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This paper considers the implementation of a nonstationary, heteroge-
neous Markov model for the analysis of a binary dependent variable in a
time series of independent cross sections. The model, previously consid-
ered by MOFFITT (1993), offers the opportunity to estimate entry and exit
transition probabilities and to examine the effects of time-constant and
time-varying covariates on the hazards. We show how ML estimates of
the parameters can be obtained by Fisher's method-of-scoring and how
to estimate both ®xed and time-varying covariate effects. The model is
exempli®ed with an analysis of the labor force participation decision of
Dutch women using data from the Socio-economic Panel (SEP) study
conducted in the Netherlands between 1986 and 1995. We treat the
panel data as independent cross sections and compare the employment
status sequences predicted by the model with the observed sequences
in the panel. Some open problems concerning the application of the
model are also discussed.
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1 Introduction

The increasing availability of repeated cross-sectional (RCS) surveys not only

provides researchers with a growing opportunity to analyze over-time change but also
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raises questions about new methodology for exploiting these data for longitudinal

study. RCS data contain information on different cross-sectional units (typically

individuals) independently drawn from a population at multiple points in time and

aim to provide a representative cross section of the population at each sample point.

A limitation of this type of data for longitudinal research is that the sample units are

not retained from one time period to the next. RCS data are therefore, in the context

of dynamic modeling, generally regarded as inferior to genuine panel data, that is,

repeated observations on the same units across occasions. Obviously, an important

advantage to using a matched panel ®le is that it provides a measure of gross

individual change for each sample unit and that it enables us to use each unit as its

own control. Panel data, however, may also be inferior to repeated cross sections in

terms of sample size, representativeness, and time period covered. The size of a panel

is commonly reduced over time by the process of selective attrition, which may create

serious biases in the analysis. Especially in the case of long-term panel surveys the

panel may become unrepresentative as time proceeds. Moreover, logistical con-

straints often preclude tracking individual units through long periods of time, so that

analyzing rolling cross-sectional data for the assessment of long-run change is the

best we can do.

This paper discusses, for the case of a binary dependent variable, a dynamic model

previously treated brie¯y by MOFFITT (1990, 1993) that permits the estimation of

entry and exit transition rates from a time series of RCS samples. The model also

offers the opportunity to examine the effects of covariates on the hazards. It is

therefore likely to be useful to researchers seeking to explain over-time change at the

micro level in the absence of microlevel data. The paper is organized as follows.

Section 2 discusses the model, parameter estimation and some re®nements of the

model. Section 3 provides an example application using panel data on female labor

force participation taken from the Socio-economic Panel (SEP) study conducted in

the Netherlands between 1986 and 1995. We treat the panel data as independent cross

sections and compare the predictions of the Markov model for RCS data with the

observations in the panel. Section 4 concludes.

2 Dynamic model for RCS data

The problem of analyzing repeated cross-sectional data has attracted increasing

attention in econometrics and other disciplines in the last several years. One class of

models considered is the linear ®xed effect model (BALTAGI, 1995; COLLADO, 1997;

DEATON, 1985; GIRMA, 2000, 2001; NIJMAN and VERBEEK, 1990; VERBEEK, 1996;

VERBEEK and NIJMAN, 1992, 1993; VERBEEK and VELLA, 2000). In this approach

individual observations are grouped into cohorts based on a time-invariant character-

istic (typically date of birth) which results in a so-called pseudo panel with cohort

aggregates. The studies are concerned with the conditions under which we can

validly ignore the cohort nature of the averaged data and treat the pseudo panel of

cohorts as if it were a panel of individuals. MOFFITT (1993) has generalized this
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approach by considering models with a more dynamic structure and binary dependent

variables. In his method actual grouping of the data into cohorts need not be done

and the variation in the micro data is utilized as part of the analytic procedure. This

section elaborates his method. It is assumed in the sequel that the responses are

observed at equally spaced discrete time intervals t � 1, 2, . . . and that the samples

at periods tj and tk are independent if j 6� k. Other discussions of the model include

FELTEAU et al. (1997) and MEBANE and WAND (1997).

