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Abstract 

In this paper we introduce marginal cost criteria to determine the optimum time for preventively replacing a fixed 
group of components. The criteria have a clear interpretation and are very flexible: actual ages can be taken into 
account as well as discretely or continuously distributed lifetimes and any number of components. Since an overall 
optimal policy for the group replacement problem is difficult to establish, we compare the criteria with block 
replacement policies which replace the group at fixed intervals. Such policies, however, do not take failure renewals 
into account and may replace relatively new components. The performance of the criteria has been analysed both 
with discrete-time Markov decision chains and with simulation. In all cases considered the replacement criteria yield 
an improvement in average costs over the optimum block replacement policy varying between 0% and 10%, while 
the loss with respect to an optimal group age replacement policy (if it can be determined at all) is marginal. 

Keywords: Maintenance; Planning; Markov decision chains 

I. Introduction 

Planned preventive maintenance is widely used to reduce unscheduled downtime. In many cases 
preventive maintenance is more economic when applied to an entire group of components than to 
individual ones. One of the problems encountered, however, is to decide when to maintain the entire 
group; this is often called the Group Replacement Problem (GRP). There are several variants of the 
GRP; in the one considered in this paper, failed components are replaced immediately and the objective 
criterion is the long-term average costs. 

The GRP was actually encountered in setting up a long-term maintenance plan for large offshore-based 
gas turbines, which was to be incorporated in an operational decision support system (DSS). Preventive 
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maintenance packages were devised, each consisting of a number of maintenance activities. Each activity 
dealt with one component and execution of it brought the component back to an as-good-as-new state 
(which makes such an activity identical to a replacement). Activities were grouped into a package if joint 
execution would be profitable (e.g. because of reduced setup costs). The packages would be executed at 
those moments when the unit in question was not required for production and hence downtime costs 
were almost zero. In case of failure, however, only the activity needed to restore the failure was carried 
out; no other activities of the same package could be done, because the costs of prolonged unscheduled 
downtime would outweigh the savings of a joint execution. Upon request, the DSS would advise on 
whether to execute the package, using information on the actual ages of components. 

One standard policy which can be applied to our version of the GRP is block replacement (BR), i.e. 
replacing the group preventively after fixed time intervals, regardless of the number of failures in 
between. Determination of the long-run average costs and of an average optimal policy is basically the 
same as in the single component case. A disadvantage of block replacement, however, is that the 
replacement decision is not influenced by the occurrence of failures. Although there is an administrative 
advantage in not having to register failures, this advantage reduces if computerised information systems 
are used. Moreover, the advice of a decision support system to replace a group of components, while one 
component has just been replaced upon failure, will not be convincing. So, two questions arise: firstly, 
how large is the difference between an optimal BR policy and an overall optimal policy, and secondly, 
how can one arrive at an (almost) optimal policy? 

Only few papers deal with multiple component replacement and in fact none solely with the problem 
described above. Multi-component models which allow a joint replacement, also allow individual 
replacement or opportunistic replacement upon failure of another component. The survey of Cho and 
Parlar [6] lists as examples B~ickert and Rippin [2] and Haurie and L'Ecuyer [10]. In these papers Markov 
decision chains were used with the state consisting of the vector of the components' ages. Hence these 
models are numerically tractable for a few (two, three) components only (the effort increases exponen- 
tially with the number of components). Optimal policies tend to have complex structures, e.g. a list 
indicating the action for each state, because of the multiple options. This method of analysis does not 
become much simpler when applied to our version of the GRP only. Other models of group replacement 
were given in Okumoto and Elsayed [11], Assaf and Shantikumar [1] and Sivazlian and Mahoney [14]. 
The first four authors allow that failed components are repaired later so that the repairs can be 
combined with preventive replacement. They consider identical components with exponentially dis- 
tributed times to failure and arrive at single parameter control limit policies. Sivazlian and Mahoney [14] 
consider components with increasing operating costs which are not subject to failure. They apply 
variational calculus to obtain optimal policies. Solving the integro-differential equations is possible by 
analytical methods in some special cases or by discretisation, which suffers from the same computational 
problems as the Markov chain approach in general. 

In this paper we present group age replacement criteria based on marginal cost considerations. Here 
the marginal costs are interpreted as the extra costs caused by deferring preventive replacement for an 
additional time unit. The criteria order a replacement if the marginal costs exceed minimum average 
costs. For the marginal costs simple formulas in the component ages can be derived, whereas the 
minimum average costs are approximated by the BR model. Marginal cost considerations were first 
introduced by Berg [4], later applied by Dekker and Smeitink [7,8] and by Savits [13], all for one 
component models. The major advantages of the criteria are that they have a clear interpretation, which 
is a very important aspect in practical applications, and the required numerical effort consists of the 
computation of the optimum BR policy, which effort increases linearly with the number of components. 
The criteria can be formulated both for continuous and for discrete lifetime distributions as well as for 
any number of non-identical components. Moreover, they can easily be extended to other models, eg. 
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opportunity models (Dekker and Smeitink [7]), they can be used as priority criteria (see Dekker and 
Smeitink [8]), and they can serve as penalty function in models aiming at short term combination of 
execution (see Dekker et al. [9]). This paper investigates the performance of the criteria by means of 
discrete time Markov decision chains for two components as well as by simulation for multiple 
components. 

