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1 INTRODUCTION 

Many papers have been written on maintenance 
optimization according to the various reviews, e.g., 
McCall [l], Pierskalla and Voelker [2], Sherif and 
Smith [3] and Valdez-Flores and Feldman [4]. Indeed, 
it is a fruitful area for mathematical research and the 
variety of systems, deterialration and the way actions 
can be chosen allows a lar,ge number of models. Most 
of these models address th’e problem of optimizing the 
execution of a single action by which a full or part of a 
system is renewed and (consider a single decision 
variable. Models with multiple components or 
multiple decision variables are much more difficult to 
analyze. Frequently the result of the single component 
models are used, see, e.g., Cho and Parlar [5]. 

There have been several1 attempts to structure the 
variety of models. Some of the overviews contain a 
qualitative description of the models, in terms of 
system, deterioration, knowledge and decision vari- 
ables. Next there have been frameworks which 
contain several models. Aven and Bergman [6] 
published a quite general framework, which despite its 
generality does not seem very well known. As a 
consequence, the optimisation part of many papers in 
the field could have been simplified and made more 
structured. Having future work in this area in mind, 
we think is it important to have at hand a set-up 
where the conditions and assumptions are formulated 
independent of particular models. Dekker [7] 
published a far more simpler variant, for which he was 
able to derive more results and make a link with 
multi-component systems. His approach is related to 
the marginal cost approach introduced by Berg [8,9]. 

A main idea behind these approaches was also 
presented in Zijlstra [lo]. The advantages of these 
frameworks are the following: they indicate that 
certain structure results can be obtained, like the 
characterization and structure of an optimal policy. 
They show that a certain type of analysis will be 
successful, though each time with other details. The 
same holds for the optimization method, see, e.g., 
Barros et al. [ll]. The other advantage is that the 
framework can be used as building block for 
multi-component models, in which a variety of 
component types has to be addressed. The framework 
then allows the derivation of results for a class of 
models instead of just one. An interesting example is 
given in Dekker ef al. [12], where the cyclic 
maintenance planning technique is applied to block 
type policies. 

In this paper we extend the framework of Dekker 
[7] to incorporate more models, especially models 
where one has to wait for a suitable moment for 
preventive replacement. The framework is in fact a 
simpler version of the set-up presented in [6], which 
consider also condition based replacekent policies. 
Since age is the only decision parameter in most 
replacement models in practice, it is useful to have at 
hand a framework restricting attention to such 
models. 

We also give a marginal cost interpretation of the 
parameters of the framework. Compared to the 
traditional approach this allows for much faster 
derivation of results and a useful interpretation for 
practical application. Our results here are considered 
important because they provide a more formal link 
between the marginal cost function and the cost 
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optimization function than what has been presented 
up to now in the literature. 

The structure of the paper is as follows. In Section 2 
we present the framework and its results. In the 
following sections we treat several models which are 
captured by the framework, like opportunity and 
minimal repair models. 

2 THE FRAMEWORK 

Consider a system and a decision variable T, which 
affects the timing of maintenance action(s) renewing 
the system. In the most simple case of the framework, 
T represents the time at which the system is replaced 
preventively. Alternatively, T may also be a critical 
time after which the first suitable moment (oppor- 
tunity, failure) is awaited to renew the system. In both 
cases the ‘no preventive maintenance’ decision can 
then be represented by T = ~4. The problem is to 
determine the value of T that optimizes a given 
objective function. We will consider both average and 
discounted costs. As the execution of the action(s) 
implies a renewal of the system we can apply renewal 
theory and obtain for the long-term average costs 

W’-1 dT) =H(T)’ 

where C(T) and H(T) denote the expected cycle costs 
and length, respectively. We make the following 
assumptions. 

Assumptions 

1. 

2. 

Both C(T) and H(T) are absolute continuous 
functions of T, i.e. C(T) = C(0) + _frc(t) dt and 
H(T) = H(0) + JTh(t) dt for some functions 
c(t) and h(t). 
H(0) 20, h(t)?0 for all t >O and c(t) = 0 if 
h(t) = 0. 

Absolute continuity is a stronger form of continuity 
and means that the function can be written as an 
indefinite integral of its derivative (which exists almost 
everywhere). If a function is differentiable everywhere 
and has a derivative which is integrable, then the 
function is absolutely continuous. 