2.1 First-order Markov model

Suppose we have the following two-state ®rst-order Markov matrix of transition rates

in which the cell probabilities sum to unity across rows

yit

0 1

yitÿ1
0

1

1ÿ ìit ìit

ëit 1ÿ ëit

� �
This expression records the probabilities of making each of the possible transitions

from one time period to the next; e.g., ìit represents the probability that the unit

satisfying yi � 0 at time t ÿ 1 subsequently satis®es yi � 1 at time t. Recall that the

®rst-order Markov process assumes that the underlying process of change can be

described in terms of one-step transitions, i.e., the probability of occupying a state at

time t depends only on the state occupied at time t ÿ 1. This assumption implies that

the dependency between successive transitions can be eliminated by conditioning on

the previous state. Operationally this can be achieved by including the previous state

in the model as a covariate predicting yit. Also note that, if we let

pit � P(Yit � 1), ìit � P(Yit � 1jYitÿ1 � 0), and ëit � P(Yit � 0jYitÿ1 � 1)

then we have

E(Yit) � pit � ìit(1ÿ pitÿ1)� (1ÿ ëit) pitÿ1 � ìit � çit pitÿ1, (1)

where çit � 1ÿ ëit ÿ ìit. The accounting identity in (1) is the elemental equation for

estimating dynamic models with repeated cross-sectional samples as it relates the

marginal probabilities pit and pitÿ1 to the probabilities of in¯ow (ìit) and out¯ow

(ëit) from each of the two states. Obviously, the dif®culty with using cross-sectional

surveys is that the state-to-state transitions over time for each sample unit are not

observed, but rather one observes at each of a number of times a distinct cross section

of units and their current states. This implies that identi®cation of the unobserved

transitions over time in RCS data is only possible with the imposition of certain

restrictions over i and/or t.

A popular restriction is to assume that the transition probabilities are both time-

stationary and unit-homogeneous, hence ìit � ì and ëit � ë for all i and t. Using

ç � 1ÿ ëÿ ì, it is easy to show that the long-run outcome of pit based on t sets of

successive transitions is pit � (ì=(ì� ë))(1ÿ ç t)� ç t pi0, which collapses to
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pit � ì=(ì� ë) as t goes to in®nity. The limiting result for pit gives the long-run

probability of being in a state, i.e., for a time point suf®ciently far in the future the

probability that the state is 1 is ì=(ì� ë). Note that this probability does not depend

on the initial probability pi0. Hence there is a tendency as time passes for the

probability of being in a state to be independent of the initial condition. Moreover, as

noted by MOFFITT (1993), the initial probability refers to the value of the state prior

to the beginning of the Markov process, for example the state of being unemployed at

the beginning of an unemployment spell, rather than to the ®rst observed outcome

(which is pi1). It is therefore assumed in many applications to ®nite-horizon

situations that pi0 � 0 (see, e.g., BISHOP, FIENBERG and HOLLAND, 1975). This time-

invariant steady state model is the standard approach to the problem of estimating

transition rates from aggregate frequency data in the statistical literature (see, e.g.,

FIRTH, 1982; HAWKINS, HAN and EISENFELD, 1996; KALBFLEISH and LAWLESS,

1984, 1985; LAWLESS and MCLEISH, 1984; LEE, JUDGE and ZELLNER, 1970; LI and

KWOK, 1990). The formulation has been applied in several economic studies, for

example, by TOPEL (1983) in his study on employment duration and by MCCALL

(1971) in his Markovian analysis of earnings mobility. Similar uses occur in the

social science literature on intra-generational job mobility processes where it has

come to be known as the `mover-stayer' model (see, e.g., BARTHOLOMEW, 1996;

GOODMAN, 1961).

Because the assumption of stationarity and homogeneity is generally not plausible

and frequently violated in applications, it is desirable to relax this restriction. If we

de®ne the model as in (1) and let pi0 � 0 (or t!1), it is easy to verify that pit has

the representation

pit � ìit �
Xtÿ1

ô�1

ìiô

Yt

s�ô�1

çis

" #
, (2)

where çis � 1ÿ ëis ÿ ìis. This reduced form equation for pit accounts for time-

dependence and heterogeneity in a ¯exible manner and it will therefore be main-

tained in the ensuing method.