The structure of this paper is as follows. The group replacement problem is formulated in Section 2.1, 
while the first approach, block replacement, is presented in Section 2.2. Section 2.3 recapitulates the 
single component age replacement model, to give the background behind the group age replacement 
criteria, which we present in Section 2.5. The performance of the criteria is analysed in Section 3, 4 and 
5. In Section 3 we consider the single component continuous time case, as then also an optimal age 
replacement policy can be determined. This case shows the influence of various model parameters. In 
Section 4 a discrete time Markov decision chain is formulated to evaluate the criteria for a two 
component case. Section 4.2 compares the replacement criteria with the policy improvement criterion. 
Finally, Section 5 presents simulation results for the general multi-component case. 

2. The mathematical problem and the approaches 

2.1. Formulation o f  the group replacement problem 

Consider a preventive maintenance package addressing a group of n components. Let the r.v. Xi with 
mean iz i and variance ~ri 2 denote the lifetime of component i (i = 1 . . . . .  n). Lifetimes are assumed to be 
independent and can follow either a discrete or continuous distribution. We furthermore assume that the 
failure rates of the components, ri(t), i = l . . . . .  n, are increasing. Failure and successive replacement of 
component i (by an identical one) induces cost c~. Execution of the maintenance package involves cost 
c o and leads to replacement of all components in the group. Individual components cannot be replaced 
preventively, neither can the execution of the package be combined with a failure replacement. The main 
problem is to determine the optimal moment to execute the maintenance package with the long term 
average costs as objective function. The two approaches to solve this problem, viz. block and group age 
replacement are treated in Sections 2.2 and 2.4. 

2.2. Block replacement 

The first and simplest approach is to execute the package at fixed intervals, hence the term block 
replacement (BR) is used. For this approach one does not need to keep track of ages of individual 
components. Since executions of the package can be considered to be renewals of the total process, we 
have the following expression for the long-run average cos t s  g b ( t )  for a maintenance interval of length t: 

e p + ~ criMi(t) 

g b ( / )  = i=1 , t > 0 ,  (2.1) 
t 

where Mi( t )  is the renewal function belonging to component i, indicating the expected number of 
failures in the interval [0, t]. The analysis of the BR model is standard (see Barlow and Proschan [3]) and 
will be reviewed for the continuous case only; for the discrete case it is similar. We assume that Mi(t), 
i = 1 . . . . .  n, is differentiable in t and denote its derivative by mi( t ) .  If there exists a minimum t~ to 
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gb(t), it has to satisfy the following equation, which follows directly from (2.1) by setting the derivative 
equal to zero and rearranging terms; 

cfimi(t) - -gb ( t )  = 0. (2.2) 
i = 1  

Similar to the single component case one can show that if F,'/=lcfmi(t) increases in t and c p < E~'=lC/f(1 
- ~2//x2) then there exists a unique solution t~ to (2.2). Denote the corresponding minimum value of 

gb(t) by g~. Assuming the aforementioned conditions, it can also be shown using (2.2) that we have the 
following equivalences: 

n 
> . 

E c [ m i ( t ) - g ~ > O ,  t ~ t b .  (2.3) 
i = 1  

Following Berg [4] we interpret (2.3) in the following way. Suppose at time t we consider the following 
two options: 
(a) Replace all components preventively. 
(b) De]er the replacements for an infinitesimally small time dt. 
For the second option the expected costs over the interval [t, t + dt]  amount to c p + ET_ lcfmi (t) dt, 
where mi(t) dt indicates the expected number of failures in [t, t + dt] of component i, given i was new 
at time 0 and no age was known at time t. For the first case we have costs c o at time t and we associate 
costs g*dt to the remaining time interval, representing the minimum average costs we would have over 
an arbitrary interval of length dt. Eq. (2.3) now implies that comparing the options in this way yields that 
option (a) is better than option (b) if t > t~. Hence En=~cfimi(t)-g~ can be used as a replacement 
criterion. Replacing if it is nonnegative results in an average optimal BR policy. 

An algorithm to compute t~ and g~ consists of two parts, one in which gb(t) is evaluated and one in 
which it is optimised. For calculation of the renewal function, needed to determine gb(t), we used a 
recursive scheme in the discrete-time (DT) case and an approximation from Smeitink and Dekker [15] in 
the continuous-time (CT) case. 

