
HYPOTHALAMIC REGULATION OF THYROID-STIMULATING 

HORMONE AND PROLACTIN RELEASE: THE ROLE OF 

THYROTROPHIN-RELEASING HORMONE 

Hypothalame regulatie van schildklier-stimulerend-hormoon en prolactine afgifte: de 

rol van thyrotrophin-releasing hormone (TRH) 

PROEFSCHRIFT 

Ter verkrijging van de graad van doctor 

aan de Erasmus Universiteit Rotterdam 

op gezag van de Rector Magnificus 

prof. dr. P.W.C. Akkermans, M.A. 

en volgens het besluit van het College v~~r Promoties. 

De open bare verdediging zal plaatsvinden op 

woensdag 27 september 1995 om 15.45 uur. 

door 

GOEDELE ADRIANA CATHERINA VAN HAASTEREN 

geboren te Rotterdam 



PROMOTIE-COMMISSIE 

Promotores: 

Co-promotor: 

Overige leden: 

prof. dr. ir. T.J. Visser 

prof. dr. F.H. de Jong 

dr. W.J. de Greef 

prof. dr. S.W.J. Lamberts 

prof. dr. W.M. Wiersinga 

dr. A.R.M.M. Hermus 

Oit proefschrift werd bewerkt binnen de afdelingen Endocrinologie en Voortplanting 

en Inwendige Geneeskunde III van de Faculteit der Geneeskunde en 

Gezondheidswetenschappen, Erasmus Universiteit Rotterdam. 



Up in my head, 

Just over my tongue, 

A little thing from my brain is hung, 

To make it work there are factors new 

That tell it when and how to pitu. 

Murray Saffran 
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Chapter 1 

1.1 General introduction 

Thyrotrophin-releasing-hormone (TRH). a tripeptide, is produced by hypothalamic 

neurons and transported along their axons to the median eminence (ME). From 

there it is released at nerve terminals into hypophyseal portal blood. II is then 

transported to the anterior pituitary gland where it stimulates the function of the 11 

thyrotrophs and lactotrophs, which synthesize and release thyroid-stimulating­

hormone (TSH) and prolactin (PRL) respectively. TSH, in turn, stimulates the 

secretion of triiodothyronine (T3) and thyroxine (T4) from the thyroid gland. PRL is 

involved in a broad spectrum of biological activities. In this thesis its role in the 

initiation and maintanance of lactation will be described. 

Damage to the hypothalamus or transsection of the pituitary stalk results in a 

hypothyroid status in rats. Circulating thyroid hormones exert powerful negative 

feedback control on the thyrotrophs, and to a lesser extent on the TRH-producing 

neurons of the hypothalamus (Fig.l). In addition to TRH, there is a variety of 

secondary modulators which playa role in controlling TSH secretion. Somatostatin 

and dopamine (DA) are important modulators in the inhibition of the TSH secretion, 

whereas a.-adrenergic pathways are in general stimulatory. Olher modulators of 

thyroid hormone secretion include glucocorticoids, various cytokines, and other 

inflammatory mediators. The net result of all these factors is the maintenance of a 

steady output of TSH and, thus, of thyroid hormones. 

PRL plays a predominant role during lactogenesis. The neuronal control of 

PRL release involves both PRL-inhibiting and -releasing factors. The rapid increase 

in plasma PRL levels in the lactating rat may result from an increased hypothalamic 

secretion of PRL-releasing factors (PRFs), an enhanced sensitivity for PRFs, or 

from suppressed hypothalamic secretion of PRL-inhibiting factors (PIFs) into the 

portal system. TRH has been considered as one of the major PRFs in lactating rats, 

whereas DA is the main PIF. 

Suckling-induced variations in plasma PRL are not in proportion to those in 

plasma TSH. However, the lack of a parallel increase of plasma TSH and PRL 

during suckling does not exclude a physiological role of TRH as a PRF, since 

separate control of PRL and TSH release by other factors might playa role under 

different physiological conditions. 
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Figure 1. Schematic representation of the hypothalamic-pituitary axis leading to TSH 

and PRL secretion. The fundamental actions are hypothalamic stimulation 

of thyrotroph and lactotroph lunclion, balanced by the powerful negalive 

feedback inhibition exerted by thyroid hormones or PRL, respectively. 

1,2, Basic aspects of TRH 

1,2, 1. Historical background 

In "De Usu Partium" (2nd century AD.), Galen of Pergamon was the first to 

describe a connection between the encephalon and the anterior pituitary gland (1). 

Galen described two pairs of channels for the elimination of thicker residues, the 

pituita, from the encephalon. According to him, one pair of channels was used 

under normal conditions, whereas the second pair of channels was used when 

there was too great a quantity of residues to be carried off by the other pair, for 

example when one has a cold. Vasalius supported Galen's description and 

illustrated the pathway along which the 'pituita' of the brain were transported on 

their way to the pituitary gland and from there to the nasal cavaties in more detail 

(2). 

The belief that the pituitary is more than a conduit for pituita, was proposed by 

Smith et al in 1927 (3), who described a variety of disabilities caused by 

hypophysectomy in rats. Geoffrey Harris was the first who seriously argued that the 
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hypothalamus controlled the pituitary gland, if not by nervous signals, then by 

chemical means (4). In 1957 it has been demonstrated that the mammalian 

hypothalamus secretes a substance stimulating the thyrotrophic function of the 

pituitary (5). This observation formed the foundation for the simultaneous 

description of the isolation and chemical characterization of TRH, by the groups of 

Schally and Guillemin in 1969 (6, 7). Using immunohistochemical techniques, the 

presence of TRH was demonstrated mainly in the paraventricular area of the 

hypothalamus. These localisation studies have demonstrated that hypothalamic 

factors are discharged from axon terminals into a vascular network which connects 

the hypothalamus and the anterior pituitary. From this time on, the role of TRH as a 

hypothalamic hypophysiotrophic hormone releasing TSH from the anterior pituitary 

gland has become generally accepted (8, 9). Its role in the regulation of lactation 

through stimulation of PRL from the anterior pituitary is still controversial (8, 10-12). 

1.2.2. TRH synthesis, processing and metabolism 

Pyroglutamine-histidine-proline-amide (TRH) is synthesized following a classic 

peptide biosynthetic pathway, i.e. polyribosomal synthesis of a larger precursor 

protein which is postlranslationally processed by microsomal enzymes, and 

packaged into secretory granules (13). Although TRH was the first hypothalamic 

releasing factor to be chemically identified, the sequence of its precursor (proTRH) 

was the last to be elucidated (14). 

The cDNA sequence of the rat TRH precursor encodes a protein of 255 amino 

acids, which contains five TRH progenitor sequences Gln-His-Pro-Gly flanked by 

pairs of basic amino acid residues Lys-Arg or Arg-Arg (Fig. 2). The remainder of the 

precursor consists of a signal peptide, two aminoterminal flanking sequences 

separated by a paired arginine sequence, four spacer peptides, and a carboxy­

terminal flanking sequence. 

Figure 2 also shows the processing of one TRH-progenitor sequence. First the 

two basic amino acid cleavage sites that are flanking the TRH progenitor sequence 

Gln-His-Pro-Gly are removed by a tripsin-like protease and a carboxypeptidase 

(15). Subsequently, Gin is cyclized to pGlu, presumably by the enzyme glutaminyl 

cyclase (16). Amidation of Pro by modification of Gly is the last and rate limiting 

slep and is calalyzed by a peplidyl a-amidaling monooxygenase (PAMase), 

requiring oxygen, copper and ascorbate as cofactors (17). 

Nexl to TRH, processing of Ihe prohormone produces several other pro TRH-
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derived neuropeptides (Fig. 2), which may in the future prove to exert important 

intracellular or extracellular functions (18, 19). Different processing patterns of 

proTRH in various brain regions and other tissues suggest tissue-specific regulating 

mechanisms for TRH synthesis and release (18, 20-25). Immunohistochemical 

studies have revealed that several intervening peptides derived from proTRH are 

found in terminals of the external zone of the ME (22, 26, 27), suggesting that 

these 'cryptic' peptides may be released in the portal blood together with TRH, and 

thus may reach the anterior pituitary. The biological significance of non-TRH 

connecting sequences is currently a matter of speculation. 

Arg-Arg 
24 t TRR TRH 

.. II .... 

P,4 
TRH ~ TRH TRH .. .. .. 

_Lys_Arg_Gln_His_Pro_Gly_(Lys/Arg)_Arg_ 

25' 

1 trypsin-like protease/carboxypeptidase 

Gln-His-Pro-Gly 

I spontaneous/glutamlnyl cyclase , 
pGlu-His-Pro-Gly 

I peptidyl a-amidating monooxygenase , 
pGlu-His-ProNH2 

FIgure 2. Schematic representation of the rat proTRH. The molecule contains 5 

copies of a progenitor sequence of TRH (in black), several non· TRH 

sequences Including two N·terminal peptides separated by an arginine­

arginine residue, one C-termlnal-flanking sequence, four spacer sequences 
and a putative signal peptide sequence (1-24). The position of proTRH­

(160·169) (Ps4) is indicated. The processing of one putative proTRH 

moiety (underlined), flanked by paired basic amino acids, is represented. 

Specific receptors for one of the cryptic peptides, proTRH-(160-169), also called 

spacer peptide 4 (Ps4), have been demonstrated in the pituitary gland by Valentijn 

et al (28). It has been demonstrated that synthetic Ps4 potentiates the TRH-induced 

release of TSH in vitro from the rat anterior pituitary (23, 29). Concurrently, Ps4 has 

been shown to increase the expression of TSHB subunit and PRL mRNA in primary 

cultures of rat pituitary cells (29, 30). However, Ps4 alone has no effect on TSH or 
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PRL secretion into the medium (23, 29). Therefore, Ps4 acts as a regulator of both 

TSH and PRL synthesis, but, unlike TRH, does not act as a secretagogue. On the 

other hand, further research has demonstrated that Ps4 and its receptor are widely 

distributed in the central nervous system (CNS) and peripheral tissues (31), 

suggesting that Ps4 can act as neuromodulator or neurotransmitter in the CNS. The 

possible biological function of the other intervening peptides still has to be revealed. 

TRH is rapidly degraded in serum and tissue (32) into two main products: 

pGlu-His-Pro (acid TRH) and His-Pro-NH, (Fig.3) (33). Acid TRH results from the 

action of TRH-deamidating postproline cleaving enzyme and lacks biological 

activity. His-Pro-NH, is formed by hydrolysis at the pGlu-His bond by a TRH­

degrading pyroglutamyl aminopeptidase (34-36). His-Pro-NH, is rapidly cyclized to 

His-Pro-diketopiperazine (DKP) which has intrinsic biological effects on PRL 

secretion, thermoregulation and appetite (37, 38). It has been suggested that TRH 

may act as a prohormone for this molecule, although recent data suggest that DKP 

may also arise from other pathways in several tissues (39, 40). 

TRH 

o vEINH_CH_L~ ,L, bH, 

"",l,'.m." ~ H;~ 
amlnGp.pthf.u TRH dtamldu. 

t t 
HISTIDYL PROLlNEAMtoE 

NH-CH-~~Q ' \ CH, 
A \,0 
Nv ........ 1 NH, 

Cycllutlon 

• DIKETOPIPERAZINE 

ACID TRH 

Figure 3. Metabolism of thyrotropin-releasing hormone (TRH) Into two main products: 
pyroglutamylllYstidylproline (acid TRH) and hlstldyl prolineamlde. Most of 
the latter Is rapidly cyclized to form h/sttdyl proline dlketoplperazlne (DKP). 
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Introduction 

Due to their intracellular localization, TRH-degrading pyroglutamyl 

aminopeptidase and TRH-deamidating postproline enzyme cannot participate in the 

inactivation of extracellular TRH. This inactivation is catalyzed by a peptidase on 

synaptosomal and anterior pituitary membranes, which exhibits a high degree of 

substrate specificity, like the TRH-degrading serum enzyme (41). The ectoenzyme 

is localized preferentially on neuronal cells in the brain and on lactotrophic pituitary 

cells (42). The activity of the anterior pituitary enzyme is controlled by estradiol and 

thyroid hormones, whereas the activity of the brain enzyme is not (32, 42, 43). 

Therefore it has been postulated that this TRH-degrading ectoenzyme may serve 

regulatory functions by inactivating TRH after its release. In plasma the half-life of 

TRH is short, ranging from about 2 minutes in thyrotoxic animals to 6 minutes in 

hypothyroid animals. This difference reflects in part the effects of thyroid status on 

the serum TRH-degrading enzyme (44, 45), which suggests that this enzyme may 

serve a biological function as well. 

1.2.3. Localization and distribution 

Using immunocytochemical techniques the rat TRH precursor and TRH itself have 

been demonstrated to be present within the hypothalamic paraventricular nucleus 

(PVN) and the brainstem raphe nucleus perikarya (46, 47). A similar localization 

pattern for proTRH has been found by in situ hybridisation histochemistry, using 

RNA probes complementary to proTRH mRNA (96). In rats, immunoreactive TRH is 

found in the internal layer of the ME, the anterior horn of the spinal cord and the 

pituitary gland, using immunocytochemical techniques, whereas immunoreactive 

pro TRH is not. This indicates that processing of TRH in rats occurs in the perikarya 

and not during axonal transport (48). In man, immunoreactive proTRH and proTRH 

mRNA have been demonstrated in the hypothalamus as well as in anterior pituitary 

tissues (49, 50). To demonstrate proTRH mRNA in human anterior pituitary reverse 

transcription-polymerase chain reaction has been used. Methodological differences 

may explain the discrepancy between pro TRH gene expression in human and rat 

pituitary. 
Immunoreactive TRH is widely distributed in the rat hypothalamus; particularly 

high concentrations are found in the preoptic suprachiasmatic nucleus and the 

periparaventricular area (46, 51-53). Nerve terminals staining for TRH in the ME of 

the hypothalamus are presumably derived from these cell bodies. Furthermore, 

networks of TRH-positive nerve fibers have been demonstrated to extend into the 
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posterior pituitary (46, 54-56). Lesions of the PVN reduce the level of 

immunoreactive TRH in the posterior pituitary glands, indicating that the 

hypothalamus is the probable source of TRH in this area (57). In contrast, lesions of 

the PVN cause an increase in TRH levels in the nucleus of the tractus solitarius, 

indicating that TRH fibers in this region do not arise in the hypothalamus (58). 

The non-TRH peptides derived from pro TRH are colocalized with TRH in cell 

bodies and nerve terminals in rats. In addition, they are present in brain regions 

where TRH is not detected (14). This suggests a differential processing of proTRH 

in the CNS. 

In rats, TRH has been demonstrated to be present in extrahypothalamic brain 

areas, as well as in the spinal cord, testis, retina, gastrointestinal tract, pancreas, 

placenta, and other peripheral locations (55, 59-62). During the first days of 

postnatal life, the rat pancreas contains large amounts of TRH which are even 

larger than those in the hypothalamus. These levels progressively decrease over a 

period of a few weeks (61, 63). This finding may reflect a possible ontogenic role of 

TRH in pancreas development. 

1.2.4. TRH receptors 

The availability of a radiolabelled high affinity TRH analogue, 'H-Iabelled [3-Me­

His'JTRH, has facilitated the measurement of TRH receptor binding. TRH binding 

sites are distributed throughout the CNS and in the anterior pituitary, but there is a 

wide species difference between receptor densities in various regions (64). Based 

on the diversity of anatomical localization and apparent physiological functions 

biochemical heterogeneity of these receptors was postulated. A classification of 

brain and anterior pituitary TRH receptors as a heterogenous group has indeed 

been made according to charge characteristics, differences in regulation by guanine 

nucleotides, and differences in amino acid sequences (65, 66). 

The sequencing of a cDNA encoding mouse pituitary TRH receptor (67) 

revealed that this receptor is a membrane-bound protein with a seven­

transmembrane-domain structure, which transduces its signal via binding to a G­

protein. Zhao et al (68) isolated a full-Ienght cDNA encoding a TRH receptor from 

GH, pituitary tumor cells, while Sellar et al (69) isolated a TRH receptor from a rat 

anterior pituitary cDNA library and successively determined its sequence and 

functional characteristics. In GH, rat anterior pituitary tumor cells two different 

isoforms of the TRH receptor with indistinguishable functional properties are 
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generated by alternative splicing (70). Also in the normal pituitary gland two TRH 

receptor mRNAs have been demonstrated with different C-terminal amino acid 

sequences (66). Both receptor forms are expressed throughout the rat pituitary 

gland and CNS. 

Following its binding to the receptor, there are two pituitary responses to TRH: 

stimulation of the release of stored hormone and stimulation of gene transcription. 

TRH receptors can couple to the phosphoinositide or to the adenylyl cyclase 

pathway in GH, pituitary tumor cells (71-74). The adenylyl cyclase pathway leads to 

increased levels of cyclic AMP and the activation of protein kinase A. The 

phosphoinositide cascade leads to hydrolysis of phosphatidylinositol-4,5-

bisphosphate which produces two intracellular second messengers - inositol 1,4,5-

trisphosphate which opens calcium channels, and diacylglycerol which activates 

protein kinase C. The increase in intracellular free calcium is responsible for an 

immediate hormone release, while the activation of protein kinase C is believed to 

be responsible for a slower and sustained hormone secretion (74-77). It remains to 

be established whether the structural heterogeneity of the receptors and the 

different signal transmission pathways are correlated. In addition to stimulating TSH 

and PRL release, TRH stimulates synthesis of these hormones by promoting 

transcription and translation of the TSHI3 subunit and PRL gene (29, 78-81). 

Occupancy of TRH receptors by TRH leads to a subsequent loss of TRH 

binding sites. This homologous down-regulation occurs in both thyrotrophs and 

lactotrophs (82, 83). The desensitization of the pituitary TRH receptors occurs by a 

decrease in number rather than a decrease in affinity of receptor sites (82). It has 

been suggested that the TRH-induced decrease in TRH receptor mRNA expression 

is not due to inhibition of mRNA synthesis alone and may present a post­

transcriptional effect as well (84). For the human TRH receptor, it is believed that 

the carboxy-terminal domain of this seven-transmembrane-domain receptor may 

play an important role in receptor downregulationiinternalisation (85). 

The density of TRH receptors can also be modulated by other hormones, 

which is termed heterologous receptor regulation. Thyroid hormones exert a 

powerful negative control on TRH receptor binding (83, 86-89). On the other hand, 

experimental hypothyroidism increases TRH receptor binding and TRH receptor 

mRNA levels in rat pituitary (90). Estrogens increase pituitary TRH receptor levels 

(86, 91), which recently has been found to be regulated at the mRNA level by an 

increase of both the transcription rate and mRNA stability (92). Glucocorticoids also 
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lead to an increase of TRH receptor density on pituitary cells in culture (93). The 

relatively slow time course of changes in TRH receptor density suggest that 

glucocorticoids, like thyroid hormone and estrogen, act at the level of gene 

transcription. 

Cellular distribution, potential functional differences, and homologous and 

heterologous receptor down-regulation of the different isoforms of TRH receptor are 

all important factors to be considered in the evaluation of the role of TRH in the 

regulation of the function of the anterior pituitary and CNS. 

1.3. Actions of TRH 

TRH exerts a number of effects at the level of the CNS and in peripheral organs. 

Hypothalamic TRH, transported through the portal blood to the anterior pituitary, 

acts at this level as a neurohormone, while extrahypothalamic TRH may act as a 

neuromodulator, or possibly by influencing cell-to-cell communication. 

1.3.1. TRH as a neurohormone 

The best defined physiological action of TRH is its role in the control of anterior 

pituitary TSH secretion. Various studies have demonstrated that TRH stimulates 

TSH secretion from the thyrotrophs and that lesions in the hypothalamus or the 

interruption of the hypothalamo-pituitary connection result in hypothyroidism due to 

impaired TSH secretion (8, 9, 94, 95). Passive immunization with anti-TRH 

antibodies results in decreased basal and cold-induced TSH secretion (8, 96-99)J. 

At the pituitary level, after binding to specific receptors on the thyrotroph 

membrane, TRH has a stimulatory effect in the complex system regulating TSH 

secretion, which also includes thyroid hormones, DA and somatostatin as inhibitory 

counterparts (100). In addition to stimulating TSH release, TRH also stimulates TSH 

synthesis by promoting transcription and translation of the TSHB subunit gene 

(78-81). In addition, TRH influences the glycosylation of TSH which is critical for the 

biological activity of TSH (101-103). In some patients with hypothalamic 

hypothyroidism the biological activity of secreted TSH is reduced, which is restored 

by prolonged TRH administration (104). In rats with hypothalamic hypothyroidism, 

caused by selective lesions of the PVN, carbohydrate structure of TSH is altered 

which may affect its bioactivity and molecular clearance rate (105). 

Although first recognized because of its effects on the release of TSH, it soon 
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became clear that TRH also stimulates the release of PRL (see chapter 1.5) and, 

under particular circumstances, of some other anterior pituitary hormones (55, 

106-108). 

1.3.2. TRH as a neurotransmitter or neuromodulator 

The extensive extrahypothalamic distribution of TRH, its localization in nerve 

endings, and the presence of TRH receptors in extra hypothalamic brain tissue 

suggest that TRH can act as a neurotransmitter or neuromodulator outside the 

hypothalamus. TRH has predominantly a stimulatory neuronal activity, but the 

mechanism by which TRH induces neural responses has still not been completely 

elucidated (38, 55, 109). 

It has been suggested that TRH can cause changes in the synthesis and 

secretion of classic neurotransmitters, such as DA, noradrenaline, acetylcholine and 

seretonin. TRH increases the concentration of DA metabolic products, such as 

homovanillic acid and dihydroxyphenylacetic acid, DA release from brain slices, and 

activity of enzymes involved in DA synthesis, such as thyrosine hydroxylase. 

Furthermore, TRH increases noradrenaline and acetylcholine turnover and 

potentiates the effects of serotonin (38, 55, 110-113). 

TRH exerts neuromodulatory effects on cardiovascular and respiratory 

functions in rats and cats (114-116), and is believed to act as a neurotransmitter in 

the human retina (62). Microinjections of TRH into the brainstem stimulate 

respiration, possibly by inducing the rhythmic electric activity in neurons of the 

nucleus tractus solitarius (117). 

TRH is also involved in the physiological neural control of gastrointestinal and 

pancreatic functions at either the peripheral or central level (118-121). It has been 

reported that exogenous TRH reverses experimental hyperglycemia by stimulating 

insulin release through an action in the CNS. Conversely, hypothalamic TRH­

containing neurons are sensitive to changes in circulating glucose and can be 

activated in response to such changes (122, 123). 

Furthermore, TRH induces hyperthermia (124) and a beneficial psychological 

effect of intravenous TRH administration has been reported in depressed patients 

(109). 

1.3.3. Paracrine action of TRH 

A paracrine mechanism of action of TRH is suggested by the presence of TRH in 

10 



Chapler I 

the B-cells of the islets of Langerhans in neonatal rats (125). After streptozotocin 

(STZ) treatment, which destroys the insulin-secreting B-cells, the content of TRH­

immunoreactivity in the islets decreases markedly (126). In vitro, glucose inhibits 

TRH and glucagon secretion and stimulates somatostain and insulin secretion from 

the islets (127). Since TRH opposes the action of somatostatin, it has been 

postulated that TRH can play an antagonistic role in the control of islet-cell 

secretion (128). Exposure of cultured islets to exogenous TRH exerts a dose­

dependent effect on islet secretion of insulin, somatostatin and glucagon, i.e. an 

inhibition of the glucose-induced insulin secretion, a blockade of the glucagon 

response to glucose, and a stimulation of the glucose-induced somatostatin 

secretion (127). 

1.4. Role of TRH in the regulation of TSH secretion 

To define the physiological role of TRH in the control of anterior pituitary secretion 

of TSH, one has to consider the effects of other modulators which interact wilh the 

hypothalamo-pituitary-thyroid axis. Some of these modUlators exert their effect 

mainly at the level of the hypothalamus, thereby influencing TRH synthesis or 

release, whereas others directly affect the pitUitary TSH secretion. The interactions 

between TRH and such secondary modulators and their separate effects at the 

hypothalamic and pituitary level will be discussed in this section. 

1.4. 1. Interactions with thyroid hormones 

Thyroid hormones (T 4 and T3) are involved in growth and maturation processes 

during fetal development. Throughout life, they playa vital role in the metabolic 

processes in all tissues. The thyroid gland is the only source of T4. T3, which is 

biologically more active than T 4, is mainly produced extrathyroidally from T 4. 

Pituitary TSH stimulates thyroid activity. 

Thyroid hormones exert powerful effects on hypothalamic function, which was 

first demonstrated by Belchetz et al (129), who showed that injection of T3 into the 

hypothalamus of hypothyroid monkeys causes an acute inhibition of TSH release. 

Whether this effect was due to inhibition of TRH secretion or to stimulation of 

somatostatin or DA secretion was unknown at that time. In the succeeding years, 

the effect of thyroid status on hypothalamic TRH synthesis and/or release has been 

extensively investigated in rats. Hypothyroidism has been shown to increase TRH 
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mRNA in the PVN, whereas hypothyroidism suppresses the expression of TRH 

mRNA (130, 131). In line with these findings, hypophysectomy stimulates 

hypothalamic TRH synthesis and release in rats; this effect can be reversed by 

administration of thyroid hormones (132, 133). Deyss and Yamada showed that 

TRH concentrations and proTRH gene expression in the medial parvocellular 

division of the PVN and posterior hypothalamic nucleus, but not in any other group 

of TRH neurons in the brain, are specifically regulated by T3 (134, 135). 

To determine whether thyroid hormone exerts these effects directly on TRH­

producing neurons in the PVN, the presence of thyroid hormone receptors in these 

neurons has been investigated. Several nuclear thyroid hormone receptors have 

been identified, i.e. (J. and 13 isoforms, that are derived from two separate genes 

(136, 137). Double labeling immunocytochemistry techniques revealed marked 

differences in staining intensity in the PVN and other regions of the brain for the 

specific thyroid hormone receptor isoforms (138). The distribition of thyroid hormone 

receptor isoforms in these regions demonstrates a selectivity in thyroid hormone 

sites of action. In addition, Wang et al demonstrated two binding sites for the 

thyroid hormone receptor on the proTRH gene (139). These results indicate that the 

PVN of the hypothalamus is indeed a target for thyroid hormones and that the 

hormones' action in this nucleus likely contributes to the regulation of TRH 

secretion. 

In addition to their inhibitory action at the hypothalamic level, thyroid hormones 

exert strong effects on TSH secretion at the pituitary level. The sensitivity of 

pituitary thyrotrophs to circulating thyroid hormone levels has been well documented 

by the finding of blunted serum TSH responses to TRH following variations of 

thyroid hormone concentrations within the normal range through administration of 

minute doses of T3 or T4 (140, 141). Administration of T3 or T4 in doses sufficient 

to increase serum thyroid hormone concentrations above the normal range 

completely suppress the TSH response to TRH. Refractoriness of the thyrotrophs to 

TRH persists for a certain time after the withdrawal of TSH-suppressive doses of 

thyroid hormones (142). 

Thyroid hormones exert their action at the pituitary through a direct inhibitory 

effect on TSHI3 subunit gene expression and TSH release, but they also modulate 

the number of TRH receptors on the thyrotrophs. In hypothyroid animals TRH 

binding to anterior pituitary membranes is doubled; these increased levels can be 

reduced by thyroid hormone replacement (86, 143). TRH itself causes a dose-
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related reduction in pituitary T3 receptors and T3 responsiveness (144), yielding a 

further site of interaction between T3 and TRH at the pituitary level. 

1.4.2. Interactions with glucocorticoids 

Stress activates the hypothalamo-pituitary-adrenal axis, whereas the hypothalamo­

pituitary-thyroid axis often is suppressed. As a response to stress, glucocorticoids 

are produced in the zona fasciculata and zona reticularis of the adrenal cortex. 

Glucocorticoids modulate the functions of various physiological regulatory systems. 

They appear to be involved in the regulation of thyroid function through interaction 

at the level of both the hypothalamus and pituitary. 

In the studies of Brabant et al (145) and Rubello et al (146) on the effects of 

cortisol on TSH secretion, the unaffected TRH-stimulated TSH response suggested 

inhibition of TRH release by glucocorticoids. In rats, high-dose glucocorticoid 

treatment is followed by a reduction of proTRH mRNA in the PVN. The coexistence 

of glucocorticoid receptors in TRH neurons in the PVN (147) and the presence of a 

glucocorticoid response element in the TRH gene (148) add further credibility to this 

hypothesis. 

Effects of glucocorticoids on pituitary TSH secretion have been described 

extensively (145, 146, 149-151). Brabant et al (145) demonstrated a rapid abolition 

of TSH pulses and a suppression of basal TSH secretion after an intravenous 

injection of 4 mg dexamethasone in euthyroid men. Samuels et al (151) studied the 

effects of 100 or 300 mg cortisol infusions over 24 h on the pulsatile secretion of 

pituitary glycoprotein hormones in healthy subjects. Both infusions had profound 

effects on plasma TSH levels. TSH pulse amplitude was decreased, the nocturnal 

TSH surge was abolished, while the TSH pulse frequency was unaltered. However, 

in a study of Rubello et al (146) infusion of a larger dose of cortisol (500 mg over 1 

h), had no effect on both basal and TRH-stimulated TSH secretion. From the latter 

study it was concluded that only prolonged hypercortisolism interleres with pituitary 

TSH secretion. The underlying mechanism for acute or prolonged inhibitory effects 

of hypercortisolism at the pituitary level is still a matter of debate. Kokonen et al 

(150) have demonstrated a colocalization of glucocorticoid receptors and TSH in the 

anterior pituitary of rats. In contrast, only a minority of the PRL-immunoreactive 

cells expressed the glucocorticoid receptor. Glucocorticoids may therefore 

differentially regulate the secretion and/or synthesis of TSH and PRL by directly 

affecting the hormone producing cells of the anterior pituitary. 
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1.4.3. Interactions with somatostatin 

Somatostatin is the major physiologic hypothalamic inhibitor of pituitary growth 

hormone release (152, 153). In addition, somatostatin exerts an inhibitory control on 

TSH secretion in both experimental animals and humans (100, 154). Many workers 

have tried to elucidate the potential role of somatostatin as a pituitary TSH inhibiting 

factor. 

The periventricular and the medial parvocellular subdivisions of the rat PVN 

are innervated by immunoreactive somatostatin fibers originating from both PVN 

neurons as well as more rostal neurons in the anterior periventricular nucleus (155, 

156). The dense plexus of immunoreactive somatostatin fibers in the ME originates 

from these two subdivisions of the hypothalamus (157-160). Immunoreactive 

somatostatin containing axon terminals innervate TRH synthesizing neurons in the 

periventricular area of the rat PVN (161, 162). In addition, immunoreactive 

somatostatin fibers have been found in close proximity to TRH axons in the external 

layer of the rat ME (48). Collectively, these observations provide anatomical basis 

for a neuroendocrine regulation of TRH hypophysiotrophic neurons by somatostatin. 

The effect of somatostatin on TRH-producing neurons is likely to be inhibitory, 

since in rat hypothalamic fragments, somatostatin inhibits TRH secretion (163). 

Although acute cold exposure caused rapid but opposite changes of hypothalamic 

levels of somatostatin mRNA and TRH mRNA (164), this study could not provide 

evidence for a regulatory effect of somatostatin on TRH synthesis or release. 

Thyroid hormone has been found to stimulate somatostatin synthesis and release 

from rat hypothalamic fragments (165), while hypothyroidism decreases 

hypothalamic somatostatin content (166). It was therefore suggested that 

somatostatin was involved in the negative feedback effect of thyroid hormone on 

TRH release (167). In other studies, however, the regulation of synthesis and/or 

release of somatostatin by thyroid hormone could not be confirmed (168-170). 

In cultured rat anterior pituitary cells (171) somatostatin inhibits basal and 

TRH-stimulated TSH release, an effect enhanced in the presence of low thyroid 

hormone levels (172). These findings led to the proposal that TSH release is 

regulated by the hypothalamus through a dual control system, I.e. stimUlation by 

TRH, and inhibition by somatostatin. In studies using somatostatin antiserum in rats, 

increased serum TSH levels and increased serum TSH responses to both cold 

stress and TRH confirmed the inhibitory control of somatostatin on TSH secretion 

(173). 
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1.4.4. Interactions with tumor necrosis factor and cytokines 

Host responses to infection, inflammation and injury, are characterized by changes 

in the immune, nervous, and endocrine systems (174, 175). Interaction between 

these systems is highly complex. Hormones, neurotransmitters, and neuropeptides 

are capable of affecting immune processes. Conversely, immune cell products such 

as cytokines can affect endocrine, autonomic, and central mechanisms (176, 177). 

Inflammation stimulates the production of a cascade of cytokines, of which, in 

particular, tumor necrosis factor {TN F), interleukin-1 (IL-1), and interleukin-6 (IL-6) 

represent key factors for communication between the immune and the endocrine 

systems (178-180). 