To estimate the model in (2) with RCS data, MOFFITT (1990, 1993) uses the

following estimation procedure. While repeated cross-sections lack direct informa-

tion on the individual transitions, they often do provide a set of time-invariant or

time-varying covariates X it that affect the hazards. If so, the history of these

covariates (X it, X itÿ1, . . . , X i1) can be employed to generate backward predictions

for the transition probabilities (ìit, ìitÿ1, . . . , ìi1 and ëit, ëitÿ1, . . . , ëi2) and thus for

the marginal probabilities ( pit, pitÿ1, . . . , pi1). Hence the basic idea is to model the

current and past ìit's and ëit's in a regression setting as functions of current and

backcasted values of time-invariant and time-varying covariates X it. Parameter

estimates of the covariates are thereupon obtained by substituting the hazard func-

tions into (2).

A common speci®cation for the hazard functions in panel studies uses a separate
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binary logistic regression for P(Yit � 1jYitÿ1 � yit), yit � 0, 1. That is, we assume

that

logit P(Yit � 1jYitÿ1 � 0) � logit (ìit) � X itâ, and

logit P(Yit � 1jYitÿ1 � 1) � logit (1ÿ ëit) � X itâ
�,

where â and â� are two potentially different sets of parameters. Hence the model

assumes that the effects of the covariates will differ depending on the previous

response. A condensed form for the same general model is

logit P(Yit � 1jYitÿ1 � yitÿ1) � X itâ� yitÿ1 Xitá, (3)

where á � â� ÿ â. This equation expresses the two regressions as a single dynamic

model that includes as predictors both the previous response yitÿ1 (given that the

intercept vector is included in X it) and the interaction of yitÿ1 and the covariates X it.

Note that the transition matrix varies across both individuals and time periods

because the hazards depend on the current and backcasted values of the covariates.

Theoretical uses of (3) for panel data occur in AMEMIYA (1985), DIGGLE, LIANG and

ZEGER (1994), and HAMERLE and RONNING (1995). BOSKIN and NOLD (1975) offer

an application of a heterogeneous but stationary model with exogenous variables to

the case of turnover in welfare based on panel data. See TOIKKA (1976) for an

application of a three-state Markov model with exogenous variables to labor market

choices (employed, unemployed and searching for a job, and withdrawal from

employment) in which the transitions are estimated using frequency data disaggre-

gated by sex.

According to equation (3) the transition rates are ìit � F(Xitâ) and ëit �
1ÿ F X it(á� â)� �, where F ± in this article ± is the logistic function. Maximum

likelihood estimates of á and â can be obtained by maximization of the log

likelihood function

LL �
XT

t�1

Xnt

i�1

yit log( pit)� (1ÿ yit) log(1ÿ pit)� �, (4)

with respect to the parameters, with pit de®ned by (2). As indicated by MOFFITT

(1993), obtaining pit by means of the reduced form equation is equivalent to

`integrating out' over all possible transition histories for each individual i at time t to

derive an expression for the marginal probability pit. A graphical presentation of the

model illustrating this is given in Figure 1, omitting the subscript i for clarity.

The marginal probability pit depends on the set of all possible transition histories

for each individual i up to time t. That is, pit is a polynomial in ìit and ëit. The

unobserved transition probabilities themselves are modeled as functions of current

and backcasted values of time-invariant and time-varying covariates X it. Hence an

important feature of the model is that the transition probabilities and the marginal

probabilities are estimated as a function of all the available cross sections rather than

simply the observations from the current time period. Thus estimates of the
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transitions at the beginning of the Markov chain, for example, are not determined

solely by the sample obtained for the ®rst time period but by all the samples.

2.2 ML estimation

Maximum likelihood ®tting of the model in equation (2) requires the derivatives of

the likelihood function (4) with respect to the parameters. For ease of exposition,

subscript i is omitted in the expressions of the derivatives and equation (2) is re-

written as

pt �
Xt

ô�1

ìô
Yt

s�ô
çs

 !
çÿ1
ô

" #
, (5)

where ìô � (1� eÿxôâ)ÿ1, çs � 1ÿ ës ÿ ìs, ës � (1� e xs(á�â))ÿ1, and xô and xs the

current and backcasted values of the covariates at t � ô and t � s, respectively. The

®rst order partial derivatives of pt in equation (5) with respect to the parameters â
and á are

