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Summary 

 Scheduling surgical patients is one of the complex  organizational 

tasks hospitals face daily. Master surgical schedul ing is one way to optimize 

utilization of scarce resources and to create a mor e predictable outflow from 

the operating room towards subsequent hospital depa rtments.  

 The paper addresses two aims. First, we investigat e the effect of the 

length of the planning horizon and other planning p arameters in a master 

surgical scheduling approach on patients´ waiting t ime, schedule stability and 

hospital efficiency. Second, the master surgical sc heduling approach is 

compared with a standard operating room planning ap proach on levelled bed 

occupancy.  

 The assignment of patients to a master surgical sc hedule is carefully 

described. Using real case data from a regional hos pital in the Netherlands a 

simulation study is performed. The approach is appl icable to any other 

hospital. 

 Results show that only the planning horizon has su bstantial influence 

on outcome parameters waiting time, schedule stabil ity and hospital 

efficiency. We found that increasing the planning h orizon increases patients’ 

waiting time on the one hand, but also increases sc hedule stability and 

hospital efficiency on the other hand. Regarding ou r second aim, we found that 

using an MSS substantially decreases variability in  bed occupancy levels.  

 

Keywords: master surgical scheduling, hospital planning and s cheduling, 

health care efficiency, operating rooms  
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1. Introduction 

Scheduling surgical patients is one of the complex organizational tasks 

hospitals face daily. Surgical departments, nurses and the hospital 

administration all have their own goals and ideas o n what is ‘optimal’. 

Physicians, for example, aim to maximize production  and profits; while 

hospital administrations try to create stable and e fficient schedules and 

patient flows through the hospital. From a quality of care perspective minimum 

waiting times are among the primary objectives. Tra ditional surgical 

scheduling approaches often solely focus on the ope rating room planning 

without accounting for other hospital resources. He nce, variability in demands 

throughout the hospital is created.  

 

Master surgical scheduling (MSS) is one way to opti mize utilization of scarce 

resources and to create a more predictable outflow from the operating room 

towards subsequent hospital departments (van Oostru m, Bredenhoff et al. 2010). 

In an MSS approach, patients are assigned to a recu rrently executed surgical 

schedule, containing time slots for types of freque ntly performed elective 

surgical cases (van Oostrum, Bredenhoff et al. 2010 , van Oostrum, Van 

Houdenhoven et al. 2008). After assigning patients to an MSS, a time slot may 

or not may be used due to variable demand. In case a slot remains unused, this 

is perceived as inefficient. However, using the tim e slot for another surgical 

case type creates variability that an MSS tries to avoid. The maximum time 

that a hospital plans ahead, the so-called planning  horizon, is expected to 

affect the impact of unused time slots.  

 

The aim of this study is twofold. First, we aim to determine the effect of the 

length of the planning horizon and other planning p arameters in an MSS 

approach on patients´ waiting time, schedule stabil ity and hospital 

efficiency. Second, we compare the MSS approach wit h a standard operating room 

planning approach on levelled bed occupancy. We per form this study with real 

case data from Beatrix Hospital, a regional hospita l in The Netherlands. The 

structure of the paper is the following. In Section  2 we give background 

information on surgical case planning, master surgi cal scheduling and its 

counterparts in industry. In Section 3 we introduce  a formal problem 

definition. Section 4 presents the methods that we apply in order to quantify 

the effects just mentioned. In Section 5 we present  the case study and Section 

6 contains concluding remarks.  
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2. Background  

From an operations management perspective, an MSS i n hospitals can be compared 

to a Master Production Schedule  (MPS) in industry. An MPS determines 

production moments and production amounts. Factorie s that use such a schedule 

aim to stabilize their production flows. One form o f using an MPS is to re-use 

a master schedule several times one after the other . Resulting from the MPS, a 

material requirements plan  can be constructed that gives a description of the  

resource requirements for the production as schedul ed in the MPS. The material 

requirements plan  in a hospital incorporates requirements for surger y 

materials and post operative needs such as recovery  and ward capacity.  

 

Late changes in schedules are known to induce somet imes major changes in 

resource requirements at other stages of a producti on line. This leads to 

nervousness in the operational planning at various subsequent stages, a 

phenomenon that is well known in hospitals. For exa mple, last minute changes 

in surgical schedules can cause severe nervousness at wards and other hospital 

departments. Hence, an MSS approach will only be su ccessful when at the 

execution stage no need exists to adjust schedules.   

 

Before we continue by introducing possible ways to avoid nervousness in an MSS 

approach, we review some relevant scientific litera ture on surgical scheduling 

and master surgical scheduling in particular. There after, we introduce some 

approaches to deal with nervousness that are applie d in industry. We finish by 

addressing how these approaches would work out in a n MSS approach.  

2.1. Surgical case scheduling  

Operating room management and more specific operati ng room planning has been a 

popular topic among researchers. This has resulted in a wide set of approaches 

to this complex theme in hospital management (see f or instance 

www.franklindexter.net ). We refer for a complete and detailed discussion on 

various surgical scheduling approaches to (Cardoen,  Demeulemeester et al. 

2009). This paper classifies several characteristic s of operating room 

planning and scheduling and gives a complete overvi ew of research work on this 

topic.  