In addition to its role in the coordination of host defense mechanisms, IL-1 

activates the hypothalamo-pituitary-adrenal axis in rats and mice, characterized by 

high levels of ACTH and corticosterone in plasma (181-185). It has been suggested 

that during acute and chronic systemic illness, the suppression of the hypothalamo­

pituitary-thyroid function is mediated by cytokines as well (186-190). The site of 

action of interleukins has, however, not been fully identified. 

After 3 daily iv injections of 50, 200, and 800 ~lg TNF/kg BW, TRH content in 

the rat hypothalamus is reduced while the pituitary TSH response to TRH is 

preserved (189). Therefore, the authors suggested that the primary site of action of 

TNF is the hypothalamus. Kakucska et al (191) showed by in situ hybridization a 

reduction of pro TRH mRNA in the PVN 24 h after a constant intracerebroventricular 

infusion of IL-1. High concentrations of IL-1 receptors mRNA are present in the 

hippocampus and midbrain raphe, which is thought to be an important region in the 

feedback regulation of the hypothalamo-pituitary-adrenal axis by affecting CRF 

production (192). As CRF neurons lie adjacent to TRH neurons in the PVN (193), 

and show increased CRF gene expression following intracerebrov8ntricular IL-1 

infusion (194), it has been suggested that CRF may mediate the effects of 

cytokines on TRH neurons. 

In pituitary cells TNF does not affect basal TSH secretion, but it reduces TRH­

stimulated TSH secretion (195). Direct action of IL-1 on pituitary cells in monolayer 

culture has been measured by Beach et al (196, 197) who demonstrated an 

increased TSH release. IL-6, the production of which is induced by IL-1 in anterior 

pituitary cells (198, 199), failed to cause any change in the secretion of TSH from 

pituitary cells (200). 

In many studies the involvement of cytokines in the regulation of the pituitary 
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hormone secretion during systemic illness has been described, but the predominant 

route of modulation needs further investigation. 

1.4.5. Interactions with catecholamines 

An extensive network of neurons terminates on the cell bodies of the 

hypophysiotrophic neurons in the PVN and within the interstitial spaces of the ME, 

where they regulate the release of hypophysiotropic peptides into hypophyseal 

portal blood. In this way, the hypophysiotrophic neuronal systems that regulate TSH 

secretion (TRH, somatostatin, and dopamine) are influenced by networks of other 

neurons that project from several brain regions (201). The catecholaminergic 

pathway that arises from groups of nuclei located in the midbrain and projects to 

the hypothalamus, plays a substantial role in the regulation of the TSH secretion at 

the level of both the pituitary and hypothalamus. Noradrenergic and dopaminergic 

control on hypothalamic TRH and pituitary TSH release will be discussed in the 

next section. 

Noradrenergic effects on the hypothalamo-pituitary-thyroid axis. 

The network of noradrenergic terminals present in the hypothalamus and the 

preoptic area derives mostly from fibers originating from noradrenegic cell bodies in 

the pons and the medulla oblongata (202). The effect of noradrenaline on TRH 

release in the PVN seems to be stimulatory, since in vitro studies demonstrated that 

noradrenaline stimulates TRH release from hypothalamic preparations (163, 203). In 
addition, noradrenaline may also stimulate TRH secretion from the ME, as 

noradrenergic axon terminals were found adjacent to TRH axons in the external 

layer of the ME (204). It has been shown that noradrenaline releases TRH from 

both isolated ME fragments in vitro and push-pull cannulated ME in vivo (205). The 

effect of noradrenaline on TRH neurons may be modulated by peripheral hormonal 

influences, such as thyroid hormones. In hypothyroid rats increased levels of 

noradrenaline, in turn, stimulate TRH release. Thyroid hormone replacement can 

reverse this effect (206). It has been postulated that TSH may also be involved in 

the regulation of noradrenergic-stimulated TRH release during hypothyroidism, 

through a short feedback mechanism by suppressing stimulatory noradrenergic 

influences on TRH release to counterbalance hypersecretion of TSH (207). These 

observations require confirmation. 

Noradrenaline and dopamine are present in rat hypophyseal portal blood at 
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higher concentrations than in peripheral blood and at a level that could exert 

physiologic action on thyrotrophs (208, 209). In rat and bovine anterior pituitary cells 

noradrenaline stimulates TSH release (210-212). Quantitatively, the adrenergic 

stimulation of TSH release is almost equivalent to that induced by TRH (210). 

These two agents, at maximal doses, produce additive effects on TSH release, 

suggesting activation of separate intracellular pathways. 

Dopaminergic effects on the hypothalamo-pituitary-thyroid axis. 

DA cell bodies from the nucleus arcuatus project to the external layer of the ME, 

where they could influence TRH secretion by contacts with TRH axons (204). It has 

been suggested that DA exerts direct inhibitory control on TRH secretion in rats, 

likely acting on TRH axons in the ME (213). However, these data are indirect and 

need confirmation. DA might also inhibit TRH release indirectly by stimulating 

hypothalamic somatostatin secretion (214-216), which in tum is inhibitory to TRH 

release (163). Studies on the direct effects of DA on TRH and somatostatin release 

using hypothalamic fragments revealed stimulatory response of both hormones 

(203, 216 ). The net result of DA control at the hypothalamic level may be mediated 

by modulation of both TRH and somatostatin release. 

Thyroid hormones have been found to influence DA control on TRH release by 

directly acting on the TRH axons in the ME (206). This effect could be reversed by 

thyroid hormone replacement. In addition, TSH may increase inhibitory 

dopaminergic influences in TRH release during hypothyroidism, to counterbalance 

its own hypersecretion (207). 

Dopamine is released directly into hypophyseal portal blood and exerts direct 

actions on anterior pituitary cells, particularly as the major inhibitor of PRL release, 

and to a lesser extent as an inhibitor of TSH release (217). In anterior pituitary cells 

in culture, the inhibition of TSH and PRL secretion by dopamine and dopamine­

agonistic drugs is mediated via a DA receptor present upon lactotrophs and 

thyrotrophs, with similar characteristics on the two cell types (218). In addition to the 

acute inhibitory effect on TSH and PRL secretion in vitro, DA decreases the levels 

of a subunit and TSHB subunit mRNAs in cultured pituitary cells from hypothyroid 

rats (81). Dopaminergic control of PRL mRNA in male pituitary has been described 

as well (219). 

In conclusion, the existence of stimulatory noradrenergic and inhibitory 

dopaminergic pathways in the control of TSH secretion in rats have been 
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demonstrated at the hypothalamic and pituitary level. 

1.5. Role of TRH in the regulation of PRL secretion during lactation 

PRL is secreted by the anterior pituitary and is involved in a broad spectrum of 

biological actions, including nurturing of the young, control of growth and 

development, metabolic effects, reproductive actions, regulation of water and 

electrolyte balance, effects on integumentary (ectodermal) structures, and 

interactions with steroid hormones (220, 221). Thus, unlike most other anterior 

pituitary hormones, PRL does not regulate a single but a variety of functions (222). 

PRL plays a predominant role in the initiation and maintenance of lactation. 

Suckling is the most powerful natural stimulus for PRL release in mammals, and the 

quantity of PRL released depends upon the intensity and duration of suckling and 

the time intervals between suckling episodes (223-226). In addition to the release of 

PRL, suckling also triggers that of oxytocin from the posterior pituitary. PRL 

regulates milk secretion by influencing synthesis of milk constituents and their 

transport from the alveolar cells into the lumen. Oxytocin regulates milk removal by 

causing contraction of myoepithelial cells, leading to increased intra mammary 

pressure and milk ejection (227). 

The suckling stimulus induces a classic neuroendocrine reflex. The input to the 

hypothalamus is neuronal (nipple initiated sensory nerve impulses that ascend in 

the spinal cord and pass through the midbrain into the hypothalamus), while the 

output from the hypothalamo-hypophysial complex is hormonal. The neuronal 

control of PRL release has become a central issue of PRL research, and involves 

both PRL-inhibiting and -releasing factors (10, 228-231). 

The predominant effect of the hypothalamus on PRL secretion is that of tonic 

suppression by DA. Disruptions of the connections between the hypothalamus and 

the pituitary gland by hypothalamic lesions, pituitary stalk section or pituitary 

transplantation all induce hyperprolactinemia and increased PRL storage (232-235). 

PRL inhibits its own secretion via a short-loop feedback, by directly increasing 

synthesis and release of DA (236). Under resting conditions PRL release is tonically 

inhibited by DA. The rapid increase in plasma PRL levels in the lactating rat may 

result from a stimulated hypothalamic secretion of PRL-releasing factors (PRFs), an 

enhanced sensitivity for PRFs, or from suppressed hypothalamic secretion of PRL­

inhibiting factors (PIFs) into the portal system. 
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Electrical stimulation of the mammary nerve to simulate suckling evokes a 

marked increase in plasma PRL and a transient fall in the levels of DA in portal 

blood (237-239). In push-pull perfusates of the ME area, suckling induces only a 

brief decrease in DA concentrations in conscious rats (12). DA levels in portal blood 

soon return to normal values despite the sustained suckling-induced PRL release, 

which suggests that other stimulating factors are involved in the control of PRL 

release (240-242). 

PRF activity of several substances has been postulated, but only TRH is 

known to act directly on the anterior pituitary during suckling (237, 243-251). 

Moreover, specific membrane receptors for TRH have been characterized on 

lactotrophs (252, 253). Mammary nerve stimulation in anaesthetized rats increases 

TRH concentrations in portal blood (237), but TRH concentrations in push-pull 

perfusates of the ME in conscious rats decrease rather than increase during 

suckling (12). Although the PRL response to TRH has been found to increase 

during suckling (254), intravenous injection of TRH in rats does not always stimulate 

PRL secretion (244, 255-258). After short-term suckling TRH release has been 

found to increase (256, 259), while hypothalamic proTRH mRNA decreased from 

day 1 to day 5 in lactating rats (260). Acute suckling, after an 8 h separation of 

mothers and pups, has been found to increase hypothalamic pro TRH mRNA briefly 

(261). From these data it is clear that the PRL-releasing action of TRH during 

suckling is still controversal, and needs further investigation. 

The PVN plays a pivotal role in coordinating events associated with suckling. 

This has been confirmed in studies in which bilateral lesions of this area decrease 

suckling-induced PRL release and abolish the high amplitude, episodic pattern of 

PRL release in continuously lactating rats (262-265). Such lesions also induce 

hypothyroidism by reducing TRH content in the ME (266) and portal blood (262). 

Substitution with T4 completely restores PRL levels during suckling (264). 

Hypothalamic DA release increases in hypothyroid and in PVN-Iesioned rats (262, 

267, 268). This indicates that the decline in PRL secretion in PVN-Iesioned lactating 

rats may be secondary to the increased hypothalamic secretion of DA, as well as 

from the decreased hypothalamic TRH release. 

Several studies have shown that in lactating rats, a transient decrease in DA 

is necessary for effective PRL release in response to exogenous TRH. Without this 

reduction in dopaminergic tone, TRH does not provoke a substantial rise in PRL 

(237-239, 269). The sensitivity of the pituitary to TRH increases during the transient 
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suckling-induced DA decline. Rondeel et al (12) has estimated hypothalamic 

release of both TRH and DA by push-pull perfusion of the median eminence­

arcuate nucleus area in conscious rats during suckling. DA secretion was transiently 

depressed within 15-30 minutes after the onset of suckling with a rapid return to 

baseline levels, which is in agreement with previous studies in anaesthetized rats 

during mammary nerve stimulation (237, 238, 270). However, during a 60 min 

suckling period TRH release did not change (12). The expected rise in TRH may 

not have been found in this study, due to methodological limitations of push-pull 

perfusion. Since the TRH concentrations in push-pull perfusates are low and vary 

considerably between individuals (12, 271, 272), the measurement of TRH in push­

pull perfusates on the median eminence-arcuate nucleus area has been challenged 

(273). 

The role of TRH as a PRF in lactating rats has been challenged by some 

investigators, because of the lack of a concomitant rise in TSH during suckling 

(244, 255, 258). Although the threshold dose of exogenous TRH to release PRL or 

TSH is the same for both hormones (274), the administration of TRH antisera 

causes an unequivocal decrease in levels of plasma TSH, whereas this procedure 

does not consistently affect the levels of plasma PRL (8, 97-99). Suckling-induced 

variations in plasma TSH are not in proportion to those in plasma PRL. A suckling­

induced sensitization of pituitary tissue to PRFs has been demonstrated by a 

decrease in number of cells susceptible to inhibition by DA and an increase in those 

responsive to PRFs (275). Moreover, it is likely that the sensitivity of the lactotrophs 

and thyrotrophs to hypothalamic factors may be modulated differently by central and 

peripheral factors. Indeed, it has been shown that oxytocin, which is also released 

during suckling, blunts the TSH response to TRH in vitro (276). PRL and TSH are 

also differently correlated under conditions such as stress (244, 277-279) and 

primary hypothyroidism (280-283). Therefore, the lack of a parallel increase of 

plasma TSH and PRL during suckling does not exclude a physiological role of TRH 

as PRF. Its exact role in mediating the suckling-induced PRL release needs further 

elucidation. 

1.6. Scope of thesis 

TRH exerts control over thyroid function and lactation through the stimulation of 

TSH and PRL secretion from the anterior pituitary thyrotrophs and lactotrophs, 
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respectively. Synthesis and processing of proTRH, transport of TRH to the ME, its 

release into the portal blood, its binding at specific TRH receptors in the anterior 

pituitary and its degradation in serum and tissue, are all aspects that influence the 

effect of TRH on TSH and/or PRL release. In this thesis, many of these aspects will 

be described under different physiological conditions, in order to get further insight 

into the role of TRH in the control of pituitary TSH and PRL secretion. 

Firstly, the role of TRH in the regulation of TSH secretion under four thyroid 

function-suppressing conditions - starvation, long-term food reduction, interleukin­

induced systemic illness and streptozotocin (STZ)-induced diabetes mellitus - has 

been investigated. Starvation and food reduction cause a suppression of the 

metabolic rate, which is associated with low plasma levels of T3, and is therefore 

known as the low T3 syndrome. Interleukin-induced systemic illness and STZ­

induced diabetes mellitus are examples of non-thyroidal illness, also resulting in a 

low T3 syndrome. With respect to the low plasma T3 levels, these four (patho-) 

physiological conditions are characterized by inappropriately normal or low levels of 

TSH. We postulated a common central mechanism to explain the generation of the 

low T3 syndrome and therefore investigated the role of TRH in the regulation of 

TSH secretion. 

Secondly, the role of TRH in the secretion of PRL has been investigated 

during lactation. Lactation is the most powerful natural stimulus for PRL release. 

Although exogenous TRH has been shown to be a prominent PRL-releasing factor, 

the function of TRH as a PRF during suckling has been questioned, because of the 

lack of a concomitant rise in TSH secretion during suckling. In order to investigate 

the physiological role of TRH as a PRF, this thesis describes the effects of litter 

size throughout lactation and the effects of acute suckling after a period of 

separation of mothers and pups on the various aspects involved in TRH synthesis 

and release. 

Next to TRH, various other modulators are involved in the synthesis and 

release of pituitary TSH and PRL. In order to analyse the contribution of 

glucocorticoids as such a modulator, changes in levels of this parameter have been 

extensively investigated under all conditions mentioned above. 

Summarizing, the aim of the thesis is to define the role of TRH in the 

regulation of the TSH and PRL secretion under several (patho-) physiological 

conditions in more detail. 
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Abstract 

The purposc of this study W,lS to investigate the mech­
anisms involved in the reduced thYIoid function in st1rved, 
young female r,lts. FocxI dcprivation for 3 days reduced the 
hypothalamic content of prothyrotrophin-relcasing hor­
mone (proTRH) mRNA, the amount of proTRH­
dcrived peptides (TRH and proTRH I6!}-1f.9) in the 
paraventricuiar nucleus, the rele,He of proTRH-dcrivcd 
peptides into hypophysial purtal blood and the pituitary 
levcls of TSHP mRNA. Plasma TSH was either not 
affected or slightly rcduced by starvation, but food depri~ 
vation induced marked incre.lses in plasma corticosteronc 
and decreases in plasma thyroid honnoncs. Rcfeeding after 
starvation normalized thcsc paramcters. Since the molar 
ratio of TRH and proTRH wH69 in hypophysial portal 
blood was not affected by food deprivation, it seems 
unlikely that proTRH processing is altered by starvation. 
The median cminence content of pGlu-His-Pro-Gly 
(TRH-Gly, a presumed immediate precursor of TRH), 
proTRH16!}-169 or TRH \Vcrc not affected by focxl 
dcprivation. Sincc mcdian eminence TRH-Gly levels 
were very low compared with other proTRH-dcrived 
pcptidcs it is unlikely that u-amidation is a rate-limiting 
step in hypothalamic TRH synthesis. 

Introduction 

In the rat, thyrotrophin (TRH) is synthesized in the 
paraventricular nucleus as proTRH, a 255 amino acid 
precursor with five TRH progenitor sequences (Jackson 
1'1 aI. 1990), which is scquentially processed to yield TRH 
(pGlu-His-Pro-NH2) and peptides which connect the 
TRH progenitor sequcnces (lechan 1'1 (11. 1986, llulant 
1'1 ,11. 1988). While proTRH-derived peptides arc probably 
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Possible negative effccts of the increased corticosterone 
levels during starvation on proTRH and TSH synthesis 
wcre studied in adrenalectomized rats which were treated 
with corticosterone in their drinking W,1ter (0'2 mg/ml). 
In this way, thc starvation-induced increase in plasma 
corticosterone could be prevented. Although plasma levels 
of thyroid honllones remained reduced, food deprivation 
110 longer had ncgativc cffects on hypothalamic proTRH 
mRNA, pituitJI)' TSHP mRNA and plasma TSH in 
starved adrenalectomized r.lts. Tlms, high levels of corti­
costeroids seem to excrt ncgative effects on the synthesis 
and rele.lse of proTRH and TSH. This conclmion is 
corroborated by the observ.ltion that TRH release into 
hypophysial portal blood becamc reduced after adminis­
tration of the synthctic glucocorticosteroid dexamcthasone. 

On the basis of these results, it is suggested that the 
rcduced thyroid function during starvation is due to a 
reduced synthesis and release ofTRH and TSH. Further­
more, the reduced TRH and TSH sYllthesis during food 
deprivation are probably c,msed by the st;lrv.ltion-induced 
enhanced adrenal sccretion of corticostcronc. 
/ol'ftlJl of EnJouinDlog)' (1995) '45, 143-153 

released into hypophysial portal blood (Bruhn 1'1 It!. 1991, 
Valentijn 1'1 III. 1991), this has only bcen shO\vn for TRH 
(dc Grecf& Visser 19R1). Hypothalamic proTRH mRNA 
content and TRH rdease arc influcnced by thyroid 
honllones (Koller et 111. 1987, Segerson ct 111. 1987, 
Rondeel ct (11. 1988, 19921), Liao cl ,II. IY!:I9, Bnthn ct 111. 
1991), low temperaturcs (Zoclleret ill. 1990. Rondcel filii. 

1991) and stan'ation (Blake fI (1/. 1991, Chua 1'1 ill. 1991, 
Rondeel el It!. 1992(). Thus, hypothalamic TRH seems 



to pby a physiologictl role in the control of thyroid 
function. 

During st,\t\'Jtiol1, a coudition with diminished thyroid 
function, hypothalamic TRH synthesis and release ;lIe 

decreased (Blake 1'1 rd. 1991, Rondeel ct al. 1992(, shi ctrl1. 
1993) despite the (.let that a reduced thyroid fimetion has 
been foulld to increase TRH synthesis oll1d releJse (Koller 
1'1 o/. 1987, Segcrsoll ct ,11. 1987, Ronded c/ til. 1988, 
1992b). Apparently, the tecdb.1Ck action of thyroid hur­
mOlles at the hypothabtnic level is disturbed during 
starvation. The mech.mislIl5 involved in the 105s of feed­
back .lCtioil of thyroid hannone, during starv,ltioll arc 
unknown but since corticosterone levels .lre incre,lsed in 
(ex.-xi-restricted and food deprived [,lts (Woodward el 01. 
1991, Garda-llelenguer cl 111. 1993, Mite" c/ Ill. 1993) ;HId 
corticosteroids have heen found to decnw;e hypotll.lbnuc 
proTRH IltRNA levels (Klkucska & Lechan 1991), it is 
possible that the enhanced adrell.ll secretion of corticlliter­
one is P,lrt of tlus meciliHli,m. An alten1.ltive hypothesis is 
that stlrv,ltion affects post-tramLltional proce~sing of pro­
TRH leading to an ,lltered hypotil.llamic secretion of 
proTRH-derived connecting peptides. \Vhile the funt,­
tions of these proTRH-derived peptides ,ue not known, 
one of these peptide5, proTRHwHm• potentiates the 
TRH-induced rekase of tbyroid stimulating honnone 
(TSH) (Bulant ct al. 1990) and incre,lses tht' pituitary 
content of TSHP and prolactin mRNA in a dose­
dependent manner (Carr t't (/1. 1992). It W,l~ therefore 
decided to undertJ.ke the present studies to answer the 
following questiom: (1) are the st,lrVJtioll-iucluced changes 
ofproTRH synthesis anti release reversed by rdeeding; (2) 
is post-translational processing of proTRH ,lfi:ected by 
stJ.rv,ltion; and (3) is corticosterone <In itnporunt factor in 
the ,tarv,ltion-induced decre,lse in thyroid nmction? 

Materials and Methods 

/111111/(115 

R,lt$ of a loc,.lly bred \Vimr substr,lin (It-Amsterdam) 
were used, and for all experiments approval WJS obtained 
from the Animal Welfare Committee (DEC) of the 
Er,lSIllm Ulu\'ersity. Since, in ,1 previous stlldy, it appe,m:d 
tllJt the effects of starvation 011 thyroid fililction were most 
apparent in young female r,lts (Rondee1 t't af. 1992(), 
2-month-old female r,lts were used. They were housed 
three to fom r.it, per cage in a temperature-regulated room 
(22±2 0c), with a 14-h light:IO-h d,ukness cycle (lights 
on 0500-1900 b) and Iud free ,lccess to drinking water. 
Their body weights ,\vere monitored dail)' during the 
experiments. In two experiments the rats were anaesth­
etized with urethane (ethyl c,lIbamate; BrocJ.des-ACF, 
Maarssen, The Netherlands; 1·2 g/kg, giVen i.p. as a 20% 
(w/v) solution in saline) to collect peripheral or hypo­
physial portal blood. Since uretlune lowers the body 
temper,lture, which may afi:ect honnol1e release, the 
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urethane-anaesthetized r,Hs were placed during blood 
collection on a heating pad maintained at 37 ·C and their 
bodies were covered with a blanket. In one experiment, 
tbe r,lts were sham-oper<lted or adrenalectomized 1 week 
before starting the experiment. AdreI1<llectomized rats 
received drinking w,lter containing corticosterone 
(0'2 mg/ml (w/v); Sigma, St Louis, MO, USA) and 0·9% 
(w/v) NaCl, Where,ls sham-operated rats were given 
silllilar drinking w,Her without corticosterone. Cortico­
sterone was dissolved in ethallol, and this solution \\,,15 

added to water yielding a fin,ll concentration of 4% (v/v) 
ethanoL Since the rats drink bet\yeen 15 and 25 1111 
,\vater/day, they received about 3-5 mg corticosterone 
daily. Bec.1Use water consul11ption follows· a drc.,dim 
rhythm, this way of administering corticO"terone ensures 
dimnal corticosterone levels ill adrenalectumized rats. In 
a pilot experiment, adreIlalectomized rats substituted 
with corticosterone in the drinking water were found 
to hayc similar pLm11a levels of adrenocorticotrophin 
(119 ± 27 ng/l, 11=8) ,15 sham-operated rats (101 ± 15 ug/l, 
/1=8). Moreover, thyroid nmction was idemir<ll in 
corticosterone-tre,lted adrenalectomized (0'95 ± 0'10 Ilg 
TSH/J, S9·3± 1'7 nlllol thyroxine (T .. )/I, l'02± 
0·02 umol tri-iodothyronine (1'\)/1) and sham-operated 
(O'92±O'14l1g TSH/I, 54'6±'4'2 runol T./I, 0'95± 
0'0611111011\/1) r,lts. 

Bxpoilllellfal dcsigll 

In the first experiment, the hypothalamic levels of 
proTRH mRNA ,md pmTRH-derived peptides, the 
pituitJt), content of TSHP mRNA ,md the plasm'l con­
centrations of TSH, thyroid honnones ,1Ild corticosterone 
were me,lS\lfed in femille rats after food deprivJtion 
and after subsequent refeeding. The rats were [;mdomly 
divided into three group, of 30 animals each. Control rats 
had lice access to food, whereas other rats were starved for 
3 d,lYS, or refed for 2 days .. fter a 3-da), starvation period. 
The mean body '\veights (±S.R.M.) of the three groups 
were, ,lt the beginning of the experiment, 15fl'4±2'9, 
lS2·9±3·2 and 1S1·2±4·4 g respectively, The rats were 
decapitated between 1000 ,md 1200 h, and tnmk blood 
Was collected to detcnnine plasma honnone levels. The 
skull was opened ;Hld the brain removed, and the hypo­
physial stalk was grasped ·with forceps and lifted from the 
br,lin. The protmding tissue fr,lgJllent, conl.prising hypo­
physial stalk and median eminence bm refcrred to as 
median eminence, W,15 cut from the brain and placed in 
2 1111 methanol for later estimation of proTRH-derived 
peptides. Then, from 2J r;lts of eJch group the rest of the 
hypothalamus w,w isolated (limits: posterior border of the 
chi,mua opticum, ;mtenor border of the mantillary bodies, 
and lateral hypothalamic border; height about 3 mm), snap 
frozen in liquid nitrogen, and kept at - 80°C until 
detennination of proTRH mRNA. From seven rats of 
e,lch group, a 2 111m coronal slice of the brain bet\veell the 
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chiasma opticum and the origin of the hypophysial stalk 
was cut with a razor blade. Then, the area around the third 
ventricle, containing the entire paraventricular nucleus, 
was removed from this slice of brain tissue and placed in 
2 mlmethanol for later detennination ofproTRH-derived 
peptides; this piece of tissue is referred to as pamventricular 
area. From five rats of each group, the anterior pituitary 
gland was isolated and snap frozen in liquid nitrogen, and 
kept at - 80 "c until detenllination of TSHP mRNA. 
Tissues collected into methanol were homogenized with a 
g};m grinder, and subsequently dried under a stream of 
nitrogen at 40 .c. Residues were dissolved in phOlphate 
buffer (PH 7'4), and stored at - 20 "c until assayed for 
proTRH-derived pcp tides (TRH, proTRH I60. 16.) and 
TRH-Gly). 

In the second experiment, proTRH-deriwd peptides 
were measured in hypophysial portal blood of young 
female rats (body weight at the start of the experiment: 
142·8±2·7 g). Nonnally fed rats (II"" 11), r.1ts starved for 3 
d.lYs (11=11), and r,lts starved for 3 days and then refed for 
2 days (11=6) were anaesthetized with urethane (1'2 g/kg). 
A cannula (0'96 nUll outer diameter, 0'58111m inner 
diameter) was inserted into the right femor,ll artery, 
aud the hypophysial stalk was exposed (porter & Smith 
1967, de Greef & Visser 1981). Then, 500 IV heparin 
(Organon, 055, The Netherlands) were given via the 
arterial cannula and, after 5 min, a peripheral hlood s.lIl1ple 
was takell from this canllula to e\'J.luate thyroid filllction. 
After cutting the hypophysLll stalk, hypophysial portal 
blood was collected for GO min into methanol to prevent 
degradation ofTRH (de Greef & Visser 1981). MethaIl­
olic extracts of hypophysial portal blood samples were 
processed as above, dissolved in 1 1111 phosphate buffer 
(pH 7'4) and stored at - 20·C until analysis ofTRH and 
proTRHU,'J_l(,')' Residues of these samples were dried 
and weighed to estiUlate the volume of blood collected 
(de Greef& Visser 19R1). 

In the third experiment, the effects of a 2-day or a 3-day 
st,uvation period on thyroid function in sham-operated 
or corticOlterone-substituted adrenalectomized female rat~ 
were studied (body weight at the st..rt of the experiment: 
158'7 ± 4·6 g). Nonnal1y fed sham-operated rats were 
med as controls. The rats were decapitated between 1000 
and 1200 h, and tmnk blood \\'as collected to measure 
plasma honllone levels. The median eminence W,lS isolated 
and placed in 2 1111 methanol. The anterior pituitary gland 
and the remainder of the hypothalamus were collected and 
stored at - 80°C until isolation of RNA. 

In the fourth experiment, the elfects of the synthetic 
glucocorticoid dexamethasone or the vehide (s"line) on 
the release of TRH and TSH were studied. Rats were 
anaesthetized with urethane and implanted with all in­
dwelling calliluia into the right femoral arte!)' as described 
above. DexaIllethasone sodium pllO';phate solution 
(Merck, Sharp & Dohme, Haarlem, The Netherl.lIlds; 
2 mg/kg s.c.) or saline was injected 2 h later, and blood 
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samples of about 0'5 Illi were taken from the arterial 
cannula just before, and at 30, 60 and 90 min after the 
injection to estimate the plasma levels of TSH. From 
another group of urethane-anaesthetized rats, TRH was 
detenllined in hypophysial port,ll blood. Hypophysial 
portal blood WJ.S sampled for four consecutive peritxis of 
30 min, and dexamethasone or saline was given after the 
fmt 30-min peritxi. Mcthanolic blood samples were pro­
cessed as abO\'e, dissolved in 1 m1 phosphate buffer (pH 
7'4), ,md stored at - 20 b C until assJyed for TRH. 

De/oll/illillio/l cf l'H1TRH I/JRNA rllld 'J'SHP I/JRNA 

Hypothalamic proTRH mRNA and pituita!)' TSHP 
mRNA were detennined by Northem blotting 
(Sambrook ct al. 1989). Total RNA W.IS isolated by acid 
guanidiniuIU thiocyanate-phenol-chlorofonn extraction 
(Cholllczynski & Sacchi 1987), and the aIUount and purity 
of the isolated RNA was determined b}' absorbance 
at 2601280 nm. From each sample, 10 jlg RNA W,IS 
subjected to denaturing ag.ln)5e gel electrophoresis and 
blotted onto Hybond N+ filter (Amcrsham International, 
Amersham, Bucb, UK). For measurement of proTRH 
mRNA, the filters were hyhridized at 42°C with a 
J1P_labelled 1322 bp EcoRI-Pstl fragment of rat pro­
TRH eDNA (Lechan t'l ill. 1986, lee ft III. 19RR), where,ls 
for estimation ofTSHP mRNA the filters were hybridized 
at 42 b C with a "lP-Iabelled rat 420 bp fragment ofTSHP 
cDNA (Chin filii. 1985, van Haasteren t'f flf. 1994). After 
hybridization, the filters were washed and atltor.ldio­
graphed (Sambrook fl III. 1989). Variatiun inlodding was 
accounted for by nonllalizing to the p-actin mRNA 
content ill e,lch lane, which W,IS measured by hybridiz­
ation at 42 "c with a J1P_labelled hamster actin eDNA 
probe (Dcxlemont f! al. 1982). Autor,ldiogr,lPhs were 
quantified densit011letrically with a model 620 video 
densitometer using 2D Analyst II software (Bio-Rad 
labor"tories, Richmond, CA, USA). Then, the r,nios 
between the integr,lted optical demities of proTRH and 
p-actin I1IRNA, or TSHP and p-actin mRNA were 
calculated. Since the results may dilfer betv:een various 
Northem blot~, the variation bet\veen individual Northern 
blots was accollnted for hy the inclusion of at least three 
control samples on each geL Furthennore, if sufficient 
RNA had been isobted from a s,lmple, the sample was 
assayed twice using different gels. Remits in this paper are 
expressed as the percentage of the mean of tile control rats. 

Since the proTRH mRNA content in the hypothala­
mus is increased in hypothyroid rdts, and particularly in the 
par,wentricular nucleus (Koller ct al. 1987, :Segerson cl !II. 
11)87), this experimental par,ldigm was used to validate our 
methods for the isolation and measurement of hypotha­
lamic proTRH mRNA. Hypotll.llamic proTRH mRNA 
content W,15 detennined in six control female r,lts alltl in 
six female rats nude hypothyroid hy treatment for 4 weeks 
with 0'1% (w/v) methimazole in their drinking w,lIer 



(Ronded ct liT. 1992b). ProTRH mRNA content was 
higher in hypothyroid (175 ± 9%) thm in control r,lts 
(100 ± 10%). In addition, pituitary TSHP mRNA had 
incred-~ed in the hypothyroid rats (828 ± 63%, controls: 
lOO±4%). 