@ pt

@â
�
Xt

ô�1

@ìô
@â

Yt

s�ô
çs

 !
çÿ1
ô �

Xtÿ1

ô�1

Xt

s�ô�1

çô
@çs

@â

Yt

ã�ô�1

çã

 !
çÿ1

s , and

@ pt

@á
�
Xtÿ1

ô�1

Xt

s�ô�1

ìô
@çs

@á

Yt

ã�ô�1

çã

 !
çÿ1

s , (6)

respectively, where @ìô=@â � xô(1ÿ ìô)ìô, @çs=@â � xs(1ÿ ës)ës ÿ xs(1ÿ ìs)ìs,

1-p4 1-p51-p31-p21-p1 1-p6

p2 p3 p4 p5p1 p6

2λ 4λ 5λ 6λ3λ
21 µ− 41 µ− 51 µ− 61 µ−31 µ−

1-p0

β∗β ∗β ∗β ∗β ∗ββ

3X2X1X 4X 5X 6X

2µ1µ 3µ

21 λ− 31 λ− 41 λ−
4µ

51 λ−
5µ 6µ

61 λ−

β β β β

Fig. 1. Graphical illustration of Markov model for RCS data
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and @çs=@á � xs(1ÿ ës)ës. Using these expressions we can calculate the derivatives

of the log likelihood function with respect to the parameters. The ML estimates are

the values of the parameters for which the ef®cient scores (RAO, 1973) are zero. To

obtain a solution to the equations resulting from setting @LL=@â � @LL=@á � 0, we

use Fisher's method-of-scoring which provides an iterative search procedure for the

estimation of â and á. Let è be the vertical concatenation of the column vectors â
and á, then the iteration scheme is è̂(i�1) � è̂(i) � å[̂I(è̂(i))]ÿ1(@LL(è̂(i))=@è) (see,

e.g., AMEMIYA, 1981). The parameter å denotes an appropriate step length that scales

the parameter increments and Î(è̂(i)) is an estimate of the Fisher information matrix

I(è) � ÿE[@2 LL(è)=@è j@èk] evaluated at è̂(i), where @2 LL(è)=@è j@èk is the Hes-

sian matrix. As a by-product of this iterative scheme, the method-of-scoring produces

an estimate of the asymptotic variance-covariance matrix of the model parameters,

being the inverse of the information matrix Iÿ1(è) evaluated at the values of the

maximum likelihood estimates.

2.3 Some model extensions

A potential drawback to the model presented by MOFFITT (1990, 1993) is that it

assumes that the effects of the covariates are ®xed over time, implying that they are

expected to have much the same impact over the period of time during which the

observations were obtained. This restriction may not be valid for long time periods

and potentially biases the estimated effects. An alternative model that could be

considered is to allow the regression coef®cient to become polynomials in t using the

expression â t � ã0 � ã1 t � ã2 t2 � . . . � ãdtd , where d is a positive integer specify-

ing the degree of the polynomial. Obviously, in practice it will be desirable to have

models with low degree polynomials that avoid problems of overparametrization

(i.e., nonexistence of unique ML estimates) and that combine parsimony of parame-

trization with ®delity to data. Another way in which we may accommodate the model

is that whereas Mof®tt de®ned the ®rst observed outcome of the process P(Yi1 � 1)

to equal the transition probability ìi1, we take P(Yi1 � 1) to equal the state

probability pi1. That is, we assume that the Yi1's are random variables with a

probability distribution P(Yi1 � 1) � F(X itä), where ä is a set of parameters to be

estimated and F is the logistic function. The ä-parameters for the ®rst observed

outcome at t � 1 are estimated simultaneously with the entry and exit parameters of

interest at t � 2, . . ., T . Moreover, recall that the probability vector at the beginning

of the Markov chain is estimated as a function of all cross-sectional data, rather than

simply the observations at t � 1. Finally, we may also relax the implicit assumption

that the cross sections at each time t are of the same sample size. To ensure

a potentially equal contribution of the cross-sectional samples to the likelihood, we

use the weighted log likelihood function LL� �PT
t�1

Pnt

i�1wi[yit log ( pit)�
(1ÿ yit) log (1ÿ pit)], where wi � n=nt, with n �PT

t�1 nt=T , nt is the number of

observations of cross section t and T is the number of cross sections.
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3 Application

Our empirical application employs panel data on female labour force participation of

Dutch women aged 20±64 drawn from the Socio-economic Panel (SEP) study

conducted by STATISTICS NETHERLANDS in the period 1986±1995. The panel data

were treated as if they were a temporal sequence of cross sections of unrelated

women (i.e., no estimate of cov(yt, ytÿ1) is available in the data used to estimate the

Markov model). These data were used because they allow us to verify the results of

the Markov model. The labor market status yit is de®ned to equal 1 if the woman

participates in the labor force at time t and 0 otherwise.