From the assumptions it follows that there exists a 
function m(t) such that c(t) = m(t)h(t), t >O. To 
simplify notation we write c for C(0) and d for H(0). 
Accordingly, we can write g(T) as 

s 

T 

c+ m(t)h(t) dt 

g(T)= ’ T 

I 

, T>O (1) 
d+ h(t) dt 

0 

which form is put central in this paper. Notice that for 
T = 0 the expected cycle cost is c, and typically this 
represents the cost of a preventive replacement. The 
quantity m(t) can be interpreted as the expected 
deterioration cost rate and h(t) often denotes a 
survival function, cf. the examples and the link to the 
marginal cost analysis given below. The framework 
covers quite some models. Below we list the most 
simple ones (see, e.g., Barlow and Proschan [13]), in 
the remaining sections we show that also more 
complex models can be incorporated 

1. 

2. 

3. 

the block replacement model: in this case c is the 
preventive replacement cost, m(t) = kb(t) where 
b(t) denotes the renewal density and k the 
expected failure replacement costs. In the 
standard block replacement model,’ preventive 
replacements take no time (d = 0). Finally, 
h(t) = 1, t > 0, implying that a cycle always has 
length T; 
the age replacement model: again c denotes the 
preventive replacement cost, h(t) is the survival 
function 1 - F(t), where F(t) is the cdf of the 
time to failure, m(t) is the failure replacement 
costs k times the hazard rate z(t) = F’(t)/(l- 
F(t)) and finally d = 0; 
the standard minimal repair model: again c 
denotes the preventive replacement costs, d = 0, 
h(t) = 1 and m(t) denote the expected costs due 
to minimal repairs, viz. m(t) = c,A(t) where A(t) 
is the rate of occurrence of failures and c, is the 
cost of a minimal repair. 

If we take h(t) = 1 and d = 0 we obtain the standard 
framework presented in Dekker [7]. In that case, the 
decision variable represents the interval at which the 
preventive replacement is carried out. The advantage 
of such a simpler framework is that preventive 
replacements can fully be planned and hence be 
harmonised in a multi-component case, see Dekker et 
al. [12]. 

It turns out that for a large class of replacement 
models the optimality criterion total expected 
discounted cost can also be written in the form eqn 
(1). In this case, the numerator of eqn (1) represents 
the expected discounted cost associated with one 
replacement cycle and the denominator equals 

E(l -e- ar(T)) = aE I’(‘) e-“’ dt 
0 

where (Y is a positive discount factor and t(T) the 
(stochastic) time to replacement, cf. e.g., Aven [14]. 
For example, in the simple block replacement model 
mentioned above we can write the expected 
discounted cost in the form (1) with m(t) = 
(kb(t)la) -c and h(t) = (yepar. Other examples are 
given in the following sections. 
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The analysis of the framework follows similar lines 
as in Dekker [7] and Aven [14]. Notice that for every 
T for which C(T) and H(T) have a derivative, we 
have 

g’(T) = (m(T) - dT)Yv) 
H(T) 

=@Y(T) - c], (2) 

where Y(T) = m(T)H(T) - Jfm(t)h(t)dt. Hence, 
g’(T) = 0 iff m(T) -g(T) = 0 or h(T) = 0. Altema- 
tively, g’(T) = 0 iff Y(T) = c or h(T) = 0. It is seen 
that W(T) is increasing if m(T) is. In Theorem 1 
below we will now formulate the main results when 
g(T) is decreasing, increasing and whether there exists 
an optimal policy. Notice that h(T) = 0 implies that 
g’(T) = 0, but g’(T) does not necessarily need a 
change of sign. Accordingly we restrict ourselves to 
the case that h(T) > 0. The proof of Theorem 1, as 
well as some remarks, are given in Appendix A. 

Theorem 1. Suppose h(T) > 0 for all T > 0, 
(i) if m(T) is non-increasing on [T,,T,] and 
Y(T,,) < c, then g(T) is decreasing on [T,,T,], 
(ii) if m(T) increases strictly for T > T,, where 
Y( To) < c, and Y( T,) > c for some TI > T,, then 
g(T) has a minimum, s’ay g* in T*, which is unique 
on [ TO,m); moreover, 

~0 for T,<T<T* 
m(T)-g(T){ :>O for T>T* (3) 

m(T) -g* 
<O for T,<T<T* 
>O forT>T* (4) 

If g(t) is differentiable in T* then m(T*) = g*. 
(iii) if Y(T) < c for all T > To then g(T) is 
decreasing for T > To. 
(iv) suppose m(T) is increasing for T > To and that 
Y’(G) < c, then Y(T,) :> c for some T, > To if one of 
the following conditions hold 
(a) lim,,, m(T) = 03 
(b) limr,, m(T) > lim,,,, g(T) 
(c) lim,, H(T) = m, lim,, m(T) = a, for some 
a > 0 and limr,, JOT [a - m(x)]h(x) dx > c - ad. 