H(lIllIO/U' dc/t'fluitl<lli(ll/S 

Plasma levels of TSH were mCJ.sured by RIA using 
materials and protocols supplied by the NIADDK, with 
TSH-RP-2 as a standard. Levels of T J and T~ wcrc 
estimated by est.lblished RIAs in uI1('xtrJcted pb'llla. The 
pla~ll1a T.j diaJysJble frJ.ctioll was measured by equilibriulll 
dialysis (Sterling & Brenner 1966), Jnd pLlSIlla free T4 
(FT.j) was calculated as the product of toui T.j and the 
dialysable [r.Ktion. A similar procedure \\',lS followed to 
measure plasma tiee TJ (FTJ ). Corticosterone was esti­
mated by RIA (Marzouk ff rll. 1991). Detection limits 
were 0·2 f..Ig RP-2 TSH/i, 2 nmol T/I, 0·1 nnwl T./i ;U1d 
1 nllwi corticoste-rone/l. Intra- and inter.m,lY coeflicients 
of nri,nion for these aSS,l)'S v,uied between 3 and 12%. 

The RIA of proTRH!(,I). w} was carried out a, previ­
ously described (Buiant ct dl. 1988), and the detection limit 
W,lS 2-3 finol/tube. The RIA for TRH (pGlu-His-Pro­
NH2) WJ.S uSll.1lly perfonned with antisennn 4]19 (fmal 
dilution 1:10000) as reported previously (Visser t·t Ill. 
1977). This assdY has a high semitivity but ,l low specificity 
for the histidine residue in TRH. Therefore, most samples 
were also as~ayed with an RIA using antisenlln 8880 (final 
dilution 1 AO 000), which was recently produced by 
methods similar to that used to raise antisennl1 4319. The 
RIA cmploying antiserum 8880 has <l somewhat lower 
scnsitivity (5-8 finol/tube) than that utilizing antisenun 
4319 (3-5 fmol/tube), but show, much less cross­
re-,Ktivity with TRH atlJ!ogues th,lt have histidine 
replaccd by other amino ,Icids (Rondeel ft iI/. 1995). 
Intra- and inter,lss:'), coeflicients of variation for the 
proTRHw'_Ir,,! and TRH assays nried between 5 <lnd 
15%. 

TRH-Gly W,lS me,lsured by RIA using an antisenllll 
raised ,lg,linst TRH-Gly coupled to BSA. TRH-Gly (8'5 
mg) was coupled with 1,5-difluoro-2,4-dinitrobenzene 
(Sigma) to 30 mg BSA e-ssentially ;lccording to the method 
of Tager (1976). In toul, 12 male New Ze-,lidnd White 
r,lbbits were immunized subcut,llleousiy with 0'5 mg 
conjugate in I ml ofa 1: 1 suspension of water and Freund's 
complete J.djuV.lllt at 5- to to-week intery,lis. Five rabbits 
responded with significmt ,mtibody production, and anti­
serum 98R4 obt.line-d I) weeks after the fourth inll11uniz­
,nion from one of thoe animals W.lS selected for the RIA. 
TRH-Gly W,H labelled with WI using chlor.mline-T, and 
1251-labelled TRH-Gly \VlS sep,lr,lted from U11b.belled 
peptide by HPLC on ,l Chromspher CR column 
(Chrompack, Middelburg, The Netherl.ltIds) with a gra­
dient elution of8 to 40% .1Cetonitrile in 20 111M KH2P04 
and 0·1% (w/v) I-hexl!1csulphonic acid OallSsen 
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Biochimica, Beeese, llclghlln), pH 2,5. The RIA of 
TRH-Gly was conducted essentially as previously de­
scribed for TRH (Visser et Ill. 1977) using antisenun 9884 
at a final dilution of 1: to 000. The sensitivity of the 
method amounted to 12 finol peptide pee tube. The 
speciflcit)' of this RIA was detennined by analysis of the 
dose-response Cllfves of a v,lriety of analogous peptides, 
and all analogues, including TRH, showed less than 1 % 
uoss-reJctivity (Fig. I). 

Pt'ptidfS 

Peptides (the one-letter codes for the amiqo acids are 
defined as E, Glu; <E, pGlu; F, Pile; G, Gly; H, His; K, 
Lys; P, Pro; Q, Gin; R, Arg; Ac stands foe Nu-acctyl) 
were obt.1ined from sever<ll sources: <EHP-NH2 (TRH) 
,md <EHP were purchased from Cunbridge Rese.uch 
Biochemicals (Northwich, UK), <EHPG (TRH-Gly), 
<EHPG-NH2, <EHPGK, <EFP-NHz and KRQH 
PGKR were from Peninsula Labor,Hories (Belmont, 
CA, USA), while Hissendorf Biochemicals (Hannover, 
Germany) supplied KRQHPG and <EEP-NH2 . Another 
batch of <EHPG was synthesized by Dr W G J Schielen 
(bboutory of Org.mic Chemistry, University of 
Nijmegen, The Netherlands). The peptide AcQHPG W<lS 
synthesized by convemial mcthods of peptide synthesis in 
solution. 

Sldtisfic,ll,lllrJ/ysis 

Results are presented as means±s.E.M. Analysis of vari­
ance W,lS used to analyse the data. Provided sigllificmt 
over,11l effects were obtained by this ,\l1.l1ysis, /I PM/fliM] 

comparisons between groups were nude by Duncan's new 
multiple r,mge test. Diflcrences were considered to be 
signifir.mt ,It Pc:;0·05. 

Results 

Elrc(/ tf S/rl/J'lltiOIl 0/1 flyp(1111rJ/mllic pnlTRH mRNA IlIld 
pr{I'J'RH pcptides, pillii/ary TSH(J mRNA 11/1,1 plrlS/lld 

/'Mllltlilf Ifl'cis 

The results of this experiment are presented in Table 1. 
Food deprivation for 3 days significantly reduced hypo­
thalamic proTRH mRNA, \vhereas refeeding nonnalized 
this p,lr.uneter. Levels of proTRH-deriwd peptides were 
estimated in the p,lr,wentricular area and the median 
eminence in st.lrved <lnd refed rats. Levels of TRH were 
simihr when measured \vith RIAs using .mtiserJ 4319 or 
RRRO (ddLl not shown), ExperimentlI cOlldition~ had no 
signifir.U1t eflcct all median eminence lewis of proTRH­
derived peptides, but in the pJr.1ventricuiar Jrea <l signifi­
CUlt decre,lSe ofTRH and proTRH 11\o_11\9 was observed 
during starvation, whicb nonnalized <lfter ref ceding. The 
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FIGURE 1. Competition for binding of 125I_hbelled TRH-Gly to alltiserum 9884 
(final dilution 1:10000) with increasing amounts ofTRH-Gly or analogous peptide; 
added per tube. 

TABLE 1. Effect ofa 3-day starvation (d3) and subsequent refeeding for 2 days (d3+2) 
on body weight, hypothalamic proTRH mRNA, proTRH-derived peptides in the 
paraventricuiar area (PVA) and median eminence (ME), pituitary TSHP mRNA and 
plasma honnone levels. Nonnally fed rats were used as controls (dO). Values are 
means ± S,E.M. 

dO dJ d3+2 

nod)' weight (g) 25 171 ±2 136 ± 3' 154±3' 
proTRH mRNA* 22 1000±7'4 69-4 ± 5-8' 94,0 ± 7·2 
TRH (pmol/PVA) 7 1·83 ± 0-23 '·Q9±0'1.J' 2'1O±OO5 
proTRH 1W-169 (pmoI!PVA) 7 0'31±004 0-20± 0 03' 0·33 ± 0 01 
TRH (pmoIlME) 25 3'78 ± 0,40 4'02±0'34 3'41 ±0-31 
proTRH1W_1W (pmollME) 25 0·70 ± 0 08 O'75±007 065±006 
TRH-G1r (pmol/ME) 18 005±001 005±OOI 007 ± 0,01 
TSH~mRNA* 5 IOOO±8·9 61·2±7·s' 106'2± 12·2 
TSH (jJg/l) 25 0-47 ± 0,05 0,39 ±0-O3 0,49 ± 0,04 
T4 (nmo1!l) 25 36'4 ± 2-4 18·2± 1·4" 35-4± 1'3 
FT4 (pmolfl) 5 10'33±2-4 4-62 ±O-SS' 9,07 ± 0·76 
T j (nmolfJ) 25 \·29±006 0·55 ± 0 06' 1,2)±006 
FT) (pmolfl) 5 4'29±0'2s 2-44 ± 0-18' 4,87 ± 0-19 
Corticosterone (nmolll) 162± 21 483 ± 32' 148 ± 33 

"R.btive to !}-,ctin mRNA. c"l'rmcJ lS rW;cnL1g~ <:i the tIle,n <:i the ~ontroh (dO). 
'P'-;; 0 05 comr~rcd "ith the C(lnlrM (dO) 

amount ofTRH-Gly in the median eminence was negli­
gible irrespective of nutritional status when compared with 
the content of TRH and proTRH 160}-169' and was not 
altered by starvation. The mean molar ratio between 
TRH and proTRH160}-169 varied between 5·3 and 6·4 in 
the paraventriclliar area and in the median eminence, and 
these ratios were not affected by starvation. Starvation also 
reduced the amount of TSHP mRNA in the anterior 
pituitary gland and the plasma levels of thyroid hormones, 

and increased plasma corticosterone concentrations. Re­
feeding nonnalized these par,lmeters. Peripheral TSH 
levels in the three groups were not significantly different. 

~tfe(1 if sllwa/ioll 011 hypo/llaiami( retcllse if proTRH-dedved 
pcp/ides 

Effects of starv.ltion and subsequent refeeding on TRH 
and proTRH!60}-169 levels in hypophysial portal blood 

44 



TABLE 2. Hypothahmic [cleJ.Se ofTRH and proTRH160_169 
into hypophysial portal blood of control (dO, 11= 11), starved 
(d3, 11=11) or starved and refed (d3+2, n=6) 
urethane-anaesthetized rats. Blood for TSH, T 4 and T.1 
dctennination was taken from the right [emoul artery just 
before the hypophysial stalk was cut, and hypophysial portal 
blood was collected for 60 min. Values are means ± S.E.1>I. 

dO 

TRH (pllwllh) 2-66±OH 
TRH (umol!l) -\·23 ± 0,27 
proTRI-i1o'-lm (pmcVhj O-l2±Q-iO 
proTRHw>--l(.') (nmol/l) 066±OOS 
TSH (j.lg/i) 0-6\ ±OO5 
T4 (orneU!) 34'O±N 
T, (nlllol/\) j·29±Q,\1 

'/,:::;0 os c0IT1I'lr~d ,,~,h d'), 

dJ dJ+2 

~:-:-c:-\·8-1 ±OO-\' 2·15±Q·18 
2'76±O'19' J'56 ± 0-29 
0·27 ± 0 09' 0,40 ± 0 06 
O-lO±OO-\' 0-67 ± 0 09 
0,-15 ± 0 0-1' O'S-I±OO2 
18·2 ± 2·2' 28'7± \·2 
0'70 ± 0 09' j·29±007 

are given in Table 2. Hypothalamic release of TRH 
and proTRHl60---l69 was reduced in starved rats, and 
nonnalized after refeeding. The volume of hypophysial 
stalk blood collected in 60 min was similar in the three 
groups of rats (634 ± 65,668 ± 18 and 624 ± 60 III respec­
tively). The mean molar ratio between TRH and 
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proTRH16(I-.l69 in hypophysial portal blood varied 
between 5·4 and 6'9, and was not affected significantly by 
the experimental conditions. 

Effect '!f stan'(ltioll on hypothalamjc proTIill mRNA, 
pilW'tMY TSHP mRNA a"d plasma lIOn/Wile /wets ill 
coyticosterone-substituted aafClI!I/ectom;;a:.{ rats 

The effects of a 2-day or 3-day starvation period were 
examined in sham-operated and in corticoster-one-treated 
adrenalectomized female rats. Nonnally fed sham­
operated female rats were used as controls. Results are 
presented in Figs 2, 3 and 4. \Vhen compared with values 
in control rats, hypothalamic levels of proTRH mRNA 
were not different after a 2-day starvation period, but had 
decreased after 3 days of food deprivation. Food depri­
vation had no significant effect on the levels of TRH in 
the median eminence, but significantly reduced pituitary 
TSHP mRNA, decreased plasma levels of TSH and 
thyroid honnones, and increased plasma corticosterone in 
starved sham-operated female rats. Prevention of the 
starvation-induced increase in corticosterone by adrena­
lectomy followed by substitution of corticosterone in 
drinking water to maintain basal plasma concentrations of 
corticosterone (Fig. 4), had no significant effect on plasma 

3'5 * 

'§' 
8 2·5 

"" ~ 20 I 

I t t 

* 

OL--d~O--~ 
d2 dJ 

UGUIW 2. Effect of a 2-day (d2) or J-day (dJ) starvation on hypothalamic proTRH mRNA, median eminence TRH, pituitary 
TSH~ mRNA and plasma TSH in sham-operated (solid bars) and corticosterone-treated adrenalectomized (open bars) female rats. 
Nomully fed sham-operated uts served a~ controls (dO). Remits Jfe presented as the mean±S.E.M. of7-15 rats. ProTRH mRNA 
and TSH~ mRNA are relative to ~-actinmRNA, and are expressed as percentage of the mean of the controls. *PsO'05 
compared with dO, tPsO·05 compared with shalll-operated food deprived rats. 

45 



The role of TRH in the regulation of TSH secretion 

50 ]5 

I 
J 

40 12 ! 
~ JO 'I S 9 

, 
0 

1 s s 
~ 

20 t (, 

10 J 

0 0 

1-2 

I 4 
0-9 

EO 
, 

EO 
<l ~ 

J 

1 06 S 
, 

'" "'-
2 

~ 

0·3 

0 " dO d2 oj dO d2 oj 
OGURE 3. Effect of a 2-day (d2) or 3-dl}' (dJ) stJ.rvation Oil plaSl1lJ thyroid hOnllOllC levels in sham-operated (solid hal») and 
corticosterone-treated adrenalectomized (open haI'i) (emJle fats. Nomully fed ~ham-operdted r.l.ts served as controls (dO). RCI\llt, 
are prescnted a\ the mean±S.F.M. of7-15 rats. PIa,ma levels ofFT, and FT.3 wcre no! detemund on ruy 3 ofstalVJtion. 
*PsO'OS comp,ued with dO, tPsO'05 compared with sham-operated food deprived rats. 

600 180 , 
! s 500 

0 160 , 
1 400 § 

0 ~ 

! JOO • 140 

200 -i;-
0 

! '" 120 
0 

100 U 

0 toO 
dO dO d2 ,U 

FIGURE 4. Eflect of a 2-ruy (d2) or 3-day (d3) starv,ltion Oil plaSIlll cortiCo>tC!OlK' and body weight in shJnI-opecated (solid hm) 
and corticosterone-trCJ.ted adrenalectomized (ollcn b,m) fenwe rats. NOnlul\y fed slum-operated rats servcd as controls (dO). 
Re,ults are presentcd as the mem±S.E.,\1. of7-15 r.llS. *PsO 05 compm:d with dO, tPsO'OS comparcd with sham-operated 
food depri\"ed rats. 

thyroid hOnllOtle levels when compared with levels in 
starved sham-operated rats (Fig. 3). However, st,uved 
corticosterolle-treated ,Idrenaiectomized r,lts had morc 
hypothalamic proTRH mRNA ,md pituitary TSHP 
mRNA and higher piasnu concentrations of 'ISH than 
f()(Xi deprived sham-operated rdts (Fig. 2). 
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DeXrllllCllliISMIC rlml II}'polllrllrllllic rdedit' (:f TRH 

RemIts of this experiment are sU1llmarized in Fig. 5. 
Treatment with dex,unetiusone (2 mg/kg s.c.) causcd ;1 

decrease in pl.\sma TSH in urethane-anaesthetized r,lts 
within 3Q---60 min, 'whereas s,liine Iud no effect on plasma 
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IJ(;UI!I' 5. Eflco of dc:xamctha,one (broken lint, 1/=8) or 
s,lline (solid iirll', u=B) on "lamu TSH and Oll hypothJhmk 
TRH reie.lle into hypophysial portal blood in 
IIrethme-.l!Hellhcli7ed r~t,. Peripheral blood W;lS taken from 
JIl Jrteri!i CJtl!llih (11=7). Hypophy;;i.lil'ort.ll blood wa, 
(ollectcJ [or lour (omccU!ive 30-min pl'riod'l, ,1nd the times 
inJic.l.kd urn-sent the end of <,.Kh p"nod. De:ollletlusone 
(2 mg/kg s.c) or s.llint' were injected .lfi:er the first collection 
period. Values .ne meJIlI±S.E.M. *P~O'05 cOlllp.Hed with 
wlues observed ,n 0 min, tPsO'05 (ompJre(\ with 
,aline-injected fats. 

TSH. PI.1SllU levels uf 1'.1 or '1'-4 did not change signifi­
cJIltly after the injection with de:X,IIlle:tl1.lsolle: or 5,1line 
during the: period of ohservation (data not shown). Dexa­
Illeth,lsone: r,lpidly reduced the hypoth'lhmic TRH se­
cretion into hypophysill porul blood, ,llld although TRH 
rde,lse: ,IIso decre,lsed somewhat with time after saline the 
dfect on TRH rde,He W,IS more pronounced hy treatment 
\vith dex,lllleth,uone. Neithcr dexJ.mcthasone nor s,lline 
Iwi ,lTl efft-ct Oil the volume of hypophysial portal blood 
that wJ.s coUected (d.lta not shown). 

Discllssion 

StJ.rv,ltion i, known to induce diminished thyroid filllctioll, 
which is r,lpidly re:veNed by refeeding (Hugues [I,ll. 1 <JH4). 
Recent studies lu\'t' proddl-d t'videnre th.lt the hypoth,l­
bmic rde,l~e of TRH into hypophysial poctal blood 
is decreased ,Ifier J. 2-d~y st.uv.uio!\ period in ft-Ill.lie 
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(Ronded 1'1 rll. 1992() and male rats (Blake et ,II, 1991). 
Since, in the latter study, it W,IS found that the ill 5illl 
hybridil,ltiofl signal of proTRH mRNA in the paraven­
tricular nucleus was lower in food deprived than in control 
l1ule r,lt5, it was concluded that the reduced thyroid func­
tion after food depriv,ltion is primarily due to a decreased 
hypothalamic TRH synthesis and rdease (Blake et al. 
1991). Furthennore, evidence has been provided that lack 
of protein is a major factor in the reduction of TRH and 
TSH synthe~is during starvation (Shi et <II. 1993), Since the 
mechanisms by which food deprivation influences thyroid 
function ace not fiilly understood, we studied in particular 
the rentr,IUy mediated efiects of food deprintion in more 
dcui!. Furthenllore, since food deprivation is a stressful 
situation leading to cnhanced adren,ll reIe,He of corticoster­
oids (Woodward ct ill, 1991, Garda-fle1enguer ct ai, 1993, 
Mitev l't <II. 1993) ,IIlJ since high levels of corticosterone 
Illay decrease proTRH gene expression (Kakucska & 
Lech,1Il 1991, van Haasteren et flf. 1994), we also compared 
the effects of stnvJ.tion Oil the hypothalamic-h>'pophysial­
thyroid axis in sham-operated r.ltS ,1IId in corticosterone­
substituted adrenalectomized rats. 

The effects or stalYation on the hypothalalllic­
hypophysial-thyroid axis were eX,lIninecl in 2-111onth-old 
fem,lle rats. levcls of two proTRH-derived peptides, 
n,lIueIy TRH and proTRHwO-w;, had decreased in 
hypophysial poml blood after a 3-day starvation (Table 2). 
Also the hypothalamic ~ynthesis of proTRH seems to be 
reduced by starvation in vicw of the diminished hypotha­
Lunic amount of proTRH mRNA and the reduced 
content in the p"r,IVentricular area of TRH and 
proTRH!(.,O-w; in female rats starved for 3 days (Table I, 
Fig, 2). However, hypothalamic proTRH mRNA levels 
were not significantly altered after a 2-day starvation 
period (Fig. 2), notwithstanding that it was observed 
previously that the hypothalamic rele,lse of TRH into 
hypophysial portal blood had decreased in female rats 
deprivcd of focxi for 2 days (Rondeel rl <II. 1992(). 
Although this lack of an dIect on 'l)'Potitaiamic proTRH 
11lRNA does not exclude the possibility of a decreased 
h>'Pothalamic proTRH synthesis, the data suggest that the 
reduced hypothalamic TRH releJ.sc is not secondary to a 
decre,lsed TRH biosynthesis, 

The obscrvation t1ut levds of proTRH-derived pep­
tides are reduced in the hypophysial portal blood offemille 
rats strongly suggests th,1t the h>'P0thyroid state associated 
with starvation is, at least in P,lrt, centrally mediated. 
Other neuropeptides, such as somatost,uin and ncuropep­
tide Y, Ill:ly :liso be involved in the rcduced thyroid 
function during starvation (Drady l't Ill, 1990, Chua e1 Ill. 

1991). SOI11J.tostatin inhibits TSH secretion by a direct 
;lctioll at the :lI1tenor pituitary gl.md, but it is not known 
whcther neuropeptide Y directlr affects pituitary function 
or whether it acts as a hypotiuialilic lllodu1.uor, Since 
ncuropeptide Y -containing netlrones innervate TRH­
synthesizing netlroneS in the par,lVentricuiar nucleus (Toni 
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el !II. 1990), it might well be that neuropeptide Y alters 
thyroid fimction through an effect on TRH synthesis. In 
another situation with disturbed energy utilization, namely 
drug-induced diabetes, TRH release into hypophysiJI 
portal blood is also reduced (Rondeel ('{ Ill. 1992d). The 
finding that tertiary hypothyroidism occurs in situations 
with disturbed energy utilization agrees with the view that 
the paravelltricular nucleus is involved in an important 
way in the regulation of the energy balance. In line with 
this is a recent report that insulin administered into the 
paraventricular nucleus affects thennogenesis (Menendez 
& Atrens 1991). 

ProTRH-derived peptides were ;llso measured in the 
median eminence since this content may provide an index 
for release of these peptides into hypophysi,ll portal blood. 
In rats made hypothyroid with thyreostatic dmgs or by 
thyroidectomy, a situation associated with a moderately 
iucre,ned hypothalamic TRH release (Rondeel cl 111. 
1992(1), the amount of proTRH-derived peptides is 
reduced in the median eminence (Bmbn t'f 111. 1991). In 
this study, however, no consistent changes in the amount 
of proTRH-derived pep tides in the median eminence 
·were found in starved rats, although a significallt reouction 
in the hypothalamic rde,lse ofTRH alld proTRHWI-W) 
W,lS observed. Therefore, changes in median eminence 
content of proTRH-derived peptides do not seem ,1 

reliable measure for their release into the hypophysial 
port,ll vasculature. 

Refeeding for 2 days after a 3-day starvation period W,lS 

fonnd to n(lnnalize the hypothalamic proTRH mRNA 
content, the levcls ofTRH and proTRH1(.fI_l6') in portal 
blood and the plasma concentrations of TSH, thyroid 
honnone. and cortico<;terone Crable 1). Thus, starv,Hioll­
induced changes are rapidly reversed by refeeding. Since 
the molar ratio between TRH and proTRHw>--[w in the 
paraventricular Ilucleus and in hypophysial portal blood 
was not found to be altered by starvatioI1 or refeeding, it is 
unlikely that starvation alters the proces~ing of proTRIl 
In control rats, the r,Hio between TRH and proTRH1ol­
w) was found to be approximately 5---6 (Bulant clll/. 1988, 
this study) which suggests that proTRH is completely 
processed in the par,wentricular are,l before trall5portation 
to the medi.m eminence and release into the hypophysi,ll 
port,ll blood. 

Carbo::.;y-tenninal amidation is essential for the biologi­
cal activation ofTRH, and it is thought that U-amid,Hioll 
of TRH-Gly, the presumed immediate precursor of 
TRH, is the rate-limiting step in the processing of 
proTRH (Pebf)-' ct 111. 1990, Eipper ct 111. 1992). Since, in 
the median eminence, the content of TRH-Gly was 
negligible compared with the amount of proTRH wl .. , \(,') 
and TRH, it seelns unlikely that a-amidation of TRH­
Gly is a rate-li/niting step in hypothalamic TRH synthesis. 
Since TRH-Gly levels were also vef)-' low in hypophysial 
stJ.lk blood (W J de Greer, unpublished data), it seems that 
TRH-Gly is probably not vcry important for pituitary 
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fimction, since high amounts ofTRH-Gly are required to 
alter TSH and prohctin relea~e (Moti cl Ill. 1990). On the 
other hand, the presence of relatively high levels of 
proTRHlf.H_169 in hypophysial portal blood is probably of 
physiological importance since proTRHWl--W ) modifies 
TSH release by potentiating the effect of TRH on the 
pituitaf)-' gland (Bulant t't 111. 1990). 

Although the amount of pituitary TSHP mRNA is 
reduced during starvation (Blake t't al. 1991, this study), 
plasma levels ofTSH are not con.sistently decreased in food 
deprived rats (Connors t'l <i/. 1985, Cokelaere & Kiihn 
1992, Rondeel cl III. 1992(, this stud>')' Since TSH is 
Ilonnally estimated by RIA, it coold be tlut stJrvation 
has more effect Oll the bioactivity of TSH than on its 
imllllu\O,lctivity. Evidence for this view is the altered 
carbohydrate stnlcture of TSH and reduced bioactivity 
in hypothaJ.l1nic hypothyroidi~m (Taylor & Weintr,mb 
1989). 

llecame thyroid honnones exert a negative feedback 
action at the level of the hypothJialllUs (Koller t't ,11.1987, 
Segerson t't <11. 1987, Rondeel 1'[ ,d. 1988), the reduced 
thyroid status dutingst,lfvation seems to be the result r,Hher 
than the C.1use of the inhibition of hypot11.lLl1l1ic proTRH 
synthesis ,lIld rdease. Our resuits provide evidence that the 
st.lfv,ltion-induced enhanced corticosterone secretion is 
part of the mech,lIlisIll responsible for the reduced TRH 
alld TSH synthesis and rdea~e during stafv,ltion: proTRH 
mRNA, TSHP mRNA and plasm;l TSH \vere not re­
duced by starVJtion when corticosterone lewis did not 
increase during starvation. Thm, the neg,Hive effect of 
stJrvation on thyroid fi-mction seems to be medbted by the 
neg.ltive eflect of high le\'els of corticosteroids Oll the 
synthesis of hypothalamic proTRH and pituitary TSH. 
The presence of,l glucocorticoid-responsiw element in the 
promoter region of the proTRH gene (Lee t't <11. 1988) and 
the occurrence of glucocorticoid receptors ill TRH­
synthesizing cells in the paraventricuiar are,l (Cecr.ltelli 
t'f Ill. 198Y) corroborate this conclmion. Further evidence is 
the observation that a high dose of the synthetic glucocor­
ticoid deX,l111ethasone reduced TRH and TSH rele,lse 
within 30 ..... 60 min after its administr,ltion (Fig. 5). The 
finding of synaptic rehtions in the p;lraventricuiar nucleus 
between corticotrophin-releasing honuone cOIlI<)ining 
neurones and neurones with TRH (His,lIlo t'[ ,JI. 1993) is 
,llso important, since food deprivation hJ..s been found to 
stimulate neurones in the parJvel1tricuLu lIucleus involved 
in the release ofcorticotrophin-re!easing honnolle (Maeda 
t't <11. 1994). While prevention of the increase in cortico­
sterone levels in food deprived r,lts resulted in plasma levels 
of TSH similar to v,llues in control, nonnally fed female 
rats (Fig. 2), levels of thyroid hormones were only p,uti,dly 
restored in cortil.ostemne-treated adrci13.lcctomized rats. 
The rcason f(lr the difi"t>rential eflect of this tre,Hment on 
TSH ,wd thyroid hannones is not deJr, but indicates that 
the enhanced plasma levels ofTSH are l1I1.1ble to stimulate 
thyroid fimction properly. 



In conclusion, the reduced thyroid fUllction during 
starv,ltion seems to he due to decreases in hypothalamic 
TRH release, Jnd pituitary TSH synthesis and secretion. 
Starvation-induced eflects arc rapidly reversed by rc­
feeding. The decreased hypothalamic TRH release during 
food deprivation is probably not (,H\sed by an altered 
hypothalamic processing of proTRH. Furthennore, the 
starvation-induced decrease in hypothalamic proTRH 
gene expression and in pituitary TSH synthesis and release 
is probably cJ.med by the st.lrv,ttion-induced high plasma 
corticosterone levels, 
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The role of TRH In the regulation of TSH secretion 

ABSTRACT 

Many studies have demonstrated that secretion of TSH and thyroid hormones is 

strongly reduced during short-term starvation in rats. However, less is known about 

regulation of thyroid function during prolonged food reduction in rats, which is a 

better model for human malnutrition. In this study, the effects of 3 weeks of food 

reduction to 33% of normal (FR33) were investigated on the hypothalamus-pituitary­

thyroid axis in male and female rats. This was done by measuring hypothalamic 

proTRH mRNA, median eminence TRH content, pituitary TSHB mRNA, TSH 

content and TRH receptor status, and serum TSH, T" T" free T, fraction (FFT,), 

FFT" free T, (FT,), FT, and corticosterone levels in FR33 and normally fed rats. At 

the end of the experimental period, body weight of both male and female FR33 rats 

was almost 50% lower than that of control rats. FR33 induced a significant increase 

in the adrenal weight/body weight ratio as well as a marked increase in serum 

corticosterone in both male and female rats. In both sexes, FR33 caused significant 

decreases in serum TSH, T" FT" T" FT, and FFT, but an increase in FFT,. 

Electrophoretic analysis indicated that the decrease in serum FFT, was correlated 

with an increased serum TBG, while the increase in serum FFT, seemed primarily 

due to a decreased TBPA binding capacity. Pituitary TSH was strongly reduced by 

FR33 in both sexes, but hypothalamic proTRH mRNA, median eminence TRH, and 

pituitary TSHB mRNA and TRH receptor status were not affected except for an 

increased TSHB mRNA in female FR33 rats. Therefore, long-term food reduction 

results in a suppression of the hypothalamus-pituitary-thyroid axis in rats which is 

partially influenced by gender. In contrast to acute starvation, the mechanism 

whereby serum TSH is suppressed does not appear to involve decreases in 

proTRH and TSHB gene expression, although a decrease in hypothalamic TRH 

release is not excluded. Our results further support the hypothesis that TSH 

secretion may be lowered by increased serum corticosterone, although the 

mechanism of this effect may differ between acute starvation and prolonged food 

reduction. 

INTRODUCTION 

Caloric deprivation has a suppressive effect on the hypothalamus-pituitary-thyroid 

axis presumably in order to diminish the metabolic rate in the whole body. In rats, 
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acute starvation is known to induce a reduction in thyroid hormone secretion (1, 2) 

and, consequently, a reduction in serum total and free T, and T3 concentrations (1, 

3-5). Despite the reduced circulating levels of T, and T3, basal serum thyrotropin 

(TSH) concentrations are usually decreased (1, 3-8). Previous studies have shown 

that hypothalamic pro TRH mRNA level and TRH release are decreased during 

acute starvation (5, 9, 10), in contrast to primary hypothyroidism where the reduced 

feedback action of thyroid hormone results in an increase in these parameters (11, 

12). This suggests a central inhibition of hypothalamic TRH synthesis and release 

during starvation. 

To study the mechanisms behind the reduced metabolic rate, long-term food 

reduction seems a better model than acute starvation for human malnutrition. We 

have, therefore, determined the effects of 3 weeks of food reduction to 33% of 

normal on the central regulation of the thyroid function in male and female rats. This 

included measurements of hypothalamic proTRH mRNA, median eminence TRH 

content, pituitary TRH receptor status and TSHB mRNA, and serum TSH, T" T3, 

free T, (FT,) and free T3 (FT3) levels. In order to examine the possible contribution 

of stress to the suppression of the hypothalamus-pituitary-thyroid axis during 

prolonged food reduction serum levels of corticosterone were also determined. 

MATERIALS AND METHODS: 

Animals 

Rats of a locally bred Wistar substrain, R-Amsterdam rats, were used. Since 

previous studies showed that effects of starvation on thyroid function may differ 

between male and female rats (5, 13), both sexes were studied. The rats were 

caged individually in a temperature regulated room (22±2 C), with a 14-h light, 10-h 

dark cycle (lights on 05:00-19:00 h) and were provided with commercial rat chow 

containing 22% protein, 4.8% fat, 66.8% carbohydrates, 0.35 mg/kg iodine and 0.29 

mg/kg selenium (RMH-TH, Hope Farms, Woerden, The Netherlands) and tap water 

ad libitum. At the time of the start of the experiments rats were 10 weeks old: male 

rats weighed 216±8 g and female rats weighed 163±4 g. Their body weight was 

monitored weekly during the experiment. 