Table 1 gives the number of observations (including panel in¯ow and out¯ow), the

marginal distribution of participation over time, and the observed annual entry and

exit transitions rates in the panel. The table shows that over the period considered the

female participation rate in the panel increased from about 40% in 1986 to around

56% in 1995. It also shows that both the panel entry and exit transition rates are

relatively low. The analysis uses only covariates that are generally available in

repeated cross-sectional surveys. As time-varying covariates, the analysis employs

age in four different age categories (20±34, 35±44, 45±54, 55±64 years of age), the

number of children at three different age categories (, 5, 5±17, > 18 years of age),

and the annual nationwide unemployment rate (in %). The covariate completed

education is taken to be ®xed over time. Next to these variables the analysis also

includes three initial conditions variables that capture the ®rst entry into the process

at age 20, the interaction of ®rst entry with education and its interaction with the

aggregate unemployment rate. The potentially important interaction of ®rst entry

with number of children was not included, as the number of mothers aged 20 was

insuf®cient to allow reliable estimation. It is of interest to note that the individual

observations were backcasted until the minimum age of 20, at which the ®rst entry

into the participation process is taken to have occurred. If for an observation the

backcasted value of age in a particular cross section was less than 20, the entry and

exit rates at that time period were ®xed to zero.

Table 1. Marginal fraction of women's employment and observed annual entry and

exit transition rates

year nt in¯ow out¯ow yt ytjytÿ1 � 0 ytjytÿ1 � 1

(age 20) (age 64)

1986 2,302 52 21 0.400

87 2,299 18 33 0.406 0.076 0.109

88 2,306 39 28 0.425 0.097 0.106

89 2,308 30 28 0.432 0.087 0.109

90 2,316 36 36 0.448 0.107 0.113

91 2,288 8 47 0.476 0.127 0.105

92 2,241 0 41 0.515 0.128 0.074

93 2,200 0 39 0.525 0.097 0.086

94 2,161 0 48 0.526 0.077 0.082

95 2,113 0 36 0.557 0.121 0.066
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First a simple time-stationary Markov model with constant terms only was applied

to the data using the software program CrossMark (which is available upon request).

This model produced a â(ì t . 1) of ÿ0:222 and a ÿâ�(ë t . 1) of ÿ0:078. These

estimates imply constant transition rates of ì � 0:445 and ë � 0:480; hence implau-

sibly high values that amply exceed those reported in Table 1. The model was

thereupon extended to a nonstationary, heterogeneous Markov model by including

the covariates reported above. The results are shown in Table 2.

The parameters in the ®rst column show the effect of the variables on the

employment state probability pi1 at t � 1, estimated for all observations in the

model. As can be seen, the parameters are well determined, with employment

positively affected by education and negatively by age and the number of children

(particularly preschool children) in the household. The second column in Table 2

presents the effect of the variables on the transition from non-employment to employ-

ment. Whereas education is signi®cant in encouraging entry into the labor force,

young children in the household and the aggregate unemployment rate negatively

affect the entry decision. We also ®nd that age has a negative effect on entry implying

that the entry rates decline with age. The initial conditions variables indicate that

higher unemployment rates and higher education increase the probability of entry at

age 20. According to the standard errors, however, these variables have little impact

on the hazards. The third column gives the effect of the variables on the transition

into non-employment. We ®nd that the exit rates are negatively affected by education

and positively by the number of school and preschool children in the household. The

Table 2. Markov repeated cross-section estimates for women's transition into and out of employ-

ment, n � 22,534

ä( pt�1)a â(ì t . 1) ÿâ�(ë t . 1)

Intercept ÿ0:027 (0:099) ÿ0:684 (0:468) ÿ1:877� (0:670)

Education 0:322� (0:031) 0:347� (0:043) ÿ0:570� (0:067)

Ageb:

35±44 years old ÿ0:199� (0:079) ÿ1:287� (0:127) ÿ2:190� (0:287)

45±54 years old ÿ1:198� (0:095) ÿ1:592� (0:203) ÿ0:311 (0:309)

55±64 years old ÿ2:187� (0:115) ÿ3:139� (0:439) 1:290� (0:240)

