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This article deals with the problem of setting priorities for the execution of maintenance
packages at randomly occurring opportunities. These opportunities are of restricted du-
ration, implying that only a limited number of packages can be executed, The main idea
proposed s to set up a model for determining the optimal execution time for the individual
maintenance packages and to develop cost criteria for deviations from the optimal time.
In this article we use the block replacement model, but the approach can be easily
extended to include other optimization models as well, Using Monte Carlo simulation
the performance of the method is compared with various heuristics, both for a two-
package and a multipackage case, @ 1994 John Wiley & Sons, Inc.

1. INTRODUCTION

Most preventive maintenance (inspections, component replacements) of production
systems require shutdown of the units involved. If these units are used continuously, as
is the case in process industry, shutdowns can be very costly, and management will try
to minimize their duration and frequency.

It is not uncommon, however, that for a variety of reasons production units have to
be shut down for a short time, and in principle, these moments can be used for doing
preventive maintenance. In some cases, a major problem in making use of these op-
portunities is that they cannot be planned in advance (at Jeast not by the maintenance
department), as they merely occur at random and are restricted in duration. As a result,
traditional maintenance planning and scheduling fails to make effective use of them.

To overcome these problems, a decision support system (DSS) for opportunity-based
preventive maintenance has been developed at the Koninklijke/Shell-Laboratorium,
Amsterdam. In order to make use of short-lasting opportunities, preventive maintenance
work has to be split up into a number of maintenance packages that are small enough
to be executed at an opportunity. These packages (typically 40-80 per unit) can be
defined by the user in the initialization phase of the DSS,

After all necessary data have been entered, the DS$ determines for each maintenance
package an optimal control limit, This control limit indicates that the package should
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be executed at an opportunity if the time since its previous execution exceeds the control
limit. At an opportunity, however, more packages may be due than can be executed,
and a selection is called for. The DSS supports the user by providing a list of maintenance
packages due, which are ranked in order of importance.

In this article we present a method to derive priorities using the opportunistic block
replacement model (OBRM) as an underlying long-term optimization model. This
method, which has been applied in the DSS, can be easily extended to include minimal-
repair and inspection models. We will discuss these extensions in this article. The basic
idea is to assign the priorities by looking one opportunity ahead. The higher the cost of
deferring execution of a maintenance package until the next opportunity, the higher the
position of that package on the list will be. Calculating both the costs of deferring the
execution of individual maintenance packages and the optimal control limits using the
OBRM as underlying optimization model, one can derive a scheduling priority criterion
which is fully consistent with the optimal control limits.

Terminology

In this article we assume that after the execution of a maintenance package the system
parts involved are as good as new. For the sake of clearness, therefore, we will use the
terminology of replacing individual components rather than executing maintenance pack-
ages. We also assume that every maintenance package attends to only one system part.
Thus executing a maintenance package is equivalent to preventively replacing a single
component. There is no loss of generality because the underlying model (OBRM) that
we use for determining the optimal control limits and the cost of deferring preventive
replacement can easily be extended to the case where a maintenance package attends
to more than one system part (see also Dekker and Smeitink [4]).

Literature

Few articles deal with opportunity maintenance, and for a review we refer to Dekker
and Smeitink [4]. An often-used approach for opportunity maintenance (see e.g., Backert
and Rippin {1], Van der Duyn Schouten and Vanneste [11]) applies Markov decision
models in which the states indicate the age for each individual component. This causes
a large state space, thereby severely restricting the computational evaluation. Numerical
results are therefore presented for up to three nonidentical, or five identical components
only. We have not come across any articles so far that also deal with setting priorities
for execution of opportunity maintenance.

Comparing our approach to the literature on maintenance scheduling or scheduling
in general reveals that our approach sets priorities in a way that is consistent with the
determination of the optimum control limits. Pintelon [6] gives an overview of both
practical and theoretical priority criteria, but none of them is based on a long-term
optimization. Even worse, most scheduling criteria are static, indicating that the priority
of a maintenance activity does not increase with the time it is waiting for execution. The
examples Pintelon gives on dynamic priority criteria are all based on heuristics. This
also holds for a recent example of a maintenance scheduling system given by Ulusoy,
Oy, and Suydan [10].

Most of the literature on general maintenance optimization models (see, e.g., the
reviews of Pierskalla and Voelker [5], Sherif and Smith [8]) considers a single mainte-
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nance activity. Only a few reports exist on multiple activities, and these (see Thomas
[9]) merely try to group or combine activities. In both areas one disregards constraints
set on the execution of maintenance and consequently one does not deal with priorities,

QOutline of the Article

In Section 2 we summarize the results of Dekker and Smeitink [4] and present the
general approach. As the procedure for calculating the optimal control limits and the
costs of deferring preventive replacements does not take the severeness of the restriction
on the opportunity durations into account, one cannot expect our strategy to be optimal,
However, achieving optimality for a large number of components is computationally
infeasible, and therefore impractical. In that case nearly optimal, well-structured policies
are to be preferred.

In order to evaluate critically'the value of the priority criterion, we have compared it
with other, heuristically derived criteria in two cases, viz., a two-component and a
multicomponent model, Section 3 deals with the two-component model, first with iden-
tical components, next with nonidentical ones. For two components it is possible to
determine better control limits than those obtained from the OBRM and to study the
difference. In the case of two identical components, the effect of a restricted opportunity
duration can be studied analytically. In all other cases we had to use simulation. In
Section 4 we evaluate the performance of the priority criterion in a case with 24 com-
ponents. In Section 5 we give extensions to our approach. Section 6 concludes the article
and indicates further research.

