of eukaryotic transcription factors: implications for mechanisms of transcriptional regulation. Cell 55:125–133

    Article  CAS  PubMed  Google Scholar 

  • Kabsch K, Alonso A (2002) The human papillomavirus type 16 (HPV-16) E5 protein sensitizes human keratinocytes to apoptosis induced by osmotic stress. Oncogene 21:947–953

    Article  CAS  PubMed  Google Scholar 

  • Kamemura K, Hart GW (2003) Dynamic interplay between O-glycosylation and O-phosphorylation of nucleocytoplasmic proteins: a new paradigm for metabolic control of signal transduction and transcription. Prog Nucleic Acid Res Mol Biol 73:107–136

    Article  CAS  PubMed  Google Scholar 

  • Kang E, Han D, Park J, Kwak TK, Oh M, Lee S, Choi S, Park ZY, Kim Y, Lee JW (2008) O-GlcNAc modulation at Akt1 Ser473 correlates with apoptosis of murine pancreatic beta cells. Exp Cell Res 314:2238–2248

    Article  CAS  PubMed  Google Scholar 

  • Kneass ZT, Marchase RB (2004) Neutrophils exhibit rapid agonist-induced increases in protein-associated O-GlcNAc. J Biol Chem 279:45759–45765

    Article  CAS  PubMed  Google Scholar 

  • Kotek G, Berente Z, Schwarcz A, Vajda Z, Hadjiev J, Horvath I, Repa I, Miseta A, Bogner P (2009) Effects of intra- and extracellular space properties on diffusion and T(2) relaxation in a tissue model. Magn Reson Imaging 27:279–284

    Article  PubMed  Google Scholar 

  • Lande MB, Donovan JM, Zeidel ML (1995) The relationship between membrane fluidity and permeabilities to water, solutes, ammonia, and protons. J Gen Physiol 106:67–84

    Article  CAS  PubMed  Google Scholar 

  • Lang F, Busch GL, Ritter M, Völkl H, Waldegger S, Gulbins E, Häussinger D (1998) Functional significance of cell volume regulatory mechanisms. Physiol Rev 78:247–306

    CAS  PubMed  Google Scholar 

  • Largo R (2003) Glucosamine inhibits IL-1β-induced NFκB activation in human osteoarthritic chondrocytes. Osteoarthr Cartil 11:290–298

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Pang Y, Chang T, Bounelis P, Chatham JC, Marchase RB (2006) Increased hexosamine biosynthesis and protein O-GlcNAc levels associated with myocardial protection against calcium paradox and ischemia. J Mol Cell Cardiol 40:303–312

    Article  CAS  PubMed  Google Scholar 

  • Matthews JA, Belof JL, Acevedo-Duncan M, Potter RL (2007) Glucosamine-induced increase in Akt phosphorylation corresponds to increased endoplasmic reticulum stress in astroglial cells. Mol Cell Biochem 298:109–123

    Article  CAS  PubMed  Google Scholar 

  • Nagy T, Champattanachai V, Marchase RB, Chatham JC (2006) Glucosamine inhibits angiotensin II-induced cytoplasmic Ca2+ elevation in neonatal cardiomyocytes via protein-associated O-linked N-acetylglucosamine. Am J Physiol Cell Physiol 290:C57–C65

    Article  CAS  PubMed  Google Scholar 

  • Nedelcu J, Klein MA, Aguzzi A, Boesiger P, Martin E (1999) Biphasic edema after hypoxic-ischemic brain injury in neonatal rats reflects early neuronal and late glial damage. Pediatr Res 46:297–304

    Article  CAS  PubMed  Google Scholar 

  • Negre-Salvayre A, Coatrieux C, Ingueneau C, Salvayre R (2008) Advanced lipid peroxidation end products in oxidative damage to proteins. Potential role in diseases and therapeutic prospects for the inhibitors. Br J Pharmacol 153:6–20

    Article  CAS  PubMed  Google Scholar 

  • Neil JJ, Duong TQ, Ackerman JJ (1996) Evaluation of intracellular diffusion in normal and globally-ischemic rat brain via 133Cs NMR. Magn Reson Med 35:329–335

    CAS  PubMed  Google Scholar 

  • Nöt LG, Marchase RB, Fülöp N, Brocks CA, Chatham JC (2007) Glucosamine administration improves survival rate after severe hemorrhagic shock combined with trauma in rats. Shock 28:345–352

    Article  PubMed  Google Scholar 

  • O’Shea JM, Williams SR, van Bruggen N, Gardner-Medwin AR (2000) Apparent diffusion coefficient and MR relaxation during osmotic manipulation in isolated turtle cerebellum. Magn Reson Med 44:427–432

    Article  PubMed  Google Scholar 

  • Park J, Kwon H, Kang Y, Kim Y (2007) Proteomic analysis of O-GlcNAc modifications derived from streptozotocin and glucosamine induced beta-cell apoptosis. J Biochem Mol Biol 40:1058–1068

    CAS  PubMed  Google Scholar 

  • Pedersen SF, O’Donnell ME, Anderson SE, Cala PM (2006) Physiology and pathophysiology of Na+/H+ exchange and Na+-K+-2Cl- cotransport in the heart, brain, and blood. Am J Physiol Regul Integr Comp Physiol 291:R1–R25

    CAS  PubMed  Google Scholar 

  • Peter-Katalinić J (2005) Methods in enzymology: O-glycosylation of proteins. Methods Enzymol 405:139–171