 

One approach that has attracted attention is master  surgical scheduling. 

Various researchers have defined this approach in s lightly different ways, but 

all approaches have in common that operating room m anagement is structured 

based on a tactical plan that is repetitively execu ted (van Oostrum, Van 
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Houdenhoven et al. 2008, Beli ÷n, Demeulemeester 2007, Blake, Donald 2002, 

Vissers, Adan et al. 2005). 

 

In this paper we use the definition as has been int roduced by (van Oostrum, 

Bredenhoff et al. 2010, van Oostrum, Van Houdenhove n et al. 2008, Van 

Houdenhoven, van Oostrum et al. 2008). This approac h consists of seven steps 

(van Oostrum, Bredenhoff et al. 2010):  

1.  Defining the scope of the MSS 

2.  Data gathering 

3.  Capacity planning  

4.  Defining a set of recurrent standard case types 

5.  Constructing the MSS 

6.  Executing the MSS 

7.  Updating the MSS 

 

A master schedule is complete when the first five s teps have been successfully 

done. Hence, the scope is clear (all shared resourc es involved in the planning 

process are known), all data is available, and ther e exist sound capacity 

plans such that on an aggregate level demand and su pply are leveled. Moreover, 

standard surgical case types have been constructed for use at an MSS (van 

Oostrum, Parlevliet et al. 2008). Note that these c ase types have been 

constructed such that the variability in resource u sage within a single case 

type is minimal and such that the total number of p atients that would not fit 

into a standard case type is minimized.  

 

After the first five steps a hospital knows its sta ndard case types and the 

frequency that such a case type is performed per pe riod. Furthermore, it knows 

the amount of capacity to be planned for elective p atients for whom no 

standard case type will be available, so-called elective  slack capacity . For 

example, this might be done by constructing one or more ‘ dummy surgery ’ case 

types. At Step 5, a hospital has constructed its MS S such that operating room 

utilization is maximized and occupancy levels at su bsequent hospital 

departments are leveled. Operating room capacity is  reserved for emergency 

surgery by allocating slack at each operating room (Wullink, Van Houdenhoven 

et al. 2007). Hence, an MSS consists of standard su rgical case types, elective 

slack capacity, and emergency slack capacit y.  

 

At the operational level (Step 6), patients are ass igned to standard case 

types of the MSS. We provide some definitions regar ding the time elements in 

this planning process. A planning cycle  is the period after which the MSS is 

repetitively executed. It contains a certain number  of days. Assigning 
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patients is restricted to the planning cycles that are available. For 

instance, a hospital might put a minimum time for e lective patients between 

the moment of planning and the moment of execution of a surgical case, which 

is referred to as the frozen horizon . We assume that the frozen horizon 

contains an integer number of planning cycles. In a ddition, a hospital might 

put a restriction on the maximum time a patient is scheduled ahead, the 

planning horizon . Without loss of generality we assume that a hospi tal does 

the assignment of patients once per planning cycle.  In case that not all 

patients can be planned, they are put on a waiting list. Patients who arrive 

between two planning moments are added to the waiti ng list. We assume that 

hospitals treat patients on the waiting list on a f irst come, first serve 

basis. As we will explain later, the length of the planning horizon is the 

main determinant for successful scheduling at this step.  

 

Patients are assigned to the first available standa rd case type (slot) to 

which they belong. When there is no such slot avail able within the planning 

horizon (for any reason), a hospital tries to assig n the patient to available 

elective slack capacity. If this still is not possi ble, but if it would be 

possible with a small amount of planned overtime, a  hospital might do so. 

When, after all, a patient cannot be assigned, he/s he remains on the waiting 

list to a next period. This assignment approach is summarized in Figure 1. 

2.2. Avoiding nervousness in master production planning 

Various researchers have studied the application of  MPS in practice. In this 

subsection we discuss some relevant papers and focu s on dealing with 

nervousness when using master production scheduling  approach in industry. 

 

Shirdharan, Berry et al. (2007, 1987) discuss that one way to resolve 

nervousness in production planning is to freeze a p art of the planning 

horizon. Nervousness is expressed by schedule insta bility that can be measured 

as the amount of changes in the schedule between tw o consecutive cycles. 

Within a frozen horizon, the actual scheduling cann ot be changed any longer 

for any reason. This also holds when eventually new  information comes 

available, for instance about future demands. Hence , a frozen horizon gives 

the manufacturer more certainty about the productio n amounts in the near 

future. The researchers use computer simulation to investigate the effect of 

adopting freezing, and also the effect of various l engths of frozen horizons 

and the length of the planning horizon in general. The effects are measured by 

means of production and inventory cost and deterior ation in customer service. 

The authors show that freezing up to 50 percent of the planning horizon has 

marginal effect on the measures just mentioned.  
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Both articles (Sridharan, Berry et al. 2007, Sridha ran, Berry et al. 1987) 

consider a fixed dynamic future demand. ‘Fixed’ mea ns that uncertainty about 

the demand levels was not taken into account and de mand is `dynamic’ when the 

demand levels vary among the future periods. In rea lity however, demand 

forecasts of future periods might include forecast errors as is discussed by 

Lin and Krajewski (2007). They investigate the effe cts of demand uncertainty 

on several factors, including the stability of the MPS. Uncertainty in future 

demand results in additional costs. When customer s atisfaction plays an 

important role, a reasonable amount of safety stock  is required in order to 

compensate demands which exceed the expected demand  level.  