2, GENERAL APPROACH

In this section we will first give a detailed description of the maintenance model that
we study. The maintenance strategy that we propose is based on optimality results for
the opportunistic block replacement model (OBRM). After briefly summarizing these
results we will formulate the maintenance strategy, which we call a ranking strategy.

2.1, The Model and the Strategy

Consider a system consisting of N components, numbered 1, , .., N and let the lifetime
(time to failure) of component  be denoted by the random variable X; with distribution
function F(-) with positive support, mean ; and variance o (both finite). It is assumed
that the lifetimes X are independent random variables. If a component fails it is replaced
immediately with costs ¢f for component i.

However, there are randomly occurring maintenance opportunities at which times one
can decide to replace one or more components preventively, i.e., before failure, with
costs ¢f < ¢f for component i. A new component has the same characteristics, i.c.,
lifetime distribution function Fy(:) and costs ¢ and ¢f, as the one it replaces (preventively
or upon failure).

We assume that the opportunities for preventive maintenance occur according to a
renewal process, independently of the lifetime processes. The generic random variable
Y denotes the time between two successive opportunities (abbreviated to TBO) and we
assume that its distribution function G(-) has finite mean and variance,
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The opportunities for preventive maintenance have a restricted duration, We assume
that the durations of the opportunities are independent, identically distributed random
variables and denote the generic variable by L. For simplicity we further assume that
replacing a component preventively takes one time unit for each component, so that at
each opportunity at most L components can be replaced. The extension to different
replacement durations is considered in Section 5.

Furthermore we assume that the times needed for replacements are so short compared
with the lifetimes of the components that they can be neglected when considering the
failure processes. The duration of replacements is typically on the order of hours, whereas
mean times to failure are on the order of months or years. Hence, this assumption is
no restriction in practice.

The only information available at an opportunity is the time elapsed since the last
preventive replacement, #, for each component i. Thus the decision of which components
to replace preventively must be based on the values #, . . . , ty. This situation, which
often occurs in practice, is referred to as block replacement in the literature. Note that
since decisions can only be taken at opportunities which occur according to a renewal
process, there is no need to consider the actual time, or the past evolution of the
opportunity process.

Objective

The objective is to generate at each opportunity a ranked list of maintenance packages
(components to be replaced). Using this list and more detailed information on, e.g.,
manpower available, maintenance management can schedule the activities to be executed
at an opportunity. In practice there can be various reasons to deviate from the list, such
as a lack of spare parts.

In our model, however, we assume that components are always replaced in order of
decreasing priority. The more formal objective in our mathematical model is then to
decide at every opportunity which components to replace preventively so as to minimize
the long-term average costs. The main problem in the cost minimization is that the
opportunities have a restricted duration. Apart from deciding for each component if it
should be replaced at all at a given opportunity, one must also decide which components
should actually be replaced if there are more than L candidates. Giving priority to some
components automatically implies that the preventive replacement of one or more other
components has to be postponed. This interaction between the components renders the
search for an optimal strategy computationally infeasible.

Outline of the Strategy

The strategy we propose is based on optimality results for the case without restrictions
on the opportunity durations. In this case there is no interaction between the components
so that the problem decomposes into solving N independent opportunistic block replace-
ment models (OBRM).

In the OBRM a single component, say number i, is replaced preventively if at an
opportunity the time since its last preventive replacement, ¢, exceeds a certain control
limit. Under some mild conditions (see Section 2.2 below) it can be shown that there

exists a finite optimal control limit, ', that minimizes the expected long-term average
cost.
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The optimal control limit strategy with control limit ## can be characterized in a
different way. In Section 2.3 we will introduce a cost function R(#;) so that the control
limit strategy is equivalent to the following one-opportunity-look-ahead strategy. If at an
opportunity the time since the last preventive replacement of component i is #, then the
component i is replaced preventively if the expected cost of deferring its replacement,
R((;), is positive. In the case of restricted opportunity durations the components are
assigned priorities according to the values R/(t). The component for which deferring
replacement is most expensive gets the highest priority, etc.

2.2. Summary of Results for the OBRM

In this section we summarize the results from Dekker and Smeitink [4] concerning
the equivalence of the optimal control limit strategy and a one-opportunity-look-ahead
strategy. These results are an extension of the results obtained by Berg [3] for the same
model without opportunities, i.e. when preventive maintenance can be carried out at
any time instant.

Consider component { and suppose that a finite control limit ¢ is used. Thus component
i is preventively replaced at an opportunity if ¢ > . Preventive replacements at oppor-
tunities constitute renewals since both the opportunity process and the lifetime process
of component i have a renewal. Let the random variable Z, denote the time between ¢
and the first opportunity after ¢ (forward recurrence time of the opportunity process)
and let M,(*) denote the renewal function associated with the lifetime distribution function
F(") of component i, Thus M(x) is the expected number of failures of component i in
the interval [0, x] if, starting with a new component at time 0, component i is only
replaced upon failure. It then follows from renewal theory that the expected long-term
average costs @,(¢) for component £, using control limit ¢, is given by

o+ df fo ) Mt + 2) dP(Z, = 2)

where the integral in the numerator represents the expected number of failures during
a renewal cycle (time between two successive preventive replacements). The denomi-
nator represents the expected cycle length.

Under the conditions stated below it can be proven that there exists a finite optimal
control limit, &, minimizing (1).

Conditions

The main condition that suffices for the existence of a finite optimal control limit is

that
a 1 of
4 1 ) 2
d 2 ( p @

The other, more technical conditions are that the distribution functions F(:) and G(')
must be continuously differentiable with finite first and second moment and that the
renewal density function m(+), defined as m;(x) = d/dx M(x), is continuously increasing
in x. These conditions are assumed to be satisfied throughout.
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The One-Opportunity-Look-Ahead Strategy

Now we formulate a one-opportunity-look-ahead strategy that compares the following
two possibilities: preventive replacement at this opportunity or at the next opportunity.
We denote the expected time between two successive opportunities by » and define for
every component i the function 7,(-) by

n() = 4 [0 + ) = M) 460, ®)

The interpretation of m(t) is the following. If at an opportunity the time elapsed since
the last preventive replacement of component i is #, then m(t;) is the expected average
cost due to failures of component i between this opportunity and the next one if the
compornent is not preventively replaced.

