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Abstract: In this paper  we consider a block replacement model in which a component  can be replaced 
preventively at maintenance opportunities only. Maintenance opportunities occur randomly and are 
modelled through a renewal process. In the first, theoretical part  of the paper we derive an optimality 
equation and show that the optimal opportunity block replacement policy can be described as a so-called 
one-opportunity-look-ahead policy. In the second, computational part  we present an exact optimisation 
algorithm in case of K2-distributed times between opportunities. This algorithm can also be used as an 
approximative method in case of other times between opportunity distributions. Together with another 
approximative method, based on the stationary forward recurrence time distribution, its performance is 
checked with simulation. 
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1. Introduction 

Preventive maintenance is widely accepted within industry as an effective means to reduce the number 
of failures. Preferably, it is planned at those moments in time when units are not required for production. 
In the process industry this may cause problems as most units are used continuously and downtime costs 
are high. Sometimes, however, there may be shortlasting interruptions of production for a variety of 
reasons, e.g. breakdowns of essential units. During these interruptions some other units are not required 
and these can then be maintained preventively without costs for downtime being incurred, in which case 
we speak of maintenance opportunities. Unfortunately, in most cases these opportunities cannot be 
predicted in advance. 

Because of their random occurrence, traditional planning fails to make effective use of these mainte- 
nance opportunities. Within the Koninkli jke/Shell-Laboratorium, Amsterdam a decision support system 
has been developed for opportunity maintenance, which is now being field-tested. At the occurrence of an 
opportunity, the system aids the maintenance engineer in selecting, and assigning priorities to, preventive 
maintenance activities so as to minimise long-term total average costs. 

In this paper we deal with one of the underlying models, viz. the opportunity block replacement model. 
In this model, a component  is replaced upon failure and can only be replaced preventively at an 
opportunity. The occurrence of opportunities is described by a renewal process. The preventive replace- 
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ment policies considered prescribe that a component be replaced preventively at the first opportunity after 
a critical time since the last preventive replacement. 

This model was applied for units consisting of many components which were replaced individually 
upon failure and for which opportunities were created by causes outside the unit (e.g. breakdown of other 
essential units in a series configuration with the unit). Failures of components provided no maintenance 
opportunity for other components in the unit as the failure cause had to be removed as soon as possible 
and there was no time for preventive maintenance on that unit. 

The simple age and block replacement model has been widely studied (see e.g. Barlow and Proschan 
[3]). Models for opportunity (or opportunistic) replacement, however, are scarce. Early work is reported in 
the review of Pierskalla and Voelker [14] and the book of Jorgenson et al. [11]. More recent work is 
discussed in the review of Sherif and Smith [17] and in the studies by Sherif [18] and B~ickert and Rippin 
[2]. 

Although there are few papers, they present several types of opportunity models. A number of papers 
consider multiple components and assume that failures of some components create opportunities for 
preventive maintenance of others. Our model can be regarded as a special case of these models. 
Discrete-time Markov decision chains are often used to analyse these models, but the computational effort 
is only bearable in case of few discrete lifetimes and few components. Besides, optimal policies tend to 
have complex structures and application of these models to our problem yields inferior results compared to 
our direct approach. A continuous time approach is given in [4]. The solution of the differential equations 
involved in his approach is only possible in case of special lifetime distributions, such as Erlang 
distributions. 

A model in which opportunities were generated independently of the components to be maintained was 
first introduced by Jorgenson et al. [11]. For age replacement and exponential times between opportunities 
they provided formulas for operating characteristics, such as the average costs. For this case Woodman 
[22] and Duncan and Scholnick [8] provide some numerical results. Sethi [16] considered generally 
discrete-distributed lifetimes with Markov decision chains and showed that there exists an optimal policy 
of the control-limit type (a control-limit policy prescribes that a component be replaced at an opportunity 
if its age has passed a certain critical value). However, he does not show how to determine such a policy. 
Age replacement at deterministic times between opportunities was incorporated in a model analysed by 
Berg and Epstein [6]. 

In our model the opportunity generating process is separated from the component lifetime process, and 
in case of block replacement this allows a more general and elegant analysis, because the preventive 
maintenance action only depends on the opportunity process and not on realisations of the lifetimes. It 
further allows a far better insight into the effect of characteristics of the opportunity process on the 
optimal policy and the minimum average costs. Although in principle age replacement is a better policy 
than block replacement, it does not allow such a nice analysis as for block replacement, because at any 
failure one has to keep track of the residual time to the next opportunity, which has a simple form only in 
case of exponentially distributed times between opportunities. The opportunity age replacement model is 
therefore far more difficult to analyse in case of non-exponentially distributed times between opportuni- 
ties. The exponential case will be dealt with in a subsequent paper (see Dekker and Dijkstra [7]). A further 
disadvantage of age replacement is that extensions to replacement of multiple components are very 
difficult, which is not the case for block replacement. 

The only paper that has dealt with opportunity block replacement so far is from Liang [12], (he uses the 
term piggyback policies) whose analysis is only a first step as he provides formulas for operating 
characteristics (such as average costs) in case of zero control limits only. 

In this paper we give theoretical as well as computational results for general continuously distributed 
lifetimes and times between opportunities. In the theoretical part we focus on establishing an optimality 
equation without restrictive assumptions and provide an interpretation. In the computational part we 
present for a special class of opportunity distributions (including the exponential) an exact optimisation 
algorithm and show how this method can be used as an approximative method for general distributions. 
Simulation studies are carried out to check the approximations. 
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2. The Opportunity Block Replacement Problem (OBRP) 

Consider a component which may be replaced preventively at an opportunity only against costs Cp 
(> 0). Failure of the component with successive replacement induces costs cf (cf > Cp). Replacements are 
considered to occur instantaneously. The lifetimes of the components used for replacement are indepen- 
dent and identically distributed; they are represented by the continuous r.v. X with (finite) expectation ~t 
and variance o 2. Let F(t), f(t), M(t) and m(t) denote the corresponding cumulative distribution 
function (c.d.f.), probability density function (p.d.f.), renewal function and renewal density function, 
respectively. Opportunities occur according to a renewal process, independently of the lifetime process. Let 
the continuous r.v. Y denote the time between opportunities (abbreviated to TBO). We assume that Y has 
finite first and second moments and by G(t), g(t), N(t), and n(t) we denote its corresponding c.d.f., 
p.d.f., renewal function and renewal density function, respectively. We will further assume that both F(t) 
and G(t) are twice continuously differentiable and that F(0) = G(0) = 0. As a result both M(t) and N(t) 
are twice continuously differentiable. For the renewal density m(t) and the renewal function M(t) we 
have the following asymptotic expressions (see Ross [15] and Tijms [21]). Similar expressions hold for n(t) 
and N(t). 