Experimental design 

Male and female rats were randomly divided into a control and an experimental 
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group of 8 animals each. In a pilot study it was found that the daily food intake was 

24 g in male and 15 g in female rats. During the experiment control rats had free 

access to food, whereas the experimental groups received one-third of their normal 

daily food intake (FR33). The experiment lasted 21 days, and Ihe health slate of the 

rats was daily checked upon. 

At the end of the experiment, the rals were killed by decapitation. The livers 

were cut into pieces, frozen in liquid nitrogen, and kept at -80 C until further 

analysis. The hypothalamus, median eminence and pituitary gland were isolated as 

described previously (14) for the delermination of proTRH mRNA, TRH, and TSHI3 

mRNA or TRH receptor densily, respectively. After isolation, each median eminence 

was exlracted immediately wilh 2 ml methanol Ip prevent degradation of TRH. 

Hypothalami and pituitaries were snap frozen in liquid nilrogen, and kept at -80 C 

until further analysis. 

Deiodinase assay 

Liver microsomes were prepared as described previously (15). The microsomal type 

I deiodinase activity was determined by analysis of Ihe produclion of radio iodide 

during incubations of 1 IlM [3',5,-' 25 ljrT, for 20 min al 37 C wilh 25 I1giml 

microsomal protein in 0.1 M phosphate buffer (pH 7.2), conlaining 2 mM EDTA and 

5 mM dilhiothreilol as described previously (16). 

Hormone assays and analysis of serum thyroid hormone-binding proteins 

Levels of TSH were measured by RIA using materials and protocols supplied by 

NIDDK, with rat-TSH-RP-2 as slandard. The RIA for TRH was usually performed 

wilh antiserum 4319 (final dilution 1:10,000) as reported before (17). This assay is 

very sensilive bul has a low specificily for the histidine residue in TRH. Therefore, 

most samples were also assayed with a RIA using antiserum 8880 (final dilution 

1 :40,000), an antiserum which was described previously and is much more 

sensitive to alteralions in the His residue of TRH (18). The RIA employing 

antiserum 8880 has a somewhat higher detection limit (5-8 fmolltube) than thai 

utilizing antiserum 4319 (3-5 fmol/tube). Serum T, and T, were estimated by 

established RIAs in unextracted serum. The serum free T, fraction (FFT4) was 

measured by equilibrium dialysis (19), and serum free T4 (FT,) was calculated as 

the product of total T4 and FFT4. A similar procedure was followed to determine the 

serum free T, fraction (FFT,) and free T, (FT,) concentration. Corticosterone was 
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estimated by RIA (20). Detection limits were 0.2 Ilgl1 RP-2 TSH, 2 nmolll T" 0.1 

nmol/l T, and 1 nmol/l corticosterone. Intra- and interassay coefficients of variation 

for the assays varied between 3 and 17%. 

Agar gel electrophoresis was performed using 0.9% Agar Noble (Difco, Detroit, 

MI, USA) and 0.2 M glycine, 0.13 M sodium acetate buffer (pH 8.6) as described by 

Docter et al (21) to determine the distribution of serum T, and T, over their binding 

proteins. 

ProTRH mRNA and TSH13 mRNA determination 

Hypothalamic proTRH and pituitary TSHB mRNA were determined by Northern 

blotting as described previously (14). Results were calculated as the ratios of 

proTRH mRNAlB-actin and TSHB mRNAlB-actin. 

TRH receptor assay 

TRH receptors were assayed as previously reported by Donda et al (22) with some 

modifications. Pituitaries were homogenized in 500 III 0.32 M sucrose, and 

homogenates of 3 pituitary glands were pooled for the binding assay. The 

homogenate was centrifuged for 10 min at 1,1 OOxg at 4 C, and the supernatant was 

further centrifuged for 30 min at 30,000xg at 4 C. The pellet containing the crude 

membrane preparation was resuspended in 600 III cold 20 mM sodium phosphate 

buffer (pH 7.4), and an aliquot was frozen at -20 C for protein measurement. The 

binding assay was performed using ['H-Me-His'JTRH as ligand (82.5 Ci/mmol; New 

England Nuclear, Boston, MA). The incubation mixture contained 30-60 Ilg 

membrane protein and 6 nM 'H-Me-TRH in 200 ~ll phosphate buffer in the absence 

(for total binding) or in the presence (for non specific binding) of 25 11M of 

nonradioactive TRH (Boehringer, Mannheim, Germany). After 2 h of incubation on 

ice, the samples were filtered on Whatman GF/B glass fiber filters (Whatman, 

Clifton, NJ) which were washed four times with 2 ml cold 0.15 M NaC!. The filters 

were dried and then left overnight in 10 ml scintillation liquid (Opti-Fluor; Packard, 

Downers Grove, IL) before 'H was counted. Specific binding was calculated as the 

difference between the total and the non specific binding. Nonspecific binding was 

less than 40% of total binding. All determinations were performed in duplicate. 

Statistical analysis 

Results are presented as means±SEM and tested statistically by analysis of 

55 



The role of TRH in the regulation of TSH secretion 

variance. Differences were considered to be significant at p<0.05. 

RESULTS 

Effect of food reduction on body, adrenal and pituitary weight 

The effects of food reduction on body weight, adrenal weight and pituitary weight 

are presented in Table 1. Compared to fed controls, body weight was reduced by 

almost 50% in both male and female FR33 rats. Adrenal weight was decreased by 

25% in males and by 37% in females, but relative to body weight it was increased 

by 40% in male and by 25% in female FR33 vs. control rats. Adrenal weight was 

significantly higher in control females than in control males, but this difference 

disppeared in the FR33 rats because of the more pronounced adrenal weight loss 

in females. Relative to body weight, adrenal weight was even further increased in 

female VS. male controls and was also significantly higher in female than in male 

FR33 rats. In both sexes, pituitary weight showed an insignificant, 10-12% decrease 

in FR33 rats compared to controls. 

Parameter Treatment Males Females 

BW (g) control 216±8 163±3b 

day 1 FR33 219±5 164±3' 

BW (g) control 292±12 188±3b 

day 21 FR33 157±4' 97±1'b 

adrenal weight control 44.0±2.1 53.6±2.2b 

(mg) FR33 32.9±0.8' 33.9±2.2' 

adrenal/BW control 0.15±0.03 0.28±0.01b 

FR33 0.21±0.05' 0.35±0.02,b 

pituitary weight control 10.8±0.7 9.0±OAb 

(mg) FR33 9.8±0.5 8.0±OAb 

TABLE 1. Body, adrenal and pituitary weight in control and FR33 male and female 

rats. Data are presented as the mean ± SEM 01 8 animals per group. 

ap<O.05 vs. control rats 
bp<O.05 VS. male rats 
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Effects of food reduction on hypothalamic pro TRH mRNA, median eminence TRH 

content and specific binding of TRH to pituitary plasma membranes 

Hypothalamic proTRH mRNNactin mRNA ratios were similar in male and female 

controle rats and did not change after 3 weeks of food reduction (Fig. lA). TRH 

levels in the median eminence were similar when measured with RIAs using 

antiserum 4319 or 8880 (data not shown), confirming the identity of the analyte as 

authentic TRH. Median eminence TRH content was similar in both sexes and was 

not affected by food reduction (Fig. 1 B). The protein concentration of the pituitary 

membrane preparation was similar in male and female control rats and was strongly 

reduced by prolonged food reduction in both sexes (Table 2). 

The specific binding (per mg protein) of 'H-Me-TRH to pituitary membranes 

was higher, but not significantly, in female than in male controls; it tended to be 

higher in female FR33 rats and showed a significant increase in male FR33 rats 

compared to the respective controls (Table 2). Total pituitary TRH binding was 

unchanged in male FR33 rats, whereas there was a 50% reduction in female FR33 

rats compared to controls. 

Parameter Treatment Males Females 

'H-MeTRH specific binding control 49.4±9.6 68.7±8.1 

(fmol/mg protein) FR33 109.0±15.9' 102.5±37.6 

'H-MeTRH specific binding control 21.0±3.9 29.8±3.3 

(fmol/pituitary) FR33 25.7±4.1 16.7±6.0 

membrane protein control 436±38 436±11 

(1l9/pituitary) FR33 234±6' 163±5'b 

TABLE 2. Membrane TRH receptors in the pituitary gland of control and FR33 male 

and female rats. Data are presented as receptor density (per mg 

membrane protein) and receptor content (per pituitary), Membrane protein 

concentration per pituitary is also shown. Data are presented as the mean 

± SEM of 4 pools of 3 animals each per group, 
ap<O,Q5 VB, control rats 
bp<O.05 VS. male rats 

Effect of food reduction on serum TSH and pituitary TSH and TSHf3 mRNA 

Food reduction caused a significant decrease in serum TSH (Table 3) and in 
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pituitary TSH content (Fig. 10) in both sexes, whereas TSHB mRNA/actin mRNA 

ratios increased by 40% in male FR33 rats and by 185% in female FR33 rats 

compared to their controls (Fig. 1 C). Serum TSH, pituitary TSH and pituitary TSHB 

mRNA were all significantly higher in control males than in control females, and 

pituitary TSH was still significantly higher in male than in female FR33 rats (Table 3, 

Fig. 1C,D). 

Parameter Treatment Males Females 

TSH control 0.76±0.16 0.35±0.05b 

(ng/ml) FR33 0.11±0.02' 0.18±0.05' 

T4 control 45.5±2.4 30.6±1.9b 

(nmol/I) FR33 30.4±1.9' 10.5±1,4'b 

FFT4 control O.O17±0.OO1 O.O24±0.OO2 

(%) FR33 O.O20±O.OO1' 0.O26±O.OO1 

FT4 control 7.5±O.34 7.2±0.66 

(pmol/l) FR33 5.9±O.35' 2.6±O.24' 

T3 control 1.3±O.O3 1.2±O.O3 

(nmol/l) FR33 1.0±0.O5' 0.7±O.06'b 

FFT3 control O.51±O.O2 O.43±O.01b 

(%) FR33 0.39±O.O1' O.30±O.06'b 

FT3 control 6.7±O.27 5.3±O.17b 

(pmol/l) FR33 4.1±O.19' 2.4±O.8,b 

FT3/FT4 control O.90±0.O6 O.76±O.O4 

FR33 O.71±O.O4' O.98±0,42 

corticosterone control 104±16 230±89 

(nmol/l) FR33 614±36' 1160±75,b 

TABLE 3. Plasma TSH, thyroid hormones and corticosterone in control and FR33 

male and female rals. Oala are presenled as Ihe mean ± SEM of 8 

animals per group. 
ap<O.05 VS. control rats 

bp<O.05 vs. male rats 
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Effect of food reduction on serum thyroid hormones, their binding proteins and 

corticosterone levels 

Results are presented in Table 3 and Fig. 2. Compared to levels in fed controls, 

serum T4 , FT" T3 and FT3 were significantly reduced in both female and male FR33 

rats. Serum FFT3 was significantly decreased by food reduction in both sexes, 

whereas FFT, showed a slight increase, which was significant only in male rats. 

Serum T, and FT3, but not FT, and T3, were significantly higher in control males 

than in control females. In FR33 rats, T" FT" T3 and FT3 were all higher in males 

than in females. 

Serum of control and FR33 male and female rats was incubated with [' 25IJT, or 

["'llT3 and analysed by agar gel electrophoresis. Typical examples of radioactivity 

patterns obtained are shown in Fig. 2. In contrast to human serum (21), rat albumin 

and thyroxine-binding prealbumin (TBPA) were not separated by this method. 

Therefore, the first peak represents thyroxine-binding globulin (TBG) and the 

second peak contains both albumin and TBPA. Radioaclive T3 was bound by TBG 

and albumin-TPBA in a ratio which was similar in both sexes and which changed 

from 1:5 in control rats to 1:1 in FR33 rats. A single peak of protein-bound labeled 

T, was found in the albumin-TBPA region in control rats. In male and female FR33 

rats a small radioactive peak appeared in the TBG region. 

Levels of serum corticosterone were significantly increased in both sexes after 

prolonged food reduction (Table 3). Irrespective of nutritional status, serum 

corticosterone was lower in males than in females, which difference was significant 

in FR33 rats but not in controls. 

Effect of food reduction on hepatic deiodinase activity 

Liver type 1 deiodinase activity was 2.5 times higher in male than in female control 

rats. In both sexes, food reduction caused a significant decline of ~50% in this 

activity (Fig. 3). 

DISCUSSION 

Changes in the hypothalamus-pituitary-thyroid axis induced by short-term, complete 

starvation in the rat have been reported by many authors (5, 6, 9, 13, 14, 23-25), 

but little is known of the effects of long-term food reduction. In this study we 

investigated the effects of a reduction in food intake to one-third of normal (FR33) 

during 3 weeks on the hypothalamus-pituitary-thyroid axis in male and female rats. 
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Figure 2. Representative examples of agar-gel electrophoresis of sera of control and 
FR33 mare and female rats, pre-incubated with radioactive T3 or T4. 
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FR33 caused a strong reduction of serum TSH levels in both sexes. Based on data 

reported by Rodriguez et al (26) on TSH turnover in FR75, FR50 and FR25 rats, 

the decrease in serum TSH during prolonged food reduction represents a 

decreased TSH secretion rather than an increased TSH clearance. This decreased 

TSH secretion may be mediated a) at the hypothalamic level, by changes in the 

release of factors which regulate TSH secretion, such as TRH, somatostatin and 

dopamine, b) at the pituitary level, by a direct inhibition of the thyrotroph or by 

changes in its sensitivity to hypothalamic factors or to the feedback inhibition by 

thyroid hormone, and/or c) by a general effect of food reduction on protein turnover. 
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Figure 3. Effect of 21 days food restriction (FR33; 
white bars) on hepatic type 1 deiodinase activity 

in male and female rats. Normally fed rats were 
used as controls (black bars). Results are 

presented as mean±SEM of 8 rats. ap<O.OS 

compared to controls, bp<O.05 compared to 

males. 

Since several findings indicate that the decrease in thyroid function during 

short-term starvation is associated with a lowered hypothalamic release of TRH 

(5-7, 27), we studied the centrally mediated effects of long-term food reduction in 

more detail. In this study, hypothalamic proTRH mRNA content was unaffected in 

male and female FR33 rats, whereas it was significantly decreased in rats starved 

for 2 or 3 days (9, 14). Median eminence TRH content was not affected by food 

reduction in both male and female rats. However, since we have not rneasured 

TRH in hypophyseal portal blood, we cannot exclude that hypothalarnic TRH 

release was decreased despite the unaltered proTRH mRNA level and median 
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eminence TRH content. Our findings at least suggest that a decreased proTRH 

gene expression is not essential in the central mechanism mediating reduced TSH 

secretion during long-term food deprivation. Recent studies from our group have 

shown that TSH secretion may also be diminished in diabetic rats " in lactating rats' 

or after administration of interleukins without a concomitant change in proTRH gene 

expression (14, 28). 

At the pituitary level, the density of TRH membrane receptors (per mg 

membrane protein) was significantly increased in FR33 male rats compared to 

controls while in FR33 female rats the increase was only a tendency, but not 

statistically significant. These results obtained in FR33 rats are in line with the 

findings by Rodriguez et al (26), who demonstrated an increase in TRH binding 

sites in FR75, FR50 and FR25 rats, despite a significantly decreased TSH secretion 

in response to TRH in both FR50 and FR25 rats. Low levels of TRH (25) and/or 

thyroid hormones (29, 30) may contribute to the increased density of TRH 

receptors, as observed also in the aged rat (22). Moreover, in the rat, there is a 

quantitative relationship between pituitary nuclear T3 receptor occupancy and 

inhibition of TSH release (31, 32). It has been reported that starvation in rats 

reduces the number of pituitary nuclear T3 receptors (26). Thus, it is unlikely that a 

higher sensitivity of the pituitary to the feedback inhibition by thyroid hormone 

during starvation is responsible for the low TSH levels. However, it should be 

emphasized that the changes observed for TRH and T3 receptors in the whole 

pituitary may not reflect alterations in TRH and T 3 receptors at the level of the 

thyrotrophs. 

At the pituitary level, TSHB mRNA showed a small increase in male FR33 rats 

and a large increase in female FR33 rats, suggesting an increased TSHB gene 

expression or an increased TSHB mRNA stability. However, TSH production is 

decreased in FR33 rats, since both TSH secretion (see above) and pituitary TSH 

content are decreased. The discrepancy between the decrease in TSH production 

and the increase in pituitary TSHB mRNA may be due to impaired translation of the 

latter, which could reflect a general defect in protein synthesis during prolonged and 

severe food reduction. In addition, the synthesis of the a-subunit may be impaired 

at both the transcriptional and translational level. Changes in thyroid status have 

been shown to affect pituitary TSHB mRNA to a greater extent than pituitary a­

subunit mRNA (33, 34). However, this does not negate a selective inhibitory effect 

of food reduction on a-subunit production. Indeed, other pituitary hormones sharing 
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the same a-subunit as TSH, were found to decrease significantly during severe 

food reduction (7). 

The results of our study confirm and extend those reported previously (8, 35), 

demonstrating that food restriction induces a decrease in serum T" FT4, T3 and FT3 

in both male and female rats. Serum FT 4 levels were similar in control male and 

female rats, while both serum total T, levels and serum T4 binding were higher in 

males. Control serum FT 3 levels were higher in male than in female rats, while 

serum total T3 levels were similar and serum T3 binding was higher in females. 

Further differences in serum protein binding of T4 and T3 were induced by food 

reduction, which resulted in a slight increase in FFT, and a larger decrease in FFT3 

in both sexes. In adult rats, serum T, is primarily bound to TBPA, whereas albumin 

is the predominant binding protein for serum T3 (36). Serum TBG levels and hepatic 

TBG gene expression are high in neonatal rats but decrease to almost undetectable 

levels in adults, while they increase again during senescence (37, 38). It has been 

shown that fasting increases serum TBG (39) but decreases serum TBPA (40) in 

rats. In our study the decrease in the serum FFT3 after food restriction is correlated 

with an increased TBG, while the increase in the serum free T, fraction may be 

caused in part by a decrease in serum TBPA. 

As a result of the significant decline in hepatic deiodinase activity in both 

sexes after food reduction, the peripheral conversion of T, into T3 may be 

decreased which should be reflected in a decline in the serum FT jFT 4 ratio. 

However, after food reduction the serum FT jFT, ratio was only decreased in male 

rats, suggesting that the liver type I deiodinase is a more important site for 

peripheral T3 production in male than in female rats. This is supported by the higher 

hepatic type I deiodinase activity in male than in female controls. 

Concerning the sex dependence of the effects of food deprivation, Cohen et al 

(13) showed significantly higher levels of serum TSH in control male vs. female 

Sprague-Dawley rats, which decreased Significantly in male but not in female rats 

after short-term starvation. However, Rondeel et al (5) found no differences in 

serum TSH between control male and female (RxU)F, rats, which decreased in 

female but not in male rats only after 4 days of starvation. In agreement with the 

former study, we found that control serum TSH values were significantly higher in 

male than in female R-Amsterdam rats, and that food reduction resulted in a more 

pronounced reduction in serum TSH in males than in females, although the effect 

was also significant in females. The reason for the discrepancy between the 
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previous report of Rondeel et al and the present findings may be related to duration 

and extent of food reduction or rat strain. 

Previous studies have suggested a negative relationship between serum TSH 

and corticosterone in rats after induction of diabetes with streptozotocin I, during 

short-term starvation (14), after administration of interleukin-1 (28), or during 

lactation'. In all these conditions, a decreased serum TSH is associated with an 

increased serum corticosterone. The decrease in serum TSH in starved rats is 

partially prevented if serum corticosterone is kept constant by adrenalectomy and 

corticosterone substitution (14). The present findings of sex-dependent differences 

in control rats as well as the effects of long-term food reduction further substantiate 

this negative correlation between TSH and corticosterone. In control rats, serum 

TSH, pituitary TSH content and pituitary TSHB mRNA were all higher in males than 

in females. This suggests that TSH production is higher in male than in female rats, 

which is associated with lower adrenal weight and corticosterone levels in males 

than in females. Furthermore, during prolonged food reduction serum TSH and 

pituitary TSH content decrease, while relative adrenal weight and serum 

corticosterone increase in both sexes, although the magnitudes of these changes 

differ. Together, these findings suggest a negative effect of corticosterone on TSH 

synthesis and secretion. The exact mechanism of this effect remains unknown, but 

chronic treatment of rats with dexamethasone has been shown to decrease 

hypothalamic proTRH mRNA (41), while acute dexamethasone treatment was found 

to lower TRH release in hypophyseal portal blood (14). However, the present 

findings suggests that the effect of corticosterone on TSH secretion not always 

involves decreases in proTRH and TSHB gene expression. It is possible that the 

above-mentioned posttranscriptional defect in TSH production after prolonged food 

reduction is mediated by the increased serum corticosterone. 

In conclusion, the present study demonstrates profound effects at different 

levels of the hypothalamic-pituitary-thyroid axis after 3 weeks of severe food 

restriction in both male and female rats. In contrast to acute starvation, the 

mechanism whereby serum TSH is suppressed after prolonged food reduction does 

not involve decreases in hypothalamic proTRH or pitUitary TSHB gene expression. 

Direct inhibition of the thyrotrophs by other regulators of TSH secretion, such as 

somatostatin and dopamine, as well as the precise role of corticosterone deserve 

further investigation. 
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DIFFERENT EFFECTS OF CONTINUOUS INFUSION OF INTERLEUKIN-1 AND 

INTERLEUKIN-6 ON THE HYPOTHALAMIC-HYPOPHYSIAL-THYROID AXIS 

G.A.C. van Haasteren, M.J.M. van der Meer, A.R.M.M. Hermus, E. Linkels, W. 
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Different Effects of Continuous Infusion of Interleukin-l 
and Interleukin-6 on the Hypothalamic-Hypophysial­
Thyroid Axis* 

G, A, C, VAN HAASTEREN, M. J. M. VAN DER MEER, A. R. M, M. HERMUS, E. LINKELS, 
IV, KLOOTWIJK, E, KAPTEIN, H, VAN TOOR, C, G, J, SWEEP, T, J, VISSER, 
AND W. J. DE GREEF 

Departments of Endocrinology and Reproduction (aA.C.v.H., E.L., W,J,d,G.) and Internal Medicine III and 
Clinical Endocrinology (W.K., E.K., H.v.T., T.J, F), Faculty of Medicine and Health Sciences, Erasmus 
University, Rotterdam, The Netherlands; and the Department of Medicine, Division 0/ Endocrinology 
(M.J.M.v,d,M., A,R,M.M.H.), and Department 0/ Experimental and Chemical Endocrinology (C.G.J.S.), 
St. Radboud University Hospital, Nijmegen, The Netherlands 

ABSTRACT 
The cytokines interleukin·l (IL·l) and IL·6 are thought to be 

important mediators in the suppression of thyroid function during 
nonthyroidal illness. In this study we compared the effects of fL·l and 
11.·6 infusion on the h:~,.pothalamus·pituitary·thyroid axis in rats. Cy. 
tokines were administered by continuous ip infusion of 4 Jig IL.lo/day 
for 1, 2, or 7 days or of 15 Jig IL·6/day for 7 days. Body weight and 
temperature, food and water intake, and plasma TSH, T., free T, (FT.), 
'f3, and corticosterone levels were measured daily, and hypothalamic 
pro·'rRH messenger RNA (mRNA) and hypophYsial TSHP mRNA 
were determined after termination of the experiments. Compared with 
saline·treated controls, infusion of IL·l, but not of IL--6, produced a 
transient decrease in food and wat~r intake, a transient increase in 
body temperature, and a prolonged decrease in body weight. Both 
cytokines caused transient decreases in plasma 'l'SH and '1'" which 
were greater and more prolonged with IL·l than with IL·6, whereas 
they effected similar transient increases in the plasma FT. fraction. 
Infusion with IL·l, but not IL·6, also induced transient decreases in 
plasma IT, and '1'3 and a transient increase in plasma corticosterone. 
Hypothalamic pro·'rRH mRNA was significantly decreased (-73%) 

DURING acute and chronic systemic illness, profound 
changes in thyroid function occur in both humans 

(1-3) and animals (4). In humans, the most characteristic 
changes are a decrease in the plasma TJ level and an increase 
in the plasma level of rT3' Plasma T4 may also be decreased 
in severely ill patients (3), mainly due to reduced binding to 
transport proteins (5, 6), as plasma free T4 (FT4) usually 
remains within the normal range. It has been suggested that 
cytokines are important mediators of the changes in thyroid 
economy during diseases in which the immune system is 
activated (4, 7-11). Cytokines are polypeptides primarily 
produced by activated monocytes and macrophages, which 
play important roles not only in regulating the immune 
system, but also in interacting with several endocrine systems 
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after 7 days, but not after 1 or 2 days, of IL-l infusion and was 
unaffected by IL·6 infusion. Hypophysial TSHJj mRNA was signifi· 
cantly decreased after 2 (-62%) and 7 (-62%) days, but not after 1 
day, of I1.·1 infusion and was unaffected by IL·6 infusion, These results 
are in agreement with previous findings that IL·l, more so than fL·6, 
directly inhibits thyroid hormone production. They also indicate that 
IL·l and IL-6 both decrease plasma '1', binding, Furtherlllore, both 
cytokines induce an acute and dramatic decrease in plasma TSH before 
(IL·l) or even without (IL·6) a decrease in hypothalamic pro·TRH 
mRNA or hypophysial TSHP mRNA, suggesting that the acute de· 
crease in TSH secretion is not caused by decreased pro·TRH and 
TSHp gene expression. The 'l'SH·suppressive effect of IL·6, either 
administered as such or induced by IL·l infusion, may be due to a 
direct effect on the thyrotroph, whereas additional effeels of IL-l may 
involve changes in the hypothalamic release of somatostatin OJ TRH. 
As glucucorticoids are known to suppress hypothalamic 'rRH mRNA 
levels, it is speculated that the decrease in pro·TRH gene e:Kpression 
caused by prolonged infusion of IL·l is mediated by the high plasma 
corticosterone levels. (Endocrinology 136: 1336-1345,1994) 

(12-17). In rats, a single injection of interleukin·l (IL-l) 
lowered plasma TSH and thyroid hormone levels within 5 h 
(4). Continuous infusion of IL-l{1 induced in the rat decreases 
in plasma TSH, FT4, and T4 binding (IS). It is, however, not 
fully understood how cytokines suppress the pituitary-thy­
roid function, 

Inflammation stimulates the production of a cascade of 
cytokines, of which, in particular, tumor necrosis factor·a, 
IL-l, and IL-6 represent key factors for communication be­
tween the immune and neuroendocrine systems (19-21). As 
part of the pleiotropic effects of IL·l is mediated by IL·6, we 
compared the effects of short and long term infusion of IL-l 
and long-term infusion of IL-6 on the h}'pothalamic'pitui­
tary-thyroid axis. To identif}' the sites of action of IL-l and 
IL-6, their effects were measured on plasma T4, FT4, T3, TSH, 
and corticosterone; TRH content in median eminence; hy­
pothalamic levels of pro-TRH messenger RNA (mRNA); and 
pituitary levels of TSH,8 mRNA. As hepatic type I deiodinase 
is responsible for 60-70% of peripheral T3 production in 
euthyroid rats (22), we also measured the activity of this 
enzyme during IL infusion. 



Materials and Methods 

Materials 

Recombinant human IL~I(( (lL-I) W.lS kindly provided by Dr. P. 
Lomedico (Hoffman LaRoche, Nutley, NJ). The preparation, supplied in 
50 rnM potassium phosphate (pH 6.5) and 0.1 M sodium chloride, had 
an activity of 2 X lOs U/ml (010 assay) and a specific activity of 3 X 
101 U/mg protein. According to the specifications of the supplkrs, 
endotoxin contamination was negligible (0.5 U/ml IL-I solution, as 
detected in the limulus amoebocyte lysate assay). 

Human IL-6, produced by recombinant DNA technology in Esche­
richia co/i, was obtained from Sandoz (Sandoz Forschungsinstilut, 
Vienna, Austria). The specific activity of the preparation was 52 X 
10~ U/mg (by B13.29 assay). The preparation (SDZ 280-969, batch 
PPG9001) was supplied in 20 mM sodium phosphate (pH 6.7), and 
endotoxin contamination was negligible «0.4 V/mg protein). 

Both IL-l and IL~6 were diluted in sterile pywgen-free saline [0.9% 
NaCI (wI/vol) in waterl, All chemicals used were of analytical grade. 
The concentrations of IL-I and IL-6 used for infusion in this study were 
based upon the findings of a previous study performed by HemlUs et 
al. (IS) and a pilot study in which three concentrations of IL-6 infusion 
were studied in rats (data nol shown). 

Animals 

Male albino Wistar rats (Cpb:\VU) were obtained from the local 
breeding fadlity and individually housed in Plexiglass cages in an 
artifidally lighted room (lights on at 0700 h; lights off at 1900 h). Rats 
were provided \\ith commercial rat chow containing 22% protein, 4.8% 
fat, and 66.S% carbohydrates (RMH-TH, Hope Farms, Woerden, The 
Netherlands) and tap water ad Ubi/11m. At the time of the slart of the 
experiments, rats were 10 weeks old and weighed 200-220 g. Animal 
procedures were approved by the institutional review board. 

Experimental design 

Long term il!fJlsiolJ. To diminish the stress of the experimental procedure, 
rats were handled daily, starting at leasl 1 week before the insertion of 
an indwelling cannula into an external jugular vein. Rats were cannu­
lated according to the method described by StefJens (23) \l'ith some 
minor modifications (24). After insertion, the cannula was filled with a 
0.9% Nae! solution containing heparin (500 IU/ml; Organon Teknika, 
Boxtel, The Netherlands) and polyvinylpyrrolidone (I g/ml; Merck, 
Darmstadt, Germany). 

Seven to 9 days after cannulation, rats were implanted with an Abet 
osmotic minipump (model 2001, Alze! Corp., Palo Alto, CA; I fll/h for 
7 days). ROlls were infused for 7 days \\ith IL-l (4 fig/day) or IL·6 (IS 
fig/day) dissoh'ed in sterile pyrogen-free physiological saline or \\ith 
saline alone. The pumps were equilibrated by immersion in physiological 
saline solution for 3-4 h at 37 C according 10 the instructions of the 
manufacturer and then implanted ip in ether-anesthetized animals be­
tween 1400-1600 h (day 0). The indwelling c.lnnula and the osmolic 
pump were tolerated well by the rats \l'ith no obvious signs of discomfort 
or infection. 

From the freely mo\ing rats, blood samples of 2 ml were \\ithdrawn 
from the jugular venous cannula on se\'eral days of the experiment 
slarting 2 days before implantation of the osmotic minipumps (18). 
Because of the circadian rhythm in hormone release, blood was sampled 
at about the same time each day (between 1000-1200 h). Blood samples 
were collected in prechilled tubes containing 60 pi 10% (WI/vol) EDTA 
in saline, gently shaken, and centrifuged for 10 min at 1500 X g at4 C. 
After removal of the plasma, the residue containing red blood cells was 
resuspended in sterile physiological saline solution (1.5 ml) and returned 
through the jugular venous cannula to each rilt. Plasma samples were 
aliquoted and stored at -20 C until assayed. 

In all Tats, body weight was measured daily between 0815-0900 h. 
Body temperature was measured daily between OS15-0900 h and be­
tween 1300-1430 h in conscious hand-held rats by insertion of a thermal 
probe into the rectum. The probe was connected to a digital temperature 
monitor (Digital DTlOO, Elbatron, Kerkdriel, The Netherlands). Mean 
daily temperature for each rat was determined by averaging the morning 
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and afternoon rcctaltemperatures. The daily food and water intake was 
estimated by weighing the residual food pellets and water for individual 
cages. 

At the end of the experiment (day 7), the rats were killed by decapi­
tation. The livers were cui into pieces, frozen in liquid nitrogen, and 
kept at -80 C until the estimation of type J deiodinase activity. The 
skull was opened, and the brain was removed. The hypothalamus was 
isolated (limits, posterior border of the chiasmatic opticum, anterior 
border of the mamillary bodies, and lateral hypothalamiC border; height, 
~3 nun) for the determination of pro-TRH mRNA_ Also, the pituitary 
gland was isolated to estimate the level of TSH/1 mRNA. Both tissues 
were snap-frozen in liquid nitrogen and kept at -SO C until delenni­
nation of pro-TRH and TSH/1 mRNAs. 