It can be shown that the functions @) and 7;(+) intersect exactly once, in the minimum
point £f of ®(-). Thus

n(t) = O) & 4 = 4. 4)

Moreover, we have that
) = oF =S =1, (5)

where ®} = ®;(#F). It follows directly from (5) that the optimal control limit strategy
is equivalent with the following one-opportunity-look-ahead strategy. Replace component
i preventively at an opportunity if 7,(4;) = ®f. Thus at each opportunity the expected
average cost, 7;(t), of deferring preventive replacement of component i is compared
with the minimum expected long-term average cost ®}*, In Section 2.3 we will see that
this interpretation provides a very useful basis for assigning priorities in case of restricted
opportunity durations.

Another advantage of the one-opportunity-look-ahead strategy is that using (4) and
(5) the optimal control limit & and associated cost ®;* can be calculated in an efficient
way. In Dekker and Smeitink [4] numerical procedures are given for general lifetime
distributions and Coxian-2 distributions for the TBO. A random variable Y has a Coxian-
2 distribution if it can be represented as

Y = E\, with probability 1 — b,
E, + E,, with probability b,

where F) and E; are independent, exponentially distributed random variables.

2.3. The Ranking Strategy

The strategy we propose in case of restricted opportunity lengths is based on the one-
opportunity-look-ahead strategy for the OBRM. Define for each component i, i = 1,
.., N, its ranking criterion R{1;) by

Ri(t) = mft) — Of. (6)
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The cost function R(¢;) reflects the expected average cost of deferring the preventive
replacement of component i at an opportunity as a function of the time elapsed since
its last preventive replacement, f. If at an opportunity there are two components that
have exceeded their control limit then it makes good sense to give priority to the com-
ponent with the highest ranking, since deferring its replacement is more expensive.
Therefore, the components are placed on an ordered ranking list at each opportunity,
with the component with the highest ranking on top, the one with the second highest
ranking in the second place, etc.

We denote by OBRC 1 the ranking strategy that prescribes the preventive replacement
at each opportunity of the first L components on the ranking list, provided that their
ranking criterion is positive. From (5) it immediately follows that

R(t) =0&= y=1f, (M

5o that the ranking strategy OBRC 1 is fully consistent with the optimal control limits
t# obtained from the OBRM.

In order to compare strategy OBRC 1 with other strategies of the same type we define
the class of ranking strategies as all those strategies based on individual control limits £
and ranking criteria R;(#;). under such a strategy component i is preventively replaced
at an opportunity if 4 = # whenever possible. Priorities are assigned in decreasing order
of the values B(t;). Thus OBRC 1 is the ranking strategy based on the control limits
¢} and the ranking criteria R,(#;) obtained from the OBRM.

In general, the optimal strategy will not be in the class of ranking strategies. Ranking
strategies are very appealing, however, because of their simple structure and the fact
that the computational effort is only linear in the number of components, N. The optimal
strategy, by contrast, has a complex structure and will be very difficult, if not impossibie,
to obtain.

Now the question arises whether OBRC 1 is the best possible strategy in the class of
ranking strategies. We expect not, since the control limits #* and the cost functions Ri(4)
themselves do not account for the interaction between the components. As the only
consequence of the restricted opportunity durations is that preventive replacements must
sometimes be delayed, we conjecture that the control limit for component i in the optimal
ranking strategy is smaller than #, A proof of this conjecture for the special case with
two identical components and exponential times between opportunities has been given
by Smeitink [7].

3. TWO-COMPONENT MODEL

We now investigate how well the ranking strategy OBRC 1 performs in the simplest
case, i.e., the two-component model with exponentially distributed times between op-
portunities. (In Section 4 nonexponential times between opportunities are considered.)
In this case the restricted duration of the opportunities can be represented in the following
way: with probability p only one component can be replaced at an opportunity, and with
probability 1 — p both components can be replaced.

3.1, Two ldentical Components

For two identical components and exponentially distributed times between opportun-
ities the optimal ranking strategy for block replacement, referred to as OBRC 2, was
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obtained by Smeitink [7]. We use this result to compare the suboptimal ranking strategy
OBRC 1 with the optimal ranking strategy OBRC 2. As we assume in this section that
the two components are identical, we suppress unnecessary subscripts, i.e. we write ()
instead of n(+), etc.

The fact that the two components are identical implies that they have the same optimal
control limit, #*, and minimum expected long-term average costs, ®*, in case of unre-
stricted opportunity durations. Hence it follows from (5) and the definition of the ranking
criterion (6) that

Rz RB) =S =6 (8)

Thus the ranking strategy OBRC 1 prescribes that one should preventively replace
component i at an opportunity if 4 = *, where {4 is the time elapsed since the last
replacement of component i, i = 1, 2, Further, if at an opportunity with duration for
only one component both components should be preventively replaced, i.e., if f; =
Iy = ¢*, then component i; gets priority if ¢ > #p. In case #; = #, either component 1
or component 2 is replaced, each with probability 3.

Now there are two possibilities. A component is replaced preventively either at the
first or at the second opportunity after it has reached the control limit ¢*. In the latter
case the preventive replacement of this component was blocked at the first opportunity
after it had reached its control limit; i.e., that opportunity had a duration allowing
replacement of only one component and the other component gained priority.