2.3. Single component age replacement in continuous time 

The group age replacement criteria, which will be introduced in Section 2.5, are based on a marginal 
cost formulation of the single component age replacement (AR) model, which we briefly recapitulate 
here. For ease of notation, we skip in this section the component index i. 

Consider an AR policy which replaces the component at age t (where the age is reset to zero after 
both a failure and a preventive replacement) and denote the associated long term average costs by ga(t). 
Berg [4] showed that there exists a unique finite optimal replacement age t* provided that c f > c p and 
lim, _.oor(t) > cf / ( (c  f - cP)/x). This age t* is the unique solution to the following optimality equation: 

(c ~ -  cP)r( t )  - g , ( t )  = 0. (2.4) 

Moreover, we also have the following equivalences: 

( c f - c P ) r ( t ) - g * < O ,  t < t  *. (2.5) 

We interpret (2.5) in the following way. Suppose at age t we consider the following two options: 
(a) Replace the component preventively. 
(b) Replace the component upon failure or preventiuely after an infinitesimally small time dt, whichever 

comes first. 
For the second option the expected costs over the interval [t, t + dt] amount to c o + (c f -  c°)r(t)  dt, 
where r(t) dt is the probability of failure in [t, t + dt]. For the first option we have costs c o at age t and 
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we associate costs g*dt  to the remaining time interval, representing the average costs we would have 
over an interval of length dt. Eq. (2.5) now implies that comparing the options in this way yields that 
option (a) is better than (b) if t > ta*. 

2.4. Group age replacement - General considerations 

We now return to the group age replacement (GAR) problem and consider a replacement decision 
which is based on sufficient information about the history of the process, being the vector containing all 
component ages. Policies of this type will be called group age replacement (GAR) policies. Intuitively, it 
will be clear that the class of BR policies does not contain the overall optimum policy. For example, 
consider the case in which just before the moment of execution of the package all components fail and 
are replaced. The BR policy will still recommend execution, which may be deferred by GAR policies. As 
such an event will occur with a positive probability it will be clear that a BR policy can always be 
improved by a GAR policy. Berg [5] proved this fact for the single component case. 

In the DT case the GAR problem can be formulated as a Markov decision problem (MDP), as we will 
do in Section 4. In Roelvink and Dekker [12] it is shown that within the class of control limit policies 
(which, if they order a replacement at age X l , . . . , x  n, also do so for all ages y~ . . . .  , yn, with y / > x i ,  
i = 1 . . . . .  n) there exists a policy which is average optimal. Except for the identical component case, the 
dimension of the state space of the MDP equals the number of components, hence solving the MDP is 
computationally troublesome. For the CT case no results are yet available with respect to optimality. 
Furthermore,  whereas in the single component case AR policies are easily described by a single 
threshold value, this is much harder in the multi-component case (see, e.g. Fig. 2). Even control limit 
policies are not easily described as they require the specification of an n-dimensional hull, unless they 
are simplified considerably, e.g. to rectangles. Using individual component threshold values leaves one 
with the problem to determine an optimal set of threshold values, which is an n-dimensional optimisa- 
tion problem. On the other hand, using a fixed threshold value for all components (i.e. replace the group 
if one component is older than x) yields a policy which for many components is almost like a BR policy. 
So, in fact one requires an easily implementable replacement criterion. Such criteria are presented in the 
next section. 

2.5. The group age replacement criteria 

The basic idea of the replacement criteria is to use marginal costs and consider the problem in a 
myopic way: either to replace the group now or to defer replacement to the next decision moment. In the 
CT case the next decision moment is at time t + dt, whereas in the DT case it is one epoch At ahead. 
We will now introduce the criteria for each case separately. 

The replacement criteria for the continuous time case 
The replacement criteria are derived from criterion (2.3) by taking the actual component ages into 

account. The option to defer replacement for an infinitesimally small time dt  involves expected costs 
c p + ]ET=lcfri(xi(t)) dt  over the interval [t, t + dt], where xi(t)  , ri(xi(t)) indicate component 's i age and 
failure rate at that age respectively. To the option which replaces directly we associate costs c p + g dt, 
where g is a decision parameter  yet to be specified. Considering the same comparison for the single 
component age replacement we would like to use for g the minimum average costs under group age 
replacement; however, as this value is not available, we approximate it by g~. Comparing the options 
yields, after deleting c p on both sides and dividing by dt, the following preventive replacement criterion: 