511071 lerm hlfusion. Rats were infused \vith IL-l (4 pg/day) for I day 
(osmotic minipump model200ID; 8 fl1/h for 1 day) or 2 days (osmolic 
minipump model 1003D; 1 pl/h for 3 days) or v.ith saline. The pumps 
were implanted between 1400-1600 h. These animals had not been 
implanted with a cannula into the jugular vein. A(ter I or 2 days of 
infusion, trunk blood waS collected after decapitation of the rats between 
1200-1500 h. The livers, hypothalami, and pituitaries were collected 
according to the methods described above. From a~imals infused for 1 
day with 11.-1 or saline, the median eminence was also collected. This 
was performed by grasping the hypophysial stalk \l'ith forceps and 
lifting it from the brain. The protruding tissue fragment, comprising the 
hypophysial stalk and the median eminence, but referred to as median 
eminence, was cut from the brain and placed in 2 ml methanol to 
determine the TRH content. 

Deiodinase assay 

Livers were homogenized, and type 1 deiodinase acthity was deter­
mined in the homogenate by analysis of the production of radioiodide 
from outer ring-Iabded rT) (25). Type r deiodinase activity was measured 
in incubations of 1 ~M 1125IJrT) for 20 min at 37 C with 50 flg/ml 
homogenate protein i~ 0.1 M phosphate buffer (pH 7.2), 2 mM EDTA, 
and 5 mM dithiothreilol by the method described by Fekkes el al. (26). 

Hormone a.ssays 

Levels of TSH were measured by RIA using materials and protocols 
supplied by the NIDDK, with TSH RP~2 as standard. The RIA for TRH 
was performed \\ith antiserum 4319 (final dilutio~, 1:10,000), as re­
ported previously (27). Plasma T3 and Tt were estimated by specific 
RIAs in unextracted plasma, as described by Hennus el 171. (18). The 
plasma Fr. fraction was detennined by means of the SPAC Fr. assay 
kit (Byk-Sangtec Diagnostica, Die!zenbach, Germany) (2S), and the 
plasma FT. concentration was calculated as the product of the total T. 
level and the FT. fraction. Plasma corticosterone was measured by RIA, 
as described by Sweep eI al. (24). Intra- and interassay coefficients of 
variation for the assays varied between 3-17%. 

PrO-TRH mRNA determination 

Pro-TRH mRNA was measured by a ribonuclease (RNase) protection 
.lSsay, using a labeled antisense complementary RNA (eRNA) probe. 
Total hypothalamic RNA was isolated by add guanidinium thiocyanate­
phenol-chloroform extraction (29). From eaeh sample, 10 Pg hypothal­
amic RNA were used in a RNase protection assay, as described previ­
ously by Sambrook el 171. (30) with a few modifications. Hybridization 
was carried out overnight at 55 C; for the RNase -digestion, 2 V/ml 
RNase-TI and 0.2 pg/ml RNase-A (both from Boehringer, Mannheim, 
Germany) were used. The 1322-bas€pair (bp) EcoRIjPslI rat pro-TRH 
complementary DNA (eDNA) insert in a pSP65 vector (31) was kindly 
pro\ided by Dr. S. L, lee (New England Medical Center Hospitals, 
Boston, MA). The (RNA probe was synthesized using fragment 9SI-
1322 of rat pro-TRH cDNA as a template. This 351-bp RsaI fragment 
was isolated after agarose gel electrophoresis. Variations in procedure 
were accounted for by normalizing to the glyccraldehyde-3-phosphate 
dehydrogenase gene (GAPDH) expression in each sample, using a cRNA 
probe transcribed from a 41O-bp PSII/SauAl fragment of the eDNA 
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inserted in pBlueScript KS(-) (Stratagene, La Jolla, CAl. Under the diges­
tion conditions used, the GAPDH signal consisted of 2 bands of about 
310 and 320 nucleotides (Fig. 1). Autoradlographs were scanned densi­
tometrically with a LKB 2222-020 UltraScan XL Laser Densitometer 
(pharmada lKB Biotechnology 1987, Bromma, Sweden). The peak areas, 
corresponding to the bands, were integrated by the computer. Results 
were calculated as the ratio between the integrated optical densities of 
pro-TRH and GAPDH mRNA, and expressed as a percentage of the 
mean of the respective control values. 

Pituitary TSH{3 mRNA measurement 

Tolal pituitary RNA was isolated by add guanidinium thiocyanate­
phenol-chloroform extraction (29), and 20 .ug RNA were subjected to 
denaturing agarose gel electrophoresis and blotted onto Hybond N+ 
filter (Amersham International PlC, Aylesbury, United Kingdom). TSH.B 
cDNA (420 bp), inserted in the PsJl site of a pBR322 vector, was kindly 
provided by Dr, W. W. Chin (Brigham and Women's Hospital, Bos­
ton, MA) (32). Alter electroporation in DH5 cells, DNA was isolated and 
digested with PsJl. The DNA fragment was isolated after agarose gel 
electrophoresis. Northern blotting and random primed labeling of the 
TSH.B cDNA with [l2Pjdeoxy-ATP were performed according to the 
method of Sarnbrook et al. (30). Variations in loading were accounted 
for by normalizing to the p-actin mRNA content in each lane, which 
was measured by hybridization with a J1P_labeled rat actin eDNA probe 
(Fig. 1). Autoradiographs were quantified densitometrically \vith a model 
620 video densitometer using 20 Analyst II software (Bio-Rad, Rich­
mond, CAl. Results were calculated as the ratios between the integrated 
optical densities of TSHP mRNA and .8-actin mRNA, and expressed as 
a percentage of the mean of the respective control values. 

Statistical analysis 

Results are presented as the mean ± SHf. A nonparametric test 
(Wilcoxon matched pairs, signed ranks test) and analysis of variance for 
a repeated measures design were used to analyze the data. Provided 
that Significant overall effects were obtained by analysis of variance, 
further comparisons between groups were made using Duncan's multi­
ple range test. Differences were considered significant at P < 0.05. 

Results 

Infusion of IL-l (4 pgjday) induced signs of physical 
discomfort in the animals, including piloerection and de-

TSHB 

aclln • 

TSHB· 

C IL 

ProTRH· 

GAPDH [ 

ProTRH 

C IL 
FIG.!. Effect of continuous infusion of saline (C) or 4 .ug IL-l/day 
(lL) for 1 week on pituitary TSHj3 mRNA (left panel) and hypothalamic 
pro-TRH mRNA (right pand). Northern blot hybridization analysis 
was used to estimate TSHP mRNA, whereas pro-TRH mRNA was 
determined with a RNase protection assay. Variation in loading was 
accounted for by normalizing to the .8-actin mRNA and GAPDH 
mRNA contents, respectively. 
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creased physical activity, as observed on the first day after 
implantation of the pumps. This visually observable uneasi­
ness gradually diminished and disappeared on day 2. Infu­
sion of IL-6 at a dose of 15 /-Ig/day did not induce signs of 
discomfort. Treatment of rats with saline did not perceptibly 
distress the animals. 

Effects of lL-J alld IL-6 on rectat temperature and body weight 

Saline-treated rats maintained a virtually constant mean 
daily rectal temperature throughout the experimental period. 
On the first day of infusion, IL-l induced a significant 
increase in rectal temperature, which returned to normal 
levels between days 2-4 (Fig. 2), whereas IL-6-treated rats 
had no significant increase in rectal temperature compared 
to saline-treated rats. 

There was a small decrease in body weight on the first 
day of saline infusion (Fig. 2). A similar weight loss was 
found in animals treated with lL-6 (IS j1g/day), whereas rats 
infused with IL-l (4 j1g/day) showed a more distinct weight 
loss. The body weights of IL-l-treated rats reached minimal 
levels on the second day of infusion. Thereafter, the rate of 
body weight gain was slightly higher in IL-l-treated rats 
than in saline-treated control rats. 

Effects of IL-J alld IL-B on food and fluid intake 

The effects of chronic administration of IL-l and IL-6 on 
food and fluid consumption were monitored for 9 days, and 
results are shown in Fig. 3. There was. a transient slight 
reduction in food consumption in saline-treated rats after 
implantation of the osmotic pumps. Compared to saline­
treated animals, rats treated with IL-6 (15 j1g/day) showed 
no significant change in food consumption, whereas the 
infusion of IL-l (4 ,ug/day) caused a significant decrease in 
food intake compared to that in saline-treated rats during 
the first 5 days after starting the infusion, Chronic infusion 
of physiological saline, IL- Lor IL-6 into rats caused a signif­
icant decrease in total daily fluid intake on the first day of 
the infusion, During the following day, the fluid intake had 
returned to preinfusion values in all groups. 

Effects of IL-J on plasma TuFT uTa, TSH, and 
corticosterone levels 

Figures 4 and 5 show the effects of continuous infusion 
for 1 week with 4 /-Ig IL-l/day or saline on plasma T4, FT4, 

T3, and TSH. Infusion of 4 /-Ig IL-I/day induced a highly 
significant decrease in plasma T4, which reached minimum 
levels on day 2 and remained significantly suppressed 
throughout the experimental period.IL-l induced a marked 
transient increase in the plasma FT4 fraction (not shown), 
and the decline in plasma FT 4 in IL-l rats was less pro­
nounced and of shorter duration than that in total T4• By the 
end of the infusion period, when plasma T4 levels were still 
decreased, plasma FT4 had returned to control levels. Parallel 
with the decrease in T4 concentrations, plasma T3 was signif­
icantly lower in IL-l-infused animals than in saline-treated 
rats. The nadir was reached on day 2 of the infusion, and 
plasma T3 remained significantly lower in lL-l-treated ani-
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FIG. 2. Effects of continuous infusion of 4 j.lg IL·l/day {OJ, 15 I'g IL-6/day (0), or saline (II) for 1 week on body weight and rectal temperature. 
Data are presented as the meall ± SEM of7-l7 rats.', P < 0.05 compared to saline-infused rats. 

mals than in saline-treated animals until the end of the 
experiment. Chronic administration of IL-l induced a dra­
matic decline in plasma TSH. The nadir was reached on the 
first day of the infusion, after which plasma TSH levels in 
IL-I-treated rats started to increase slowly. Short term infu­
sion with IL-! had effects on thyroid function similar to those 
of long term infusion (Table 1). Levels of plasma corticoster­
one increased dramatically after 1 day of IL-l infusion and 
were significantly elevated compared to levels in control rats 
for at least 4 days (Fig. 6). 

Effects of lL-J on pro-TRH mRNA, TSH{J mRNA, and 
type I deiodinase 

In Table 2, the effects of treatment with IL-l on hypothal­
amic pro-TRH mRNA, pituitary TSH{1 mRNA, and liver type 
1 deiodinase are given, During the first 2 days of infusion, 
the levels of hypothalamiC pro-TRH mRNA in IL-I-treated 
rats were not significantly different from those in saline­
trealed rats, In addition, the TRH content in the median 
eminence did not change after 1 day of IL-l infusion (Table 
2). However, on day 7 of infusion, the level of hypothalamic 
pro-TRH mRNA was 73% lower in IL-! rats than in controls. 
In the pituitary gland, the levels of TSH.B mRNA showed a 
significant decline after 2 days of IL-l infusion, On days 2 

and 7 of infusion, pituitary TSH{1 mRNA levels were reduced 
to 38% of the levels in control rats. Liver type I deiodinase 
activity shm-<:ed a significant decline due to IL-l infusion on 
days 1, 2, and 7, 

Effects of lL-6 OIl plasma 1'(, ].'1'(, T3, TSH, and corticosterone 

Figures 4 and 5 show the effects of continuous infusion of 
rats for 1 week with IL-6 (15 ,ug/day) or saline on plasma T4, 

FT" TJ , and TSH. Plasma T4 was significantly lower in IL-6-
infused animals than in control rats on days 2 and 3 of 
infusion, IL-6 produced a marked transient increase in the 
plasma Ff4 fraction (not shown), but plasma Fft in lL-6 rats 
did not change during the experiment. A significant decrease 
in plasma T3 was found in IL-6-treated rats compared to 
their starting levels, but no significant effects were observed 
compared to saline-infused control values, Infusion of IL-6 
induced a significant decline in plasma TSH. The nadir was 
reached on day 2 of the infusion, but plasma TSH recovered 
qUickly, and within 4 days, the levels were again in the range 
found in control animals, Compared to the e£fects of lL-l 
infusion on thyroid and pituitary function, the effects of IL-
6 administration \vere less pronounced, This was also seen 
in the effects of these ILs on plasma corticosterone, because 
IL-6 administration did not affect the levels of plasma corti­
costerone, whereas IL-l did (Fig. 6), 
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FIG. 3. Effects of continuous infusion of 4 Jig IL-l/day (0), 15 Jig fL-6/day (0), or saline (B) for 1 week on food and water intake. Data are 
presented as the mean ± SEM of 7-17 rats. t, P < 0.05 compared to saline-infused rats. 

Effects o/IL-6 onpro-TRH mRNA and TSH mRNA 

In Table 3, the effects of continuous treatment with IL-6 
on hypothalamic pro-TRH mRNA and pituitary TSHfj 
mRNA are shown. After 7 days of IL-6 administration, no 
effects were seen on the levels of hypothalamic pro-TRH 
mRNA. In the pituitary gland, the levels of TSHfj mRNA 
showed an insignificant decline after 7 days of infusion of 
IL-6. 

Discussion 

The suppressive effects of short term and continuous ill 
vivo IL-! administration on pituitary-thyroid function in rats 
have been reported in two previous studies (4, 18), in which 
it was shown that the reduction of food intake cannot explain 
the changes in thyroid homlOne and TSH levels during IL-l 
treatment (18). As the mechanisms of the effects of cytokine 
on thyroid function are not fully understood, we studied in 
particular the centrally mediated effects of IL-Ia in more 
detail. Furthermore, as a number of IL-! effects may be 
mediated by IL-6, we compared the effects of IL-l and IL-6 
infusions on plasma T4, FT4, Tl , TSH, and corticosterone; 
hypophysial TSHfj mRNA; median eminence content of 
TRH; and hypothalamic pro-TRH mRNA. 
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Infusion of both IL-l and IL-6 produced a marked tran­
sient decrease in plasma T4, which was more pronounced 
".,-jth IL-I than with IL-6. Plasma FT4 was also decreased by 
IL-!, but not by IL-6. These c)'tokines produced similar 
increases in the plasma Ff4 fraction (not shown), suggesting 
that IL-! and IL-6 infusions both decreased plasma T4 bind­
ing. Previous findings have shown that the decrease in 
plasma T4 binding during IL-! administration is due at least 
in part to a decrease in the plasma level of transthyretin, 
which is the principal plasma T4-binding protein in rats (18). 
A decrease in transthyretin production is one of the hallmarks 
of the acule phase response of the liver 10 inflammation, 
which is largely mediated by IL-6 (33). As IL-t is known to 
stimulate IL-6 production (33), it is likely that the effect of 
IL-l on plasma T4 binding is mediated by IL-6, However, 
besides the fall in plasma transthyretin a decrease in plasma 
albumin (33) and an increase in plasma FFA (4) may contrib­
ute to the lowered plasma T4 binding during IL-t and IL-6 
administration. 

The decrease in plasma FT4 during IL-I administration 
may be the result of a decrease in thyroidal T4 production 
and/or an increase in plasma T4 clearance. Dubuis et aI, (4) 
demonstrated that plasma T4 clearance is not affected by IL­
l administration despite a large increase in the plasma Ff4 
fraction, suggesting that the metabolism of T4 in the tissues 
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FIG. 4. Effects of continuous infusion of 4 I'g IL.ljday (0), 15 j.lg IL·6jday (0), or saline (a) for 1 week on plasma TSH and T3 levels. Blood 
samples were taken from an indwelling jugular venous cannula between 10-12 h. Data are presented as the mean ± SEM of 7-17 rats, ., P < O.Ofi 
compared to saline-infused rats. 

is decreased. This could be due to a decrease in tissue 
availability of plasma FT4 or a decrease in the activity of T4 
metabolic pathways. Evidence has been presented that the 
fractional transfer rate constant for T4 transport (rom plasma 
to liver is decreased in humans during severe illness and 
fasting (34, 35). Although changes in hepatic type I deio­
dinase activity have not been detected previously after both 
short and long ternl administration of IL-l to rats (4, 18), 
Significantly decreased deiodinase activities were found in 
the present study after 1, 2, and 7 days of IL-l infusion. The 
reason for the differences in the effects of IL-l on liver type 
I deiodinase between the previous (18) and the present 
studies could be due to the higher dose of IL-l infused in 
the present study (4 us. 2 /lg/day). It should be stressed, 
however, that the decreases we observed were relatively 
small (-25%). It is not known to what extent these decreases 
were caused directly by an effect of IL-I or IL-6 on the liver 
or indirectly through the IL-I-induced reduced food intake 
or hypothyroid state, which are both associated with a de­
crease in hepatic deiodinase activity (36). Surprisingly, infu­
sion of mice with IL-l for 3 days has been found to increase 
hepatic type I deiodinase activity, in contrast to the decrease 
found in animals with a similar reduction in food intake (7). 

The reduced plasma T( and FT( levels induced by IL-! in 

combination with a presumably normal plasma T4 clearancE 
rate, as found by others (4), suggest that IL-l inhibits thy­
roidal T( secretion. The decrease in plasma TJ during IL-! 
administration may be due to 1) diminished T3 secretion, 2) 
reduced peripheral T3 production through a decrease in type 
I deiodinase activity and/or T4 substrate availability, and/or 
3) decreased plasma TJ binding. An increased plasma FTJ 
fraction was observed by Dubuis et al. (4) after IL-l admin­
istration, although the effect was smaller than the increase 
in the plasma FT4 fraction. IL-l can inhibit thyroidal T4 and 
T3 secretion by a well documented direct effect on the 
thyrocyte, whereas IL-6 has little or no direct effect on 
thyroid activity (8, 37-40). However, the effects of IL-l on 
thyroid function also appear to be mediated at least in part 
by the decrease in serum TSH. 

In agreement with previous reports, IL-l infusion resulted 
in a dramatic and acute decrease in serum TSH (4, 18), which 
was more rapid in onset and longer in duration than the 
decrease induced by IL-6. The latter may explain in part 
why, in contrast with lL-l, the decrease in serum TSH in IL-
6-treated rats is not associated with a decrease in serum FTt . 

Although the effects of cytokine administration on the clear­
ance of plasma TSH have not been detemlined, the decreased 
serum TSH level probably reflects an acute decrease in 
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TABLE 1. The effects of continuous infusion of IL-l (4 pg/day) or 
saline for 1 or 2 days were measured on plasma TSH, T J , and T. 
levels in male rats 

Parameter Treatment Day 1 Day 2 

'I'SH (ng/ml) Saline 0.38 ± 0.08 0.81 ± 0.09 
IL-l 0.11 ± 0.02' 0.06 ± 0.03a 

T3 (nmol/liter) Saline 0.70 ± 0.06 0.61 ± 0.03 
IL-l 0.25 ± 0.02a 0.20 ± 0.02' 

'1'. (nmol/liter) Saline 40.7 ± 3.6 33.7 ± 1.4 
IL-I 12.3 ± 1.3' 4.5 ± 0.8' 

Data are presented as tha mean ± SEM of six or seven rats. After 1 
or 2 days of infusion, trunk blood was coUected after decapitation. 

• P < 0.05 compared to saline-infused mts. 

hypophyseal TSH secretion. This may be due to the direct 
effects of IL-I and IL-6 on the thyrotroph or to alterations 
in hypothalamic or peripheral factors involved with TSH 
regulation. Concerning the latter, plasma FT4 may be tran­
siently increased acutely after commencement of cytokine 
adntinistration, resulting in long-lived feedback inhibition of 
TSH secretion (4). It is remarkable, however, that hypo­
physeal TSH,6 mRNA was nol decreased after 1 day of IL-l 
administration at the time serum TSH was at its nadir. 
Although this lack of an acute effect on hypophyseal TSH,6 
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mRNA does not exclude a decrease in TSH synthesis, these 
results suggest that the IL-I-induced decrease in serum TSH 
after 1 day of IL-I infusion is not secondary to a decreased 
TSH biosynthesis. 

Inflammation in general and administration of cytokines 
such as IL-l in particular have profound effects on multiple 
hypophyseal honnones, e.g. ACTH secretion is acutely in­
creased (12-16, 24), whereas the secretions of TSH (4, 18), 
LH (17), and GH (41) are decreased. The effects of IL-l on 
ACTH and LH secretion appear to be mediated largely by 
an increase in the hypothalamiC production and secretion of 
CRF (42-44) and a decrease in the production and secretion 
of GnRH (45, 46), respectively. Evidence has also been 
presented that inhibition of GH secretion by IL-I is due to 
an increased supply of hypothalamic somatostatin (47, 48). 
A suprahypophysial action of IL-I on TSH secretion is sup­
ported by observations that intracerebroventricular admin­
istration of minute amounts of IL-I produces a significant 
decline in plasma TSH in rats (49). The observation that not 
only basal serum TSH levels, but also their response to TRH 
stimulation are decreased during IL-l infusion (18) suggests 
that a possible supra hypophysial effect of IL-I on TSH 
secretion may be mediated by increased hypothalamic release 
of somatostatin, rather than decreased release of TRH. This 
is in agreement with the present findings that serum TSH 
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TABLE 2. Effects of IL·l (4 Jig/day) infusion for 1, 2, or 7 days on 
the levels of hypothalamic pro-TRH mRNA, median eminence (ME) 
content ofTRH, hypophysial 'l'SH,B mRNA, and hepatic type I 
deiodinase in male rats 

Parameter Treatment Day 1 Day 2 Day7 

Pro-TRH mRNA Saline 100 ± 33 100 ± 25 100 ± 27 
IL·l 135 ± 17 125 ± 56 27 ± 7" 

TRH in ME (fig) Saline 1.3 ± 0.25 NO NO 
IL-l 1.4 ± 0,28 NO NO 

TSHpmRNA Saline 100 ± 33 100 ± 14 100 ± 10 
IL-l 76 ± 30 38±8" 38 ± 2° 

Deiorunase (pmol/ Saline 306 ± 25 208 ± 20 195 ± 13 
min,mg) IL+l 243 ± go 159 ± So 123 ± 13' 

Results are presented as the mean ± SEM ratios of the optical 
densities ofpro-TRH mRNA over GAPDH mRNA or ofTSHP mRNA 
over p-actin mRNA, and expressed as a percentage of the mean of the 
respective control values. Groups contained five to nine rats. NO, Not 
determined. 

a p < 0.05 compared to saline-infused rats. 

TABLE 3. Effects of IL-6 (15 J.<g/day) infusion fOl 7 days on the 
levels of hypothalamic pro-TRH mRNA and hypophysial TSHp 
mRNA in male rats 

ParamHer Treatment Day 7 

PlO-TRH mRNA Saline 100 ± 9 
IL-6 103 ± 22 

TSH.8mRNA Saline 100 ± 31 
IL-6 64 ± 7 

Results are presented as the mean ± SEM ratios of the optical 
densitiesofpro-TRH mRNA over GAPDH mRNA or of TSHp mRNA 
over .8-actin mRNA, and expressed as a percentage of the mean of the 
respecti\-e control values. Groups contained six to eight rats. 

and hypophyseal TSH{J mRNA are decreased before an effect 
of IL-1 is observed on hypothalamic pro-TRH mRNA. How­
ever, the lack of short term effects of IL-I infusion on 
hypothalamic pro-TRH mRNA levels and median eminence 
TRH content does not exclude the possibility that IL-I acutely 

inhibits TRH release into hypophyseal portal blood. 
Direct effects of cytokines on anterior pituitary cells in 

culture have been reported, although this includes, paradox­
ically, stimulation of the secretion of TSH, LH, and GH (14), 
In this respect it is worthwhile to mention that both IL-t and 
IL-6 are produced in the anterior pituitary and may, thus, 
act as paracrine factors in the regulation of hypophysial 
homlOnes (50, 51), In our study, IL+6 did not appear to act 
on the hypothalamus, as it failed to induce fever, nor did it 
stimulate the hypothalamic-hypophyseal-adrenal axis. It 
seems likely, therefore, that the effect of IL+6 on TSH secre­
tion does not involve an action at the hypothalamic leveL 
but, rather, a direct effect on the thyrotroph. As IL-! induces 
the production of IL-6 (33), the effect of IL+ 1 infusion on 
TSH secretion may be mediated in part by this action of IL+ 
6 on the pituitary, 

As pro-TRH gene expression is only suppressed after 7 
days of IL-l infusion, it is likely that this effe.ct is mediated 
by factors other than IL-l itself. As discussed above, hy­
pothalamic CRF gene expression is acutely stimulated by IL­
l. As CRF neurons lie adjacent to TRH neurons in the 
paraventricular nucleus (PVN) (52, 53), the effects of IL-l 
on TRH neurons may be mediated by local factors produced 
by CRF neurons, Kakucska el al. (54) showed by itl situ 
hybridization a reduction of pro-TRH mRNA in the PVN 24 
h after a constant intracerebroventricular infusion of IL-I, at 
the same time when pro-CRF mRNA in the PVN was in­
creased. This inverse relationship between the levels of pro­
TRH mRNA and CRF mRNA in PVN neurons has also been 
observed during hypothyroidism (55), Furthermore, high 
concentrations of glucocorticoids due to activation of the 
pituitary-adrenal axis may influence hypothalamic TRH pro­
duction and secretion, In our study we demonstrated an 
increase in plasma corticosterone during at least 4 days of 
IL-t infusion, whereas IL-6 infusion had no effect. A sup­
pressive effect of plasma corticosterone on TRH gene expres­
sion would explain the different effects of IL-t and IL-6 on 
pro-TRH mRNA. This hypothesis is support.ed by 1) the 
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reduction in pro-TRH mRNA in the PVN after chronic high 
dose glucocorticoid treatment (56), 2) the presence of a 
consensus glucocorticoid response element in the TRH gene 
promoter (57), and 3) the coexistence of glucocorticoid recep­
tors in TRH neurons in the PVN (58). 

In conclusion, our findings suggest that in addition to the 
direct inhibition of thyroid hormone production by IL-I, the 
multiple effects of this cytokine on the hypothalamus-pitui­
tary-thyroid axis include 1) a decrease in plasma T4 binding; 
2) an acute decrease in TSH secretion, followed by a decrease 
in TSH synthesis; and 3) only after prolonged IL-l adminis­
tration, a decrease in hypothalamic pro-TRH gene expres­
sion. The transient decrease in plasma T4 binding and the 
acute decrease in TSH secretion are also observed during IL-
6 infusion. The acute decrease in TSH secretion occurs before 
(IL-I) or even without (IL-6) a decrease in hypothalamic pro­
TRH mRNA and, therefore, does not appear to be the result 
of decreased hypothalamic TRH synthesis, although a de­
crease in hypothalamic TRH release is not excluded. The 
decreased TSH secretion may also involve an increased sup­
ply of hypothalamic somatostatin as well as an effect via IL-
6 directly on the thyrotroph. The decrease in pro-TRH gene 
expression by prolonged infusion of IL-l may be mediated 
by the high plasma corticosterone levels. 
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The role of TRH in the regulation of TSH secretion 

Abstract 

Streptozotocin-induced diabetes mellitus causes a decrease in the release of 

thyrotropin (TSH) and thyroid function. We hypothesized that the reduced thyroid 

function in diabetic rats could be due to an altered hypothalamic synthesis of TSH­

releasing hormone (TRH). Therefore, proTRH mRNA was measured in male rats of 

two Wistar substrains, e.g. R-Amsterdam (R-A) and RxU rats, 3 successive weeks 

after iv injection with vehicle or streptozotocin (STZ, 65 mgikg body weight). 

Furthermore, we determined TRH content in the median eminence, pituitary TSHB 

subunit mRNA, plasma TSH, corticosterone and thyroid hormones, and liver 

enzymes involved in thyroid hormone metabolism. Hypothalamic proTRH mRNA 

showed a time-dependent decrease in diabetic R-A rats, but not in RxU rats, 

although the values were not significantly different from those in controls. In both rat 

strains, the TRH content in the median eminence increased significantly after STZ 

injection. In diabetic R-A rats pituitary TSHB mRNA decreased in time, whereas it 

was unchanged in RxU rats 3 weeks after diabetes-induction. Plasma TSH showed 

a strong decline in both rat strains at all times after STZ injection. In contrast to 

RxU rats, plasma corticosterone increased significantly at 1 and 2 weeks after STZ 

injection in R-A rats. In diabetic R-A rats plasma total T 4 decreased while the free 

T 4 fraction increased, resulting in normal plasma free T 4 levels. Plasma total T3 

and free T3 fraction showed a decline in both rat substrains, resulting in strongly 

decreased free T3 levels. Hepatic type I deiodinase activity decreased and T 4 UDP­

glucuronyltransferase activity increased in R-A rats. The parallel decrease in 

hypothalamic proTRH mRNA and hypophyseal TSHB mRNA in association with the 

increase in plasma corticosterone in R-A rats, but not in RxU rats, suggests strain­

dependent inhibition of proTRH and TSHB gene expression in STZ-induced 

diabetes mellitus, mediated by the increased corticosterone. Additional mechanisms 

must exist for the diabetes-induced suppression of TSH secretion to explain the 

decrease in plasma TSH in diabetic RxU rats. The opposite effects of STZ-induced 

diabetes on the free fractions of plasma T 4 and T3 are explained by an increase in 

thyroxine-binding globulin and a decrease in thyroxine-binding prealbumin. 

Decreased hepatic T 4 to T3 conversion and increased T 4 glucuronidation contribute 

to the generation of the low T3 syndrome in STZ -induced diabetic rats. 
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Chapter 2 

Introduction 

STZ-induced diabetes mellitus, which is frequently used as a model to generate the 

low T3 syndrome (1, 2), affects various siles of the hypothalamic-pituitary-thyroid 

axis. In STZ diabetic rats lower (3, 4) or unchanged (5, 6) hypothalamic TRH 

concentrations and decreased in vivo (4) and in vitro (7) TRH secretion have been 

reported. Plasma thyroid stimulating-hormone (TSH) in diabetic rats is decreased in 

diabetic rats and the TSH response to TRH has been reported to be normal (4) or 

diminished (8), while plasma TSH clearance is unaltered. Furthermore, plasma T4 

and T3 levels and plasma T 4 and T3 production rates as well as T 4 conversion to 

T3 in peripheral tissues and in the pituitary gland have been found to decrease in 

STZ-diabetic rats (4, 9-11). 

Using two locally bred Wistar substrains, e.g. R-Amsterdam (R-A) and RxU 

rats, we investigated if the STZ -induced suppression of thyroid function originates 

from a decrease in hypothalamic proTRH gene expression. Therefore, hypothalamic 

proTRH mRNA and pituitary TSHB subunit mRNA were measured in control and 

STZ-induced diabetic rats. Plasma corticosterone was determined to identify its 

possible role in mediating the down-regulation of the hypothalamus-pituitary-thyroid 

axis. In order to elucidate peripheral mechanisms involved in the generation of the 

low T3 syndrome, we also investigated the effects of diabetes on thyroid hormone­

binding proteins and on liver enzymes involved in thyroid hormone metabolism. 

Materials and methods 

Animals 

Male R-A and RxU rats were used in this study. They were housed under controlled 

conditions (20-22 C; lights on between 05.00 and 19.00 h) and allowed free access 

to water and food. For all experiments, approval was obtained from the Animal 

Welfare Committee (DEC) of the Erasmus University. 

Experimental design 

Under ether anesthesia, rats were injected into the external jugular vein with 65 

mg/kg body weight STZ (Sigma, St. Louis, MO, USA) in 0.2 ml citrate-buffered 

saline (pH 4.5) or with 0.2 ml vehicle. To avoid degradation, STZ was dissolved 

immediatly before injection. Body weights of the rats were determined before, and 
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at weekly intervals during the experiment. At 1, 2 or 3 weeks after administration of 

STZ or vehicle, groups of rats were decapitated between 10.00 and 13.00 h. Trunk 

blood was collected for measurement of blood glucose using the Haemo-Glukotest 

(Refiolux, Boehringer, Mannheim, Germany) and to determine plasma hormone 

levels. Livers were removed, cut into small pieces, frozen in liquid nitrogen, and 

kept at -80 C until estimation of enzyme activities. The skull was opened to isolate 

the pituitary gland, the median eminence, and the remainder of the hypothalamus 

as described previously (12). The anterior pituitary gland was frozen in liquid 

nitrogen and stored at -80 C until estimation of TSHB mRNA. The median eminence 

was extracted with 2 ml methanol for measurement of TRH. The remaining part of 

the hypothalamus was snap frozen in liquid nitrogen and kept at -80 C until RNA 

isolation. 

Measurement of proTRH mRNA and TSHf3 mRNA 

RNA was isolated from the hypothalamus and the anterior pituitary, and proTRH 

mRNA and TSHB mRNA were determined by Northem blotting, as described 

previously (13, 14). Results were calculated as the ratio of proTRH mRNA or TSHB 

mRNA over B-actin mRNA, and expressed as the percentage of the mean in 

control rats. 