and 

1 
lim re(t)= - (1) 

l - ' * ~  /.L 

lira ( M ( t ) - ~ )  ° 2 1  
,~ ~ = 2/z 2 2" (2) 

We will first state some results from the literature (see e.g. Barlow and Proschan [3] and Berg [5]) on the 
block replacement problem (abbreviated to BRP). That problem can be considered to be an extreme case 
of the OBRP by setting the time between opportunities equal to zero (and keeping the cost figures the 
same). We will refer to this case as the planned case, as it is possible to plan the preventive replacements in 
advance. In the planned case the process is renewed after each preventive replacement. According to the 
renewal reward theorem the long-term average costs ~p(t)  associated with a replacement interval of length 
t are given by 

Cp + cfM(t) 
% ( t )  = t , t >  o. (3)  

Differentiating (3) with respect to t and rewriting q~p(t) = 0 yields the equation which the optimal block 
replacement interval tp has to satisfy, i.e. 

tin(t) - M(t) = Cp/Cf. (4) 

Furthermore, the minimum expected long-term average cost ~p* (if a solution of (4) exists) equals 

~ ; = ~ p ( t ; ) = c f m ( t ; ) .  (5) 

The marginal cost Bp(t) of a preventive replacement at time t (or more precisely, t units of time after the 
preceding preventive replacement) is defined as the difference, per unit time, between a preventive 
replacement now and the expected cost associated with waiting an additional infinitesimally short time A. 
More precisely, 

( o f ( r e ( t )  a + o ( Z ) )  + c . )  -- cp 
Bp(t) = a-01im A = cfm(t), (6) 

since re(t) A is the expected number of failures in (t, t + A), given only (failures are not recorded) that a 
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* should satisfy is therefore new component was introduced at time 0. The equation which tp 

~p(t) = ,~p(t), (v) 

which is equivalent to (5) and which we will refer to as the optimality equation for the planned case. 
The following theorem from [5] gives sufficient conditions under which a unique, finite solution t~ 

exists. 

Theorem 1. If m(t) is a continuously increasing function of t then equation (5) has a unique finite solution t~, 
pro~,ided that 

- - < ½  1 -  . (8 )  
C f  

In the following we will generalize the aforementioned theory and especially the marginal cost approach 
from [5] to the opportunity block replacement model. Under an opportunity block replacement policy with 
control limit t a component is replaced preventively at the first opportunity which is at least t time units 
after the last preventive replacement. It is easily observed that preventive replacements at opportunities are 
renewals of the total process (both opportunity and lifetime). The process between two successive renewals 
will be called a cycle. The length of a cycle and the expected number of failures during a cycle depend on 
the control limit t and the (distribution of the) time between t and the first opportunity after t. Let Z, be 
the random variable denoting the time between t and the first opportunity after t (the forward recurrence 
time) and let q'(t, • ) be its c.d.f. Let us first recall some results from renewal theory which can be found in 
e.g. [15], pp. 44-45. With respect to the distribution of the forward recurrence time it can be shown that 

and 

P ( Z , < ~ z ) = G ( t + z ) - f o t { 1 - G ( t + z - u ) }  d N ( u ) ,  t>~O, z>~O, (9 )  

EZ~=EY{1 + N ( t ) )  =t, t>~O. (10) 

Furthermore, there exists a limiting forward recurrence time distribution for which the following equation 
holds: 

P(Z ~z)= lim P(Z,~z)= ~-~V ff'(1-G(u)} du, z>_0. (11) 
t ~ O 0  ]Lai J 0 

Now we are able to give an expression for the long-term average costs Or ( t  ) for an opportunity block 
replacement policy with control limit t 

( J0 ) O r ( t ) =  Cp+Cf M(t+z)dB(Z,<~z)  / ( t+EZ , ) .  (12) 

Notice that the finiteness of EZ, and the fact that M(t) permits majoration by a linear function (which 
follows from (2)) guarantee the finiteness of the integral in (12) and that 

lim M ( t + z ) ( 1 - P ( Z , < ~ z ) }  = 0  forevery t>~0. (13) 
2 ~ O O  

Hence, we can rewrite the integral in (12) with partial integration in the following way 

£ M(t + z) de(Z,  ~ z) = M(t) + m(t + z){1 - P(Z, ~ z)} dz. (14) 

In order to optimise 4~r ( t)  we require the following technical lemma which mainly concerns the change of 
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order of differentiation and integration of the integral on the right-hand side of (14). Its proof is given in 
Appendix 1. 

Lemma 2. Let A(t)  ~ f~m( t  + z){1 - P(Z  t <~ z)} dz. Then A(t)  is differentiable in t and 

ffd A ' ( t ) =  -~[m(t+z){1-P(Z,~z))] dz 

fo ~ m  <~ =-m(t)+EYn(t) (t+z) dP(Z z). (15) 

Notice that the derivative of A(t) depends only upon Z and not on Z,. Let 

fo •y(t)==-cf m ( t + z )  dP(Z<~z) ,  (16) 

and consider the following equation: 

n y ( t )  - ~ r ( t )  = 0. (17) 

We are now in a position to formulate the main theorem of opportunity block replacement and show that 
(17) is an optimality equation. The theorem is a direct generalisation of Theorem 1. 

Theorem 3. I f  re(t) is a continuously increasing function, then ~y(  t) has its minimum at the unique finite 
solution t~, > 0 of (17), provided that 

- -  < ½ 1 - (18) 
Cf 

and n(t) > 0 for t > O. 