 

An additional way of improving performance is by co nsidering rescheduling. In 

the literature different ways of rescheduling in pr oduction planning are 

mentioned (Yang, Jacobs 2007, Tang, Grubbström 2002 , Hill, Berry et al. 2003). 

Within the context of an MPS rescheduling correlate s to adding or deleting 

orders. It involves minimizing costs resulting from  schedule changes related 

to lower-level items. The higher the number of leve ls the MRP contains, the 

more complicated the rescheduling optimization will  get.  

2.3. Stable master surgical scheduling 

The previously discussed articles use the concept o f schedule stability as 

measure for the variability in final schedules betw een subsequent planning 

cycles. We will adopt schedule stability as a measu re to the MSS approach. 

Within this context schedule stability defines how much of the predetermined 

slots for surgical case types are actually used acc ordingly. 

 

From the presented research it is clear that the le ngth of a planning horizon 

and possibly freezing a part of the planning horizo n has impact on the 

schedule stability. Freezing gives hospital managem ent information about the 

operating room and personnel schedules in the comin g period without possible 

changes. On the other hand, the frozen horizon resu lts in an increase in the 

patients’ waiting time since available time slots w ithin the frozen horizon 

are not available for new patients. Given this, we assume that hospitals take 

a minimal frozen horizon, often of one week. 

 

Dealing with demand uncertainty is also an issue th at has been incorporated in 

the MSS approach. Instead of using safety stock, ho spitals either reserve 

slack capacity or leave capacity unassigned to a la te moment to be able to 

adjust to variation in demand. Within an MSS approa ch, capacity is available 

to patients for whom no dedicated slots are availab le. A hospital may choose 
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whether or not different medical specialties share this capacity in order to 

gain from economies of scale. The amount of capacit y left over will be typical 

the result from the trade off between efficiency an d the required ability to 

account for demand variability in the construction of an MSS.  

 

Finally, rescheduling might be applied within an MS S approach as well as it is 

within MPS approaches. Patients might be moved to a nother slot if this is 

beneficial to a hospital. For example, patients tha t are assigned to slack 

capacity might be rescheduled to an empty surgical case type that comes 

available after the planning horizon has moved a cy cle ahead.  

3. Problem description 

The two aims of this study are the following. First , we determine the effect 

of the length of a planning horizon in an MSS appro ach on patients´ waiting 

time, schedule stability and hospital efficiency. T hese three main performance 

measures are defined at the end of this section. Ad ditionally, we investigate 

effects of sharing elective slack capacity by multi ple medical specialties and 

the effects of rescheduling. Second, we compare the  MSS approach with a 

standard operating room scheduling approach on leve lled bed occupancy. First, 

we will introduce some notation and definitions and  we will use these 

definitions in order to describe the heuristic that  assigns patients to future 

time slots.  

3.1 Notation and definitions 

Let P  denote the set of patients. Each patient requires one specific surgical 

case, which is in an MSS approach linked to a so ca lled standard surgical 

case. The set of standard surgical cases is denoted  by I . Let indicator piz  

be 1 if patient Pp ∈  requires standard surgical case Ii ∈ , 0  otherwise. The 

planned duration of a standard surgical case Ii ∈  is represented by id . 

S denotes the set of surgical departments. The set 
sI  represents all surgical 

cases Ii ∈  that are performed by surgical department Ss ∈ . It holds that 

II
Ss

s =
∈
U . Furthermore, let J  denote the set of operating rooms and let T  be 

the set containing all days within one planning cyc le of the MSS. The planning 

cycle has a predetermined length T . We denote operating room Jj ∈  on day 

Tt ∈  of the planning cycle by OR-day ( )tj, . Each OR-day ( )tj,  has a certain 

amount of time capacity jtcap  for surgeries to be performed. We assume that 



 8 

emergency slack is allocated to all operating rooms  (Wullink, Van Houdenhoven 

et al. 2007). We refer to the amount of time reserv ed for emergency slack by 

jte  for OR-day ( )tj, .    

 

We assume that an MSS is given in which time slots are reserved for types of 

frequently performed elective surgical cases within  every OR-day of the 

planning cycle. We introduce the parameters INaijt ∈  that denote the number of 

surgical case types i  that are included in OR-day ( )tj,  of the MSS. The 

parameters ijta  are a result of an automated scheduling algorithm (van Oostrum, 

Van Houdenhoven et al. 2008). Hospitals may choose to restrict the number of 

different surgical departments on a single OR-day ( )tj, . Surgical cases Ii ∈  

are incorporated in an MSS on their rounded down ex pected frequency per cycle. 

Hence, some may not be prescribed to any OR-day (i. e. ∑∑
∈ ∈

=
Jj Tt

ijta 0  ). Based on 

the expected durations of these surgery types, as w ell as the expected 

duration of left-over fractions of recurring surgic al cases, the MSS contains 

dummy time slots which may be filled by any type of  elective surgery in the 

planning process. Any remaining capacity is added t o the dummy time slots, 

which is hence of size ∑
∈

−−=
Ii

iijtjtjtjt daecapc . Consequently, there are finally 

three types of time slots: the ones for emergency s urgery, the ones for the 

standard surgical cases and the time slots containi ng elective slack (dummy) 

capacity.  