R C l ( x l ( t )  . . . .  , x , ( t ) )  = ~ c f r i ( x i ( t ) )  - g ~  (2.6) 
i=1  
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For shorthand we write RC I instead of RC 1 ( x l ( t ) , . . . ,  xn(t)). The probability that all components fail 
(in the multi-component case) in an infinitesimally samll time interval of length dt is negligible with 
respect to the probability of one failure. In the single component  case, a failure of a component  does 
imply a total renewal of the system, and in that case we do not need to replace the component  
preventively at the end of the interval. Therefore  we also consider an adapted replacement criterion 
RC II defined as: 

RC n - ( c'  - cP)r(  x (  t ) ) - g~. (2.7) 

In the sequel we associate to each replacement criterion RC the policy: ' replace if RC _> 0'. Notice that 
both RC ~ and RC n are increasing functions in the component  ages and hence the associated policies are 
of the control limit type. An underlying assumption made in both criteria is that preventive replacements 
are done at all. As for many distributions the failure rate increases to infinity, RC ~ will eventually be 
positive, even if c p > Y'.~'=~cf; this is not optimal. So RC I and RC I! should only be used in cases where 
preventive replacement is cost effective (which follows from the BR optimisation). 

The replacement criterion for the discrete time case 
Suppose the components  are observed only every At time units, where At is small enough to preclude 

multiple failures of one component.  Let qi(xi(t))  denote the probability that component  i of age xi( t )  
fails just before the next time point t + At. In this case the expected costs associated with deferring 
replacement for a time At are c p + ~,ic~qi(x~(t)). Similarly to the CT case we arrive at the following 
preventive replacement criterion: 

n 

R C '  - • c~qi(x i ( t ) )  - g~At .  (2.8) 
i = 1  

Similar to the single-component case we also consider an alternative criterion RCI! in which we do not 
replace all components  preventively if they all fail before the next decision moment:  

R e  11- ~ c [ q i ( x i ( t ) ) - - C  o.  f i q i ( x i ( t ) ) - g ~ A t .  (2.9) 
i = 1  i = 1  

Notice that for high age values RC 11 may no longer be increasing in the ages and that it only generates a 
control limit policy if ~ =  ~c f - c p - g~ At > O. 

For ease of reference in other papers (e.g. Dekker  et al. [9]) we here introduce the term Modified 
Block Replacement policy to indicate the policy which replaces as soon as RC( t )  >_ 0 (where RC is either 
RC I or RC11). 

3. Results for the continuous-time single-component case 

In this case we only consider criterion RC H as that is most appropriate for the single component  case. 
Fig. 1 shows typical shapes of curves of the average costs ga(t) and marginal costs (c f - cP)r(t). 

Since by assumption r(t)  increases, there exists for any g ~ [g*, c f /~ ]  an age tg > t* such that 
(c f - cP)r(tg) - g = 0. As (c f - cP)r(t)  > ga(t) for t > t* we have ga(tg) < g, with equality only if g - g~. 
If  g > c f / ~ ,  then either tg > t* or t~ = oo, and again g~(tg) < g. This proves that the average costs under 
RC n are lower than the minimum BR costs. Use of g = g *  would even lead to an average optimal 
policy. 

We also did some numerical experiments to evaluate the performance of the RC n policy and to assess 
the differences between AR and BR policies. Table 1 provides numerical results for Weibull lifetime 
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distributions with constant mean and various shape and cost parameters. Herein tnc indicates the 
control limit resulting from RCn and n gRC the corresponding average costs. 

From Table 1 we conclude that the RC n policy yields a substantial improvement over the optimum 
BR policy and that it is only slightly inferior to the optimum AR policy. The differences in average costs 
between the optimum AR and optimum BR policies, however, are relatively small. As the policies mainly 
differ in case a failure occurs, we expect the difference to be related to the probability of failure before 
the optimum replacement time or age. If the ratio cf /c  v is high, one is likely to replace at a relatively 
early time or age and thus allow only a small failure probability. Indeed we observe that the relative 

Table 1 
A comparison of  opt imum BR, AR policies with the RC u policy 

gl l  _ , c f t ~ - t *  g~ - ga *  (%) __t~f-ta* (%) _ _ R e  ga (%) 
Case /3 c p (%) ta* gt t* g* 

1 2 2.5 + 15.7 11.2 11.2 0.3 
2 2 5 -0 .6  5.4 4.7 0.1 
3 2 10 - 0.6 2.6 2.6 0.03 
4 2 20 - 0.5 1.3 1.4 0.01 
5 6 2.5 - 7.0 7.5 1.1 0.03 
6 6 5 -3 .2  3.4 0.4 0.01 
7 12 2.5 - 4 . 0  4.1 0.1 < 0.01 
8 12 5 - 1.8 1.9 < 0.1 < 0.01 
9 12 10 -0 .9  1.0 < 0.1 < 0.01 

10 12 20 -0 .5  0.5 < 0.1 < 0.01 
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difference between age and block policy decreases with the ratio cf /c  p. The Weibull shape parameter/3,  
2 2 is monotonically related to /3, has a similar effect. The or in fact the coefficient of variation c x, as c x 

2 (and the lower /3), the more spread the distribution exhibits and the more difficult it is to larger c x 
predict a failure. The probability of failure before the optimum replacement time or age decreases with 
/3 and hence the difference between the average costs under the optimum AR and BR policy does so as 
well. If/3,  however, equals 1 (and the failure rate is constant) then both policies replace at failure only, 
and the difference in average costs is zero. 