Proof. From (9), (11), (12), (14), (16) and the fact that M(0) = 0 and Z 0 -- Y it follows that 

Cp Cf foe / ", Cp 
• r ( 0 ) = ~ - ~ + E - - Y J 0  m t z / { 1 - G ( z ) }  d z = ~ - ~ + ~ y ( 0 ) > ~ y ( 0 ) .  

Differentiating (12) with respect to t and using (10) and Lemma 2 yields after some algebra 

d ~ r ( t  ) --- n ( t ) {  nr( t )  - ~ y ( t ) } / ( 1  + N(t) ) .  (19) 

With n(t) > 0 for t > 0 and the continuity of ~r( t )  and ~r(t) it follows that there is a 6 > 0 such that 
~ r ( t )  is decreasing in the interval (0, 6). Therefore t = 0 cannot be a minimum point of ~v ( t ) .  From (2) 
and condition (18) it follows that ~y( t )  "r cf/l~ as t ~ ~ .  Hence ~ r ( t )  has a minimum. With ~ r ( 0 )  > ~r  (0), 
n(t) > 0 for t > 0, the continuity of q~r(t) and ~r(t) it follows from (19), that ~ r ( t )  and ~y(t) intersect 
at all extremum points of Cby(t) in such a way that ~v ( t )  crosses from below (above) at the minima 
(maxima). Hence the equation ~ r ( t )  = ~ly(t) has at least one finite solution t~ > 0, which is a minimum 
point of ~ r ( t ) .  This solution is unique, because if ~v(t) had intersected ~y( t )  once more it must have 
been at a m a x i m u m  point of ~ r ( t )  and hence q~r(t) must have been crossed by ~ r ( t )  from above - a 
contradiction with the fact that re(t) and hence ~ly(t) are increasing functions. [] 

Figure 1 shows two typical examples of the graphs of ~r( t )  and ~r(t). In Figure l(a) condition (18) of 
Theorem 3 is satisfied and there exists a minimum while in Figure l(b) condition (18) does not hold and 
there is no minimum. 
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Remark 1. In Figure 1 it is seen that re(t)  is not increasing for all values of t, so strictly speaking Theorem 
3 cannot be applied. However, this is merely a theoretical and not a practical problem. The same problem 
occurs in the BRP. Hanscom and Cleroux [10] show (numerically) that the renewal function M(t )  for 
gamma and Weibuil distributions oscillates around the oblique asymptote given by (2). Hence, in general, 
re(t)  is not an increasing function. For the BRP with one component, Hanscom and Cleroux [10] show 
(again numerically) that if (8) holds, <bp(t) has its absolute minimum in its first local minimum, i.e. at the 
first point where ~p(t)  and rip(t) intersect. This can be extended to the OBRP, i.e. ~ y ( t )  has its absolute 
minimum at the first point where q~y(t) and rir(t)  intersect. 

We will now compare the planned case with the opportunity case. Notice first that the conditions on the 
lifetime distribution and cost parameters required for Theorem 3 are the same as for Theorem 1. This can 
be understood as follows. Suppose there exists a minimum t~ in the planned case and that ~p* < ~p(t)  < 
cf/ / ,  for t > tp. Hence using tp as control limit in the opportunity case would lead to average costs lower 
than cJ/~ and therefore a minimum has to exist. Intuitively it is also clear that t~ > t~ for every Y, 
because even in the opportunity case one will always make use of an opportunity which occurs exactly at 

* It is however difficult to give a formal proof. In case Y is exponentially distributed (and therefore Z, as l p .  

well) we were able to give the following proof. 

Theorem 5. Suppose that the requirements of Theorem 3 are fulfilled and that Y is exponentially distributed, 
then we have t~ < t p. 

Proof. First notice that if Y is exponentially distributed then both Y, Z and Z, have the same distribution. 
Secondly, it follows from Theorem 3 that we only need to show that 

riy(t)-~r(t)>O for t>~ t~. 

Notice that by applying partial integration we can rewrite riv(t) into 

n~(t)= ErS0Cf [~tM(t+y)-~t(t))t dP(Y~y). (20) 
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Combining the foregoing yields 

~lr(t) - ~v ( t )  = fo ~ cr ( M ( t  +Y)EY- M ( t ) }  
Cp + crM( t + y ) 

t + E Y  d P ( Y ~ y )  

o, c f tM( t+y)  cfM(t) 
= fo EY(t + EY) EY 

Cp 
t + E Y  dP(Y<~y). 

* we have For t >/t o 

c o + cfM(t +y)  c o + q M ( t )  
> for all y > 0. t + y  t 

Hence, 

c f tM( t+y)>ycp  + ( t + y ) c f M ( t  ), t>~tp, y > 0 .  

Inserting this into (21) yields after some algebra 

- E Y  cfM(t)] dP(Y<~y) O, ,y ( t ) -  f 0 Ey 7; [c0 + = 

which completes the proof. [] 

(21) 

3.  T h e  o n e - o p p o r t u n i t y - l o o k - a h e a d  s t r a t e g y  

In Section 2 we obtained the equation of optimality, (17), for the OBRP by minimising the expected 
cost per unit time, ~y(t), associated with the control limit policy t. We will now show that (17) has an 
intrinsic meaning, comparable with the marginal cost notion ~/p(t) in the BRP as introduced in [5]. 

Suppose that there is an opportunity at time t. We consider the following two alternatives (see Figure 
2): 

(1) replace the component preventively at this opportunity; 
(2) replace the component preventively at the next opportunity Y time units away. 
Comparison of these alternatives is not straightforward, since under alternative (1) the process has a 

renewal at time t and under alternative (2) at time t + Y. Notice that the extra expected costs of deferring 
replacement from the present to the next opportunity are given by the following expression: 

Ctfo~( M(t  + y) - M( t ) )  d P ( Y  <~y), (22) 

which is according to (20) equal to *lv(t)EY. Now we define the one opportunity look ahead policy rr(q,) 
with threshold value q~ by: 

"replace the component preventively at an opportunity at time t if 

ny(t) -+>~o". 