Enzyme assays 

Liver microsomes were prepared and microsomal type I iodothyronine deiodinase 

(101) and UOP-glucuronyltransferase (UGT) activities were determined essentially 

as previously described (15). Conditions for the 101 assay were: 1 ~IM rT3 

(SUbstrate), 5 mM dithiothreitol (cofactor), 25 Ilgiml microsomal protein, and 30 min 

incubation at 37 C. UGT activities were assayed at 1 (T4, rT3) or 100 ~IM (bilirubin) 

substrate, 5 mM UOP-glucuronic acid (cofactor), 1 (T4, bilirubin) or 0.25 (rT3) 

mgiml microsomal protein, and 60 (T4, rT3) or 15 (bilirubin) min incubation at 37 C. 

Hormone determinations and agar electrophoresis 

Plasma TSH was measured by radioimmunoassay with materials and protocols 

supplied by the NIOOK, with rat-TSH-RP-2 as standard. Levels of T4 and T3 were 

estimated by specific radioimmunoassays in unextracted plasma. The plasma free 

T4 fraction (FFT4) was measured by equilibrium dialysis (16), and plasma free T4 

(FT4) was calculated as the product of total T4 and FFT4. A similar procedure was 
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followed to measure plasma free T3 (FT3). Corticosterone was estimated by 

radioimmunoassay (17). The radioimmunoassay for TRH was performed with 

antiserum #8880 (18,19). Detection limits were 0.2 flg/l RP-2 TSH, 2 nmol/l T4, 0.1 

nmol/l T3, 0.05 nmol/l rT3, 1 nmol/l corticosterone, and 3-5 fmol TRH/tube. Intra­

and interassay coefficients of variation for the assays varied between 5 and 15%. 

Agar gal electrophoresis was performed using 0.9% Agar Noble (Difco, Detroit, 

MI, USA) and 0.2 M glycine, 0.13 M sodium acetate buffer (pH 8.6) was performed 

as described by Docter et al (20) to determine the distribution of serum T 4 and T3 

over their binding proteins. 

Statistical analysis 

Results are presented as means±SEM. Analysis of variance was used for statistical 

evaluation of the data. Provided significant overall effects were obtained, 

comparisons between groups were made by Duncan's new multiple range tests. 

Differences were considered to be significant at po;O.05. 

Results 

Effects of diabetes on body weight and blood glucose 

Changes in body weight and blood glucose after intravenous administration of 

vehicle or STZ in both rat substrains are presented in Table 1. Compared to 

vehicle-injected controls, body weight in R-A rats was reduced at 2 and 3 weeks 

after STZ injection. In RxU rats body weight in the experimental animals was lower 

from the first week of STZ injection. In both Wistar substrains blood glucose was 

increased in STZ diabetic rats. 

Effect of diabetes on hypothalamic pro TRH and TRH content in the median 
eminence 

Hypothalamic proTRH mRNA in R-A rats decreased significantly between 1 and 3 

weeks after STZ injection (Fig. 1 A), although values were not significantly different 

from controls. RxU rats showed no significant change in the levels of hypothalamic 

pro TRH mRNA after STZ injection. In both rat strains, the TRH content in the 

median eminence increased significantly after STZ injection, compared to control 

rats (Fig. 1 B). 
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Strain 

Body weight (g) 

Glucose (mmol/l) 

Week 

2 

3 

2 

3 

R-A rats 

Control 

(n~10) 

296±10 

304±8 

316±7 

N.D. 

N.D. 

6.7±O.2 

RxU rats 

STZ Control 

(n~9) (n~15) 

259±15 328±11 

253±14' 347±8 

244±14' 358±8b 

22.3±O.9 N.D. 

27.6±1.9b N.D. 

28.6±2.0'b 5.1±O.3 

STZ 

(n~18) 

295±7' 

292±6' 

294±7' 

24.3±2.5 

28.2±O.7 

26.9±1.0' 

Table 1, Body weights and blood glucose in male control and STZ injected R-A and RxU rats 

(mean ± SEM). 

fl [>5.0,05 VS, control rats; b [>5.0.05 VS. week 1; N.D. not determined 

Effects of diabetes on anterior pituitary TSHfJ mRNA and plasma TSH 

Streptozotocin-induced diabetes mellitus caused a highly significant decrease in the 

levels of anterior pituitary TSHfl mRNA in R-A rats, which reached minimum levels 

3 weeks after STZ treatment (Fig. 1C). No change was seen in RxU rats, 3 weeks 

after STZ injection. Plasma TSH showed a significant decrease in both rat strains at 

all times after STZ injection, allhough the effects were more pronounced in R-A rats 

(Table 2). 

Effects of diabetes on plasma thyroid hormones, binding proteins and corticosterone 

At all times investigated, plasma T 4 was significantly lower in diabetic than in 

control R-A rats, while plasma FFT 4 was significantly increased after 1 and 3 

weeks. As a consequence, plasma FT4 remained unchanged (Table 2). As for RxU 

rats, only plasma T 4 was measured which was significantly decreased after STZ 

injection (Table 2). Plasma T3, FFT3 and thus FT3 were all decreased in diabetic 

R-A rats, which changes were significant after 2 and 3 weeks. In diabetic RxU rats 

plasma T3, FFT3 and FT3 were significantly decreased at all time points, except for 
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FFT3 which showed a significant increase 3 weeks after STZ injection. 

Plasma of control and diabetic R-A and RxU rats was incubated with ["sIlT 4 or 

['
25I)T3 and analysed by agar gel electrophoresis. In contrast to human serum (20), 

rat albumin and thyroxine-binding prealbumin were not separated by this method. 

Therefore, the first peak represents thyroxine-binding globulin (TBG) and the 

second peak contains both albumin and TBPA. In control rats radioactive T3 was 

bound to TBG and albumin-TBPA in a ratio of 1:5 which changed to 1:1 in diabetic 

rats, 3 weeks after STZ injection. A single peak of protein-bound labelled T4 was 

found in the albumin-TBPA region in control rats. In diabetic rats a small second 

radioactive peak was found in the TBG region. 

A 
Figure 1 Effect of STZ-Induced 

~ 
diabetes mellitus on 

hypothatamlc proTRH 

mRNA (A), TRH content In 

i 
the median emInence (8) 

and pituitary TSHI3 mRNA 

(C) 1, 2 or 3 weeks after 
CI~L STlI STU sIn 

injection in male R-A (solid 

bars) and RxU (hatched 
B 

bars) rats. mRNA data are 

I 
presented as the mean :t 

SEM ratio of the optical 
• densities of pro TRH mRNA , 

and TSHI3 mRNA over 13-

actin mRNA, expressed as 

CIAL SUI SIl2 STl3 a percentage of the mean 

01 the control values. 

'" 
C 

Groups contained 5-10 rats. 

'" /I ~O.05 VS. control rats; b 

" 
P5.0.05 VS. week 1; N,D. not 

determined 
" ., 
" 

" 
CTIlL SUI STZ~ STlJ 
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In contrast to RxU rats, plasma corticosterone increased significantly at 1 and 

2 weeks after STZ injection in R-A rats (Table 2). Although the mean in R-A rats 

was still elevated after 3 weeks, it was not significantly different from controls. 

Effects of diabetes on hepatic VGT and ID 1 activities 

Effects of STZ-induced diabetes on the activity of liver enzymes involved in thyroid 

hormone metabolism were measured in R-A rats and are presented in Fig. 2. The 

T4 , reversed T3 (rT3) and bilirubin UGT activities increased gradually after 

induction of diabetes mellitus, which changes were already significant I-week after 

STZ injection (Fig. 2A-C). 101 activity was significantly lower in diabetic rats than in 

vehicle-injected controls, reaching a minimum 2 weeks after STZ treatment (Fig. 

20). 

A " B 

I i 
! 

~ , ~ '" , , ~ 
I ! 

orAL STll STZ2 STU orAL S121 STl2 STn 

c 

t t 
~ , I i t ! 

CTAl STll STll STll 

Figure 2 Effect of STZ-induced diabetes mellitus on UGT activities for T4 (A), rT3 

(B), bilirubin (e), and 101 (0) activity in liver microsomes 1, 2 or 3 weeks 

after injection in male R-A rats. 
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R-A rats RxU rats 

Parameter Control STZ STZ STZ Control STZ STZ STZ 
1 week 2 weeks 3 weeks 1 week 2 weeks 3 weeks 

T4 S7.7±6.9 16.5±2.S" 19.6±4.8" 20.1±4.9" 80.7±1.S 49.3±7.6a 45.4±3.7" 40.1±3.2" 

(nmolll) (n=10) (n=10) (n=10) (n=8) (n=2S) (n=4) (n=5) (11=18) 

FFT4 0.03±0.001 0.093±O.02" 0.OSS±O.012 0.064±O.006a N.D. N.D. N.D. N.D. 

(%) (n=5) (n=5) (n=5) (n=::S) 

FT4 23.07±1.33 18.0S±1.S9 20.33±3.S 20.77±5.0 N.D. N.D. N.D. N.D. 

(pmOI/I) (n=S) (n=5) (n=5) (n=8) 

T3 1.06±0.14 0.77±0.14 0.67±0.08" 0.72:1:0.07" 1.22:1:0.02 0.71±O.07" 0.S3±O.OSa 0.64±0.04~ 

(nmolll) (n=10) (n=10) (n=10) (n=8) (n:25) (n=4) (n=5) (11=18) 

FFT3 0.60±0.OS 0.79:tQ.10 0.53±0.07· O.33±O.OS" 0.7HO.03 0.45±O.09a O.58±0.06 0.92:1:0.04"-

«'I .. ) (n=10) (n=10) (n=10) (n=10) (11=2S) (n=4) (n=S) (n=18) 

FT3 S.87±O.53 4.99±0.68 3.45±0.S8" 2.09±0.61" 8.62±O.34 3.20±0.67" 3.69±0.77" 6.37±0.64" 

(pmolll) (n=10) (n=10) (n",10) (n=8) (n=2S) (n=4) (n=5) (n=18) 

TSH 0.87±0.19 0.20±0.12" 0.2S±O.11" O.39±O.14" 1.33±0.12 O.63±O.26" 0.70±0.45" 0.53±O.11a 

(ng/ml) (n=10) (n=10) (n=10) (".7) (n:25) (n.4) (n=5) (n=18) 

corticosterone 7S.9±16.6 1SS.9±27.5" 193.2±45.1a 197.S±91.8 92.0±17.3 90.8±32.1 95.4±50.7 149.9±24.2 

(nmol/l) (n=10) (n=10) (n=10) (n=8) (n=20) (n=4) (n=5) (n=13) 

Table 2. Plasma T4, FT4, FFT4, T3, Fr3, FFT3, TSH and corticosterone in control and in 1, 2 or 3 week STZ-treated male R-A and RxU 

rats. Data are presented as the mean ± SEM per group. 

a ~O.05 vs. control rats; N,D. not determined 
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Discussion 

Uncontrolled diabetes as well as several other conditions causing severe non­

thyroidal illness are frequently associated with a suppression of TSH secretion and 

thyroid function. In this study we investigated the role of central changes in the 

hypothalamus-pituitary-thyroid axis and of changes in thyroid hormone metabolism 

in the diabetes-induced generation of the low T3 syndrome in 2 Wi star substrains, 

e.g. R-A and RxU rats. 

Hypothalamic proTRH mRNA showed a decrease between 1 and 3 weeks 

after STZ injection in R-A rats, but not in RxU rats, suggesting a time- and strain­

dependent decrease in TRH synthesis. did not change after STZ injection 

compared to control rats, but there was a significant reduction of proTRH mRNA in 

time in these diabetic rats (Fig. 1A). This decrease in proTRH synthesis is in line 

with the earlier reported reduction of in vivo and in vitro hypothalamic TRH release 

(4, 7). The lack of change in hypothalamic proTRH mRNA in RxU diabetic rats 

suggests a strain-dependent effect of STZ-induced diabetes on the hypothalamus. 

However, in contrast to total hypothalamic TRH content (3-6), median eminence 

TRH content is increased in diabetic animals of both substrains, which is compatible 

with a decreased TRH release as previously reported (4,7). Although this reduction 

in TRH release seems to occur independent of changes in proTRH gene 

expression, it may contribute to the profound decline in plasma TSH in STZ treated 

diabetic rats. 

Together with the decrease in proTRH mRNA a gradual decrease in pituitary 

TSHB mRNA was observed in R-A rats, suggesting a causal relationship. However, 

because of the lack of effect of diabetes on both parameters in RxU rats, additional 

factors must be involved in the downregulation of plasma TSH that also occur in 

diabetic RxU rats. Previous studies have also reported low plasma TSH levels in 

diabetic rats together with a normal (4) or diminished (8) TSH response to TRH and 

an unaltered TSH clearance. Bestetti et al. (5) explained the low secretory activity 

of the pituitary in diabetic rats by demonstrating a morphological shift from type I 

thyrotrophs in control pituitaries, which readily release TSH granules, to type " 

thyrotrophs in diabetic pitUitaries, which mainly accumulate TSH granules. Such 

morphological changes may contribute to the decrease in plasma TSH levels in 

diabetic rats both substrains. 

In this study, plasma corticosterone was measured to determine its role in the 
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suppression of thyroid function during STZ-induced diabetes mellitus. Whereas in 

diabetic R-A rats a significant increase was demonstrated 1 and 2 weeks after STZ 

injection, levels of plasma corticosterone in RxU diabetic rats were hardly affected. 

This suggests that the activation of the hypothalamus-pituitary-adrenal axis as a 

response to stress or systemic illness may be strain-dependent. The association of 

increased plasma corticosterone with decreased hypothalamic proTRH mRNA and 

pituitary TSHB mRNA in R-A diabetic rats and the lack of effect on all these 

parameters in diabetic RxU rats suggest that plasma corticosterone plays a role in 

the regulation of hypothalamic proTRH and hypophyseal TSHB gene expression. 

Previous studies have alsosuggested a negative relationship between pro TRH 

mRNA and corticosterone in rats after short-term starvation (13), after continuous 

administration of interleukin-1 (12), or during lactation'. The decrease in proTRH 

mRNA in starved rats is prevented if serum corticosterone is kept constant by 

adrenalectomy and corticosterone substitution (13). The present findings of strain­

dependent differences in proTRH mRNA and plasma corticosterone further 

substantiate this negative correlation between TRH gene expression and 

corticosterone. 

Hypothalamic somatostatin is known to have an inhibitory effect on pituitary 

TSH release (21, 22). As previously reported, induced diabetes mellitus in rats 

increases hypothalamic and peripheral somatostatin concentrations (23-26) which 

may contribute to the decline in TSH release. 

Many studies have demonstrated reductions in plasma T4 and T3 in STZ­

induced diabetes mellitus (3, 4, 6, 27, 28), while changes in free thyroid hormone 

levels have received less attention. In agreement with a previous study from our 

laboratory (7), we observed that the decrease in plasma total T4 in diabetic rats is 

accompanied by an increase in FFT 4, resulting in normal plasma FT 4 levels. 

Plasma total T3 and FFT3 showed a parallel decline in diabetic animals, resulting in 

strongly decreased FT3. These results suggest an selective effect of STZ -induced 

diabetes mellitus on T4 and T3 binding to plasma proteins. In this study the 

decrease of plasma FFT3 was correlated with an increased TBG, a minor thyroid 

hormone-binding protein in normal adult rats (29, 30). The increase in plasma FFT4 

may be caused in part by a decrease in plasma TBPA, the major binding protein in 

normal adult rats, which has also been shown to decrease during fasting (31). 

In addition, we studied the principal metabolic pathways for thyroid hormone 

by measuring hepatic UGT and ID1 activities in R-A rats. Two UGT isoenzymes 
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catalyzing the glucuronidation of T4 and rT3 have been identified (15). In addition to 

these iodothyronines, type I UGT glucuronidates bilirubin, while type II UGT 

glucuronidates 'bulky' phenols. Tunon et al. (32) have previously reported an 

increased bilirubin UGT activity in STZ-diabetic rats. Our findings that not only 

bilirubin but also T 4 and rT3 UGT activities are increased in diabetic rats point to 

the induction of the type I UGT isoenzyme. In agreement with others (33), we also 

found that hepatic 101 activity is strongly decreased STZ-diabetic rats. Since this 

enzyme is very important for the peripheral T 4 to T3 conversion, the decrease in its 

activity may contribute to the low plasma T3, characteristic for patients with non­

thyroidal illness (34). A reduced activity of this enzyme may contribute to the low 

plasma T3, characteristic for patients with non-thyroidal illness (34). The above­

mentioned increase in hepatic T 4 UGT activity suggests that the decreased 

conversion to T3 in diabetic rats is accompanied by an increased routing of T4 

through the glucuronidation pathway. 

In conclusion, both hypothalamic proTRH mRNA and hypophyseal TSHB 

mRNA gradually decrease and plasma corticosterone increases in diabetic R-A rats, 

but none of these parameters changes in RxU diabetic rats. This suggests strain­

dependent inhibition of proTRH and TSHB gene expression in diabetes mellitus, 

mediated by the increased corticosterone. However, additional mechanisms must 

exist for the diabetes-induced suppression of plasma TSH that occurs in both 

substrains. The opposite effects of STZ-induced diabetes on plasma FFT4 and 

FFT3 are explained by an increase in TBG and a decrease in TBPA. Finally, the 

decreased hepatic T 4 to T3 conversion and increased T 4 glucuronidation may be 

important factors contributing to the generation of the low T3 syndrome in STZ­

induced diabetic rats. 
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The role of TAH in the regulation of PAL secretion 

Abstract 

This study describes the effects of litter size and acute suckling on hypothalamic 

synthesis and release of thyrotrophin (TSH)-releasing hormone (TRH) as indirectly 

estimated by determination of hypothalamic proTRH mRNA and median eminence 

TRH content. Litter size effects (5 or 10 pups) were studied throughout lactation, 

while suckling-induced acute changes were analyzed on day 13 of lactation in dams 

with 10 pups. In view of the enhanced adrenal activity during lactation and the 

recent evidence that corticosteroids exert negative effects on hypothalamic TRH 

release, we also examined the effects of the suckling-induced enhanced plasma 

corticosterone in dams with 10 pups by removal of the adrenals on day 2 followed 

by treatment with corticosterone in the drinking water (0.2 mg/ml) to maintain basal 

plasma corticosterone levels. 

In addition to a strongly increased plasma prolactin (PRL) level, adrenal weight 

and plasma corticosterone increased, while plasma levels of TSH, T" T, and free T, 

(FT,) decreased during lactation. Utter size correlated positively with plasma PRL, 

adrenal weight and plasma corticosterone. No effect of litter size was observed on 

plasma T" but rats with 10 pups had lower plasma TSH, T, and FT, than rats with 

a 5-pup litter. Compared to dioestrous rats, lactating rats showed an increased 

hypothalamic content of proTRH mRNA on day 2, but not on days 8 and 15 of 

lactation. On days 8 and 15, rats with 10 pups had somewhat higher proTRH 

mRNA levels than mothers with 5 pups. Median eminence TRH levels in lactating 

rats gradually increased until day 15 and decreased thereafter. Acute suckling, after 

a 6-h separation of mother and pups, rapidly increased plasma PRL and 

corticosterone in the mothers, but had no effects on plasma TSH and thyroid 

hormone levels. Hypothalamic proTRH mRNA increased two-fold after 0.5 h of 

suckling, and then gradually returned to presuckling values after 4-6 h. Compared 

to sham-operated rats, corticosterone-substituted adrenalectomized (ADX) rats had 

increased plasma PRL and TSH, hypothalamic proTRH mRNA and pituitary TSHB 

mRNA on day 15 of lactation. Moreover, while acute suckling did not enhance TSH 

release in sham-operated rats, it not only provoked PRL release but also TSH 

release in corticosterone-substituted ADX dams. 

It is concluded that suckling exerts a rapid, positive effect on hypothalamic 

proTRH mRNA. However, the concurrent enhanced adrenal activity during acute 

and continued suckling has negative effects on hypothalamic pro TRH gene 

expression resulting in a suppressed hypophysial-thyroid axis during lactation. While 
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TRH appears to playa role in the release of PRL during the first days of lactation 

and during acute suckling, TRH seems not important to maintain PRL secretion 

during continued suckling. 
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Introduction 

The secretion of PRL from the anterior pituitary gland is controlled by factors 

released from the hypothalamus and neurointermediate lobe of the pituitary gland 

(see for reviews de Greef & van der Schoot 1985, Neill 1988, Lamberts & MacLeod 

1990, Frawley 1994). Although the identity of the neurointermediate lobe factors is 

still unknown (Frawley 1994), there is evidence that TRH and a-melanocyte­

stimulating hormone are involved (Lackoff & Jackson 1981, Murai & Ben-Jonathan 

1987, Hill et al. 1993). Hypothalamic factors known to affect PRL secretion include 

dopamine and, again, TRH. While evidence has been obtained that a decreased 

supply of dopamine is important for suckling-induced PRL release (de Greef et al. 

1981, de Greef & Visser 1981, Selmanoff & Wise 1981, Plotsky et al. 1982, 

Rondeel et al. 1988, Wang et al. 1993), the physiological role of TRH for PRL 

release remains enigmatic for several reasons. 

Firstly, in many physiological conditions there is a dissociation between the 

release of PRL and TSH. Indeed in contrast to PRL, plasma TSH is not consistently 

increased by acute suckling (Blake 1974, Riskind et al. 1984, Sheward et al. 1985, 

de Greef et al. 1987). Moreover, immunoneutralization of TRH had no or only 

modest effects on suckling-induced PRL release (Harris et al. 1978, Riskind et al. 

1984, Sheward et al. 1985, de Greef et al. 1987), while studies on hypothalamic 

TRH release and synthesis are equivocal. Whereas acute suckling did not increase 

TRH in the push-pull perfusate of the mediobasal hypothalamus (Rondeel et al. 

1988), mammary nerve stimulation increased TRH in hypophysial portal blood (de 

Greef & Visser 1981). Although acute suckling transiently enhanced proTRH mRNA 

levels in the hypothalamic paraventricular nucleus (Uribe et al. 1993), the amount of 

proTRH mRNA decreased from day 1 to day 5 of lactation in mothers with 8 pups 

(Uribe et al. 1991). 

In view of the enhanced adrenal corticosterone secretion during continued 

suckling (Voogt et al. 1969, Walker et al. 1992) and the negative effects of 

corticosteroids on thyroid function (Kakucska & Lechan 1991, van Haasteren et al. 

1994, 1995), the reduced hypothalamic levels of proTRH mRNA during lactation 

may be caused by the suckling-induced enhanced corticosterone secretion. We 

have addressed this issue in this study by evaluating parameters of hypothalamic 

TRH synthesis and release during acute and continued suckling in lactating rats in 

which the suckling-induced increase in plasma corticosterone was prevented by 

adrenalectomy and subsequent treatment with corticosterone to maintain basal 
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Materials and methods 

Animals 

Chapter 3 

Locally bred hooded (RxU) F, rats have been employed in these studies except for 

one experiment in which locally bred albino R-Amsterdam rats were used since 

(RxU) F, rats were no longer bred in our animal facility. R-Amsterdam rats have 

similar plasma PRL levels as (RxU) F, rats, but they have lower TSH and thyroid 

hormone levels. Rats were housed under controlled conditions (lights on between 

05.00-19.00 h; temperature between 20-22 0C) and they had free access to food 

and water. Female rats weighing 220-250 g were caged with male rats of proven 

fertility. At the end of pregnancy the females were caged individually, and only rats 

which gave birth to at least 9 pups were included in the experiments. Litter size was 

adjusted to 5 or 10 pups between 09.00 and 10.00 h on day 2 of lactation (day 1 is 

day of parturition). During the experiments, the weights of mothers and litters were 

monitored daily. Normal suckling was established by direct observation, and the 

time the mothers spent with their litter and the number of milk ejections were 

recorded (van der Schoot et al. 1978). Long-term mother-young interactions were 

measured with an automatic device (Croskerry et al. 1976, de Greef et al. 1987, 

1989). In two experiments, adrenalectomized (ADX) rats were used to study 

possible effects of the increased plasma corticosterone levels during lactation. To 

maintain basal plasma levels of corticosterone, ADX rats were treated with 

corticosterone in their drinking water. Adrenalectomy or sham-operation was 

performed on day 2 of lactation using ether as anaesthetic. The ADX rats received 

corticosterone in their drinking water (0.2 mg/ml (w/v) , Sigma, St. Louis, MO) as 

described previously (van Haasteren et al. 1995). Corticosterone was dissolved in 

ethanol and then added to saline (0.9% NaCI in water), yielding a final 

concentration of 4% ethanol (v/v). Sham-operated rats received similar water 

without corticosterone. Since water consumption follows a circadian rhythm, this 

procedure ensures diurnal corticosterone rhythms in ADX rats leading to normal 

plasma adrenocorticotrophin (ACTH) levels (van Haasteren et al. 1995). Based on 

the water consumption, the ADX rats received 4-8 mg corticosterone daily. Unless 

otherwise indicated, blood was obtained within 1 min after removal of the rat from 

the cage by decapitation or from the orbital plexus of lightly ether-anaesthetized 

animals. For all experiments, approval was obtained from the Animal Welfare 
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The role of TRH In the regulation of PRL secretion 

Committee (DEC) of the Erasmus University. 

Effect of litter size on hypothalamic pro TRH mRNA, median eminence TRH and 

plasma hormone levels throughout lactation 

Effects of litter size (5 or 10 pups) on hypothalamic proTRH mRNA, median 

eminence TRH and hormonal changes were investigated in lactating rats on days 8, 

15 and 22 of lactation. Another group of lactating rats with 11.0±0.5 pups 

(means±SE) was sacrificed on day 2. Female rats decapitated at the dioestrous 

stage of the ovarian cycle were used as controls (dioestrous rats). Furthermore, 

dams separated from their litter at day 2 of lactation and decapitated 6 days later 

were also included in this experiment (non-lactating dams). Rats were decapitated 

between 10.00 and 13.00 h and trunk blood was collected to measure plasma 

hormone levels. The adrenal glands were removed and weighed. The skull was 

opened, the brain was removed, and median eminence and remainder of the 

hypothalamus, which includes the paraventricular nuclei, were isolated as described 

previously (van Haasteren et al. 1994, 1995). The median eminence was placed 

immediately in 2 ml methanol to prevent a possible tissue degradation of TRH 

(Bauer et al. 1990), whereas the remainder of the hypothalamus was snap frozen in 

liquid nitrogen and kept at -80 "C until RNA isolation, or was also transferred to 

2 ml methanol. Tissue collected in methanol was homogenized, subsequently dried 

under a stream of nitrogen, redissolved in phosphate buffer (pH 7.4) and stored at -

20 "C until assayed for TRH. 

Hypothalamic proTRH mRNA, pituitary TSHI3 mRNA and plasma hormone levels in 

corticosterone-substituted ADX dams 

Sham-operated or corticosterone-substituted ADX lactating rats with 10 pups were 

used. In the first part of the experiment, (RxU) F, dams were employed. Blood was 

taken between 10.00 and 13.00 h from the orbital plexus on days 8, 15 and 22 of 

lactation to estimate plasma levels of PRL, TSH and corticosterone. For the second 

part of this study, lactating R-Amsterdam rats were used, which were decapitated 

on day 15 of lactation. As control, non-lactating dams, R-Amsterdam rats separated 

from their litter on day 2 of lactation and decapitated 6 days later were used. Trunk 

blood, collected between 10.00 and 13.00 h, was used to determine plasma 

hormone concentrations. Hypothalamus and pituitary gland were iSOlated, snap 

frozen in liquid nitrogen, and stored at -80 "C until RNA isolation. Adrenal glands 
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were also isolated and weighted. 

Effect of acute suckling on hypothalamic pro TRH mRNA and plasma hormone 

levels in lactating dams 

Dams were separated from their 10-pup litter between 04.30 and 08.30 h on day 

13, and they were reunited 6 h later. Lactating rats were decapitated between 14.00 

and 17.00 h after they had been suckled for 0.5, 1, 4 or 6 h. Mothers not reunited 

with their pups, and decapitated between 14.00 and 16.00 h served as controls (0 

h). Trunk blood was collected to measure plasma hormone levels. The median 

eminence was removed and processed as describe above to measure its TRH 

content. The rest of the hypothalamus was isolated, snap frozen in liquid nitrogen 

and kept at -80°C until RNA isolation. 

Effect of acute suckling on PRL and TSH levels in corticosterone-treated ADX 

lactating dams 

Sham-operated and corticosterone-substituted ADX lactating dams with 10 pups 

received an indwelling cannula (0.96 mm outer diameter, 0.58 mm inner diameter) 

in the jugular vein (Popovic & Popovic 1960) on day 11 of lactation. On day 13, the 

pups were removed between 07.30 and 08.30 h and reunited with their mothers 6 h 

later. Blood samples of about 0.5 ml were taken from the jugular vein cannula just 

before and after 1, 4 and 6 h of reunion to measure plasma PRL and TSH 

concentrations. 

Measurement of pituitary TSHI3 mRNA and hypothalamic pro TRH mRNA 

Pituitary and hypothalamic RNA was isolated by acid guanidinium thiocyanate­

phenol-chloroform extraction (Chomczynski & Sacchi 1987), and the amount and 

purity of the isolated RNA was determined by absorbance at 260/280 nm. Pituitary 

TSHB mRNA was estimated by Northern blotting as described before (van 

Haasteren et al. 1994, 1995). In short, 10 fIg total RNA was subjected to denaturing 

agarose gel electrophoresis, blotted onto Hybond N' filter (Amersham International 

PLC, Amersham, UK), and hybridized with a "P-Iabelled 420-basepair (bp) 

fragment of the rat TSHB cDNA (Chin et al. 1985). Variation in loading was 

accounted for by normalizing to the l3-actin mRNA content which was hybridized 

with a "P-Iabelled hamster B-actin cDNA probe (Dodemont et al. 1982). 

Hypothalamic proTRH mRNA was estimated using an RNase protection assay (van 
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Haasteren et al. 1994) using 1 0 ~g total RNA. Hybridization was carried out with a 

labelled 351-bp antisense cRNA probe transcribed from a 981-1322 bp rat proTRH 

cDNA fragment (Lechan et al. 1986, van Haasteren et al. 1994). Variations in 

procedures were accounted for by normalization to glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) mRNA using a cRNA probe transcribed from a 410-bp 

Pst1/SauA1 GAPDH cDNA fragment (van Haasteren et al. 1994). Autoradiographs 

were scanned densitometrically, and the resulting signals were integrated by 

computer using custom-made software written by Dr. R. Docter (Department of 

Internal Medicine and Clinical Endocrinology). The ratios between the integrated 

optical densities of TSHfl and fl-actin mRNA or proTRH and GAPDH mRNA were 

calculated for each sample. Results are presented as the percentage of the mean 

of control rats. The validation of the methods used to isolate and measure pro TRH 

and TSHfl mRNA have been described previously (van Haasteren et al. 1995). 

Hormone determinations 

Plasma TSH was measured by RIA with materials and protocols supplied by the 

NIADDK, with rat-TSH-RP-2 as standard. Levels of T" T, and reverse T, (rT,) were 

estimated in unextracted plasma by RIA. The plasma T, dialysable fraction was 

measured by equilibrium dialysis (Sterling & Brenner 1966), and plasma free T, 

(FT,) was calculated as the product of total T, and the dialysable fraction. The 

same procedure was used to measure plasma free T, (FT,). Plasma PRL was 

determined by RIA (de Greef & Zeilmaker 1978) using rat-RP-1 as standard. 

Corticosterone was estimated by RIA (Marzouk et al. 1991). The RIA for TRH was 

performed with antiserum 4319 as reported before (Visser et al. 1977). Detection 

limits were 0.2 ~gli RP-2 TSH, 2 nmol/I T" 0.1 nmol/I T" 0.05 nmol/I rT" 5 ~g/I RP-

1 PRL, 1 nmol/I corticosterone and 3-5 fmol TRH/tube. Intra- and interassay 

coefficients of variation for the assays varied between 5 and 15%. 

Statistical analysis 

Results are presented as means±SEM. Analysis of variance (ANOVA) was used for 

the statistical evaluation of the data. Provided significant overall effects were 

obtained, comparisons between groups were made by Duncan's new multiple range 

tests. Differences are considered to be significant at pS;0.05. 
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dioestrous rats, +PSO.05 compared to rats with 10 pups 
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Effect of litter size on hypothalamic pro TRH mRNA, median eminence TRH and 

plasma hormone levels throughout lactation 

Results are summarized in Figure 1. Plasma PRL was raised throughout lactation, 

and a larger litter was associated with higer PRL levels. On day 2 of lactation 

plasma TSH concentrations were higher than the values observed in dioestrous 

female rats, but after day 2 plasma TSH decreased in lactating rats and became 

lower than that in dioestrous rats. Overall plasma TSH was somewhat lower in 

mothers with 10 pups than in dams nursing 5 pups (p';0.05, ANOVA), but at the 

individual time points studied, litter size had no significant effect on plasma TSH. 