Due to blocking the times between two successive preventive replacements of the
same component resulting from using control limit ¢* are now stochastically larger than
in the case of unrestricted opportunity durations. Thus the control limit #* will in general
not be optimal. It will be clear, however, that the optimal ranking strategy OBRC 2
assigns priorities in the same way as OBRC 1 and that both components have the same
optimal control limit, to be denoted by ;. The subscript p refers to the situation that
with probability p only one component can be preventively replaced at an opportunity.
In order to compensate for the blocking phenomenon we expect that ¢ = ¢*. That this
is indeed the case is a direct consequence of the first part of the following result.

Da> Py > by < b )

and

Pa > Py :> (I);;a > (I);’b’ (10)

where & denotes the minimum expected long-term average costs associated with the
optimal control limit £;. The analytical results for this model require the blocking prob-
ability b(t), which is defined as the limiting probability that the preventive replacement
of component { is blocked at the first opportunity after it has reached its control limit,
if the same contro!l limit ¢ is used for both components.

Using an imbedded Markov chain technique it can be shown that

=P
W) = sna (=0 (11)
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Table 1. Comparison of the restricted and the
unrestricted case.

Restricted (p = 1)

Unrestricted OBRC 2 OBRC 1
y ot t OF b)) D) ()
2.60 0.7820 ’

2,18 0.7948 2.12 0.7989 0.191 0.7991 0.187
1.85 0.8276 170 0.8524 0.370 0.8531 0.351
1.41 09278 1.19 1.0241 0.627 1.0248 0.587
1,17 1.0396 0.96 1.1947 0.758 1.1948 0.719
0.92 12320 0.76 1.4342 0.868 1.4342 0.845

nun oo
QOO O

Due to symmetry, both components experience the same blocking probability. Thus, in
the long run, the random time between two successive preventlve replacements of the
same component is given by ¢ + Y,,, where
Yy = Y, with probability 1 — b(f), (12)
e Y, + Y,  with probability b(f),

with Y, and Y, independent, exponentially distributed random variables, both with mean
v. Notice that Y,, has a Coxian-2 distribution so that the numerical procedures from
Dekker and Smeitink [4] can be used to calculate £ and @, (see also Section 2.2).

In Table 1 we compare the ranking strategy with control limit #* (OBRC 1) and the
optimal ranking strategy with the control limit #; (OBRC 2) for various expected times
between opportunities ». The lifetimes of the components have a Weibull distribution

with mean w = 10 and shape 8 = 2. The costs of a failure are ¢ = 20 and a preventive
replacement costs ¢® = 1, In the case of restricted opportunity durations we use p = 1,
so that at every opportunity at most one component can be replaced. From (9)-(11) it
follows that p = 1 represents an extreme case, because it yields the smallest optimal
control limit and the highest cost and blocking probability. Thus the results for the
unrestricted case and the restricted case with p = 1 bound the results for 0 < p <1,

Conclusions

Using the control limit #* instead of the optimal control limit #; results in only slightly
higher costs. Thus the ranking strategy OBRC 1 with the easily obtained control limit
t* is nearly optimal in this case. The refative difference between the control limits can
be much larger, due to the flatness of the cost curve ®,(¢) around its minimum. Further
we notice that for moderate values of » the restncted opportunity durations already
cause a substantial increase of the expected long-term average costs as compared with
the unrestricted case.

3.2. Two Nonidentical Components

For nonidentical components we did not obtain the optimal ranking strategy. As we
also wanted to gain an idea in this case of how far from optimal OBRC 1 is within the
class of ranking strategies, we first derived approximations for the optimal control limits
t5; within the subclass of ranking strategies with fixed ranking criteria R(), i = 1,2
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defined in (6). We then compared OBRC 1 with the ranking strategy based on these
new control limits #}; and the same ranking criteria R(t;) that are used in OBRC 1. We
will refer to this strategy as OBRC 3. The expected long-term average costs for com-
ponent i resulting from OBRC 3 are denoted by &5, i = 1, 2.

Note that OBRC 3 is not the optimal ranking strategy, as it still uses the ranking
criteria R,(#;), which in general are not optimal in combination with controf limits different
from ¢}, This is only the case for identical components. But comparing OBRC 1 with
OBRC 3 provides an estimate of the improvement resulting from using the optimal
control limits instead of the control limits #.

The approx1mat10ns for the optimal control limits #;; were obtained in the following
way. For a given pair of control limits (t,, 15 t,, 2) We sxmulated the mode! and obtained
a point estimate for the associated expected average costs, to be denoted by (I),, ,(t,,‘,)
The priorities were assigned accordmg to (6), xrrespectlve of the pair of control limits
under consideration. Thus if 4 = fp[ and f, = f,,, then the component with the hlghest
value R{t) = m{t) — &} was assigned the hlghest priority. Starting with the pair of
optimal control limits for the case of unrestricted opportumty durations, (t,, #), we
approximately obtained the pair of control limits (¢, £;2) that minimize &5 +

®, 5(7,2) by using a trial-and-error procedure and conJecturmg that #;; = ff; i.e., we
only consndered values f,; = 4.

In order to mvesngate the value of ranking we also considered two randomized strat-
egies. These strategies use the same control limits #* as OBRC 1 to decide whether or
not component i should be preventively replaced. However, if both components exceed
their control limit at an opportunity with duration for only one component then strategy
RANDOM 1 selects one of the components at random, that is, with equal probabilities
1. RANDOM 2 is a modification of RANDOM 1 as it gives priority to the component
whose preventive replacement was delayed at the previous opportunity. Thus RANDOM
2 precludes that the preventive replacement of the same component is postponed twice.