Such a policy is determined by the choice of q~. Notice that if re(t) is strictly increasing, the 
one-opportunity look-ahead policy is equal to a control limit policy. Let ~ ,  -~ min{ ~y(t),  t > 0}. From 
Theorem 3 it follows that the optimal control limit policy with control limit t~. is equivalent with the 

(1)  • . . . . . . . . . . . . .  • . . . . . . . . . .  ,_ 
0 t t + Y  

(2)  * .............. • . . . . . . . . . . .  , -  
o t t + Y  

Figure 2. Two alternatives. * indicates an opportunity and ~, indicates a preventive replacement (renewal) 
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one-opportunity-look-ahead policy with threshold value q)~. In order words, at each opportunity the extra 
expected costs of deferring preventive replacement to the next opportunity, ~r( t )EY ,  are compared with 
the minimum average costs, ~ , ,  times EY. Let ~r(~r(~))  denote the average costs under the one-oppor- 
tunity-look-ahead policy 7r(~,) with threshold value q). We have the following theorem 

Theorem 6. I f  re(t) is strictly increasing in t and condition (18) holds, then for every ~ for which 
q~, <~ ~p < ct/t~ we have 

• ,,(~({~)) ~( ~p, (23) 

with equality only if ~ = cb ~,. 

Proof. For t~' < t <  ~ we have ~lv(t)> ~ r ( t )  and l i m , ~ O v ( t  ) = ct/l~. Hence for any q, satisfying 
~ <~ q~ < cf/l~ there exists a t I > t~' with ~r( t l )  = q~ if 4} :g q~, and t 1 = t~' if ~ = cb~. Hence ~r(q~) is 
equivalent to a control limit policy with control limit t] and ~.(~r(40) = ~br(t2) from which the assertion 
directly follows. [] 

Remark 2. In most cases the curve of ~v( t )  crosses the curve of ~ v ( t )  in its minimum at a rather large 
angle (e.g. 70 ° in figure l(a)). Accordingly a small error made in calculating ~b~ is weakened by using the 
one-opportunity-look-ahead-policy, as also Theorem 6 states. If in the example of Figure l(a), we would 
use 4} = 0.215 ~ ~v(30) (instead of ~ v ( t ~ ) ~  4)r(10 ) ~ 0.161) then the resulting one-opportunity-look- 
ahead policy is equivalent to a control limit policy with control limit t ' =  15 (~y(15)~0 .212)  and 
associated expected long term average costs ~v(15) = 0.168 ~ ~v(t~? ). 

4. Computational aspects 

In this section we present methods to determine the optimal control limit t~ for the OBRP and the 
associated expected long-term average cost, i.e. the optimal threshold value ~ = qbr(t~). Our aim is to 
develop fast and robust methods which can be used in a decision support system. In doing so we want to 
use insensitivities and approximations provided that no substantial errors are introduced. The optimal 
policy t~, can be obtained by solving the equation of optimality (17) (see also Theorem 3). This can be 
done in a numerically very efficient and simple way with a bisection or regula falsi method. It only 
requires an interval [t a, tb] that contains the unique solution t~ and the functions epv(t ) and v/r(t). From 
(12) and (16) it is seen that calculation of ~v( t )  and cbv(t ) requires 

(1) an algorithm to approximate the renewal function M(t) ,  since in general no analytical expression 
for M(t )  exists; 

(2) the distribution function P(Z~ <~ z) of the time between t and the first opportunity after t (forward 
recurrence time) and its expectation; 

(3) numerical integration of improper integrals. 
We will not go into detail about the numerical integration. Truncating the improper integrals should be 

done with care because the tail of the distribution of the forward recurrence time may have a large 
contribution in case of large coefficients of variation. Good algorithms exist to treat improper integrals as 
the one in (12).We used an algorithm based on Gauss-Laguerre expansion which performed very well (see 
e.g. [20]). 

4.1. A new method to approximate the renewal function 

For most distributions used in reliability (e.g. the Weibull, gamma, and truncated normal distributions) 
no analytical expression for the renewal function M(t )  exists. There are several methods to approximate 
the renewal function, e.g. power series expansion and discretisation (see e.g. [9]). Calculating and 
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optimising @v(t) involves repeated calculation of M(t) .  Using the OBRP in a decision support system 
therefore requires a very fast and robust approximation for the renewal function. We developed a simple 
but effective method in which the original distribution is approximated by a phase-type distribution with 
the same first and second moment, for which the renewal function can be easily computed. We used the 
Ek-~,k distribution to approximate lifetime distributions with squared coefficient of variation c ~ ( -  o 2/122 ) 

2 ~< ½ and the K 2 distribution (also called Coxian-2 distribution) in case c x > ½ (see [21, pp. 397-400]). The 
approximation Ml(t  ) has the following form 

oo 
Ml( t  ) = r ( t )  + ~ i ( n ' ( t ) ,  t >1 O, (24a) 

n=2 

or equivalently, 

Ml( t  ) = A I ( t ) + [ r ( t ) - i f ( t ) ] ,  t>~0, (24b) 

where fftn)(t) and 1Q(t) are the n-fold convolution and renewal function of the c.d.f, of the approximating 
phase-type distribution respectively. It appears that the simple approximation method given above works 
very well. For Weibull and gamma distributions with c 2 ~< 1 (i.e. with increasing failure rate) the maximum 
relative error is typically smaller than 3%. Especially for small values of t (say 0 < t < #) this approxima- 
tion is an improvement on ordinary two-moment approximations since the probability on one or more 
failures in the interval [0, t] is calculated exactly. In determining an optimal block replacement interval 
this is important, since in most practical situations the optimal replacement interval (if any) will be in this 
range. Using the approximation in the block replacement problem yields results that are fully satisfactory, 
i.e. the resulting error in ~ ,  is smaller that 0.1%. More details on this procedure can be found in [19]. 

4.2. The distribution of the forward recurrence time 

In general evaluating (9) in order to obtain P ( Z  t ~ z)  will be difficult. It requires integration of the 
product of the distribution function G(.) and the associated renewal density n(.), which can only be 
approximated numerically. Calculation of ~ r ( t )  in turn requires integration over P ( Z  t ~< z), so it will be 
clear that we should not use (9) if we want to develop a fast algorithm to calculate ~r( t ) .  