4. A Markov decision chain for the two-component replacement problem 

4.1. Model formulation 

In this section we consider discrete lifetime distributions and formulate the group age replacement 
problem as a Markov decision problem. The advantage of this approach is that we are able to determine 
an optimal policy and compare the replacement criteria with this policy. From other studies, although 
with slightly different models, we do not expect the optimal policy to exhibit a nice structure. Hence the 
only way to determine the optimal policy is to solve the Markov decision chain numerically, which, to 
limit computational effort, is done for two components only. 

As it is our primary aim to compare various replacement policies, we have to take care of the 
discretisation effects, as changing the action in only one state may already have a large effect in case of a 
coarse discretisation. Therefore  we take a continuous time example as starting point and consider various 
discretisation steps and two types of modelling. 

Let F(t)  be a continuous distribution of the time to failure for a component and suppose we observe 
the component every At time units. Let p(j), j = 0, 1 . . . . .  be a discrete time distribution, with 
p(j)  = F((j + 1)At) - F(jAt) ,  j = 0, 1 , . . . ,  denoting the probability of failure just before the next time 
point, i.e. at time ( j  + 1)At-. The probability that a component of age j At fails just before the next time 
point, q(j), is given by q(j)==-p(j)/E~=~p(k), q(j)  is the discrete analogon of the failure rate. We 
assume that q( j )>  0, j = 0, 1 . . . . .  It is worth noting that the so-constructed discrete distribution is 
stochastically smaller than the continuous one and the average costs under any policy will therefore be 
lower than in the CT case. Notice further that if we replace a component immediately upon observation, 
we tend to disfavour preventive replacements against failure replacements, as the latter occur At -  units 
later. This may be disadvantageous for AR, which has a higher ratio of failure replacements to 
preventive replacements than BR. Hence we also consider another modelling, in which a preventive 
replacement takes At time units. 

We now formulate the Markov chain for a two-component system, which is observed every At time 
units. Let the state (i, j )  indicate that component 1 and 2 have age i At and j At respectively. The 
lifetimes are truncated to N At, where N is chosen large enough to have no effect on the optimal 
replacement decisions (we only consider cases in which replacement makes sense). In each state we have 
two actions, viz. action 1 implying a preventive replacement of both components, and action 0 implying a 
continuation of the operation. The transition probabilities, P(s'l s, 0), are in case of action 0 and state 
s = (i, j )  

/ [ 1 - q l ( i ) ] [ 1 - q e ( J ) ] '  s ' = ( i + l , j + l ) ,  

P(s ' l s ,  O ) = "  t ,r t ,l~ql~i)tl_q2~J)l ' s ' =  (0, j + 1), 

I [ 1 - q , ( i ) l q 2 ( j ) ,  s ' = ( i +  1,0) ,  

[q l ( i )q2( j ) ,  s '= (0, 0), 
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where the subindex k in qk('), k = 1, 2, refers to component k. Preventive replacement is modelled in 
two ways. In the first it takes At time units (denoted by /pro ----- i)  and the components get age zero at the 
next inspection point, i.e. PA((0, 0)1(i, j), 1) = 1, where the superscript A denotes the first modelling. In 
the second way (indicated by the superscript B) the components are replaced instantaneously (tom --- 0) 
and have the same transition probabilities as two new components. That is, PB(s'ls, 1) = P(s' I(0, 0), 0). 
Notice that as we assumed that qk(J) > 0 for all states j and components k, we have P((0, 0) 1 s,a) > 0 for 
all actions a in both modellings. Hence the Markov chain induced by any policy is unichain. Immediate 
costs are given by 

c(( i ,  j ) ,  O) = c~q,(i) + cfq2(j) ,  

cA((/ ,  j ) ,  1) = C o , 

C~( ( i, j ), 1) =C o + c~q,( O) + c~q2( O ). 

The replacement criteria are given by (2.8) and (2.9). 