 

The notation is consistent with definitions introdu ced by Van Oostrum, Van 

Houdenhoven et al. (2008). For a method to obtain s tandard surgical cases we 

refer to Van Oostrum, Parlevliet et al.  (2008), and for methods to obtain a 

particular MSS we refer to Van Oostrum, Van Houdenh oven et al. (2008).  

 

Regarding the time horizon and planning process, le t K  be the set containing 

all future planning cycles. A hospital schedules el ective patients a certain 

number of planning cycles ahead, restricted by the planning horizon INh ∈ . In 

practice, hospitals schedule elective patients a mi nimum time in advance, 

modeled by the frozen horizon. We define INf ∈ as the number of frozen cycles 

(by definition hf < ). Without loss of generality we assume that once p er 

cycle, at the beginning of a cycle Kk ∈ , patients are scheduled within the 

time window [ ]1, −++ hkfk . Figure 2 illustrates these settings for a MSS wit h 

a cycle length of one week, a planning horizon of f our weeks and a frozen 
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horizon of one week. Patients that are accumulated at the beginning of week 1 

may be scheduled within the OR-days of weeks 2,3 an d 4. The process of 

scheduling is repeated every cycle, such that the h orizon rolls forward every 

cycle. Hence, we have modeled a so-called rolling h orizon. The waiting list at 

the beginning of cycle k  is defined as PWk ⊆ . The actual planning is 

defined by { }1,0∈pjtkx , where 1=pjtkx  if patient Pp ∈  is scheduled at OR-day 

( )tj,  in cycle k  and 0 elsewhere. 

3.2 Assignment heuristic  

At the operational level patients are to be assigne d to slots of an MSS. We 

have modeled this assignment of patients to MSS slo ts by the heuristic 

presented below. Note that this heuristic is a deta iled application the 

process depicted in Figure 1.  

 

For all cycles Kk ∈  do 

- Accumulate patients that have arrived up to and inc luding cycle 1−k  who 

have not been scheduled yet, on the waiting list kW  

- For all patients kWp ∈  do 

o If an empty slot for patient p  is available in the planning 

horizon (i.e. if there is a { }1,...,' −++∈ hkfkk  and a Jj ∈ and a 

Tt ∈ , such that 1' ≥−∑
∈Pp

pjtkpiijt xza ) then 

� Assign patient p  to the first available slot at ( )tj,  in 

cycle 'k . That is, set 1' =pjtkx . 

� Else If unused slack capacity is available in the p lanning 

horizon for surgical case i  (i.e. if there is a 

{ }1,...,' −++∈ hkfkk  and a Jj ∈ and a Tt ∈ , such that 

i
Pp

pjtkpiijt dxzdc ≥−∑
∈

' ) then 

• Assign patient p  to the first available slack 

capacity at ( )tj,  in cycle 'k . That is, set 1' =pjtkx . 

• Else If slack capacity plus some proportion δ  of the 

emergency slack capacity jte is sufficient to schedule 

surgery type i  (i.e. if there is a { }1,...,' −++∈ hkfkk  
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and a Jj ∈ and a Tt ∈ , such that 

i
Pp

pjtkpiijtjt dxzdec ≥−⋅+ ∑
∈

'δ ) then 

o Assign patient p  to the first available slack 

capacity at ( )tj,  in cycle 'k . That is, set 

1' =pjtkx . 

o Else place patient p  on waiting list 1+kW  for 

cycle k+1 

 

In order to further improve the effectiveness of th e MSS, rescheduling some of 

the patients after their initial assignment, might be considered. One way to 

apply rescheduling would be to shift patients from elective slack capacity 

within a certain predetermined replanning horizon o f length r , with fhr −≤  

to a newly available time slot explicitly meant for  the surgery type that the 

patient requires, in case such a slot is still avai lable when time has ‘rolled 

on’ to the next cycle. When multiple patients of a certain surgery type are 

scheduled in elective slack capacity within the rep lanning horizon, selecting 

the one that is scheduled the furthest ahead in tim e gives the least increase 

in the overall average patients’ waiting time. Ther efore, the replanning 

horizon is checked from back to front. Applying thi s rescheduling approach 

would then extend the above heuristic as follows: 

 

- For all recurrent surgical cases (i.e. all cases Ii ∈  that have 

∑∑
∈ ∈

>
Jj Tt

ijta 0  

o Do while there is a patient of type i  scheduled within elective 

slack capacity of the replanning horizon AND there is a time slot 

available specifically for type i  in the last cycle of the 

planning horizon (i.e. there is a { }1,...,3,2' −−+−+−+∈ rhkhkhkk  

and a Jj ∈ and a Tt ∈ , such that ijt
Pp

pjtkip axz >∑
∈

'  AND there is a 

Jj ∈ and a Tt ∈ , such that ijt
Pp

hkpjtip axz <∑
∈

−+ )1(  

� Shift patient from slack capacity to the available recurrent 

time slot of the last cycle of the MSS. That is, fo r the 

patient p  that was scheduled in elective slack set 0' =pjtkx  

and set 1)1( =−+hkpjtx . 
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3.3 Performance Measures 

We consider the following performance measures: pat ients’ waiting time, 

schedule stability, and hospital efficiency. Below each of the measures is 

defined.  