However, for phase-type distributions (see [13, pp. 44-48; 63-70]) there is a simple, explicit expression 
for P ( Z  t <~ z)  (see Appendix 2). In fact, Z t is also of phase type with the same number of phases, n, and 
its distribution can be calculated by solving a set of n linear differential equations. For the K 2 
distribution, a phase-type distribution with only two phases and probability density function 

f ( t )  = 

p)t e -A' + (1 - p ) X 2 t  e -At, 

PXl -)t2 ( P ~ ' l - - ) k 2 )  
~ll --~22 X, e -AIr --{- 1 ~ll-_~-X- ~ )k 2 e -A2t, 

Xl =X2 = k ,  

X1 4: X2, 
(25) 

the solution is easily obtained analytically and is given by 

P ( Z t < ~ z ) =  1 - w ~ ( t )  ~-a-X-~2 e -A~z- 1 - W l ( t  ) ~-T-~-~2 e x2z, 

1 - e  - x ~ - w , ( t ) ( 1 - p ) x z e  -Az, X,=X 2=X,  

X 1 4: X2, 
(26) 

where 

~'2 
Wl(t ) = }kl( 1 - - p )  q-~k 2 

_ Xl(1 - - p )  e -  {A,(1-p)+X2}t. 
X~(1 - p )  + X2 (27) 
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Figure 3. Probability density of the forward recurrence time for the K 2 distribution (mean: 1.0, normalisation: gamma) 

For the derivation of this result we refer to Appendix 2. The corresponding probability density of Z,, 
+(t ,  .z), and EZ, are easily obtained from (26). 

A numerical comparison between the probability densities +(t ,  z) and the probability density of the 
stationary time between opportunities, Z, + (z ) ,  shows that especially for moderate values of cey (say 
between ½ and 1 ~) q~(t, z) converges quickly to q~(z) (see Figure 3). For t = ½EY ~ ( z )  is already a good 
approximation to ~(t ,  z). This led us to the idea to approximate ~b(t, z) by q~(z) in the calculation of 
~br(t ), which we call the stationary approximation. For ~ ~< c~ we used the analytical results for the K 2 
distribution to compare the average cost curves obtained with + (t, z) and ~ (z)  (see Figure 4). In all cases 
both curves have a minimum for practically the same control limit. It will be clear that the approximation 
is better for large values of t. Hence the stationary approximation will perform well if the optimal control 
limit is not small compared to EY. 

4.3. Comparison of approximations with simulation results 

We carried out a simulation study in order to compare the optimal strategy and the strategies obtained 
by using either the K 2 or the stationary approximation to the TBO distribution. Also, we investigated the 
effect of the form of the TBO distribution on the optimal control limit and the minimum average costs. 

We considered three unimodal time-between-opportunity distributions, viz. the gamma, Weibuil and 
lognormal distributions, and varied their coefficient of variation Cy ( =  o ( Y ) / E Y )  from 0.25 to 2. The 
values of 1.5 and 2 were only incorporated for academic reasons as the limited data obtained so far on 

EXPECTED COST 
0-110p EXPECTED COST 
~4~=1  MT80 20 SQUARED COEF ~ 0-100~- Z MTBO 30 SQUARED COEF . /  
. . . . .  zF ~ v 0-100 OF AR os  0 0 9 8 F \  OF VAR 05 / 

0o901- ~ / o.o~F - ' ~  
0.085~ I -~- - " - -T  I L L 0.0921r I L 

0 -10 20 30 40 50 0 I 0 20 30 
CONTROL LIMIT CONTROL LIMIT 

EXPECTED COST EXPECTED COST 
0.'1"f-1 ~-\ZL MTBO 20 SQUARED COEF 0 t 1 8  I . L 7 ,  MTBO 50 SQUARED COEF 
o.-1oBLZ\, , oF vAR ,5  O F . _ _  VAR 

0.098E : - -  L I O.-1"H It  L h I 
0 "10 20 30 0 -10 20 30 

CONTROL LIMIT CONTROL LIMIT 

Figure 4. Cost curves for opportunity based block replacement. Comparison integration over stat ionary/t ime dependent forward 
recurrence time for K 2 distribution (Failure distribution: Weibull, mean time to failure: 100, cost ratio cf/%: 20, shape beta of 

failure distribution: 2.0, opportunity distribution: K 2 (MTBE --- EY )) 
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Table 1 
Comparison of the different approximations of the distribution of the time between opportunities (component lifetime: Weibull 
distributed, EX = 10, shape/~ = 2; time between opportunities: Weibull distributed, EY = 2; costs: Cp = 1, cf = 20; optimum planned 
replacement: t~" = 2.6) 

Cy 

0.25 0.5 0.75 1.0 1.5 2.0 

sim, t~ 1.66 1.59 1.49 1.413 1.34 1.34 
t * 1.493 1.413 1.352 1.384 K2 
t s~at 1.670 1.574 1.504 1.413 1.604 1.938 

sim. q~, 0.805 0.821 0.865 0.928 1.067 1.187 
sim. Cby(t~2 ) 0.865 0.928 1.067 1.187 

sim. ~D y ( /s tat)  0.805 0.821 0.865 0.928 1.070 1.198 
q~* 0.866 0.928 1.086 1.238 K z 
q~s*at 0.806 0.824 0.863 0.928 1.115 1.302 

opportunities showed values of c v ranging between 0.4 and 0.8. As component  lifetime distribution we 
used a two-parameter Weibull distribution. It will be clear that the effect of restricting preventive 

* the opt imum control limit in maintenance to opportunities will be small if EY is small with respect to tp, 
the planned case. On the other hand, cases where EY is much larger than tp are not realistic as in that 
case one would not require optimisation of opportunity maintenance. Therefore we considered a case 
where E Y / E X =  0.2, EY/t~  = 0.8 and /3 = 2 (see Table 1) and checked the conclusions with a case in 
which E Y / E X  = 0.5, EY/ tp  = 1.25 and /3 = 4 (see Table 2). 