Number of children:

, 5 years old ÿ1:543� (0:094) ÿ0:214� (0:089) 2:066� (0:151)

5±17 years old ÿ0:438� (0:036) ÿ0:017 (0:052) 0:220� (0:107)

> 18 years old ÿ0:176� (0:054) 0:091 (0:105) ÿ0:253 (0:179)

Unemployment rate ÿ0:225� (0:067) 0:052 (0:093)

Age20b 0:853 (1:599)

Age20 3 education 0:306 (0:209)

Age20 3 unemployment rate 0:283 (0:191)

Log likelihood (LL�) ÿ12760:67

� Signi®cant at 5% level (based on the estimated information matrix).
a Estimates of standard errors in parentheses. The â-parameters represent the effect on ì t, the â� -
parameters the effect on (1ÿ ë t), and thus ÿâ� the effect on ë t.
b Reference category Age � 20±34 years; Age20: 1 if age � 20, 0 if not.
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coef®cients of the age terms imply that the incentives to end a job initially decrease

with age but they are forced up again (presumably by occupational pension) after the

age of 54. The effect of the aggregate unemployment rate on the transition into non-

employment is insigni®cant.

Because there are substantive arguments to anticipate that the effect of some of the

covariates (intercept, number of young children, education) may vary over time,

several tests with different time-varying-coef®cient models were applied to the data.

These models, however, describe the data only slightly better (in terms of goodness-

of-®t) than the time-constant-coef®cient model and their results are therefore not

reported here. We instead concentrate on an examination of the ®t of the estimated

model presented in Table 2 in terms of predictions. There are several ways to do so.

One is to compare the actual sample frequency of all possible labor force participa-

tion sequences from 1986 to 1995 with the estimated expected frequency of each

sequence. The latter were computed as follows. With T sample periods, we havePT
t�12 t different sequences (which in the present application equals 2,046) ranging

in length from 1 (e.g., `0') to T (e.g., `0101010101') . We de®ne the probability of a

sequence of length t for each observation i of cross section t as

~pi( ~y1, . . . , ~yt) � P(Yi1 � ~y1\ . . . \Yit � ~yt),

where ~y1, . . . , ~yt � 0,1. Hence

~pi( ~y1) � P(Yi1 � ~y1) � ~y1 pi1 � (1ÿ ~y1)(1ÿ pi1),

where pi1 is P(Yi1 � 1). For t . 1, we have

~pi( ~y1, . . . , ~yt) � ~pi( ~y1)
Yt

ô�2

( p00 � p01 � p10 � p11),

where

p00 � (1ÿ ~yôÿ1)(1ÿ~yô)(1ÿ ìiô), p01 � (1ÿ~yôÿ1) ~yôìiô, p10 � ~yôÿ1(1ÿ ~yô)ëiô,

and p11 � ~yôÿ1 ~yô(1ÿ ëiô). The mean value of ~pi( ~y1, . . . , ~yt) for all observations of

cross section t was obtained as ~p( ~y1, . . . , ~yt) �
Pnt

i�1 ~pi( ~y1, . . . , ~yt)=nt. The esti-

mated expected absolute frequency ~f ( ~y1, . . . , ~yt) of each participation sequence

was thereupon computed by evaluating ~f ( ~y1, . . . , ~yt) � ~p( ~y1, . . . , ~yt)nt.

An initial examination is to compare the expected with the observed ®rst-order

transitions over the time period of our data. Table 3 shows the relative frequencies of

the estimated expected ( ~ytÿ1, ~yt) transitions and the differences between the expected

and the observed relative frequencies. As can be seen, the predicted frequencies are

concentrated in the continuous work (11) and continuous nonwork (00) categories.

Further, while for some time periods the discrepancies between the predicted and the

observed proportions are signi®cant at the 0.05 level, most differences are very small.

This implies that both the mover and the stayer frequencies are predicted fairly well.

A further examination of the ®t of the model reported here is to compare the

estimated expected and the actually observed absolute frequencies of all 2,046
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employment status sequences. Because it is unfeasible to tabulate all frequencies,

they are graphically displayed in Figure 2 together with the OLS regression lines.