4.2. Relation between the replacement criteria and policy improcement 

The replacement criteria are strongly related to the policy improvement procedure. The main 
difference however, is that the replacement criteria consider in each state only the actions: replace now 
or at the next time point, whereas the policy improvement procedure takes also other options into 
account. On the other hand, the policy improvement procedure requires the so-called value vector v, 
which, for any stationary policy R, is defined by the set of equations over the state space S: 

gRAt + vR(s ) =CR(S ) + ~_,PR(s'Is)vR(S'), S ~S ,  (4.1) 
X r 

where CR(S) stands for c(s, R(s)), PR(S'Is) for P(s' ls ,  R(s)) and R(s) for the action prescribed by policy 
R in state s. The larger the number of components, the larger the set of equations to be solved, which we 
would like to avoid. Given a policy R with value vector oR(s) and average costs gR, the policy 
improvement step can be formulated as 

max ( c ( s , a ) +  ~ P ( s ' l s ,  a ) v , ( s ' ) - v , ( s ) - - g g A t ) .  (4.2) 
a~A(s) s' 

A policy R for which (4.2) is zero, can no longer be improved and is average optimal. Inserting the two 
actions yields in case of modelling B 

max{c ° +WR(O,O),C[ql(i ) +c~q;(j)  + E P ( s ' I s ,  O)VR(S')} (4.3) 
S r 

where WR(O, 0) is short for c~ql(O) + cfq2(0) + Es, P(s'l s = (0, O))vR(s'). If  the optimum policy R wouM 
replace in each of the next states s' we would have vt~(s') = c p + wR(O, O) - gRAt, by (4.1). Inserting this 
into (4.2) yields the following maximization: 

max{c p + WR(O , 0) ,  C[ql( i ) + cf q 2 ( j )  + C p q- WR(O , O) - -gRAt} ,  

which yields the same actions as RC I if we replace gn by g~. RC n now follows by remarking that we do 
not replace preventively if s' = (0, 0). Hence, we obtain (after subtraction of c p and remarking that VR(0, 
O) = WR(O, O) -- gRAt) 

max{0, c[ql( i ) + cf q2( j)  - gRAt  -- CPql( i)q2( j)  }. 

For modelling A, a similar analysis can be done. The results, however, are only consistent with RCI, 
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Table 2 
Comparison of average costs for two-component problems 
(a) Example 1 

g~ -ga* g~ _ g l  
RC 

At g~ ga* glRc g~c - -  (%) - -  (%) 
g~ g~ 

I I  
gb - gRc 

g~ 
- -  ( % )  

tom = 1:  

1 2.6686 2.6480 2.6480 2.6480 0.77 0.77 
3.4515 3.3662 3.3662 3.3658 2.47 2.47 2 

3.7711 3.6556 3.6704 3.6704 3.07 2.67 3 

/ p r o  = O: 

1 4.4133 4.0380 4.0383 4.0582 8.50 8.50 
4.4467 4.1563 4.1600 4.2609 6.53 6.45 2 

4.4462 4.1993 4.2305 4.2323 5.55 4.85 3 

0.77 
2.48 

2.67 

8.05 
4.18 

4.81 

Component 1: X 1 ~ Weibull, shape/31 = 2, mean /z 1 = 3 (A l = 3.385), c[ = 8, c p = 4. 
Component 2: X 2 ~ Weibull, shape/32 = 2, mean /~2 = 3 (A 2 = 3.385), c[ = 8. 
At the discretisation step; CT BRP: g~ 4.5024; I = = = gRc average costs for RC 1. 

(b) Example 2 

At 
, R C  ( % )  g~ ga g! g~c g~ -- ga g~ - - g l  

RC g .  (%) g ,  

g~ i1 
- -  gRc 
g~ 

- -  ( % )  

t p m  = 1: 
1 1.3716 
-! 1.8296 2 

2.0586 3 
1 2.1880 

J 2.2586 5 

t p m  = O: 
1 2.7433 
± 2.6514 2 

1 2.6221 3 
l 2.6256 4 

1.3709 1.3709 1.3709 0.05 0.05 0.05 
1.8162 1.8162 1.8163 0.73 0.73 0.73 

2.0370 2.0370 2.0372 1.05 1.05 1.04 

2.1666 2.1687 2.1689 0.98 0.88 0.87 

2.2323 2.2331 2.2331 1.17 1.13 1.13 

2.6602 2.6602 2.6603 3.03 3.03 3.03 
2.5987 2.6017 2.6018 1.99 1.87 1.87 

2.5694 2.5693 2.5695 2.01 2.01 2.00 

2.5720 2.5732 2.5732 2.04 2.00 2.00 

Component 1: x j  ~ Weibull, shape/31 = 2.5, mean /.L 1 = 3 ( A  1 = 3.385), c[ = 8, c o = 2. 
Component 2: X 2 ~ Weibull, shape/32 = 2.5, mean /z 2 = 3 0 t  2 = 3.385), c f = 8. 
At = the discretisation step; CT BRP: g~ = 2.6257. 