In Tables 1 and 2 the optimal strategy is compared with the strategies obtained by approximating the 
TBO distribution (Weibull) with a K 2 distribution ( two-moment fit and gamma normalisation) or using 
~p(z) instead of ~b(t, z) (stationary approximation). Similar calculations were done in case of gamma- and 
lognormal distributed times between opportunities. In the tables a* indicates optimality. For example, t* K2 
is the optimal control limit in case of a K 2 TBO distribution and ~ *  is the corresponding minimum K2 
average cost. When using the stationary approximation the minimum average costs and optimal control 
limit are denoted by (~st*at and tstat*, respectively. Furthermore, ~y( t~2 ) is the average cost resulting from 
using the control limit t* if in fact the time between opportunities, Y, is not K 2 distributed ( 'sire. '  K2 
indicates that results were obtained by simulation). 

In Table 3 the optimal strategies for various TBO distributions are compared. Except for the 
K2-distribution all results of Table 3 are obtained by simulation. 

Table 2 
Comparison of the different approximations of the distribution of the time between opportunities (component lifetime: Weibull 
distributed, EX = 10, shape fl = 4; time between opportunities: Weibull distributed, EY = 5; costs: Cp = 1, ct = 20; optimum planned 

* = 4 . 0 )  replacement: t o 

Cy 

0.5 0.75 1.0 1.5 2.0 

sim. t~ 1.02 1.04 1.08 1.15 1.46 
t * 1.044 1.077 1.239 1.462 K2 

• 0.779 1.077 1.550 /star 

sim. q~, 0.589 0.782 0.934 1.143 1.276 
sim. + r ( t~2 )  0.782 0.934 1.143 1.276 

sim. * Y (/star ) 0.590 0.934 1.144 
~ 2  0.773 0.931 1.180 1.325 
~,*~t 0.540 0.930 1.120 



R. Dekker, E. Smeitink / Opportunity-based block replacement 57 

Table 3 
Influence of the form of the distribution of the times between opportunities (component lifetime: Weibull distributed, EX = 10, shape 
/3 = 2; time between opportunities: EY = 2; costs: Cp = 1, cf = 20) 

Y distribution 
Cy 

0.5 0.75 1.0 1.5 2.0 

sim. gamma t~ 1.61 1.49 1.41 135 1.21 
sim. Weibull t~ 1.59 1.49 1.41 1.34 1.34 
sire. Iognormal t~ 1.60 1.55 1.52 1.48 1.45 

K 2 t * 1.493 1.413 1.352 1.384 K2 

sire. gamma q~ 0.825 0.867 0.928 1.074 1.218 
sim. Weibull ~ ,  0.821 0.865 0.928 1.067 1.187 
sim. Iognormal ~ 0.829 0.874 0.928 1.033 1.115 

K ~ 4 "  0.866 0.928 1.086 1.238 K 2 

Fina l ly ,  in  T a b l e  4 we i l l u s t r a t e  the  e f fec t  of  u s i n g  t h e  o p t i m u m  c o n t r o l  l imi t  for  t he  p l a n n e d  case ,  t p ,  

as c o n t r o l  l imi t  i n s t e a d  of  the  a c t u a l  o p t i m u m ,  t *  in  case  of  K z - d i s t r i b u t e d  t i m e s  b e t w e e n  o p p o r t u n i t i e s .  K2~ 

T h i s  l eads  to  s u b o p t i m a l  s t r a t eg i e s  w i t h  r e s u l t i n g  cos t s  t h a t  a re  t yp i ca l l y  5% to 10% h i g h e r  t h a n  t he  

m i n i m a l  cos ts .  

T h e  s i m u l a t i o n  r e su l t s  we re  o b t a i n e d  as fo l lows.  F o r  a f ixed c o n t r o l  l imi t  t, p o i n t  e s t i m a t e s  for  the  

e x p e c t e d  n u m b e r  o f  fa i lu res  u n t i l  p r e v e n t i v e  r e p l a c e m e n t ,  M ( t  + Z,) ,  were  o b t a i n e d  b y  i n t e g r a t i n g  t he  

l i f e - t ime  r e n e w a l  f u n c t i o n  ( d e t e r m i n e d  w i t h  the  m e t h o d  f r o m  S e c t i o n  4,1)  o v e r  t he  d i s t r i b u t i o n  of  Z,  u s i n g  

M o n t e  C a r l o  s i m u l a t i o n .  In  t he  s a m e  m a n n e r  we o b t a i n e d  p o i n t  e t i m a t e s  for  the  e x p e c t e d  cycle  l e n g t h  

t + E Z , .  T h e  l o n g  t e r m  a v e r a g e  cos t s  a re  t h e n  r ead i ly  c a l c u l a t e d  u s i n g  (12).  T h e  h a l f  l e n g t h  of  t he  95% 

c o n f i d e n c e  i n t e r v a l s  w as  in all cases  less t h a n  0.01. 

T h e  o p t i m a l  c o n t r o l  l im i t  was  o b t a i n e d  u s i n g  T h e o r e m  3 (17) a n d  a b i s e c t i o n  p r o c e d u r e  w i t h  s t o p p i n g  

c r i t e r i o n  

[ ~ r ( t )  - ~ , , ( t ) [ / ~ v ( t )  < 1%, 

w h e r e  0 r ( t )  was  c a l c u l a t e d  u s i n g  (20).  A n  exce l l en t  s t a r t i n g  v a l u e  for  the  b i s e c t i o n  p r o c e d u r e  is t he  

c o n t r o l  l imi t  o b t a i n e d  by  o p t i m i s i n g  t he  a v e r a g e  cos t s  u s i n g  the  K 2 (o r  the  s t a t i o n a r y )  a p p r o x i m a t i o n .  

Table 4 
Effect of using the optimal control limit from the planned case (component lifetime: Weibull distributed, E X - 1 0 .  shape /3; time 
between opportunities: K 2 distributed; costs: % = 1, cf = 20) 

case c v 

0.75 1.0 1.5 2.0 

EY = 2 t * 1.493 1.413 1.352 1.384 K~ 
fl = 2 q~2 0.866 0.928 1.086 1.238 

• = 2.6 tp ~K 2( tr,* ) 0.902 0.963 1.118 1.267 

E Y = 5 t * 0.880 0.919 1.032 1.158 K2 
/3 = 2 q~* 1.133 1.232 1.397 1.496 K2 

• = 2.6 f19K2(l ~ ) 1.167 1.264 1.425 1.525 lp 

EY = 5 t * 1.044 1.077 1.239 1.462 K2 
/3 = 4 q~* 0.773 0.931 1 Ago 1.325 K2 
tp = 4.0 ~K2( t~ ) 0.893 1.033 1.255 1.386 
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Conclusions from the tables 

(1) With the K~ distribution the forward recurrence time distribution can be satisfactory approximated 
2 for a wide class of (continuous and unimodal) distributions (with c r > ½). For distributions of the time 

between opportunities with c2r ~ ½ the stationary approximation can be used, provided that the ratio 
E Y / E X  is not too large. It is difficult to give a good rule of thumb, but when E Y / E X  was between 0 and 
0.2 the resulting error made by the stationary approximation was very small in our experiments (see Tables 
1 and 2). 