In Table 2 we list simulation results for four different combinations of components.
In all cases considered the lifetimes follow a Weibull distribution with mean 10. The
shape parameter B of the Weibull lifetime distribution and the failure costs ¢ of the
components are varied with fixed cost of preventive replacement ¢ = 1. ®* is the
minimum expected long-term average cost in case of unrestricted opportunity durations,
The TBO are exponentially distributed with fixed mean v = 1 and, just as in the previous
section, we consider the extreme case; i.e., we assume that at an opportunity at most
one component can be preventively replaced (p = 1). We list the point estimations for
the average cost and blocking probabilities for the individual components. The last
column contains the sum of the individual costs and, in parentheses, the half-width of
the corresponding 95% confidence interval,

Conclusions

The first observation to be made is that both OBRC strategles are better than the
strategies that assign priorities at random. As expected, OBRC 3 is slightly better than
OBRC 1 since it uses better control limits and RANDOM 2 is better than RANDOM
1 since it precludes that the preventive replacement of a component is deferred at two
consecutive opportunities.

The OBRC strategies are better than the RANDOM strategies because they give
priority to the most important component. A measure for the importance of a component
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Table 2. Effect of the restricted opportunity duration,

Combination 1 Combination 2
Comp. 1 Comp, 2 Total Comp. 1 Comp. 2 Total
B =20 B =20 B =20 B =40
d=5 d =10 d =20 d =2
®* = (0.380 &* =0.560 0940 P* =088 I =0375 1.203
OBRC1
Elav. cost] 0.391 0.564 0.955 0.868 0.386 1,254
Dblock 0.407 0.057 (0.008) 0.312 0.278 (0.015)
OBRC 3
Efav. cost] 0.389 0.560 0.949 0.865 0.385 1.250
Phlock 0.374 0.101 {0.008) 0.285 0.336 (0.013)
RANDOM 1
Elav. cost] 0.390 0.572 0.962 0.872 0.419 1.291
Pbtock 0.239 0.161 (0.007) 0.242 0.294 (0.014)
RANDOM 2
EJav. cost] 0.387 0.573 0.960 0.867 0.406 1.273
Phlock 0.242 0.167 (0.008) 0.269 0.332 (0.014)
Combination 3 Combination 4
Comp, 1 Comp. 2 Total Comp. 1 Comp. 2 Total
B =20 B =140 B=20 B =40
d =20 o =50 d=1350 d =50
d* = (0,828 &* =0.513 1341  D*F=1.428 &* =050 1937
OBRC 1
Efav. cost] 0.897 0.532 1.429 1.543 0.585 2.128
Pblock 0.536 0.151 (0.016) 0.304 0.555 0.064)
OBRC 3
Efav. cost] 0.891 0.511 1.402 1.521 0.577 2.098 .
Dhiock 0.507 0.182 (0.015) 0.288 0.621 (0.033)
ANDOM 1
E[av, cost] 0.880 0.622 1.502 1,594 0.694 2,288
Phiock 0.285 0.300 (0.017) 0.285 0.335 (0.034)
RANDOM 2
E[av, cost] 0.874 0.593 1.467 1.578 0.605 2.183
Phiock 0.328 0.346 (0.018) 0.365 0.453 (0.034)

with respect to preventive maintenance is the difference p = ¢/ — ®*, which indicates
the cost per unit time that can be saved by optimally executing preventive maintenance
at opportunities (of unrestricted duration). Note that ¢/ is the long-term average cost
tesulting from replacement upon failure only. In general p increases with increasing
failure cost ¢/ and Weibull shape parameter 8. For higher values of 8 the Weibull
probability density function is more peaked, so that we have better information about
the lifetime of the component. This in turn implies that preventive replacement can be
more effective.

Consider for example Combination 3 of Table 2. From the difference between the
blocking probabilities for both components it follows that most times the OBRC strategies
give priority to the more important Component 2. In contrast, the blocking probabilities
following from the random strategies are roughly the same.
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Comparing Combination 1 of Table 2 with relatively unimportant components and
Combination 4 with much more important components we see that the difference between
the OBRC strategies and the random strategies increases with the importance of the
components, Also the difference between OBRC 1and OBRC 3 increases with increasing
importance of the components. This is due to the fact that the value of preventive
maintenance for important components is more sensitive with respect to the preventive
replacement interval, i.e., the control limit used. Strategy OBRC 1 does not account
for blocking in calculating the control limits, whereas OBRC 3 does.

A last remark is in order. Although OBRC 1 clearly outperforms RANDOM 1 (and
RANDOM 2) we also see from Table 2 that the differences are not very large. This is
due to the fact that in the case of two components RANDOM 1 assigns priority to the
same component as OBRC 1 with probability 3. Remember that the random strategies
only assign the priorities at random, but that they use the same control limits £ as OBRC
1. In Section 4 below we will see that the value of ranking can be much higher in 2
multicomponent case.

4. A MULTICOMPONENT CASE

In this section we evaluate the performance of the ranking strategy OBRC 1 based
on the control limits # and the priority criterion R{t;) defined in (6) in a multicomponent
case, again by using simulation. We did not try to obtain better control limits as we did
in Section 3.2, The two-component case is a simple example in this respect. However,
we did consider alternative priority criteria and compared the performance in various
cases. All other criteria were also used in combination with the control limits £ from
the OBRM, so that only the selection from the components due for replacement, i.e.,
the assignment of priorities, would differ. Below we will specify the unit to be maintained,
the alternative criteria, and the type of restrictions on the opportunity durations.

4.1. Outline of the Unit to be Maintained

We considered a 24-component unit. Component lifetimes were assumed to be in-
dependent and to be following a Weibull distribution, Both lifetime and cost parameters
were varied widely. Mean lifetimes were taken from the range of 5, 10, and 20 time
units, and Weibull shape factors were either 2 or 4, Component failure costs were either
5, 10, 20, or 50. Full data are given in Table 3. The last four columns of this table give
the optimal control limits and associated average costs for exponentially and Coxian-2
distributed TBO, respectively.