s i nce  in  R C  n a p r e v e n t i v e  r e p l a c e m e n t  is d e l a y e d  if  al l  c o m p o n e n t s  a r e  r e p l a c e d  u p o n  f a i l u re .  I n  

m o d e l l i n g  A a p r e v e n t i v e  r e p l a c e m e n t  t a k e s  A t  t i m e  u n i t s  w h i l e  a f a i l u r e  r e p l a c e m e n t  is d o n e  

i n s t a n t a n e o u s l y ,  so  a n o t h e r  t e r m  w i t h  g s l ips  in.  A n y h o w ,  it wil l  n o w  b e  c l e a r  w h e r e  t h e  r e p l a c e m e n t  

c r i t e r i a  d e v i a t e  f r o m  t h e  o p t i m a l  r e p l a c e m e n t  pol icy.  F i r s t  o f  all,  t h e y  u s e  a t i m e -  a n d  n o t  a s t a t e - d e p e n -  

d e n t  v a l u e  v e c t o r  ( b e c a u s e  o f  t h e  a s s u m p t i o n  t h a t  in  t h e  n e x t  s t a t e  a p r e v e n t i v e  r e p l a c e m e n t  wil l  b e  

d o n e ,  r e g a r d l e s s  o f  w h i c h  s t a t e  i t  is) a n d  s e c o n d l y ,  t h e y  a p p r o x i m a t e  g *  by  g~ .  

4.3. Numerical results 

I n  t h i s  s e c t i o n  w e  d i s cus s  n u m e r i c a l  r e s u l t s  o b t a i n e d  w i t h  t h e  M a r k o v  c h a i n s .  M o r e  r e s u l t s  c a n  b e  

f o u n d  in R o e l v i n k  a n d  D e k k e r  [11]. W e  f i r s t  d e t e r m i n e d  t h e  o p t i m a l  B R  po l i cy  b o t h  fo r  t h e  C T  c a s e  a n d  
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age of comp. 1 

Fig. 2. A comparison of the RC I and the optimal G A R  policy. 

the DT case, thereby taking a possible time for preventive maintenance (tpm) into account. We used a 
policy iteration scheme to obtain an average optimal AR policy, while starting from the policy obtained 
from the replacement criteria. In most cases only one or two policy iteration steps had to be made to 
obtain an optimal policy, The average costs for a given policy were obtained by solving (4.1) with the 
Householder method. Table 2 contains two typical examples for which, according to Section 3, a large 
difference in average costs between AR and BR policies was expected. Fig. 2 shows an example of the 
RC l policy compared to an optimal GAR policy. 

From the numerical experiments the following conclusions can be drawn: 
(a) In all cases considered the replacement criteria yield an improvement over BR, varying between 0% 

and 8%. Roelvink and Dekker [11] report one case in which the improvement is negative, but in that 
case BR is not cost-effective, while GAR still is. 

(b) The discretisation has a large effect on the difference in average costs between the optimal AR and 
BR policies and the RC I and RC H policies. Discretisation effects are in most cases monotonic. Low 
values for this difference were obtained in case tpm = 1 and high values for tor n = 0. 

(C) The maximum relative difference in average costs between the RC I and RC n policies and the 
optimal AR policy as observed is 0.7%, which is about 10% of the difference between the optimum 
AR and BR policies. The RC I and RC ix policies do not differ much from the optimal AR policy. 

(d) There is not much difference in the average costs between RC ~ and RC H. 
(e) The optimal AR policy does not allow a simple description. 

5. Simulation results for the multi-component case 

The performance of the RC I policy was also tested by means of simulation. The simulations were 
carried out for cases with 2, 3, 5 and 10 identical components. For lifetime we used Weibull distributions 
with shape parameter/3 = 2 and mean 3. To investigate the effect of the number of components in the 
group, we varied the individual failure and preventive replacement costs in such a way that E" c f and c p i=1 i 
remain constant for n = 2, 3, 5, 10. Hence, regardless of the number of components considered, BR 
yields the same optimum interval and the same average costs. We examined five different pairs of values 
for c p and E"i=lcfi. The combinations are shown in Table 3a, together with the optimal replacement 
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Table 3a 
Parameter  values of the cases considered 

Case 

1 2 3 4 5 

~'~'~ I cf 8 8 8 6 20 
c o 1 2 2.5 2 1 
t* 1.285 2.011 2.425 2.588 0.777 

Table 3b 
Relative differences (%) in average costs, (gRc - g~)/g~, for the optimal BR and RC I policies 

Case g~ Nr. of components  

1 2 3 5 10 

1 1.634 3.1 1.8 1.5 0.8 0.4 
2 2.252 4.8 3.3 2.9 2.1 1.2 
3 2.472 4,9 4.0 3.5 2.7 1.7 
4 1.904 4,9 4.0 3.6 2.8 2.0 
5 2.600 1,2 0.8 0.7 0.4 0.2 

intervals t~. Case 2 in fact corresponds to the first example of Section 4 (with all cost figures multiplied 
by 2). 