(2) Our approximations yield computationally tractable results that outperform a simple strategy such 
as using the optimal control limit tp for the planned case (see Table 4). 

(3) The minimum average costs ~ and the optimal control limit t~ depend substantially on the mean 
EY and coefficient of variation cr  of the time between opportunities (see Table 1 and 2). ~b~ increases 
with EY and cr,  while t~ decreases with EY and can either increase or decrease with c r. The type of 
distribution is of far less importance, especially for low coefficients of variation (see Table 3). 

(4) The approximation of ~b~ by ~* yields errors less than 2% for gamma and Weibuli distributions. Kz 
For the Iognormal distribution the error remains small (<  5%) in case c r < 1.5. The approximation of ~b~ 
by ~b~t*at is slightly worse than the approximation by ~b~, but satisfactory for values of cr  between 0.25 
and 1.5. Both approximations are best for low values of E Y / E X  and values of cr  that are close to 1. 

(5) The errors made in approximating t~ by either t~, or tstat can be large, e.g. up to 50% for tstat and 
20% for t~2 in the (extreme) cases with c r = 2. However, as the average cost curves are quite flat around 
their minimum the error in the average costs resulting from the use of these approximations is much 
smaller. 

5. Extensions 

There are a number of ways in which the previous theory can be extended. First of all, we will show that 
block replacement can also be extended to multiple components. Secondly, one-opportunity-look-ahead 
policies can be used in setting priorities for execution of maintenance packages if only a limited number of 
these can be executed at a given opportunity. The latter case will be treated in a subsequent paper. 

5. l. Extension of the OBRP to a multicomponent case 

So far we have considered one component only. In practice, maintenance activities involving replace- 
ment of components are usually combined into a maintenance package. When executed preventively, 
always the whole package is carried out, whereas upon failure, only the failed component is replaced. The 
problem then is to determine the optimal control limit for execution of the maintenance package. The 
extension of the OBRP model to a multi-component case is straightforward. Notice that the entire analysis 
of Sections 2 and 3 can be applied. The only change required in the formulas is that we have to distinguish 
n possibly different components. For example, in the formula for q~r(t) we replace c fM( t )  by 

n 

E c~i'M,( t ) 
i = 1  

where the index i indicates component i. Analogous changes have to be made in the other formulas. All 
the results remain valid, only in Theorem 3 we require that 

(o2) 
Cp<½ c~ ~) 1 - - ~  

i=l /~J 
(28) 
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instead of condition (18), and furthermore that 
t l  

I2 cl"m,(t) (29) 
i = l  

must be increasing (instead of re(t)). Similar problems as mentioned in Remark 2 with respect to the 
increase of m(t) are encountered in the last condition. If the component lifetimes are quite different it 
poses severe problems as there may be multiple minima and the first minimum does not need to be the 
absolute minimum. 

Appendix 1. Proof of Lemma 2. 

The main difficulty is to show that the order of integration and differentiation may be interchanged. To 
use a standard theorem of analysis (see e.g. [1]) we have to make the following three observations. 

(1) The integral f~rn(t + z){1 - q'(t, z)} dz is convergent on [0, oc). This follows from the fact that 
m(. )  allows majoration by a constant and EZ t is finite for every t > 0. The majoration of m(.)  follows 
from the renewal density theorem and the continuity of m(.). 

(2) The function (d/dt)m(t + z){1 - gift, z)} is continuous on [0, oc) × [0, oc). 
This follows directly from the assumption that m( . )  is continuously differentiable and (9) combined 

with the assumption that G(-) and n( . )  are continuously differentiable. 
(3) The integral 

converges uniformly in t on [0, oc). To see this we write 

=Y0 d ~'{1-'t '(t ,z)}~m(t+z)dz+ m(t+z)N{1- ' t ' ( t ,z)}dz 

= { 1 - q t ( t ,  N)}m(t+N)- {1-qs(t,O)}m(t) 

- Xm(t+zl~z { l - q t ( t ,  : )}  d z +  Nrn(t+z)N 

= { 1 - * ( t ,  U))m(t+N)- { 1 - g ' ( t ,  0 ) } m ( t )  

+ ~Nm(t+ z){ "~--~qt(t, z ) -  a ~- ' / ' ( t ,  z)} dz. (31) 

From (9) it follows that 

3 a 
~ q, ( t ,  z )  - ~ q , ( t ,  z )  = (1 - C(z)}~(t). 

Hence, using (31) we can write 

£ d{m(,+zl l-*t,,z)lldz 
fo N ={l-e(t,N)}m(t+N)-{l- ' t '(t ,O)}m(t)+EYn(t) m(l+z)dP(Z~z). 

(32) 
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It is easy to show that 9(t, z) converges uniformly to 9(z). Now with (32) and the finiteness of EZ it 

follows that (30) converges uniformly on [0, cc). Having made these three observations, we can use 
Theorem 14-24 (p. 443) of [l] to change the order of integration and differentiation and with (32) we 

obtain, noting that \k(t, 0) = 0, 

= EYn(t)i ?~(r+z) dP(Z<z) 

which concludes the proof. 0 

Appendix 2 

In this appendix we give definitions of the Weibull and K, distributions and derive the distribution of 

the forward recurrence time Z,, P( Z, d z) for phase type distributions. For the K, distribution we derive 

an analytical expression for P(Z, d z). 

Definition of the Weibull distribution 

A random variable X has a Weibull distribution with scale parameter h and shape parameter p if its 

probability density function satisfies 

f(t)=i~/Q1exp(-(~!B), ta0. 