Plasma T, and FT, levels were significantly lower in lactating than in dioestrous 

rats, and mothers nursing 10 pups had generally lower plasma T, and FT, during 

lactation than dams with 5 pups. Litter size had no effect on plasma T, during 

lactation, and while plasma T, in lactating rats tended to be lower on days 8 and 15 

than in dioestrous rats, this was significant only in rats with 5 pups on day 8. 

Plasma rT, was low in all groups of rats, and no differences were found between 

control and lactating rats (data not shown). Plasma corticosterone was usually 

higher in lactating than in dioestrous rats, and mothers with 10 pups tended to have 

higher levels than rats nursing 5 pups. Adrenal weight increased gradually during 

lactation, and mothers nursing 10 pups generally had larger adrenals than rats with 

5 pups. Lactating rats had higher hypothalamic proTRH mRNA than dioestrous rats 

on day 2 of lactation, but proTRH mRNA gradually decreased in the subsequent 2 

weeks. In dams nursing 10 pups hypothalamic proTRH mRNA remained similar 

between days 8 and 22, but it increased in mothers with 5 pups between days 15 

and 22. Hypothalamic proTRH mRNA on days 8 and 15 was somewhat higher in 

dams with 10 pups than in rats nursing 5 pups (p';0.02, ANOVA). However, at the 

individual days, litter size had no significant effect on pro TRH mRNA. One week 

after parturition, hypothalamic proTRH mRNA content was higher in dams with 10 

pups (151.1±14.0%) than in rats from which the pups had been removed on day 2 

of lactation (84.6±3.2%, p';0.05). During lactation, median eminence TRH content 

gradually increased until day 15 and decreased thereafter, and dams with 10 pups 

had overall somewhat higher levels than mothers with 5 pups (p';0.05). 

The body weight of the mothers gradually increased during lactation, and no 

difference between dams with 5 or 10 pups was observed. At the time of weaning 

(day 22), 10-pup litters weighed 422±12 g and 5-pup litters 260±6 g. The time the 

mothers spent with the pups was similar in both groups (data not shown), i.e. 16-21 
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hours/day between days 2 and 15, gradually declining to 10-12 hours/day. 

Non-lactating dams Lactating dams 

Sham-operated ADX 

proTRH mRNN 

TRH (pmol/ME) 

TSHB mRNA++ 

PRL (flg/I) 

100.0±3.8 

2.16±0.31 

100.0±13.1 

25±3 

0.32±0.06 

27.1±3.9 

9.38±0.93 

0.89±0.05 

3.09±0.14 

182±20 

115.3±6.5 

3. 14±0.35' 

81.4±11.3 

396±39' 

149.6±9.5'b 

2.97±0.65 

135.3±15.8b 

527±32,b 

TSH (/lg/I) 0.11±0.04' 0.21±0.06 

T4 (nmol/I) 12.3±1.1' 17.6±2.2' 

FT4 (pmol/I) 4. 12±0.35' 5.57±0.76' 

T3 (nmol/I) 0.57±0.02' 0.71±0.04'b 

FT 3 (pmol/I) 

Cort.(nmol/I) 

2.33±0.09' 

379±34' 

2.77±0.15b 

138±35b 

Adrenal weight (mg) 48.5±1.1 60.9±1.7' 

Table 1. Hypothalamic proTRH mRNA, median eminence TRH, pituitary TSHfJ 

mRNA, plasma hormone levels and adrenal weight on day 15 of lactation 
in sham-operated or corticosterone-substituted ADX R·Amsterdam rats 

nursing 10 pups. For comparison, data from dams separated from their 
lifter on day 2 of lactation, and sacrificed 6 days later, are included (non­

lactating dams). Values are means±SEM (n=9-fO). 

a P5.0.05 compared to non-lactating dams, b ~O.05 compared to sham­

operated dams 
+ relative to GAPDH mRNA, expressed as percentage of non-lactating 

dams 
H relative to actin mRNA, expressed as percentage of non-lactating dams 

Hypothalamic pro TRH mRNA, pituitary TSHf3 mRNA and plasma hormone levels in 

corticosterone-substituted ADX lactating rats 

To prevent the suckling-induced increase in plasma corticosterone in lactating rats, 

adrenal glands were removed on day 2 of lactation and the ADX dams were 

subsequently treated with corticosterone in their drinking water to maintain basal 

plasma levels of corticosterone. In the first part of the study, (RxU) F, rats were 
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used and the results are presented in Figure 2. Corticosterone-treated ADX 

lactating rats had higher plasma PRL levels than sham-operated mothers on day 

15, but plasma PRL was similar in both groups on days 8 and 22 of lactation. 

Compared to sham-operated dams, plasma TSH was higher in the corticosterone­

substituted ADX rats on days 15 and 22 of lactation. Whereas sham-operated dams 

gained weight (from 233±12 to 270±15 g), the weight of corticosterone-treated ADX 

mothers remained similar during the period of observation (246±8 vs 250±9 g). 

Mother-young interactions were similar in both groups (data not shown), but pups 

nursed by corticosterone-treated ADX mothers gained less weight than pups of 

sham-operated rats (day 22: 288±17 vs 388±21 g, p';0.01). 
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Figure 2. Plasma levels of PRL, TSH and corticosterone in sham·operated (open bars, n=9) and 
corticosterone-treated ADX (black bars, n=12) lactating rats with 10 pups. Values are 

means±SEM. 'P5,0.05 compared to sham-operated rats 

For the second part of the experiment, R-Amsterdam rats were studied on day 

15 of lactation, and the results are given in Table 1. When compared with values in 

non-lactating dams, sham-operated lactating rats had similar levels of proTRH 

mRNA and TSHB mRNA, lower plasma TSH and thyroid hormone concentrations, 

higher median eminence TRH content, higher PRL and corticosterone levels, and 

increased adrenal weight. Prevention of the lactation-induced corticosterone release 

resulted in higher levels of proTRH mRNA and TSHB mRNA, and increased plasma 

concentrations of PRL, TSH and thyroid hormones, although effects on plasma 
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TSH, T, and FT, were not significant. In corticosterone-substituted ADX rats, 

median eminence TRH content on day 15 of lactation was not different from the 

levels in non-lactating dams. 
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Figure 3. Suckling-induced changes in hypothalamic proTRH mRNA content and in plasma 

hormone levels on day 13 of lactation in lactating rats. Mothers and to·pup litters had 

been separated for 6 h, and were reunited at a h. Values are means±SEM of 9·11 rats. 
'P5.0.05 compared to presuckfing values 

Effect of acule suckling on hypothalamic pro TRH mRNA and plasma hormone 

levels in lactating rats 

On day 13 of lactation, dams were separated from their 10-pup litters and reunited 

6 h later to estimate acute suckling-induced changes in hypothalamic proTRH 

mRNA, median eminence TRH content, and plasma hormone levels (Figure 3). 

Hypothalamic proTRH mRNA had increased significantly after 30 min of suckling, 
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and gradually returned to presuckling values. While acute suckling strongly 

increased plasma PRL and corticosterone, no significant effects on plasma TSH, T3 

and T4 levels were found. 

Effect of acute suckling on PRL and TSH levels in corticosterone-treated ADX 

lactating rats 

Possible effects of the increased plasma corticosterone on PRL and TSH secretion 

induced by acute suckling were studied on day 13 in sham-operated and 

corticosterone-treated ADX lactating rats nursing 10-pup litters (Figure 4). Acute 

suckling increased plasma PRL in both groups of rats, but absolute levels became 

higher in corticosterone-substituted ADX dams. Acute suckling had no effect on 

plasma levels of TSH in sham-operated mothers, but increased plasma TSH in 

corticosterone-treated ADX lactating rats. 
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Figuur 4. Effect of acute suckling on day 13 of lactation on plasma PRL and TSH in sham­

operated (open bars, n=7) or corticosterone-treated ADX (black bars, n=6) lactating 
dams nursing 10 pups. Mothers and their litters had been separated for 6 h, and were 

reunited at 0 h. 'P50.05 compared to presuckling values, +0;0.05 compared to sham­

operated rats 

Discussion 

In the present study we Investigated the effects of suckling on parameters of 

hypothalamic TRH synthesis and release. It has been argued that TRH Is not 

Involved In the suckling-Induced release of PRL, since a) suckling evokes only a 

modest increase In plasma TSH compared with that of PRL (Blake 1974, Rlsklnd et 

al. 1984, Sheward et al. 1985, de Greef et al. 1987), b) Immunoneutralization of 

TRH has only small effects on suckling-Induced PRL release (Harris et al. 1978, 

Rlsklnd et al. 1984, Sheward et al. 1985, de Greef et al. 1987), and c) studies on 

suckling-induced changes in hypothalamic TRH synthesis and release are equivocal 
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(de Greef & Visser 1981, Rondeel el al. 1988, Uribe et al. 1991, 1993). However, a 

dissociation between PRL and TSH secretion does not necessarily imply Ihat 

hypothalamic TRH release is nol stimulated by suckling since other factors could be 

involved in the dissociation belween PRL and TSH release. For instance, oxytocin 

has been found to attenuate the TRH-induced TSH release from pituitary cells 

(Frawley et al. 1985), indicating that the suckling-induced increase in oxytocin could 

also be responsible for an inhibition of suckling-induced TSH release. Furthermore, 

TRH receptors and TRH-degrading ectopeptidase activity may be regulated 

independently on lactotrophs and thyrotrophs (Bauer et al. 1990). Finally, the value 

of immunoneutralization studies is not always clear, since passive immunization has 

been reported to sometimes enhance the biosynthesis of hypothalamic pep tides 

(van Oers et al. 1991, Strbak et al. 1993). 

Another factor which may cause a dissociation between PRL and TSH release 

is corticosterone (van Haasteren et al. 1995). Therefore we studied the effects of 

the suckling-induced increase in corticosterone secretion on the hypothalamic­

hypophysial-thyroid axis. Since endocrine changes during lactation are related to 

the suckling stimulus (van der Schoot et al. 1978, 1982), it is essential to establish 

that treatment-induced effects are not due to an altered suckling stimulus. None of 

the experimental conditions, however, interfered with normal suckling and nursing 

behaviour. Thus, the present results are unlikely caused by treatment-induced 

alterations in mother-young interaction. 

It has been reported that pro TRH mRNA in the paraventricular nucleus 

decreases from day 1 to day 5 of lactation in rats nursing 8 pups (Uribe et al. 

1991), and this study confirms this observation since hypothalamic proTRH mRNA 

levels were found to decrease after day 2. Although, hypothalamic proTRH mRNA 

in lactating rats was only slightly affected throughout lactation when compared with 

pro TRH gene expression in dioestrous rats, it was also observed that rats nursing 

10 pups had somewhat higher hypothalamic levels of proTRH mRNA on day 8 and 

15 than rats with 5 pups. Moreover, one week after parturition hypothalamic 

pro TRH mRNA was nearly twice as high in dams suckled by a 10-pup litter than in 

dams from which the pups had been removed on day 2 of lactation. Besides an 

effect of the number of pups on hypothalamic proTRH mRNA during continued 

suckling (this study), acule suckling also induces a rapid, but transient, increase in 

proTRH mRNA (Uribe et al. 1993, this study). It is unlikely the observed effects of 

acute suckling on pro TRH mRNA are due to circadian influences (Covarrubias et al. 

113 



The role of TRH in the regulation of PRL secretion 

1988, Zoeller et at. 1990), since the variation in hypothalamic proTRH mRNA in 

control rats during the same time period (14.00-17.00 h) is small (unpublished 

data). Thus, we conclude that suckling stimulates proTRH gene expression. In this 

context, it has to be realized that changes in hypothalamic proTRH mRNA are 

modest even in rats made severely hypothyroid by thyreostatic drugs or 

thyroidectomy (Koller et at. 1987, Zoeller et at. 1988, Shi et at. 1994, van Haasteren 

et at. 1995). 

To study possible effects of the enhanced corticosterone secretion during 

lactation, the adrenal glands were removed from rats after parturition and the dams 

were subsequently treated with corticosterone in the drinking water to maintain 

basal plasma corticosterone levels. Using this experimental approach it appeared 

that the increased corticosterone levels during lactation suppress hypothalamic 

proTRH gene expression, and PRL and TSH secretion. While acute suckling hardly 

affected plasma TSH in sham-operated lactating rats, it increased TSH release in 

corticosterone-substituted ADX dams. Previously, it was found that the synthetic 

glucocorticoid dexamethasone rapidly reduced hypothalamic TRH and pituitary TSH 

release (van Haasteren et at. 1995). We therefore suggest that the negative effect 

of high levels of corticosterone on plasma TSH during lactation could be due to a 

reduced hypothalamic TRH synthesis and release. The presence of a glucocorticoid 

responsive element in the promotor region of the pro TRH gene (Lee et at. 1988) 

and the occurrence of glucocorticoid receptors in TRH-synthesizing cells in the 

hypothalamic paraventricular area (Ceccatelli et at. 1989) support this conclusion. 

Besides an inhibition of hypothalamic TRH synthesis and release (Kakucska & 

Lechan 1991, van Haasteren et at. 1995), corticosteroids have also been found to 

reduce TRH-induced TSH release (Pamenter & Hedge 1980) and to increase the 

hypothalamic synthesis and release of somatostatin (Nakagawa et at. 1987, 1992), 

a hormone known to inhibit TSH secretion. 

There is evidence that the TRH content both in the median eminence and in 

the posterior pituitary gland may serve as an index for hypothalamic TRH release 

(Mori & Yamada 1987, Bruhn et at. 1991, Rondeel et at. 1995). The TRH content of 

the median eminence was found to increase after day 2 of lactation, and to 

decrease again after day 15. A similar profile has been reported for TRH in the 

posterior pituitary gland of lactating rats (Uribe et at. 1991). The TRH content both 

in median eminence and posterior pituitary gland increases in conditions in which 

the hypothalamic TRH release has been found to decrease (Rondeel et at. 1995). 
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However, since the TRH content in the median eminence is a resultant of proTRH 

synthesis and processing in the paraventricular nucleus (Lechan et al. 1986) with 

subsequent axonal supply of TRH from the paraventricular nucleus to the median 

eminence and TRH secretion into the hypophysial portal blood, it is difficult to 

interpret changes in median eminence TRH content unless approximations of TRH 

synthesis are available. The decrease in hypothalamic proTRH mRNA and the 

increase in median eminence TRH after day 2 of lactation suggest that 

hypothalamic TRH secretion becomes reduced after day 2 of lactation. On day 2 of 

lactation, hypothalamic proTRH mRNA was higher and median eminence TRH was 

similar to the values observed in dioestrous rats, suggesting that hypothalamic TRH 

release on day 2 of lactation is higher than during the dioestrous stage of the cycle. 

This interpretation of the data is supported by the somewhat increased plasma 

levels of TSH in lactating dams on day 2, followed by a subsequent reduction in 

plasma TSH during the remainder of the lactation period. 

The higher hypothalamic TRH release on day 2 of lactation suggests that the 

PRL release during the early phase of lactation is also under control of TRH. 

However, unless the sensitivity of the lactotroph to TRH becomes increased during 

lactation, the supposed reduction in hypothalamic TRH release after day 2 implies 

that TRH is not a major factor in the maintenance of PRL secretion after day 2 of 

lactation. 

After the onset of acute suckling, there is a transient increase in hypothalamic 

proTRH mRNA (this study), a gradual rise in median eminence TRH (Rondeel et al. 

1995), and a concurrent decrease of TRH in the medial basal hypothalamus (Uribe 

et al. 1991). These observations suggest that acute suckling transiently stimulates 

TRH release from the hypothalamus. A similar situation is observed after exposure 

to cold, since this stimulus transiently enhances hypothalamic proTRH mRNA 

content (Rage et al. 1994) and TRH release (Rondeel et al. 1991) together with a 

simultaneous reduction of TRH in the medial basal hypothalamus (Rage et al. 

1994). Hypothalamic proTRH mRNA levels returned to presuckling values after 6 h 

of suckling (present study), at a time when TRH in the median eminence had 

increased (Rondeel et al. 1995), suggesting that after 6 h of suckling hypothalamic 

TRH release had decreased again. Thus, acute suckling on day 13 seems only to 

increase hypothalamic TRH secretion transiently. This indicates that TRH is 

perhaps only required for the normal onset of PRL release induced by acute 

suckling, explaining the delayed onset of PRL secretion induced by acute suckling 
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after interference with TRH action by passive immunization (de Greef et al. 1987) or 

TRH secretion through paraventricular area lesions (de Greef et al. 1989). 

Plasma levels of thyroid hormones have been reported to decrease during 

lactation (Fukuda et al. 1980, Kahl et al. 1987, Valverde-R & Aceves 1989). We 

also found a consistent decrease in plasma T, during lactation which correlated with 

litter size. The lower plasma T, can be explained by diminished synthesis and/or by 

an increased clearance for instance by loss of T, in the milk (Oberkotter & 

Rasmussen 1992). Plasma T, and FT, show a similar decrease in lactating rats, 

suggesting that plasma T, binding is not greatly affected during lactation. 

Irrespective of whether T, clearance is increased during lactation, thyroid function is 

not sufficient to maintain normal plasma levels of T, and FT,. The lower thyroid 

function during lactation is probably due to the lactation-induced decrease in plasma 

TSH as found consistently in this study both in (RxU) F 1 and R-Amsterdam rats. 

Our results are in agreement with other reports on effects of lactation on thyroid 

parameters in Wi star rats, but disagree with the reported increase in plasma TSH in 

lactating Sprague-Dawley rats (Fukuda et al. 1980). The reason for this difference 

between several rat strains remains to be resolved. 

Plasma PRL levels gradually decrease during lactation in intact dams, but they 

remain elevated in ADX rats (van der Schoot & de Greef 1983). In addition, the 

decrease in plasma PRL during lactation is delayed in corticosterone-substituted 

ADX dams compared with control dams (present study). These findings indicate 

that the lactation-induced increase in serum corticosterone negatively affects PRL 

secretion. Since high levels of PRL stimUlate the release of ACTH-releasing factor 

(CRF) and ACTH (Kooy et al. 1990, Weber & Calogero 1991), the enhanced 

adrenal activity during lactation may not be a direct effect of suckling but due to the 

suckling-induced hyperprolactinemia. Thus, PRL, CRF, ACTH and corticosterone 

seem interdependent, suggesting that they are components of a feedback system 

regulating TRH synthesis and release. 

On the basis of the available data it Is suggested that the following interactions 

exist during lactation. Suckling stimulates, through a neuroendocrine reflex, the 

secretion of PRL from the pituitary gland. Part of this neuroendocrine response is a 

decrease in the hypothalamic release of dopamine throughout lactation (Selman off 

& Wise 1981, Wang et al 1993). Furthermore, factors from the neuroinlermediale 

lobe seem to be involved in PRL release (Murai & Ben-Jonathan 1987, Hill et al. 

1993). Hypothalamic TRH release is probably increased during the early phases of 
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lactation in comparison with the dioestrous stage of the cycle (present study), 

suggesting that in this stage of lactation TRH is involved in PRL release. The 

ensuing increase in plasma corticosterone, which may be due to a 

hyperprolactinemia-induced release of CRF and ACTH (Kooy et al. 1990, Weber & 

Calogero 1991, de Greef et al. 1995), has negative effects on hypothalamic proTRH 

gene expression and TRH release causing a decrease in the pituitary-thyroid axis 

after day 2 of lactation. This supposed decrease in hypothalamic TRH release also 

implies that TRH is not impoortantly involved in the maintenance of PRL release 

after day 2 of lactation. 
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Discussion 

In this thesis, the neuroendocrine role of TRH in regulating TSH and PRL secretion 

from the anterior pituitary was investigated. TRH supply to the anterior pituitary is 

influenced by its synthesis, processing, transport, secretion and metabolism, while 

its biological effects are modulated by other factors such as thyroid hormones, 

dopamine and somatostatin. These various processes and factors need to be 

considered when the role of TRH within the regulation of the hypothalamo-pituitary­

thyroid axis is to be studied under different {patho-)physiological conditions. In the 

first part of this chapter the role of TRH in the generation of the low T3 syndrome, 

under the four conditions as described in chapter 2, will be discussed. The second 

part of this chapter deals with the role of TRH in the regulation of suckling-induced 

PRL secretion as described in chapter 3. 

4.1 Role of TRH in the regulation of TSH secretion 

The body's response to starvation and food reduction is the generation of the low 

T3 syndrome. In order to preserve energy, thyroid function in suppressed. 

Interleukin (IL-l and IL-6) administration and STZ-induced diabetes mellitus are 

experimental models of non-thyroidal illness (NTI), resulting in the low T3 syndrome 

as well. Next to low levels of plasma T4 and T3, these four models of adaptive 

hypothyroidism are associated with inappropriately normal or low levels of TSH. A 

common mechanism has been postulated, originating from the eNS, which may 

mediate the decrease in thyroid function. tn this thesis, the contribution of TRH to 

the suppressed pituitary-thyroid function in this syndrome was investigated. 

A 3-day starvation period decreases hypothalamic proTRH mRNA, 

hypothalamic TRH content and TRH concentration in portal blood. In contrast to the 

effect of starvation, long-term food reduction does not affect levels of hypothalamic 

proTRH, nor TRH content in the ME, despite a profound decline in plasma TSH. 

Levels of hypothalamic proTRH mRNA are also unaffected after 7 days of IL-6 

infusion, while IL-l infusion causes a significant decrease in these levels after 7 

days, but not after 1 or 2 days when plasma TSH reached its nadir. Two and three 

weeks after induction of diabetes mellitus by STZ, R-Amsterdam rats show 

decreased levels of proTRH mRNA, while this parameter is unaffected in RxU rats. 

Summarizing the effects of these four studies on hypothalamic TRH 

production and release, it is clear that these parameters are either unaffected or 

show a trend towards reduction rather than an increase as might be expected, 
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based on studies showing that thyroid hormone deficiency leads to increased 

proTRH mRNA in the PVN (1). On the other hand, decreased TSH secretion occurs 

before (IL-1 treatment and STZ-induction of diabetes mellitus in R-Amsterdam rats) 

or even without (food reduction, IL-6 treament and STZ-induction in diabetes 

mellitus in RxU rats) the decrease in proTRH mRNA. The decline in TSH secretion, 

therefore, cannot be explained by the changes in hypothalamic proTRH mRNA. The 

simultaneous decrease in serum TSH, T4 and T3 during food deprivation and in the 

different experimental models of NTI indicates that inhibition of thyroid function is 

mediated at the level of the hypothalamus and/or pituitary. 

An inverse relationship between the concentration of proTRH mRNA and 

corticotropin-releasing hormone (CRH) mRNA in PVN neurons in response to 

hypothyroidism, has recently been reported by Ceccatelli et al (2). Furthermore, a 

suppressive effect of activated CRH neurons on TRH neurons has been suggested, 

following systemic lipopolysaccharide (LPS) or intracerebroventricular IL-1 

administration, since these neurons are adjacent to each other in the PVN (3, 4). In 

contrast, levels of proCRH mRNA in PVN neurons in fasted and food restricted rats 

are decreased (5), which indicates that CRH synthesis does not seem to be 

involved in proTRH mRNA regulation in these models for NTI. 

However, starvation, food reduction, interleukin administration, and STZ­

induced diabetes mellitus are all associated with increased plasma levels of 

glucocorticoids. In fasting rats, this is partly due to decreased clearance of 

corticosterone (6), while interleukin treatment activates the hypothalamo-pituitary­

adrenal axis (7, 8). It is postulated that the sustained elevation of plasma 

corticosterone may influence pro TRH gene expression in the hypothalamus. 

Continuous IL-1 infusion stimulates corticosterone secretion, and proTRH gene 

expression is reduced after 7 days, but not after 1 or 2 days of infusion. In the 

same study, IL-6 infusion had no effect on plasma corticosterone nor on 

hypothalamic proTRH mRNA. A similar observation was made in the study on STZ­

induced diabetes mellitus. In R-Amsterdam diabetic rats the increased plasma 

corticosterone concentration is accompanied by a reduced pro TRH gene 

expression, whereas in RxU diabetic rats neither parameter changed significantly. A 

suppressive effect of plasma corticosterone on proTRH gene expression would 

explain the different effects of IL-1 VS. IL-6, and in R-Amsterdam VS. RxU rats on 

proTRH mRNA. This hypothesis is supported by 1) the reduction in proTRH mRNA 

in the PVN following chronic high dose glucocorticoid treatment (9), 2) the presence 
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of glucocorticoid receptors in TRH neurons in the PVN (10), and 3) the presence of 

a consensus glucocorticoid reseponse element in the TRH gene promoter (11). 

Furthermore, a corticotrophin release-inhibiting factor is encoded within the pro TRH 

gene which suggests a coordinated, but inverse, regulation of pituitary-adrenal and 

pituitary-thyroid functions (12). Indirect evidence for an inverse relationship between 

hypothalamic pro TRH and glucocorticoids in man was obtained by Brabant et al 

(13). High-dose glucocorticoid injection abolished TSH pulses, and suppressed 

basal TSH. Together with a normal serum TSH response to TRH, these data 

suggest that glucocorticoid exerts its effect at a suprapituitary level. 

Direct effects of glucocorticoids on pituitary TSH secretion have, been 

described in man and rats (14-17). Samuels et al (17) studied the effects of cortisol 

infusions over 24 h on the pulsatile secretion of pituitary glycoprotein hormones in 

healthy subjects. Basal plasma TSH and TSH pulse amplitude decreased after 

cortisol infusion, while the TSH pulse frequency was unaltered. Considering the fact 

that TSH pulsatility is predominantly regulated by hypothalamic TRH (18), these 

data suggest a direct effect of cortisol at the pituitary level. However, in man, the 

effect of glucocorticoids at the pituitary level depends on the time-span of 

hypercortisolism, as only prolonged and not acute exposure interferes with TSH 

secretion (16). The underlying mechanism for acute or prolonged inhibitory effects 

of hypercortisolism at the pituitary level is still a matter of debate. Using 

immunocytochemical double labelling techniques colocalization of glucocorticoid 

receptors and TSH has been demonstrated, whereas only a minority of the PRL­

immunoreactive cells expressed the glucocorticoid receptor (15). Glucocorticoids 

may therefore differentially regulate the secretion and/or synthesis of TSH and PRL 

by directly affecting the hormone-producing cells of the anterior pituitary. 

Another factor involved in the direct control of TSH secretion, might be 

somatostatin, since somatostatin inhibits basal and TRH-stimulated TSH release in 

anterior pituitary cells (19, 20). Furthermore, in vitro somatostatin antiserum 

stimUlates TSH secretion from pituitary cells, while in vivo it increases basal serum 

TSH levels and serum TSH responses to both cold stress and TRH (21, 22). 

Fasting, IL-1 administration and diabetes mellitus have been found to increase 

hypothalamic somatostatin content and release (23-25). Furthermore, passive 

immunization with somatostatin antiserum resulted in a marked increase in plasma 

TSH in rats after long-term restricted feeding and starvation (26-28). It has been 

postulated by Smith et al (29) that increased somatostatin release may be mediated 
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by a central effect of glucocorticoids. He demonstrated a decrease in hypothalamic 

somatostatin content 10 days after adrenalectomy in rats, which was reversed by 

dexamethasone administration. With respect to the studies described in this thesis, 

the acute and profound decrease in plasma TSH after food deprivation, IL-1 and IL-

6 adminsitration and diabetes mellitus induction may reflect alterations in the 

secretion of the somatostatin, possibly mediated by glucocorticoids. 

Neuropeptide Y (NPY) is another candidate peptide that may mediate the 

reduction in TSH secretion during NTI. However, some studies report a suppressive 

effect on pituitary TSH secretion, whereas others see no effect of NPY on serum 

TSH (30-32). On the other hand, NPY administration was found to increase DA 

release by the ME (32), which may mediate an dopaminergic inhibitory effect of 

NPY on TSH secretion. 

In conclusion, in the generation of the low T3 syndrome the hypothalamus 

seems the primary site affected. From the data presented in this thesis, it can be 

concluded that decreased pituitary TSH secretion cannot be attributed to changes in 

hypothalamic TRH alone, but is more likely caused by a number of concomitant 

changes at the hypothalamic, pituitary and peripheral level, which may act in 

concert to manifest impaired thyroid hormone secretion. 

4.2 Role of TRH in the regulation of prolactin secretion 

The response to suckling includes a) an increase in PRL release from the anterior 

pituitary and b) sequential changes in the pituitary-thyroid axis, resulting in the 

decrease in plasma thyroid hormone concentration. The importance of an increased 

TRH release underlying the stimulated PRL release in lactating rats has been 

challenged, because of the lack of a concomitant rise in TSH during suckling. In this 

thesis, variations in levels of hypothalamic pro TRH mRNA throughout lactation and 

after a separation of mothers and pups for 6 h were investigated, in order to 

elucidate the possible bifunctional role of TRH during lactation. 

Given the dual role of TRH as a TSH and PRL releasing factor one expects 

an increase in hypothalamic TRH synthesis and release underlying the stimulated 

PRL secretion in lactating rats, whereas the decreased plasma thyroid hormone 

levels in lactating rats suggest a decrease in TRH release. At the onset of the 

lactation period and in response to readmission of pups to their mother after a 

separation period hypothalamic pro TRH mRNA was found to be transiently 

increased . This suggests that additional factors are involved in the central and 
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peripheral regulation of PRL and TSH secretion during suckling. 

Based on our data and the observations of others, we postulate the following 

sequence of events before and during lactation. High levels of estrogen and 

decreased plasma T3 levels at the end of pregnancy (33-35) may be responsible 

for an increased sensitivity of the pituitary lactotrophs to TRH. Estrogens increase 

the number of lactotrophs during pregnancy (36), and increase the TRH receptor 

levels in these cells (37, 38). Moreover, estrogens inhibits activity of the T3-

stimulated membrane-bound TRH degrading enzyme, which is preferentially located 

on lactotrophs and participates in the inactivation of extracellular TRH (39, 40). 

During pregnancy the inhibitory effect of T3 on TRH receptor levels on lactolrophs 

(37, 41, 42) and the stimulatory effect of T3 on TRH degrading enzyme activities 

(39, 40) are diminished because of the decrease in plasma T3. However, low levels 

of T3 are known to increase DA release (43), which may prevent an increased PRL 

release in pregnant rats prior to lactation. 

Early lactation is characterized by pulsatite bursts of PRL secretion in 

response to suckling. These PRL surges could be secondary to a transient 

reduction of DA secretion into hypophysial portal blood, which potentiates the 

prolactin-releasing action of hypothalamic TRH (44-48). The PRL response 10 the 

transient increase in proTRH mRNA early in lactation is enhanced by the increased 

TRH sensitivity of the lactotrophs, in addition to the decreased DA tone early in 

lactation. tn addition, Nagy et al (49) reported morphological shifts in lactotroph 

populations in response to suckling. According to this group, pituitary tissue is 

sensitized to PRFs by a decrease in number of cells susceptible to inhibition by DA 

and an increase in those responsive to PRFs. 

The role of TRH as a PRF has been established by 1) PRL secretion in 

response to TRH administration from rat anterior pituitary cells (50), 2) the presence 

of specific TRH membrane receptors on lactotrophs (51, 52) and 3) the 

demonstration of TRH responsiveness of two regions on the 5'-flanking region of 

the PRL gene (53, 54). The role of TRH as both a TSH and PRL releasing factor 

has recently been confirmed by Haisenleder et al (55), who measured the 

expression of PRL and TSH subunit mRNA in response to different TRH pulses. 

They demonstrated that the pattem of TRH pulsatile signals can influence the 

expression of the genes of these pituitary hormones in a differential manner. The 

role of TRH as a PRF during suckling has been supported by the findings that TRH 

concentration in hypophysial portal blood increases following suckling-induced PRL 
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release (47, 48). 

After the initial increase of the proTRH mRNA levels on day 2 of lactation, 

and following readmission of pups to mothers after a 6 h separation later during 

lactation, these levels retum to normal. The described changes in plasma PRL until 

day 8 of lacation cannot solely be explained by changes in TRH synthesis, and 

hence PRFs other than TRH have to be postulated. The expected high levels of 

pro TRH mRNA during the remaining lactation period may be prevented by the 

stimulation of the hypothalamo-pituitary-adrenal axis. This suckling-induced increase 

in plasma corticosterone may be involved in the suppression of the pro TRH gene 

expression (the inverse relationship between corticosterone on proTRH mRNA has 

been discussed in chapter 4.1). 

The increase of hypothalamic TRH synthesis on day 2 of lactation, is 

accompanied by a increase in pituitary TSH secretion. On day 13 of lactation, the 

transient increase of hypothalamic pro TRH mRNA following reunion of mothers and 

pups after a 6 h separation, is not accompanied by an increase in TSH secretion. 