  

Patients’ waiting time  

The waiting time of a patient is defined as the tim e (expressed in weeks) 

between the submission of a request for surgery and  the actual time of the 

execution of surgery. We are interested in the dist ribution of the patients’ 

waiting time, and more specifically in the average waiting time and the 

proportion of patients waiting for 8 weeks or less.  The latter is taken into 

account since in practice, governmental regulations  enforce that certain 

proportions of patients do not have to wait longer than some cut-off value or 

values.  

 

Schedule stability  

We measure schedule stability in two ways. The firs t measure Afill  indicates 

to what extent the final OR schedule fits to the MS S. Hence, we measure the 

proportion of slots that is ultimately filled with appropriate patients. For 

cycle Kk ∈ we have %100

,min

∑∑∑

∑∑∑ ∑

∈ ∈ ∈

∈ ∈ ∈ ∈











=

Ii Jj Tt
ijt

Ii Jj Tt Pp
pipjtkijt

a

zxa

Afill . 

Here, the numerator represents the number of patien ts scheduled in recurring 

elective time slots and the denominator represents the total amount of 

recurring time slots contained in the MSS. Recall t hat time slots for standard 

surgical cases may remain empty when the number of patients requiring a 

specific surgical case is less than expected. In th at case ijt
Pp

pipjtk azx <∑
∈

 holds . 

Note that increasing the planning horizon will ulti mately result in an 

asymptotic upper bound of 100 percent appropriate u se of standard surgical 

cases since cases are scheduled at the MSS based on  their rounded-down 

frequency.  

 

As a second measure for schedule stability we defin e AinA  as the proportion 

of patients that are scheduled in an appropriate st andard surgical case, 

contrary to being assigned to elective slack capaci ty. For cycle Kk ∈ we have 
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%100

,min

⋅











=
∑∑∑

∑∑∑ ∑

∈ ∈ ∈

∈ ∈ ∈ ∈

Pp Jj Tt
pjtk

Ii Jj Tt Pp
pipjtkijt

x

zxa

AinA .  

Here, again the numerator represents the number of patients scheduled in 

recurring elective time slots, while now the denomi nator represents the total 

amount of elective patients scheduled in week k . Recall that patients will be 

scheduled in elective slack when the number of pati ents of type i  arriving in 

week k  exceeds the amount of recurrent slots for that typ e. In that case 

ijt
Pp

pipjtk azx >∑
∈

 holds. Since surgical cases are scheduled at the M SS based upon 

their rounded-down frequency, for each type Ii ∈  more patients arrive on 

average than the number of recurrent slots that are  available in the MSS for 

that type. Therefore, as we increase the planning h orizon, this measure will 

not asymptotically converge to 100 percent.  

 

Hospital efficiency   

We distinguish three measures of hospital efficienc y. First the frequency and 

duration of planned overtime at operating rooms, se cond the fluctuation in bed 

occupancy at wards subsequent to surgery.  

 

Hospitals tend to apply fuzzy approaches to capacit y restrictions at operating 

room departments. In the defined assignment heurist ics we accounted for this. 

We therefore define as measures for overtime the fr equency of violating the 

available capacity and the average amount of time p er surgery that is planned 

in overtime (which we will denote by FPO  and DPO  respectively).  

 

Fluctuation in bed occupancy causes extra costs sin ce ward staff is either 

under utilized or extra staffing is required. The l atter imposes often direct 

costs for hiring flexible capacity shortly in advan ce. We assume that a bed 

can only be used for one patient during a day. Bed occupancy is measured on a 

daily basis. Given these data our performance measu re is the fluctuation 

represented by the standard deviation of the daily fluctuation of bed 

occupancy (which is denoted by SDBO ). 

4. Solution Approach 

In this section we will address the approach that w e use to investigate the 

effect of scheduling decisions as well as the effec t of the MSS compared to a 

standard operating room scheduling approach.  
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4.1 Experimental design 

Aim 1: effect of the planning parameters   

In order to determine the effect of the planning pa rameters, which is the 

first aim of this study, we introduce different sce narios. A scenario is 

defined by the following planning parameters: the p lanning horizon (denoted by 

h ), whether or not rescheduling is applied (as descr ibed in section 3.2), and 

whether or not the elective slack capacity may be s hared among the different 

hospital departments (denoted by ss ). If rescheduling is applied, the 

replanning horizon (denoted by r ) needs to be defined.  

 

We define a so-called basic scenario which we will use as a benchmark against 

alternative scenarios. As for the settings of this basic scenario we choose a 

planning horizon of five cycles (e.g. 5 weeks), we disregard the possibility 

of rescheduling and we apply the distinction betwee n the elective slack 

capacity restrictively assigned to one specialty. I n the alternative 

scenarios, we vary only one of these input paramete rs from the basic scenario. 

This allows us to report the effect of each input p arameter of the scheduling 

approach separately. Table 1 presents all alternati ve scenarios.  

 

In all scenarios, we will simulate the flow of inco ming patients by a Poisson 

arrival distribution with arrival rate λ , where λ  represents the average 

number of patients arriving per cycle.  