4.2, Alternative Priority Criteria

As in Section 3 we also considered two randomized selection strategiecs. RANDOM
1 selects at random (i.e., with equal probabilities) from all the components due. RAN-
DOM 2 first gives priority to those components that were already due at the previous
opportunity, but could not be replaced. It selects randomly from this group, and if more
components can be replaced, a random selection is made from the newly due components.
These strategies can be regarded as base cases, as they give us an idea about the value
of setting priorities. Next to these criteria, we considered a heuristic criterion, called
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Table 3. Description of the components.
TBO exp.  TBO Coxian2

Comp. pu B o o o t o*
1 52 5 1 225 0774 233 0.765
2 5 2 10 1 1258 1181 1322 1.142
3 52 20 1 0710 186 0745 1,733
4 5 2 5 1 0318 3,645 0328 3.222
5 S 4 5 1 2020 0539 2127 0.509
6 54 10 1 1468 0715 1.599 0.642
7 5 4 20 1 1.037 098 1,178 0.825
8 5 4 50 1 0609 1653 0,740 1.212
9 10 2 5 1 5092 0380 5.234 0.378
10 10 2 10 1 3.041 0560 3.169 0.553
11 10 2 20 1 1.848 0.828 1.955 0.806
12 10 2 50 1 0930 1.439. 0,999 1.349
13 10 4 5 1 4761 0246 4.949 0.241
14 i0 4 10 1 3748 0302 3.960 0.291
15 10 4 20 1 2933 0375 3.164 0.353
16 10 4 50 1 2.072 0.513 2.318 0.461
17 20 2 5 1 10955 0.189 11.133 0.188
18 20 2 10 1 6812 0275 6.982 0.274
19 20 2 20 1 4362 0397 4,521 0.294
20 20 2 50 1 2407 0.650 2,542 0.637
21 20 4 5 1 10454 0119 10,670 0.118
22 20 4 10 1 8501 0,143 8.729 0.142
23 20 4 20 1 6925 0172 17.164 0.170
24 20 4 50 1t 5253 0.221 5.503 0.216

CORF (combination of relevant factors). The CORF ranking criterion Rf*(t;) was de-
fined as

dt.Biw
corlfpy = LI 13
Rl (tl) C{" ,Uz,2 /“‘i ( )
The idea behind this criterion is that the greatest priority should be given to those
components which have a high cost of failure, for which a relatively long time has elapsed
since the last preventive replacement, which have a peaked lifetime distribution and
finally, for which opportunities occur relatively infrequently.

4.3. Description of the Opportunities

Apart from the exponential distribution we also considered a Coxian-2 distribution
with squared coefficient of variation ¢} = 0.75 for the TBO. The mean time between
opportunities was set to one time unit in both cases.

Setting priorities is only needed when there are restrictions on the number of com-
ponents that can be executed. As the outcome of the comparison may depend on the
type of restriction we considered two types of restriction. In the first one, the number
L of components which can be replaced at an opportunity is constant. We varied this
number from 0 (when no components can be replaced at all) to 24 (when there is no
restriction at all). Next to this we considered a variable restriction. In case STOCH 1
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L was drawn with equal probabilities from the values 3, 6, 9, 12, and 15 (E[L] = 9),
while in case STOCH 2 L was drawn in an equal fashion from the values, 6, 9, 12, 15,

and 18 (E[L] = 12).

4.4. Results and Discussion

In Table 4 the total expected long-term average costs are given for the unit as a whole.
For all cases we used the same random number seeds, Half-lengths of the 95% confidence
intervals are given in parentheses. From the table the following observations can be

made.

Table 4, Effect of the opportunity restriction for several MPs.

¢ The cffect of the restricted opportunity duration on the average costs is only substantial for
L = 12 and increases rapidly if L goes to 0.

L TBO distr OBRC 1 CORF RANDOM1  RANDOM 2
0 59,50 59,500 59,500 59,500

1 EXP 41,31 (0.12) 45.27 (0.13) 51.68 (0.08) 51.44 (0.07)

o7} 40.79 (0.07) 44.99 (0.08) 51.62 (0.07) 51.47 (0.05)

2 EXP 31.81 (0.13)  34.80 (0.15) 44.06 (0.14) 42.35 (0.15)

C2 30.86'(0.11) 34.13 (0.12) 43,78 (0.12) 42,19 (0.13)

3 EXP 26.57 (0.14) 28.62 (0.15) 37.21 (0.18) 34.30 (0.21)

o) 25.37(0.08)  27.68 (0.08) 36.71 (0.12) 33.50 (0.14)

4 EXP 23.05 (0.13)  24.42 (0.10) 31.36 (0.18) 28.45 (0.18)

Q2 21.80 (0.09)  23.40 (0.09) 30.47 (0.13) 26.92 (0.15)

5 EXP 21.09 (0.13)  21.97 (0.13) 27.47 (0.20) 25.22 (0.17)

o7) 19.64 (0.07)  20.67 (0.08) 26.09 (0.12) 23.21 (0.13)

6 EXP 19.97 (0.09)  20.51 (0.09) 24.88 (0.15) 23.27 (0.14)

o) 18.36 (0.06) 18.95 {0.07) 22.99 (0.11) 21.10 (0.10)

9 EXP 18.59 (0.08) 18,73 (0.08) 20,88 (0.10) 20.45 (0.11)

C2 16.96 (0.05) 17.07 (0.05) 18.79 (0.08) 18.39 (0.08)