Definition of the K2 distribution 

A random variable X has a K, distribution if 

x= 
1 

Xl with probability p, 

x, + x, with probability 1 - p, 

where X, and X, are independent and exponentially distributed with parameters X, and hz, respectively 

and 0 bp G 1, A, > 0, A, > 0. The K, distribution corresponds to the sojourn time (in states 1 or 2) in the 
continuous-time Markov chain of Figure 5. The probability density function of a K, distribution is given 

by: 

(ph e-” + (1 -p)A2t eCAr, A, =h,=X, 

f(t) = PA, -A, 

\ 
x 

1 
_ x A, ePX1’ + 1 - p~1~~2 

2 ( 1 

2 X, eeX2’, X, ZX,. 
i 

Figure 5. Markov diagram of a K, distribution 
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Fitt ing a K 2 distribution on the first two moments  leaves some degree of  f reedom in the choice of  the 
parameters ?t 1, X 2 and p. In some cases the third momen t  can also be fitted, but  this is not  always 
possible. A good alternative is to use a gamma  normalisat ion to obtain a unique fit. This means that ?t~, ?t 2 
and p are chosen in such a way that the third moment  of the K 2 distr ibution equals the third moment  of a 
gamma distribution with the same first and second moment  as X. This is always possible (see also [21, pp. 

399-400]) and X~, X 2 and p are given by 

2 2 1 't 4 C X -  ~ I 1/2 

+ c -;TJ l' x -Ex 
~k 2 

p = (1 - 2t2EX) + ~ -  1 • 

The distribution of the forward recurrence time for PH-distributions 

Consider a continuous-t ime Markov chain with state space {1 . . . . .  m + 1}. States 1 . . . . .  m are transient 
and state m + 1 is absorbing. The infinitesimal generator Q of  such a Markov  chain has the form 

where T is a nonsingular m x m matrix and T O is an m-vector. Matrix T has ~i < 0, for 1 ~< i ~< m, and 
T,j >/0 for i ~ j .  Vector T O >i 0 satisfies Te + T O = 0 where e '  = (1 . . . . .  1). Let (a,  am+l)  denote the vector 
of initial probabilities, where a is an m vector such that 0 < ae ~< 1. The distribution G of the time until 
absorpt ion in state m + 1 given the initial probabil i ty vector (a,  a m + 1) is 

G ( x ) = l - a e x p ( T x ) e ,  x>lO. (33) 

A distribution G defined by (33) is called a phase-type distribution (PH distribution). The pair (a,  T)  is 
called the representation of G. If  the Markov process is restarted instantaneously after each absorpt ion 
into state m + 1 and if each process restart is considered a renewal, then the interrenewal time distribution 
is the PH distribution (33). Such a process is called a phase-type renewal process and its infinitesimal 
generator is given by 

Q * = T + ( 1 - a m + l ) - Z T ° a .  

A direct and very useful analogon of Lemma 2.2.2 in Neuts  [13, pp. 45] is the following lemma. 

Lemma 7. The probability distribution P( Z t <~ z) of the forward recurrence time, corresponding to the PH 
distribution with representation ( a, T)  is given by 

P ( Z , < ~ z ) = l - a e x p ( Q * t )  exp(Tz)e ,  t, z>~O. (34) 

Proof.  The uncondit ional  probabilities wj(t) that the PH-renewal process is in state j at time t, 
j = 1 . . . . .  m, satisfy the system of differential equations 

w ' ( t ) = w ( t ) Q * ,  

with initial condit ions w(0) = a. Its solution is given by 

w( t )  = a e x p ( Q * t ) .  

Clearly, P (Z ,  ~< z)  is a PH distribution with representation (w(t) ,  T).  [] 
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Let ~b(t, z) and qJ(z) denote the probability density function of Z, and Z respectively. The following 
statements are readily verified from Lemma 7 respectively (11): 

0 
~ ( t ,  z ) =  -~-z q'(t ,  z ) =  a exp(Q*t )  exp(Tz)r °, (35) 

EZ, = - a  exp(Q*t)T 'e, (36) 

P ( Y > z )  EY 2 
~b(z) EY ' E Z =  2EY" (37) 

The distribution of the forward recurrence time of a K 2 distribution 

With (34) an analytic expression for 
distribution we have 

T= 0 -?t2 , X2 , a = (1, 0), 

and the generator of the associated PH-renewal process is given by 

= ( - ( 1 - P ) A '  Q* 
~2 

After some calculus we obtain 

A2 
w,(t) = Xl(1 _ p )  + X2 

and 

(1 -p)X~) 
__)k 2 

• (t, z) for the K 2 distribution is easily obtained. For the K 2 

X~(1 - p )  e_{X,~l_p)+x~} ' 
X~(1 - p )  +X2 

p)k I - ~,2 e_~,,~ (1 - P ) ~ I  ) 
exp(Tz)e ~ --~-£ + X ; ~ - 2  e-X2z = ' ~1 :::# )k2 '  

e-X2z 

exp(Tz)e e-X: + (1 - P ) ) t z  e-X;)  
= X 1 = X 2 = X .  e_XZ 

Now we can write 

P(Z, <~ z) = 1 - (w,( t) ,  1 - wl(t)) exp(Tz)e 

i P)~I - X2 x [ P)~1- X2 = - w , ( t ) - x T ~ - f e -  ' : - [ 1 - w l ( t  ) -~12ZX2 l e ~ ,  

e -x" - w,(t)(1 - p ) ) t z  e -xz, 

X 1:7/= )k2, 

)k 1 = A 2 = A .  

(38) 

Remark. For any K 2 distribution the curve of ~p(t, z) intersects +(z)  in the same point z c independently 
of t, which is given by 

{ log(?~l ) - l og ( •2 )  
z = X l _ X z  , X 14=x2, 

l / h ,  ?t I = ,k 2 = ),. 

The probability density ~(t ,  z) and EZ, are easily obtained from (38) (or directly from (35) resp. (36), 
using a exp(Q*t)  = (wl(t), 1 - wl(t)) ). Let ~(z )  denote the probability density function of Z. In Figure 3 

2 = 2 .  we plotted the probability densities ~p(t, z) and ~b(z) for c~ = ½ and cv 
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