 

Aim 2: comparing bed occupancy of MSS and standard planning   

As for the second aim of this study, we compare the  MSS approach with a 

standard operating room planning approach. The stan dard operating room 

planning approach that we will use as a benchmark t o test the MSS approach 

against, is the First-Come, First-Serve (FCFS) appr oach (Dexter, Macario et 

al. 1999). Using a FCFS approach, patients are sche duled in the first 

available OR-day according to the order in which th ey arrive.  

 

We expect the variation in the number of daily arri ving patients to have 

substantial influence on the bed occupancy levels, not only for the FCFS 

approach, but also to some extent for the MSS appro ach. Therefore, we will 

measure the standard deviation of the bed occupancy  level resulting from both 

the FCFS approach and the MSS approach (with the se ttings of the basic 

scenario), by assuming different arrival distributi ons of patients. Besides a 

Poisson distribution, we test four additional arriv al distributions. We will 

use a constant arrival of λ  patients per cycle and three different gamma 

distributions as to achieve increasing variances of  the arrival rate. The 
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gamma distributions have an expected value of λ  and have variances of λ5.0 , 

λ2  and λ4  respectively. 

4.2 Simulation 

The complexity of this scheduling problem, includin g the use of slack capacity 

justifies the use of simulation. To investigate the  effect of a certain 

scenario, in each iteration the following steps are  executed: 

  

1.  A realisation of the number of arrivals in one cycl e is randomly drawn 

from the predetermined arrival distribution.  Subse quently patients are 

randomly drawn from an empirical data set that incl udes all relevant 

patient data.  

2.  Patients on the waiting list, combined with the new  arrivals, are 

scheduled if possible, within the appropriate time slots of the current 

planning horizon as described in the assignment heu ristic in section 

3.2. If allowed, rescheduling may be applied. 

 

Upon completion of a simulation run, the performanc e measures are calculated.  

 

A number of iterations need to be performed, before  the system will arrive at 

a steady state. To determine the length of this so- called warm-up phase of one 

simulation run, we have recorded the number of pati ents in the system after 

each iteration. By the number of patients in system  we mean the number of 

patients scheduled within the future planning horiz on, together with the 

patients on the waiting list. Naturally, the longer  the planning horizon is 

chosen, the longer the warm-up phase of the simulat ion process takes. Next, a 

certain number of cycles succeeding the warm-up pha se are considered to 

extract the performance measures resulting from the  given scheduling approach 

from. Since the performance measures of successive cycles are not independent, 

we repeat this simulation process n  times in order to construct confidence 

intervals around the performance measures. A )%1( α−  confidence interval 

around measure X is constructed by  








 +−
n

s
zX

n

s
zX 2/2/ , αα ,  

where X is the average and s  is the standard deviation of performance measure 

X  over the n  independent simulations and 2/αz is the z-statistic of the 

standard normal distribution (for large values of n ). This implies that 

)%1( α−  of the confidence intervals constructed in this ma nner, actually 

contain the real parameter that we are trying to es timate. Increasing the 
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number of repetitions will decrease the size of the  interval. In case a 

specific size of the interval would be requested, t he required number of runs 

n  could be obtained using the formula just presented , were s  would be taken 

as the standard deviation of a preliminary chosen n umber of runs.  

5. Case study 

In this section we present a case study performed f or the Beatrix Hospital, 

the Netherlands, to answer our two research objecti ves as formulated in 

Section 3. Section 5.1 describes the data of this c ase study. Section 5.2 

presents the results the case study. Section 5.3 an alyses the results.  

5.1 Data 

The data that is used in this research originates f rom the urology and general 

surgery department of the Beatrix Hospital, the Net herlands ( 1=s  denotes 

general surgery and 2=s  denotes urology). The dataset consists of all 

patients for both departments in one year, includin g 1862 unique patients and 

200 different surgical cases. Of each case we have the surgery duration and 

the length of stay at the ward. The data implies th at on average 16.3 beds are 

occupied.  

 

The Beatrix Hospital determines norm utilization sβ  for elective surgery that 

both departments should obtain ( 75.01 =β  and 81.02 =β ). The remainder of the 

capacity is allocated as emergency slack to OR-day schedules. Hence, 

jtsjt cape )1( β−=  gives the amount of emergency slack. The parameter  for 

allowing fuzzy use of capacity constraints was set to 5.0=δ . The cycle time 

chosen for this MSS is one week and the number of p roduction weeks per year is 

46. 

 

Applying clustering to the original data (van Oostr um, Parlevliet et al. 2008) 

resulted coincidentally in thirteen different stand ard surgery case types for 

both departments. Table 2 shows the result after cl ustering the unique cases 

into standard surgical case types. Subsequently , the MSS is constructed by 

means of optimisation with regard to the OR utilisa tion and the stability of 

its resulting demand for hospital beds as described  in (van Oostrum, Van 

Houdenhoven et al. 2008).  

5.2 Results 

Aim 1: effect of the planning horizon   
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Table 3 shows the effects of all aforementioned sce narios on patients’ waiting 

time, schedule stability and hospital efficiency. A ll scenarios produce 

significantly different performance measures, based  on non-overlapping 95% 

confidence intervals. To provide some insight in th e length of the intervals, 

Table 4 contains the confidence intervals of the pe rformance measures 

resulting from the basic scenario. 