    Article  PubMed  Google Scholar 

  • Schwarcz A, Bogner P, Meric P, Correze J, Berente Z, Pál J, Gallyas F, Doczi T, Gillet B, Beloeil J (2004) The existence of biexponential signal decay in magnetic resonance diffusion-weighted imaging appears to be independent of compartmentalization. Magn Reson Med 51:278–285

    Article  PubMed  Google Scholar 

  • Sehy JV, Zhao L, Xu J, Rayala HJ, Ackerman JJ, Neil JJ (2004) Effects of physiologic challenge on the ADC of intracellular water in the Xenopus oocyte. Magn Reson Med 52:239–247

    Article  PubMed  Google Scholar 

  • Seres I, Fóris G, Varga Z, Kosztáczky B, Kassai A, Balogh Z, Fülöp P, Paragh G (2006) The association between angiotensin II-induced free radical generation and membrane fluidity in neutrophils of patients with metabolic syndrome. J Membr Biol 214:91–98

    Article  CAS  PubMed  Google Scholar 

  • Slawson C, Zachara NE, Vosseller K, Cheung WD, Lane MD, Hart GW (2005) Perturbations in O-linked beta-N-acetylglucosamine protein modification cause severe defects in mitotic progression and cytokinesis. J Biol Chem 280:32944–32956

    Article  CAS  PubMed  Google Scholar 

  • Stubbs KA, Zhang N, Vocadlo DJ (2006) A divergent synthesis of 2-acyl derivatives of PUGNAc yields selective inhibitors of O-GlcNAcase. Org Biomol Chem 4:839–845

    Article  CAS  PubMed  Google Scholar 

  • Taylor RP, Geisler TS, Chambers JH, McClain DA (2009) Up-regulation of O-GlcNAc transferase with glucose deprivation in HepG2 cells is mediated by decreased hexosamine pathway flux. J Biol Chem 284:3425–3432

    Article  CAS  PubMed  Google Scholar 

  • van Der Toorn A, Syková E, Dijkhuizen RM, Vorísek I, Vargová L, Skobisová E, van Lookeren Campagne M, Reese T, Nicolay K (1996) Dynamic changes in water ADC, energy metabolism, extracellular space volume, and tortuosity in neonatal rat brain during global ischemia. Magn Reson Med 36:52–60

    Article  PubMed  Google Scholar 

  • van Pul C, Jennekens W, Nicolay K, Kopinga K, Wijn PF (2005) Ischemia-induced ADC changes are larger than osmotically-induced ADC changes in a neonatal rat hippocampus model. Magn Reson Med 53:348–355

    Article  PubMed  Google Scholar 

  • Walgren JL, Vincent TS, Schey KL, Buse MG (2003) High glucose and insulin promote O-GlcNAc modification of proteins, including alpha-tubulin. Am J Physiol Endocrinol Metab 284:E424–E434

    CAS  PubMed  Google Scholar 

  • Wells L (2003) O-GlcNAc: a regulatory post-translational modification. Biochem Biophys Res Commun 302:435–441

    Article  CAS  PubMed  Google Scholar 

  • Whelan SA, Hart GW (2003) Proteomic approaches to analyze the dynamic relationships between nucleocytoplasmic protein glycosylation and phosphorylation. Circ Res 93:1047–1058

    Article  CAS  PubMed  Google Scholar 

  • Wright AR, Rees SA (1997) Targeting ischaemia—cell swelling and drug efficacy. Trends Pharmacol Sci 18:224–228

    CAS  PubMed  Google Scholar 

  • Yamaguchi M, Nakamura N, Nakano K, Kitagawa Y, Shigeta H, Hasegawa G, Ienaga K, Nakamura K, Nakazawa Y, Fukui I, Obayashi H, Kondo M (1998) Immunochemical quantification of crossline as a fluorescent advanced glycation endproduct in erythrocyte membrane proteins from diabetic patients with or without retinopathy. Diabet Med 15:458–462

    Article  CAS  PubMed  Google Scholar 

  • Zachara NE, Hart GW (2006) Cell signaling, the essential role of O-GlcNAc!. Biochim Biophys Acta 1761:599–617

    CAS  PubMed  Google Scholar 

  • Zachara NE, O’Donnell N, Cheung WD, Mercer JJ, Marth JD, Hart GW (2004) Dynamic O-GlcNAc modification of nucleocytoplasmic proteins in response to stress. A survival response of mammalian cells. J Biol Chem 279:30133–30142

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Su K, Yang X, Bowe DB, Paterson AJ, Kudlow JE (2003) O-GlcNAc modification is an endogenous inhibitor of the proteasome. Cell 115:715–725

    Article  CAS  PubMed  Google Scholar 

  • Zhivkov V, Tosheva R, Zhivkova Y (1975) Concentration of uridine diphosphate sugars in various tissues of vertebrates. Comp Biochem Physiol B 51:421–424

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Norbert Fülöp for insightful input and Sára Jeges for the support in statistical analysis. We additionally thank Zoltán Berente and the Department of Biochemistry at the University of Pécs for providing the NMR spectrometer and technical expertise with regard to NMR measurements. This work was supported by Hungarian Fund (OTKA 73591 and OTKA 78480) and by the Hungarian Research Council (ETT 401/2006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attila Miseta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagy, T., Balasa, A., Frank, D. et al. O-GlcNAc modification of proteins affects volume regulation in Jurkat cells. Eur Biophys J 39, 1207–1217 (2010). https://doi.org/10.1007/s00249-009-0573-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-009-0573-3

Keywords

Navigation