The top part of the ®gure displays the predicted and the actual frequencies of all

possible employment pro®les, but highlights the relatively small number of sequences

with high frequencies. These sequences concern the continuous participation and

continuous nonparticipation categories. The bottom part of the ®gure zooms in on the

employment sequences with relatively low frequencies in the 0±140 range. Visual

inspection suggests close agreement between the estimated expected frequencies

predicted by the RCS Markov model and the observed frequencies of the spells in the

panel. The (unreported) longitudinal pro®les indicate that most women remain

employed or non-employed throughout the observation interval and that proportion-

ally few women move into and out of the labor force frequently.

4 Conclusion

The overall conclusion that we draw from this example is that the proposed model

can be a useful tool in applied work. It obviously does not supersede genuine panel

designs, but it de®nitely puts a series of one-shot surveys into perspective and it

provides more re®ned results than would be available from a single cross-sectional

study. Microdata panel sets offer the potential for the construction of more ¯exible

and richer statistical models of transition dynamics than do those based upon cross-

sectional information. However, while there has been a substantial increase of data

archives holding vast collections of repeated cross-sectional data, panel data repre-

sent the exception of these collection efforts, rather than the rule. RCS data are

cheaper to collect and they do not suffer from problems of non-random attrition

which plague panel data. Moreover, a disadvantage to using pure panel surveys is the

limited number of units followed and the limited number of time points at which

these units are usually re-interviewed. These limitations have to be balanced against

the lack of direct information on the transitions in long-run RCS data.

Table 3. Relative frequencies of estimated expected ( ~ytÿ1, ~yt) transitions at sample period T and

estimated expected minus observed proportions, n � 22,534

T nt estimated expected expected - observed ÷2

(00) (01) (11) (10) (00) (01) (11) (10)

2 2,299 0.556 0.053 0.354 0.037 0.006 0.008 ÿ0.007 ÿ0.007 6.03

3 2,306 0.540 0.056 0.365 0.039 0.009 ÿ0.001 ÿ0.003 ÿ0.005 1.78

4 2,308 0.521 0.060 0.381 0.038 0.000 0.010 ÿ0.002 ÿ0.009 8.57

5 2,316 0.495 0.067 0.400 0.038 ÿ0.008 0.007 0.012 ÿ0.011 10.49

6 2,288 0.469 0.059 0.432 0.040 ÿ0.007 ÿ0.010 0.025 ÿ0.008 10.96

7 2,241 0.448 0.053 0.460 0.039 0.000 ÿ0.013 0.011 0.003 8.41

8 2,200 0.441 0.038 0.482 0.039 0.011 ÿ0.008 0.003 ÿ0.006 6.12

9 2,161 0.441 0.031 0.491 0.037 0.011 ÿ0.005 0.001 ÿ0.007 5.47

10 2,113 0.435 0.033 0.500 0.032 0.028 ÿ0.023 ÿ0.001 ÿ0.003 36.68
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Fig. 2. Estimated expected versus observed frequencies of 2,046 employment status sequences and

OLS regression lines
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Some problems we encountered in trying to model unobserved transitions over

time using RCS data deserve to be mentioned. The application of the model

presented here requires knowing the history of the explanatory variables for the

individuals in the samples. We often have characteristics for which the history is

unknown however. These characteristics may be relevant explanatory variables, but

in many applications the analysis would omit them. Nevertheless, it is our believe

that relatively rich dynamic models can be developed with a time series of RCS data.

Many individual variables can be backcasted with considerable accuracy and many

aggregate indicators are also measurable in the past. Moreover, our experiments have

shown that it is also possible to specify a model with two different sets of parameters

for both ì and ë, i.e., one for the past transition rates and a separate one for the

transition at the current time period. This offers the opportunity to also include

relevant non-backcastable covariates in the (current part of the) Markov model.

A somewhat related problem, common to all duration analyses, is that the model

speci®cation assumes that individual heterogeneity is due to the observed variables.

It is likely, however, that unobserved and possibly unobservable variables including

initial conditions are also a source of population heterogeneity. The presample history

is lost by imposing an arbitrary survey window on the behavioral process, thus left-

censoring the process and omitting events of interests associated with, or arising

from, the periods prior to the ®rst survey. The potential effect of this uncontrolled

heterogeneity can bias the estimated effects of the explanatory variables included in

the model. It is unknown, however, how serious the consequences of misspeci®cation

are if we have suf®ciently ¯exible models for baseline hazards and time-varying

covariates. Hence further investigation is needed on how much of the evidence is

censored.
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