12 EXP 18.35 (0.08) 18.40 (0.08) 19.52 (0.10) 19.46 (0.09)

2 16.70 {0.05) 16.73 (0.05) 17.44 (0.07) 17.42 (0.07)

15 EXP 18.23 (0.11) 18.25 (0.11) 18.76 (0.13) 18.77 (0.13)

2 16.63 (0.05) 16.63 (0.05) 16.91 (0.06) 16.89 (0.06)

18 EXP 18.16 (0.09) 18.16 (0.09) 18,31 (0.10) 18,33 (0.10)

[67) 16.62 (0.04) 16.62 (0.04) 16.69 (0.04) 16.68 (0.04)

21 EXP 18.22 (0.10) 18,22 (0.10) 18.24 (0.10) 18.24 (0.10)

C2 16.62 (0.05) 16.62 (0.05) 16.62 (0.05) 16.62 (0.05)

24 EXP 18.18 (0.00) 18,18 (0.09) 18.18 (0.09) 18.18 (0.09)

C2 16.61 {0.04) 16.61 (0.04) 16.61 (0.04) 16.61 (0.04)

STO EXP 19.11 (0.12) 19.29 (0.12) 21.86 (0.17) 21.26 (0.16)

I o) 17.46 (0.06) 17.64 (0.07) 19.89 (0.11) 19.24 (0.10)

STO EXP 18.47 (0.10) 18.56 (0.10) 19.93 (0.14) 19.76 (0.13)

I C2 16.83 (0.04) 16.90 (0.04) 17.93 (0.06) 17.77 (0.05)
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® OBRC 1 always results in the Jowest expected long-term average costs, However, if L > 9,
the difference with CORF is small compared with the effect of ranking itself, which is expressed
by the differences with the two RANDOM strategies. For L = 9, the difference with CORF
becomes larger if L decreases (up to 10% for L = 1). Note that L = 0 implies that no preventive
replacements can be carried out at all and that L = 24 implies that there is no restriction at
all, so all four policies produce the same average costs in these two extreme cases,

® Comparing OBRC | and CORF with the two RANDOM strategies reveals that the value of
ranking depends substantially on the severeness of the restriction (i.e., the value of L). For
2 < L < 21 these differences decrease with L. For L = 1, however, the differences are smaller
than for L = 2. This can be explained from the following example.

EXAMPLE: Suppose we have to pick L (L = 4) numbers out of the four numbers
10, 10, 3, 1. In Table 5 below we compare the value of the sum of the numbers in case
we have a ranked list at our disposal with the expected value of the sum if we have to
choose at random. This example shows that the savings induced by ranking first increase
and then decrease with L.

® Asexpected, RANDOM 2 (with priority for those replacements that have been blocked before)
produces lower average costs than RANDOM 1. The difference between the two strategies is
only significant, however, for L = 9, The difference increases with L for L < 4, whereas for
4 =< L =9, it decreases with L. This can also be explained by the above-mentioned reasoning
about the value of ranking.

e The average costs in case of Coxian-2 distributed TBO with ¢} = (.75 are smaller than those
for exponentially distributed TBO (¢} = 1), indicating that the average costs increase with the
coefficient of variation of the TBO distribution (a result which has also been reported by Dekker
and Smeitink [4]). The (relative) effect of shortening the opportunity durations is for L = 6
larger and for L > 9 somewhat smaller for a smaller coefficient of variation,

& The results of the cases with L random show that the variation in the opportunity restriction
increases the average costs significantly. Apparently, the effects of a more severe and (equally)
lighter restriction are not offset by each other. This can also be inferred from Table 4, where
for each strategy the effect of being able to replace an extra componcent is decreasing for
increasing L.

The overall conclusion is that the simulation study certainly indicates the value of the
priority scheduling criterion based on (6) that is used in OBRC 1. Subjects for further
research are indicated in Section 6.

5. EXTENSIONS

In this section we will first discuss two maintenance models other than the OBRM for
which a priority ranking criterion can be derived in an analogous way, viz., a2 minimal
repair model and an inspection model (see Barlow and Proschan [2]). These maintenance
models have in common that an optimal control limit strategy exists in the case of
unrestricted opportunity durations and that component failures do not influence the

Table 5. Example: The effect of ranking.

L Value (ranked list} E[value(random)] Difference
1 10 6 4
2 20 12 8
3 23 18 5
4 24 24 0
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times between successive preventive maintenance actions. Models with this property can
be analyzed in the same way as the OBRM and are easily extended to the case where
more than one system part is addressed by an individual maintenance package. The
important thing to note is that for all models the priority criterion has the same meaning
and can therefore be used to set priorities between activities of various types.

Further we will show how the ranking criteria can be used to include nonidentical
replacement times for the components (or equivalently, nonidentical execution times for
the maintenance packages). The main point that we make is that it is not a good idea
to use normalized ranking values, i.e. the original ranking values R(#;) divided by the
execution times, as priority scheduling criterion in that case. Instead, the additivity of
the ranking criterion should be used to formulate a knapsack problem. The additivity
of the ranking criterion can also be fruitfully exploited for other optimization purposes.

5.1, Minimal-Repair Model

As in the OBRM, we assume that component i can be preventively replaced at an
opportunity against costs ¢7. After a preventive replacement the component is as good
as new. However, if component i fails then it only gets a minimal repair, which costs
df. After a minimal repair the component is assumed to have been brought back to the
state it was in just before failure. Thus ¢ time units after its last preventive replacement
the component has age ¢, irrespective of the number of component failures. It then
follows that the expected number of failures of component i in an interval of length ¢,
starting with a new component, equals

¢
o) = [ aw dw, (14)
where g,(-) denotes the failure rate of component i, given by
_ _fw
Qi(u) 1 _ Fi(u)‘ (15)

From this point the analysis is analogous to the analysis of the OBRM with M(+) and
my(*) replaced by Qi() and g,(+), respectively.