This different response on day 2 and day 13 of lactation to the hypothalamic TRH 

signal, may be related to an increased sensitivity of the pituitary thyrotrophs to TRH 

in pregnant rats near term and at the onset of lactation, or to an increase in plasma 

corticosterone during lactation, or both. As discussed in chapter 4.1, glucocorticoids 

can exert a direct suppressive effect on pituitary TSH secretion, and levels of 

plasma corticosterone on day 13 are higher than those on day 2 of lactation. This 

suppression of pituitary TSH secretion by plasma corticosterone, may prevent the 

normal pituitary response to increased TRH synthesis on day 13 of lactation. 

As lactation progresses, the magnitude of PRL response to suckling 

decreases in rats (56-58). Mechanisms that could contribute to this decline are 

reduction in intensity and frequency of suckling, lactotroph refractoriness to PRL­

releasing stimuli, and a faster PRL metabolic clearance rate (58-61). 

In conclusion, during lactation TRH seems primarily involved in the onset of 

PRL release and other factors are important for the continuation of the suckling­

induced PRL release. Furthermore, our data support the dual role of TRH as a PRL 

and TSH releasing factor. The differential response of anterior pituitary PRL and 

TSH secretion to the hypothalamic TRH signal during lactation is regulated by a 

variety of factors. The role of TRH as a PRF is affected by functional differences 

between lactotrophs and thyrotrophs influencing the sensitivity and/or response of 

these cells to hypothalamic and peripheral factors. 

130 



Chapter 4 

REFERENCES 
1. Segers on TP, Kauer J, Wolfe He, Mobtaker H, Wu P, Jackson 1M, Lechan RM 1987 

Thyroid hormone regulates TRH biosynthesis in the paraventricular nucleus of the rat 
hypothalamus. Science 238:78-80 

2. Ceccatelll S, Giardino L, Calza L. Response of hypothalamic peptide mRNAs to 
thyroidectomy. 

3. Sternberg EM, Young W3, Bernardini R, Calogero AE, Chrousos GP, Gold PW, Wilder 
Rl 1989 A central nervous system defect In biosynthesis of corticotropin-releasing hormone 
Is associated with susceptibility to streptococcal cell wall-Induced arthrllis in Lewis rats. Proc 
Nail Acad Sci USA 86:4771-5 

4, Suda Tt Tozawa F, Ushiyama T, Sumltomo T, Yamada M, Demura H 1990 Inlerleukln-1 
stimulates corticotropin-releasing factor gene expression in rat hypothalamus. Endocrinology 
126:1223·8 

5. Brady LS, Smith MA, Gold PW, Herkenham M 1990 Altered expression of hypothalamic 
neuropeptide mRNAs in food-restricted and food-deprived rats. Neuroendocrinology 
52:441·7 

6. Woodward CJ, Hervey GR, Oakey RE, Whitaker EM 1991 The effects of fasting on 
plasma corticosterone kinetics in rats. Br J Nulr 66:117-27 

7. Berkenbosch F, van Oers J, del Rey A, Tilders F, Besedovsky H 1987 
Corticotropin-releasing factor-producing neurons in the rat activated by interleukin-1. Science 
238:524-6 

8. Sapolsky RI Rivler C, Yamamoto G, Plotsky P, Vale W 1987 Interleukin-1 stimulates the 
secretion of hypothalamic corticotropin-releasing factor. Science 238:522-4 

9. Kakucska I, Lechan RM 1991 Adrenal status affects TRH but not somatostatin gene 
expression in the hypothalamus. In Annual Meeting of the Endocrine Society. Washington 
DC:235. 

10. Ceecatelll S, Cintra AI Hokfelt T, Fuxe K, Wikstrom AC, Gustafsson JA 1989 
Coexistence of glucocorticoid receptor-like immunoreactivity with neuropeplides In the 
hypothalamic paraventricular nucleus. Exp Brain Res 78:33-42 

11. Lee Sl, Stewart K, Goodman RH 1988 Structure of the gene encoding rat thyrotropin 
releasing hormone. J Bioi Chern 263:16604-9 

12. Redei E, Hilderbrand H, Aird F 1995 Corticotropin release inhibiting factor is encoded 
within prepro-TRH. Endocrinology 136:1813-1816 

13. Brabant G, Brabant A, Ranft U, Ocran K, Kohrle J, Hesch RD, von zur Muhlen A 1987 
Circadian and pulsatile thyrotropin secretion in euthyroid man under the influence of thyroid 
hormone and glucocorticoid admlnislralion. J Clin Endocrinol Metab 65:83-8 

14. Blanco AC, Nunes MT, Hell NS, Maciel AM 1987 The role of glucocorticoids in the 
stress-induced reduction of extrathyroldal 3,5,3'-triiodothyronine generation in rats. 
Endocrinology 120:1033-8 

15. Kononen J, Honkanleml J, Gustafsson JA, Pelto-Huikko M 1993 Glucocorticoid receptor 
colocalizaUon with pituitary hormones in the rat pituitary gland. Mol Cell Endocrinol 
93:97-103 

16. Rubella 0, Sonino N, Casara 0, Glrelll ME, Busnardo B, Bosearo M 1992 Acute and 
chronic effects of high glucocorticoid levels on hypothalamic-pituitary-thyrold axis in man. J 
Endocrino! Invest 15:437-41 

17. Samuels MH, luther M, Henry P, Ridgway EC 1994 Effects of hydrocortisone on pulsatile 
pituitary glycoprotein secretion. J Clin Endocrinol Metab 78:211-5 

18. Bruhn TO, McFarlane MB, Deckey JE, Jackson 1M 1992 Analysis of pulsatHe secretion of 
thyrotropin and growth hormone in the hypothyroid rat. Endocrinology 131 :2615-21 

19. Vale W, Brazeau P, Rivier C, Brown M, Boss B, Rivier J, Burgus R, Ling N, Guillemin R 
1975 Somatostatin. [Review]. Recent Prog Harm Res 31:365-97 

20. lamberts SW, Zuyderwijk J, den Holder F, van Koetsveld P, Hofland l1989 Studies on 
the conditions determining the inhibitory effect of somatostatin on adrenocorticotropin, 

131 



Discussion 

prolaclin and thyrotropin release by cultured rat pituitary cells. Neuroendocrinology 50:44-50 
21. Arlmura A, Gordin A, Schally AV 1976 Increase in basal and thyrotropin-releasing 

hormone-stimulated secretion of thyrotropin and the effects of triiodothyronine in rats 
passively immunized with antiserum to somatostatin. Fed Proceedings 35:782 

22. Arimura A, Schally AV 1976 Increase in basal and thyrotropin-releasing hormone 
(TRH)·slimulated secretion of thyrotropin (TSH) by passive immunization with antiserum 10 
somatostatin in rats. Endocrinology 98:1069-72 

23. Tannenbaum GS, Rorstad 0, Brazeau P 1979 Effects of prolonged food deprivation on the 
ullradian growth hormone rhythm and immunoreactive somatostatin tissue levels in the rat. 
Endocrinology 104:1733-8 

24. Honegger J, Spagnoli A, O'Urso R, Navarra P, Tsagarakls S, Besser GM, Grossman 
AB 1991 Interleukin·1 beta modulates the acute release of growth hormone· releasing 
hormone and somatostatin from rat hypothalamus In vitro, whereas tumor necrosis factor 
and interleukin-6 have no effect. Endocrinology 129:1275·82 

25. Nieves-Rivera F, Kerrigan JR, Krieg R Jr., Egan J, Hwang LJ, Truumees E, Veldhuis 
JO, Evans WS, Rogal AD 1993 Altered growth hormone (GH) secretion in vivo and in vitro 
in the diabetes-prone BBlWorcester rat. Growth Regul 3:235-44 

26. Rodriguez F, Jolin T 1991 The role of somatostatin and/or dopamine in basal and 
TRH-stimulated TSH release in food-restricted rats. Acta Endocrinol 125:186-91 

27. DeRuyter H, Burman KD, Wartofsky L, Smallridge RC 1984 Thyrotropin secretion in 
starved rats Is enhanced by somatostatin antiserum. Horm Melab Res 16:92-6 

28. Hugues IN, Enjalbert A, Moyse E, Shu C, Voirol MJ, Sebaoun J, Epelbaum J 1986 
Differential effects of passive immunization with somatostatin antiserum on 
adenohypophysial hormone secretions in starved rats. J Endocrinol109:169-74 

29. Smith GO, Seckl JR, Sheward WJ, Bennie JG, Carroll 8M, Dick H, Harmar AJ 1991 
Effect of adrenalectomy and dexamethasone on neuropeplide conlent of dorsal root ganglia 
in the rat. Brain Res 564:27-30 

30. Rettorl V, Milenkovlc L, Riedel M, McCann SM 1990 Physiological role of neuropeptlde Y 
(NPy) in control of anterior pituItary hormone release In the rat. Endocrinol Exp 24:37-45 

31. Malendowicz LK, Miskowiak B 1990 Effects of prolonged administration of neurolensin, 
arginine-vasopressin, NPY, and bombesln on blood TSH, T3 and T4 levels in the rat. In Vivo 
4:259-61 

32. Harfstrand A, Eneroth P, Agnail L, Fuxe K 1987 Further studies on the effects of central 
administration of neuropeptide Y on neuroendocrine function in the male rat: relationship to 
hypothalamic calecholamines [published erratum appears in Regul Pept 1987 
May;17(5):300J. Regul Pept17:167-79 

33. Lye SJ, Nicholson BJ, Mascarenhas M, MacKenzie L, Petrocelli T 1993 Increased 
expression of connexin-43 in the rat myometrium during Jabor is associated with an Increase 
in the plasma eslrogen:progeslerone ratio. Endocrinology 132:2380-6 

34. Fukuda H, Ohshlma K, Mori M, Kobayashi I, Greer MA 1980 Sequential changes in the 
pituitary-thyroid axis during pregnancy and lactation in the rat. Endocrinology 107:1711-6 

35. Calvo R, Obregon MJ, Rulz de Ona C, Ferreiro B, Escobar Del Rey E, Morreale de 
Escobar G 1990 Thyroid hormone economy in pregnant rats near term: a "physiological" 
animal model of nonthyroidallllness? Endocrinology 127:10-6 

36. Andersen JR 1982 Prolactin in amniotic fluid and maternal serum during uncomplicated 
human pregnancy. A review. [Review). Dan Med Bull 29:266-74 

37. De Lean A, Ferland L, Drouin J 1977 Modulation of pituitary thyrotropin releasing hormone 
levels by eostrogens and thyroid hormones. Endocrinology 100:1496 

38. Gershengorn Me, Marcus-Samuels BE, Geras E 1979 Estrogens increase the number of 
thyrotropin-releasing hormone receptors on mammotropic cells In culture. Endocrinology 
105:171-6 

39. Bauer K, Carmellet P, Schulz M, Baes M, Denet C 1990 Regulation and cellular 
localization of the membrane·bound thyrotropIn, releasing hormone-degrading enzyme In 

132 



Chapter 4 

primary cultures of neuronal, glial and adenohypophyseal cells. Endocrinology 127:1224~33 
40. Bauer K 1988 Degradation and biological inactivation of thyrotropin releasing hormone 

(TRH): regulation of the membrane-bound TRH-degradJng enzyme from rat anterior pituitary 
by estrogens and thyroid hormones. Biochimie 70:69-74 

41. Gershengorn Me 1978 Blhormonal regulation of the thyrotropin-releasing hormone receptor 
in mouse pituitary thyrotropic tumor cells in culture. J Clln Invest 62:937-43 

42. Hinkle PM, Goh KB 1982 Regulation of thyrolropln-releaslng hormone receplors and 
responses by L-Irilodothyronine in dispersed rat pituitary cell cultures, Endocrinology 
110:1725-31 

43. Rondeel JM, de Greef WJ, van der Schoot P, Karels B, KlootwlJk W, Visser TJ 1988 
Effect of thyroid status and paraventricular area lesions on the release of 
thyrotropin-releasIng hormone and catecholamines into hypophysial portal blood. 
Endocrinology 123:523-7 

44. Plotsky PM, Nelli JD 1982 The decrease in hypothalamic dopamine secretion induced by 
suckling: comparison of voltammetric and radioisotopic methods of measurement. 
Endocrinology 110:691-6 

45. Plotsky PM, Nelli JD 1982 Interactions of dopamine and thyrotropin-releasing hormone in 
the regulation of prolactin release in lactating rats. Endocrinology 111 :168-73 

46. Fagin KD, Neill JD 1981 The effect of dopamine on thyrotropin-releasing hormone-induced 
prolactin secretion in vitro. Endocrinology 109:1835-40 

47. Fink G, Koch V, Ben Araya N 1982 Release of thyrotropin releasing hormone into 
hypophysial portal blood Is high relative 10 olher neuropeplldes and may be relaled 10 
prolactin secretion. Brain Res 243:186-9 

48. de Greef WJ, Visser T J 1981 Evidence for the Involvement of hypothalamic dopamine and 
thyrotrophin-releasing hormone in suckling-induced release of prolactin. J Endocrinol 
91:213-23 

49. Nagy GM, Frawley LS 1990 Suckling increases the proportions of mammolropes 
responsive to various prolactin-releasing stimuli. Endocrinology 127:2079-84 

50. Tashjian A Jr., Barowsky NJ, Jensen OK 1971 Thyrotropin releasing hormone: direct 
evidence for stimulation of prolactin production by pltuilary cells In culture. Biochem Biophys 
Res Commun 43:516-23 

51. Hinkle PM, Tashjian A Jr. 1973 Receptors for thyrotropin-releasing hormone in prolactin 
producing rat pituitary cells in culture_ J BIoi Chern 248:6180-6 

52. Labrie F, Barden Nt Poirier G, De Lean A 1972 Binding of thyrotropIn-releasing hormone 
to plasma membranes of bovine anterior pituitary gland (hormone receptor-adenylate 
cyclase-equilibrium conslanl-( 3 H)lhyrolropin). Proc Nail Acad Sci USA 69:283-7 

53. Day RN, Maurer RA 1989 The distal enhancer region of the rat pro[actln gene contains 
elements conferring response to multiple hormones. Mol Endocrinol 3:3-9 

54. Day RN, Maurer RA 1990 Pituitary calcium channel modulallon and regulation of prolactin 
gene expression. Mol Endocrinol 4:736·42 

55. Haisenleder OJ, Ortolano GA, Dalkin AC, Vasin M, Marshall JC 1992 Differenlial actions 
of thyrotropin (TSH)-releasing hormone pulses In the expression of prolactin and TSH 
subunit messenger ribonucleic acid in rat pituitary cells in vitro. Endocrinology 130:2917~23 

56. Subramanian MG, Reece RP 1975 Anterior pituitary and plasma prolactin in rats after 2 to 
90 minutes of suckling_ Proc Soc Exp Bioi Med 149:754-6 

57. Grosvenor CE, Mena F, Whitworth NS 1979 The secretion rate of prolactin in tne rat 
during suckling and its metabolic clearance rate after increasing intelVals of nonsuckling. 
Endocrinology 104:372-6 

58. Selmanoff M, Selman off C 1983 Role of pup age, estradiol-17 beta and pituitary 
responsiveness in the differences in the suckling-induced prolactin response during early 
and late lactation_ Bioi Reprod 29:400-11 

59_ Grosvenor CE, Whitworth NS 1979 Secretion rate and metabolic clearance rate of 
prolactin in the rat during mid- and [ate lactation. J Endocrino[ 82:409-15 

133 



Discussion 

60. Selmanoff M, Wise PM 1981 Decreased dopamine turnover in the median eminence in 
response to suckling in the lactating rat. Brain Res 212:101-15 

61. Shant I AS, Subramanian MG, Savoy-Moore RT, Kruger ML, Moghlssl KS 1995 
Attenualion of the magnitude of suckling-Induced prolactin release with advancing lactation: 
mechanisms. Ufe Sc!ences 56:259·266 

134 



SUMMARY 

135 





Summary 

SUMMARY 

Thyrotropin-releasing-hormone (TRH) is produced by hypothalamic neurons, 

transported to the median eminence, where it is released into the hypophyseal 

portal blood. At the pituitary gland it stimulates the function of the thyrotrophs and 

lactotrophs, which synthesize and release thyroid-stimulating-hormone (TSH) and 

prolactin (PRL), respectively. TSH, in turn, stimulates the secretion of thyroxine (T4) 

and triiodothyronine (T3) from the thyroid gland. In addition to stimulating milk 

production, PRL is involved in a broad spectrum of biological activities. In this thesis 

the role of TRH was studied in the regulation of TSH and PRL secretion under 

different (patho-) physiological conditions. 

The role of TRH in the regulation of TSH secretion under four thyroid 

function-suppressing conditions - starvation, long-term food reduction, interleukin 

administration and STZ-induced diabetes mellitus - was investigated (chapter 2). 

Starvation and food reduction cause a suppression of the metabolic rate, in order to 

save energy. This adaption of the body is associated with low plasma levels of T3, 

and is therefore known as the low T3 syndrome. Interleukin-induced systemic 

illness and diabetes mellitus are experimental models of non-thyroidal illness, also 

resulting in a low T3 syndrome. In view of the low plasma T4 and/or T3, these four 

(patho-) physiological conditions are characterized by inappropriatly normal or low 

levels of TSH. This points to a central mechanism for the inhibition of TSH secretion 

and thyroid function. Therefore, the contribution of TRH to the suppressed thyroid 

function in this syndrome was investigated. 

A 3-day starvation period decreases hypothalamic proTRH mRNA, 

hypothalamic TRH content and TRH concentration in portal blood. In contrast to the 

effect of starvation, long-term food reduction does not affect levels of hypothalamic 

proTRH mRNA, nor TRH content in the ME, despite a profound decline in plasma 

TSH. Levels of hypothalamic proTRH mRNA are also unaffected after 7 days of IL-

6 infusion, while IL-l infusion causes a significant decrease in these levels after 7 

days, but not after 1 or 2 days when plasma TSH reached its nadir. Two and three 

weeks after induction of diabetes mellitus with STZ, R-A rats show decreased levels 

of pro TRH mRNA, while this parameter is unaffected in RxU rats. 

Summarizing the effects of these four studies on hypothalamic TRH 

production and release, it is clear that these parameters are either unaffected or 

show a trend towards reduction rather than an increase as might be expected, if 
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changes in hypothalamic TRH were secondary to the reduction in plasma thyroid 

hormone levels. Decreased TSH secretion occurs before (IL-1 treatment and STZ­

induction of diabetes mellitus in R-A rats) or even without (food reduction, IL-6 

treament and STZ-induction in diabetes mellitus in RxU rats) the decrease in 

proTRH mRNA. The decline in TSH secretion, therefore, cannot only be explained 

by the changes in hypothalamic proTRH mRNA. Concomitant changes at the 

hypothalamic and/or pituitary level seem to be involved in the generation of a low 

T3 syndrome. 

Starvation, food reduction, interleukin administration, and STZ-induced 

diabetes mellitus are all associated with increased plasma levels of glucocorticoids. 

An inverse relationship has been demonstrated between levels of plasma 

corticosterone and levels of proTRH mRNA. Continuous IL-1 infusion stimulates 

corticosterone secretion, and pro TRH gene expression is reduced after 7 days, but 

not after 1 or 2 days of infusion. In the same study, IL-6 infusion had no effect on 

plasma corticosterone nor on hypothalamic proTRH mRNA. A similar observation 

was made in the study on STZ-induced diabetes mellitus. In R-A diabetic rats the 

increased plasma corticosterone concentration is accompanied by a reduced 

proTRH gene expression, whereas in RxU diabetic rats neither parameter changed 

significantly. A suppressive effect of plasma corticosterone on proTRH gene 

expression would explain the different effects of IL-1 vs. IL-6, and strain-dependent 

responses to STZ-induced diabetes on proTRH mRNA. Negative control of 

hypothalamic proTRH by plasma glucocorticoids may be one of the central 

mechanisms underlying the generation of the low T3 syndrome. 

However, our data demonstrate that the decreased pituitary TSH secretion 

cannot be attributed to changes in hypothalamic proTRH alone. Direct effects at the 

level of the pituitary by e.g. glucocorticoids, somatostatin and NPY may contribute 

to the decreased TSH secretion. Concomitant changes at the hypothalamic, 

pituitary and peripheral level may act in concert to inhibit thyroid hormone secretion. 

In chapter 3 the dual role of TRH in the secretion of PRL and TSH was 

investigated during lactation. Lactation is associated with an increase in PRL 

release from the anterior pituitary and changes in the pituitary-thyroid axis, resulting 

in the decrease in plasma thyroid hormone concentration. The latter is unexpected 

if high PRL levels during lactation are due to increased TRH stimulation. This thesis 

describes the effects of litter size throughout lactation and the effects of acute 

suckling after a period of separation of mothers and pups, on TRH synthesis and 
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release. 

Suckling-induced increase of plasma PRL was accompanied by a transient 

increase of hypothalamic pro TRH on day 2 of lactation and, at later time points, 

following readmission of mothers and pups after a 6 h separation. This suggests 

that during lactation TRH is primarily involved in the onset of PRL release and that 

other factors are important for the continuation of the suckling-induced PRL release. 

The return of hypothalamic pro TRH to normal levels during continued lactation may 

be mediated by an inhibitory effect of the suckling-induced increase in plasma 

corticosterone. 

The increase of hypothalamic TRH synthesis on day 2 of lactation, is 

accompanied by a increase in pituitary TSH secretion. On day 13 of lactation, the 

transient increase of hypothalamic pro TRH mRNA following reunion of mothers and 

pups after a 6 h separation is not accompanied by an increase in TSH secretion. 

This different response on day 2 and day 13 of lactation to the hypothalamic TRH 

signal may be related to an increased sensitivity of the pituitary thyrotrophs to TRH 

in rats at the onset of lactation, and/or to the increased levels of plasma 

corticosterone at day 13 of lactation, which may exert a direct inhibitory effect at the 

pituitary. Furthermore, the dilferential control of anterior pituitary PRL and TSH 

secretion by the hypothalamic TRH signal during laclation is related to functional 

differences between lactotrophs and thyrotrophs, which influence the sensitivity 

and/or response of these cells to hypothalamic and peripheral factors. 

In conclusion, in the generation of the low T3 syndrome, the decreased 

pituitary TSH secretion cannot be attributed to changes in hypothalamic proTRH 

alone. Dependent on the (patho-) physiological condition, concomitant changes at 

the hypothalamic, pituitary and peripheral level act in concert to inhibit thyroid 

hormone secretion. 
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Het tripeptide "thyrotropin-releasing-hormone" (TRH), geproduceerd door 

hypothalame neuron en, wordt getransporteerd naar de eminentia mediana waar het 

wordt afgegeven aan het hypofysesteelbloed. Aangekomen bij de hypofyse, 

stimuleert het vervolgens de functie van de thyrotrofe en lactotrofe cellen, welke 

respectievelijk schildklier-stimulerend-hormoon (TSH) en prolactine (PRL) 

synthetiseren en afgeven. TSH, op zijn beurt, stimuleert de secretie van thyroxine 

(T4) en triiodothyronine (T3) uit de schildklier. Naast stimulatie van de 

melkproduktie is PRL betrokken bij een breed scala aan biologische activiteiten. In 

dit proefschrift wordt de rol van TRH bestudeerd in de regulatie van de TSH- en 

PRL-secretie tijdens verschillende (patho-)fysiologische condities. 

De rol van TRH in de regulatie van de TSH-secretie werd onderzocht tijdens 

vier schildklierfunctie-onderdrukkende condities, nl. vasten, langdurige 

voedselreductie, interleukinentoediening en STZ-ge'lnduceerde diabetes mellitus 

(hoofdstuk 2). Vasten en voedselreductie veroorzaken een onderdrukking van het 

basaal metabolisme waardoor energie wordt bespaard. Deze aanpassing van het 

lichaam wordt geassocieerd met lage plasma-T3-spiegels en staat daardoor bekend 

als het lage-T3-syndroom. Interleukinen-ge'lnduceerde systemische ziekte en 

diabetes mellitus zijn experimentele modellen voor niet-schildklier aandoeningen 

(non thyroidal illness) welke ook leiden tot het lage-T3-syndroom. De lage plasma­

T3-spiegels tijdens deze vier (patho-)fysiologische condities gaan gepaard met 

onwaarschijnlijk normale of lage plasma-TSH-spiegels. Dit duidt op een centraal 

mechanisme dat verantwoordelijk is voor de remming van de TSH-secretie en 

schildklierfunctie. Daarom werd de bijdrage van TRH in de ontwikkeling van 

onderdrukte schildklierfunctie onderzocht. 

Drie dagen vasten veroorzaakte een daling in hypothalaam proTRH mRNA, 

hypothalame TRH-content en TRH-concentratie in het porta Ie bloed. In tegenstelling 

tot vasten, veroorzaakte langdurige voedselreductie geen veranderingen in 

hypothalaam proTRH mRNA en TRH-content in de eminentia mediana, ondanks de 

sterke daling in plasma-TSH. Hypothalaam proTRH mRNA-spiegels bleven 

eveneens onveranderd na 7 dagen interleukine-6-infusie, maar interleukine-1-infusie 

veroorzaakle een daling van deze spiegels na 7 dagen, zij hel niel na 1 of 2 dagen, 

wanneer plasma-TSH het laagst was. Twee en drie weken na inductie van diabetes 

mellitus met STZ, daalde het proTRH mRNA in de hypothalamus significant in de 
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R-A ratten, maar bleef onveranderd in RxU ratten. 

De effecten van deze vier condilies op de hypothalame TRH-produklie en -

afgifte samengevat, tonen aan dat deze parameters onveranderd of verlaagd zijn. 

Deze resulaten zijn in strijd met de te verwachten stijging, ervan uitgaande dat 

veranderingen in hypothalaam TRH secundair zijn aan de afname in plasma­

schildklierhormoonspiegels. De verlaging in TSH-secrelie werd waargenomen voor 

(IL-1-infusie en STZ-gernduceerde diabetes mellitus in R-A ratten) of zeUs zonder 

(voedselreduclie, IL-6-infusie en STZ-ge'induceerde diabetes mellitus in RxU ratten) 

een daling in proTRH mRNA. De daling in TSH-secretie kan daardoor niet volledig 

verklaard worden op basis van de veranderingen in hypothalaam proTRH mRNA. 

Waarschijnlijk zullen andere veranderingen op hypothalaam en hypofysair niveau 

bijdragen aan de ontwikkeling van het lage-T3-syndroom. 

Vasten, voedselreduclie, interleukinentoediening, en STZ-gernduceerde 

diabetes mellitus gingen aile gepaard met een slijging in de plasma­

glucocorticordenspiegels. Een inverse relalie tussen deze spiegels en proTRH 

mRNA werd aangetoond. Conlinue IL-1-infusie slimuleerde corticosteronsecrelie en 

onderdrukte de proTRH-genexpressie na 7 dagen, maar niet na 1 en 2 dagen. IL-6-

infusie had daarentegen geen effect op plasma-corticosteron, noch op proTRH 

mRNA. In de studie aangaande STZ-gernduceerde diabetes mellitus namen we een 

slijging in plasma-corticosteron en een daling in proTRH mRNA waar in de R-A 

ratten, terwijl in de RxU rallen de beide parameters niet significant veranderden. 

Een onderdrukkend effect van plasma-corticosteron op de proTRH-genexpressie 

zou de verschillende effecten van de IL-1- VS. de IL-6-behandeling en de stam­

afhankelijke effecten van STZ-ge'induceerde diabetes mellitus op proTRH verklaren. 

Een negatieve controle van hypothalaam pro TRH door plasma-glucocorticoiden zou 

een van de centrale mechanismen kunnen zijn die ten grondslag liggen aan de 

ontwikkeling van het lage-T3-syndroom. 

Onze data tonen echter aan dat de verlaagde hypofysaire TSH-secrelie niet 

aileen verklaard kan worden door veranderingen in hypothalaam proTRH. Directe 

effecten op het niveau van de hypofyse door bv. glucocorticoiden, somatostaline en 

NPY kunnen eveneens bijdragen aan de verlaging van de TSH-secretie. 

Waarschijnlijk leiden veranderingen op hypothalaam, hypofysair en perifeer niveau 

tesamen tot een verlaagde schildklierhormoonsecretie. 

In hoofdstuk 3 wordt de dubbele rol van TRH in de secrelie van PRL en TSH 

bestudeerd tijdens zogen, Lactalie wordt enerzijds geassocieerd met een toename 
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in de PRL-afgifte van de hypofysevoorkwab, en anderzijds met veranderingen 

binnen de hypofyse-schildklier-as, resulterend in verlaagde 

schildklierhormoonspiegels. Oil laatste is onverwacht als veranderingen in 

hypothalaam TRH secundair zouden zijn aan de verlaging in 

schildklierhormoonspiegels in plasma. Oit proefschrift beschrijft de effecten van 

nestgrootte tijdens de gehele lactatieperiode en de effecten van een acute 

zoogstimulus na een periode waarin moeders en pups gescheiden zijn geweest, op 

TRH-synthese en -afgifte. 

De door zogen ge'lnduceerde toe name in PRL-afgifte gaat samen met een 

korte stijging van hypothalaam proTRH mRNA op dag 2 van lactatie en op dag 13 

van lactatie, na terugplaatsing van moeders en pups nadat zij 6 uur gescheiden 

waren geweest. Oit suggereert dat tijdens lactatie TRH voornamelijk betrokken is bij 

de aanzet tot de verhoogde PRL-afgifte, en dat andere factoren verantwoordelijk 

zijn voor het verdere verloop van de PRL-spiegels. Het snelle herstel van 

hypothalaam proTRH mRNA zou gemedieerd kunnen worden door een remmend 

effect van de door zogen ge'lnduceerde hoge plasma-corticosteron-spiegels. 

De toename van de hypothalame TRH-synthese op dag 2 van lactatie gaat 

samen met een toename in plasma-TSH. De korte toename van proTRH mRNA na 

terugplaatsing van moeders en pups op dag 13 van lactatie, gaat niet samen met 

een toename in plasma-TSH. Oil verschil in respons op dag 2 en dag 13 van 

lactatie op de TRH-stimulus, zou gerelateerd kunnen zijn aan een toegenomen 

gevoeligheid van de hypofysaire thyrotrofe cellen voor TRH in ratten aan het begin 

van de lactatie-periode, en/of aan de verhoogde plasma-corticosteron-spiegels op 

dag 13 van lactatie, welke een direct rem mend effect op de hypofyse zouden 

kunnen uiloefenen. Bovendien is het verschil in regulatie van de hypofysaire TSH­

en PRL-secretie door hypothalaam TRH tijdens lactatie gerelateerd aan functionele 

verschillen tussen lactotrofe en thyrotrofe cellen, welke de gevoeligheid en/of 

respons van deze cellen be'lnvloeden op hypothalame en perifere factoren. 

Tijdens de ontwikkeling van het lage-T3-syndroom, kan de verlaagde TSH­

secretie niet volledig worden toegekend aan veranderingen in hypothalaam proTRH. 

Afhankelijk van de (patho-)fysiologische conditie, zullen gelijktijdige veranderingen 

op hypothalaam, hypofysair en perifeer niveau tesamen, leiden tot de uiteindelijke 

remming van schildklierhormoonsecretie. 
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ACTH 
Arg 
BSA 
BW 
CNS 
CRH 
DA 
DKP 
DNA 
F 
FF 
FFA 
Gin 
Glu 
Gly 
His 
HPLC 
ID1 
IL-1 
IL-6 
Iv 
LPS 
Lys 
ME 
MMI 
NT! 
NPY 
Pro 
Ps4 
proTRH 
PRL 
PVN 
R-A 
RIA 
mRNA 
SEM 
STZ 
T3 
rT3 
T4 
TBG 
TBPA 
TRH 
TSH 
UDP 
UGT 

Adrenocorticotropic hormone 
Arginine 
Bovine serum albumin 
Body weighl 
Central nervous system 
Corticotropin-releasing hormone 
Dopamine 
Diketoplperazlne 
Deoxyribonucleic acid 
Free (not protein bound) 
Free fraction 
Free fatty acids 
Glutamine 
Glutamic acid 
Glycine 
Histidine 
High performance liquid chromatography 
Type 1 iodothyronine deiodinase 
Interleukin-1 
Interleukin·6 
Intravenous 
Lipopolysaccharide 
Lysine 
Median eminence 
Methimazol 
Non-Ihyroldal illness 
Neuropepllde Y 
Proline 
Spacer pepUde 4 
Prohormone of TRH 
ProlaeUn 
Paraventricular nucleus 
A-Amsterdam 
Radioimmunoassay 
Messenger ribonucleic acid 
Standard error of the mean 
Sireptozotocin 
Triiodothyronine 
Reverse triiodothyronine 
Thyroxine 
Thyroxine-binding globuline 
Thyroxine-binding prealbumin 
Thyrotropin-releasing hormone 
Thyroid-stimulating hormone 
Uridlne diphosphate 
UDP-glucuronyltransferase 

LIST OF ABBREVIATIONS 
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