 

Table 3 shows that an increase of the planning hori zon leads to longer 

patients’ waiting time. The increments of the waiti ng are decreasing. The 

proportion of patients that experience a waiting ti me of 8 weeks or less 

decreases with longer planning horizons. The schedu le stability is high and 

only marginal increases by planning horizons of 7 w eeks or longer. Most of the 

slots (over 95% for planning horizons of four weeks  and longer) are filled. 

The proportion of cases that is assigned to the rig ht slots is consequently 

also high. Finally, regarding hospital efficiency, increasing the planning 

horizon decreases the average number of surgical ca ses that is scheduled in 

planned overtime, while its average duration increa ses. SDBO  shows that the 

variation in the bed occupancy levels decreases as we increase the planning 

horizon.  

 

Besides the effects of the planning horizon, Table 3 also allows us to address 

the effects of replanning and sharing elective slac k capacity between the two 

surgical departments. Increasing the replanning hor izon in the replanning 

process slightly increases waiting time and, at the  same time, slightly 

increases schedule stability and hospital efficienc y. Sharing elective slack 

capacity between both departments is of marginal in fluence on some performance 

measures.  

 

We found some remarkable results when analysing the  distribution of waiting 

times. To characterize the distribution of the pati ents’ waiting time, Figure 

3 shows the relative frequencies for patients that have to wait a certain 

number of weeks, when a planning horizon of 50 week s is used. Maybe less 

realistic, but we show the result of this specific setting to enlarge the 

effect of the MSS on the waiting time distribution.  A large proportion of 

patients either wait relatively short or relatively  long for surgery, 

resulting in a waiting time distribution with an un usual shape.  

 

To examine this issue further, we look at the waiti ng time distribution of 

individual surgery types separately. In doing so, w e distinguish two groups of 

surgery types i  which each have their own typical shape: 1) the re current 

surgery types that are explicitly scheduled in the MSS (which have 
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∑∑
∈ ∈

>
Jj Tt

ijta 0) and 2) the surgery types for which no specific ti me slot is 

contained within the MSS (and thus have ∑∑
∈ ∈

=
Jj Tt

ijta 0). The waiting time 

distribution for the first type shows increasing am ounts of long waiting time 

near the end of the planning horizon and some decre asing, relatively small 

frequencies for the short waiting times. The waitin g time distributions for 

the second type on the other hand, show that longer  waiting times have 

strictly decreasing probabilities. The explanation for this is that for 

patients of the fist type, the whole planning horiz on is checked for available 

time slots of their own type. When no such time slo t is available, the patient 

is assigned to elective slack capacity. Since the a mount of available slots 

specifically meant for the first type in the MSS is  by construction lower than 

the average number of such patients arriving per cy cle, all these time slots 

within the planning horizon will gradually become o ccupied as time rolls on. 

At that point, the only time slots available specif ically for these patients 

are the new ones of the MSS that are added at the e nd of the planning horizon 

as time rolls on. In case the number of available t ime slots is not sufficient 

for the arrivals within one cycle, some of these pa tients will be scheduled 

within the fist available elective slack capacity. Because the amount of 

available slack capacity exceeds the expected requi red slack capacity, these 

cases are assigned near the beginning of the planni ng horizon. Patients of the 

second type are assigned to the first available ele ctive slack capacity right 

away, hence they are assigned near the beginning of  the planning horizon. 

Combining these two possibilities, results in the p attern of Figure 3. 

 

Aim 2   

Table 5 shows the differences between the use of an  MSS and a standard FCFS 

planning approach with respect to the variation in bed occupancy levels. For 

the MSS, the results are based on the basic scenari o settings. Different 

arrival distributions are used as described in the previous section. 

 

Table 5 shows that arrival distributions with highe r variances result in 

higher variability in bed occupancy levels for both  planning approaches. Also, 

Table 5 shows that using an MSS decreases the stand ard deviation of the bed 

occupancy level almost by a factor two. While the a rrival rates and the 

planning approach result in different standard devi ations of the bed occupancy 

levels, naturally all settings result in the same a verage bed occupancy, which 

is 16.3 beds occupied per week.  
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6. Conclusion and discussion 

Regarding our first aim, we have been able to quant ify the effects of the 

planning horizon, rescheduling and sharing elective  slack among different 

departments on waiting time, schedule stability and  hospital efficiency. We 

found that increasing the planning horizon increase s patients’ waiting time on 

the one hand, but also increases schedule stability  and hospital efficiency on 

the other hand. Moreover, only marginal influences are found for rescheduling 

and sharing elective slack by departments.  

 

Regarding our second aim, comparing MSS with a stan dard First Come, First 

Serve approach, we found that using an MSS results in a substantial decrease 

in variability in bed occupancy levels. This shows the great benefits of the 

use of an MSS for hospitals as it creates more pred ictable flows of patients 

from the operating room department to subsequent ho spital departments.  