5.2. Imspection Model

In this model we assume that failures have no direct consequences and hence do not
reveal themselves. However, if component i has failed a (virtual) cost ¢/ per unit of time
is incurred, for example, due to a decreased safety level. At an opportunity a component
can be inspected against costs ¢? for component i. If a failed component is found upon
inspection then it is repaired without any additional costs. It is assumed that a component
is always as good as new after inspection. The expected time that component | is down
in an interval of length ¢, starting with a new component, equals

&m=ﬂ@—ww@. (16)

Defining s(f) = dl/dt S(t) = F({), the analysis is analogous to the analysis of the OBRM,
now with §;(*) and s;() replacing M;(-) and m(*), respectively.
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5.3. Additivity of the Ranking Criterion

The interpretation of the ranking criterion R{t;) = m(4) — & is that it indicates the
expected average cost of deferring the execution of maintenance package MP i until the
next opportunity. With this interpretation in mind it is easily seen that the cost of deferring
the execution of a collection S of MPs, all with a positive ranking criterion, is given by
the sum of the individual ranking criteria of the MPs in S.

Suppose that, due to some side constraints, one wants to deviate from the priorities
indicated by the ranking list. This situation may occur if, for example, the necessary
spare parts or manpower to execute some of the maintenance packages with a high
ranking criterion is not available. If one has the option to execute either the subset S,
or S, of maintenance packages with a positive ranking criterion, then it will be advan-
tageous to execute the collection S, if and only if

2R@>2R@ a7

ieS) ieSa

Thus, apart from indicating the scheduling priority of individual MPs, the ranking
criteria can also be used as cost figures in additional optimization routines. This is in
contrast with, e.g., the criterion R defined in (13), which can only be used as a relative
value to indicate the scheduling priority of MP ..

5.4. Different Preventive Replacement Times

Until now we have assumed that replacing a component, or equivalently, executing
a maintenance package (MP) takes one time unit. If the execution times are different,
then instead of executing the packages in decreasing order of their ranking value Ri(t),
we can use the additivity of the ranking criterion to formulate the following knapsack
problem. Let E; denote the execution time of maintenance package i, We assume that
at the beginning of an opportunity, maintenance management knows its duration /(a
realization of the random variable L). Given /, the execution times E; and the ranking
values R(t;), we have to choose a subset S of MPs to be executed in order to

maximize >, Ri(t),
ieS

subject to >, E; = L.

ieS

(18)

As only those activities with a positive ranking value R(t;) need to be considered, the
above knapsack problem will be of small to moderate size and can be easily solved.

Another way to incorporate the different execution times would be to define new
ranking values R() = R,(t)/E; and to execute the MPs in decreasing order of the new
ranking values R(t). The next example illustrates the problem resulting from this ap-
proach, namely, that MPs with large execution times will not be high on the new ranking
list, although executing them results in high savings.

EXAMPLE: Consider the followmg situation at an opportunity with duration [ =
10 (Table 6) If the MPs are executed in decreasing order of the values R,(#) then the
net return is 15 + 10 + 24 = 49 with a total execution time 6. Although there are four
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Table 6, Example: Discrimination
of MPs with large execution times

MP R I(ti) E; Rl(ti)

1 13 1 15
2 10 1 10
3 6 4 24
4 5 9 45

time units left, MP 4 cannot be executed, as its execution requires nine time units. T}le
optimal solution is to execute MP 1 and MP 4, yielding a return of 15 4+ 45 = 60 with
a total execution time 10,

6. CONCLUSIONS AND SUBJECTS FOR FURTHER RESEARCH

In this article we have presented a priority scheduling criterion with a sound theoretical
justification. The resulting maintenance strategy performed better than other, more
heuristically derived criteria we considered. The strategy has a simple structure and can
be used on line, due to the modest computational requirement, which is only linear in
the number of maintenance packages.

The fact that the priorities are assigned on the basis of a cost comparison makes the
approach very flexible. The ranking criteria can, e.g., be used as inputs to more advanced
scheduling routines that account for manpower requirements. This can also be done in
a planned environment, where maintenance packages can in principle be executed every
weekend, say, but where sometimes priorities must be set due to capacity restrictions.
Further, the method presented in this article can be easily extended to include other
underlying long-term optimization models.

The two main subjects for research that we want to indicate are closely related. In
the multicomponent case of Section 4 we did not obtain better control limits as we did
in the two-component case. However, if the restrictions on the opportunity durations
are severe, then preventive maintenance actions must often be deferred. The random
time between two successive preventive replacements of component i using control limit
tf* will be substantially larger than #* + Z, in that case. Thus the long-term optimization
with the OBRM as underlying model (unrestricted opportunity durations) will produce
suboptimal control limits.

One option for a strategy improvement would be to do a simulation run in order to
estimate the distribution of the number of opportunities Oy, that the preventive replace-
ment of component i is deferred, given that the control limits ¢, . . ., £} and the ranking
criteria Ri(;) defined in (6) are used. The random time between two successive preventive
replacements of component £, using control limit ¢, is then approximately given by ¢ +
Z, + O;Y for values of ¢ close to £. Using these adjusted random times in the OBRM
for all components separately, possibly better control limits could be obtained,

It will be clear that such a complicated strategy improvement procedure cannot be
implemented as an automatic procedure in a DSS, In practice it will be more important
to know, for the maintenance strategy suggested, whether the restrictions on the op-
portunity durations are so severe that certain components will (almost) never be pre-
ventively replaced. A simple criterion that would indicate those components without
requiring simulation would be very useful.
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