In the simulation we used the regenerative approach, where a group replacement started and ended a 
renewal cycle. In every cycle we generated the same failure epochs for both the RC ~ and the optimal BR 
policy, until one of the strategies replaced the group (and the cycle of this policy ended). We then 
generated failure epochs for the other policy only, until this policy also replaced the group. In this way 
we got the best approximation for the difference between the two policies. The results are shown in 
Table 3b. In all cases considered the RC ~ policies yields an improvement over BR varying from almost 
0.2% to 5%. The improvement is largest if the ratio En=lcf/c r' is smallest, which agrees with the 
conclusions from Section 3. The improvement over BR decreases with the number of components. In 
fact we conjecture that the difference in average costs between an optimum GAR policy and an optimum 
BR policy decreases to zero. To demonstrate this we give the following heuristic arguments. An age 
policy makes use of the actual behaviour of the components. The more components there are, the more 
this is close to the average behaviour on which BR is based. If there would be an infinite number of 
components, their behaviour would be fully described by the renewal function. That is, in a renewal cycle 
of length t, the ratio of failures to the total number of components would amount to the renewal 
function M(t) and the cycle costs would amount to c o + ~,~c~Mi(t) with probability 1. Deviating from the 
optimum BR interval would therefore not be optimal. 

6. Conclusions 

From marginal cost considerations simple replacement criteria for group age replacement can be 
derived which perform better than the optimal block replacement policies and are only slightly worse 
than the optimal group age replacement policies. The differences in average costs between these policies 
are moderate. It depends upon the number of components and the probability of failure of a component 
before the replacement time. From a practical point of view, it may be more important that the 
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replacement criteria give advice that better matches the intuition of users than block replacement does. 
The marginal cost approach to derive these age replacement polices has in fact been applied in a 
decision support system for opportunity maintenance. The replacement criteria could easily be adapted 
for this case, by taking the time between opportunities as time between consecutive decision moments. 
The stochasticness of the former did imply taking an integral, but posed no real problem. 

Appendix  A. Def ini t ion of  the Weibul l  distribution 

A r.v. X follows a two-parameter Weibull distribution with scale parameter A and shape parameter/3 
if its cdf F ( . )  is defined through 

F ( t ) =  l - e x p ( - ( t / A ) t 3 ) ,  t > 0 .  

With respect to the mean / z  = EX we have 

= AF(1 + 1//3).  

The squared coefficient of variation 2 _ cx ( = /~2/a2)  equals 

F(1 + 2//3) 2 _  
C a - -  [ r ( l  -{- 1 / / 3 ) ]  2 - 1, 

where F ( . )  indicates the gamma function. If /3 goes from 1 to infinity, c~ decreases from 1 to 0. 

Appendix  B. 

AR(P) - 
BR(P) - 
GRP 
G A R  - 
DSS 
MDP 
x, 
/z i 
0-i 2 

r i ( t  ) 
2 

C x 
rl 

cf 
C p 

Mi(t) - 
mi(t ) 
gb(t)) - 
ga(t) - 

ta*  - 
g :  - 

RCl( t )  - 

List of  notat ions and abbreviations 

Age Replacement (Problem). 
Block Replacement (Problem). 
The Group Replacement Problem. 
Group Age Replacement. 
Decision Support System. 
Markov Decision Problem. 
Random variable indicating lifetime of component i. 
Mean life of component i. 
Variance of lifetime of component i. 
Failure rate of component i. 
Coefficient of variation for r .v .X.  
Number of components in the maintenance package. 
Costs of failure replacement of component i. 
Costs of executing the maintenance package. 
The renewal function of component i, indicating the expected number of failures in [0, t]. 
Derivative of Mi(t). 
Long term average costs under a BR policy with interval t. 
Long term average costs under an AR policy with replacement age t. 
Optimal interval for BR, optimal replacement age for AR resp. 
Minimal long term average costs under BR, AR resp. 
The group age replacement criterion which considers the options replace now or at the 
next decision moment. 
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RCU(t)  

q i ( x )  
xi(t) 
13 
R 

U 

c ( s ,  a) - 
P ( s ' l s ,  a) - 

The group age replacement criterion which in its considerations does not replace if all 
components  fail at the next decision moment.  
Probability that component  i at age x fails before the next decision moment.  
Age of component  i at t time units since the last execution of the package. 
Shape factor of Weibull distribution. 
Stationary policy in the Markov decision chain. 
Value vector in the Markov decision chain. 
Immediate expected costs associated with action a in state s. 
Transition probability from state s to state s' under action a. 
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