 

This research shows that it is possible to work wit h an MSS, while maintaining 

short waiting lists. In addition, it shows the majo r benefits for variability 

reduction on wards which is among one of the main d rivers for inefficiencies 

in hospitals. Our methodology for analysis of two d epartments of the Beatrix 

hospital can be applied to any other hospital. Base d upon the results hospital 

management should decide upon the best planning hor izon for their hospital, 

given the trade-off between waiting times, schedule  stability, and hospital 

efficiency.  
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Figure 1: Heuristic for assigning patients to MSS 
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Figure 2: The rolling horizon planning process, at cycle k=1 and k=2. The cycles are 

of length one week (containing 7 days, T={1,2,…, 7}. A frozen horizon of  f=1 (denoted 

by grey days) and a planning horizon of  h=4 is applied. 
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Figure 3: waiting time distribution for h=50. 
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Planning parameters Basic scenario Alternative opti ons 

Planning horizon ( h ) 5 {2,3,… ,14,15,25,50}\{5} 

Replanning horizon ( r ) 0 {1,2,3,4} 

Share elective slack capacity ( ss ) No Yes 

Table 1: scenario definitions 

 

    

  General surgery   Urology 

  

Frequency 

per year 

Frequency 

in MSS 

Average 

duration 

(minutes)   

Frequency 

per year 

Frequency 

in MSS 

Average 

duration 

(minutes) 

463 10 60 137 2 54 

418 9 41 94 2 65 

184 4 70 93 2 37 

156 3 85 60 1 53 

59 1 196 14 0 169 

58 1 146 10 0 333 

50 1 83 6 0 121 

10 0 223 6 0 298 

10 0 217 4 0 131 

8 0 285 3 0 108 

7 0 65 3 0 186 

3 0 67 2 0 124 

D
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2 0 423 

D
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d 
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e 
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pe

s 

2 0 421 

Table 2: Standard surgical cases in Beatrix hospita l with their annual 

frequency, their rounded down weekly frequency (con tained in the MSS), and the 

expected durations. 
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Scheduling Approach Performance Measures  

      Waiting Time  Schedule Stability Hospital Efficienc y 

h r ss Average < 8 weeks Afill AinA FPO DPO SDBO 

(weeks) (weeks) (Yes/No) (weeks) (%) (%) (%) (surgeries) (minutes) (beds) 

basic scenario             

5 0 No 3,5 100,0 96,9 89,7 1,4 88,0 3,3 

alternative scenario's             

2 0 No 2,2 100,0 86,4 79,9 4,4 48,1 3,7 

3 0 No 2,6 100,0 93,0 86,1 2,5 58,8 3,5 

4 0 No 3,0 100,0 95,7 88,5 1,6 79,7 3,3 

6 0 No 4,0 100,0 97,7 90,4 1,3 90,8 3,2 

7 0 No 4,5 100,0 98,1 90,7 1,3 92,3 3,2 

8 0 No 4,9 100,0 98,4 91,0 1,3 92,9 3,2 

9 0 No 5,4 87,7 98,6 91,2 1,3 93,2 3,2 

10 0 No 5,9 77,3 98,7 91,4 1,3 93,3 3,2 

11 0 No 6,3 69,0 98,8 91,5 1,3 93,4 3,2 

12 0 No 6,8 63,7 98,9 91,6 1,3 93,4 3,2 

13 0 No 7,2 60,0 99,1 91,6 1,3 93,5 3,2 

14 0 No 7,7 56,8 99,1 91,7 1,3 93,5 3,2 

15 0 No 8,1 55,0 99,1 91,7 1,3 93,5 3,2 

25 0 No 11,6 45,9 99,4 92,0 1,3 93,5 3,1 

50 0 No 19,0 44,1 99,5 92,1 1,3 93,9 3,1 

5 1 No 3,6 100,0 97,1 89,9 1,3 88,6 3,3 

5 2 No 3,6 100,0 97,2 89,9 1,4 87,8 3,3 

5 3 No 3,6 100,0 97,2 90,0 1,4 87,2 3,3 

5 4 No 3,7 100,0 97,4 90,1 1,4 87,1 3,2 

5 0 Yes 3,5 100,0 96,9 89,7 1,4 88,4 3,3 

Table 3: Experimental results of the case study for  all scenarios as defined in 

Section 4.1. For all scenarios, a Poisson arrival d istribution with λ=40 is used. The 

results are based on n=100 independent simulation runs, each with a warm- up phase of 

800 cycles, followed by a run length of 2000 cycles .  

 

 

Patients'  Waiting Time  Schedule Stability Hospita l Efficiency 

Average < 8 weeks Afill AinA FPO DPO SDBO 

[3.51, 3.53] [100.00, 100.00] [96.90, 96.98] [89.68, 98.76] [1.40, 1.41] [87.66, 88.33] [3.25, 3.26] 

Table 4: confidence intervals (rounded to two decim als) for the basic scenario 
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Arrival distribution SDBO FCFS  SDBO MSS basic scenario  

Constant 6.29 3.20 

Gamma (40,20) 6.41 3.23 

Poison (40) 6.55 3.25 

Gamma (40,80) 6.78 3.32 

Gamma (40,160) 7.14 3.46 

Table 5: comparison of the standard deviation of th e bed occupancy levels (SDBO) 

between a FCFS approach and an MSS approach (basic scenario), for different arrival 

distributions with increasing variability. Expected  arrival rate is 40 patients per 

week for all distributions.  

 

 
 

 
 