Theorem 1 implies that for optimization one only 
needs to consider those regions where m(T) is 
increasing. Furthermore, it says that a myopic policy 
in which at every moment we consider whether to 
defer the replacement or not, is average optimal. That 
is, the expected cost of deferring the replacement to 
level T + AT, being m(T)h(T)A(T), should be 
compared to the mininium average costs over an 
interval of the same length, being g*h(T)A(T). 
Hence, if m(T) is larger than g*, the deferment costs 
are larger and we should replace. This result gives a 

structuring of the optimal policy and it gives an 
explanation of why a policy is optimal. Moreover, it 
allows us to define the so-called marginal cost analysis. 

2.1 Marginal cost analysis 

We will first present the analysis for the average cost 
criterion, the discounted cost criterion is explained 
later. An essential assumption behind the analysis is 
that the cycle length is an increasing function of the 
decision variable, i.e., if in a realization a cycle is 
stopped by decision variable T, it is stopped later by 
any decision variable T2 > T,; this assumption holds for 
most replacement models. The analysis takes the 
following steps 

1. 

2. 

3. 

identify the events which give rise to a system 
renewal 
determine how the expected cycle length H(T) 
and costs C(T) change if the decision variable T 
changes from T to T + AT, where AT is an 
infinitesimally small quantity. That is, consider a 
cycle end for decision variable T and determine 
how the cycle would be extended if the decision 
variable would take the value T + AT. Suppose 
that the expected lengthening of the cycle equals 
h(T)AT + o(AT), i.e., H(T + At) - H(T) = 
h(T)AT + o(AT). Suppose next that the ex- 
pected extra costs in case the cycle is extended 
amount to c(T)AT +o(AT). Then we have 
C(T + AT) - C(T) = c(T)AT + o(AT), and it 
follows that m(T) = c(T)/h(T). 

In many cases we find h(T) and c(T) by 
conditioning on the event that the system has 
survived time T. Then h(T) = h(T)S(T), where 
R(T) equals the expected lengthening rate of 
the cycle given survival to T and S(T) represents 
the probability that the system survives T. 
Furthermore, c(T) = c(T)S(T), where E(T) 
equals the expected cost rate given that the 
system has survived T. The function m(T) is 
given by m(T) = E(T)/&(T) 
check the assumptions. If these hold, eqn (1) 
provides the average costs and Theorem 1 
applies. In particular Theorem 1 states that the 
policy which replaces if m(T) equals or is larger 
than g(T) or g*, is average optimal. 

This approach was first introduced by Berg [8], 
although in a somewhat less formal way (he did not 
precisely state which conditions on m(T) and h(T) 
needed to be imposed and why it was correct). The 
advantage of the marginal cost approach over a 
traditional approach which first derives a formula for 
the average costs and then takes the derivative, is (i) it 
works much faster, because the formula for the 
average costs can be quite complex cf. Section 4 and 
Section 5, and hence difficult to differentiate (ii) it 
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provides an optimality equation with a very important 
interpretation for practical applications and it directly 
points at the crucial function m(T). A large number of 
these models can be included in the framework 
presented in this paper. We shall demonstrate it in the 
following sections. But first we briefly show that it is 
possible to also give a marginal cost interpretation of 
the total discounted cost criterion. 

A discounted cost rate c(T) is found as in average 
cost case by extending the decision variable T to 
T + AT. As a simple illustration, consider the block 
replacement model mentioned above. Then clearly the 
discounted cost increases by kb(T)ATepaT - 
cae -*TAT + o(AT) by deferring the replacement 
from T to T + AT. Hence the cost rate c(T) equals 
(kb(T) - CC+?~. 

Now consider the cycle length, which we denote 
z(T). Introduce H(T) = EeCaqQ. We can interpret 
l?(T) as the discounted value of the cycle length. 
Then we define the denominator rate (h(T)) in this 
case as [H(T + AT) - H(T)]/AT as AT converges to 
zero, i.e. we consider an infinitesimally small increase 
in the decision variable T and calculate the rate in 
discounted value of the cycle length. As an example, 
consider again the block replacement model. Clearly 
in this case the cycle length z(T) equals T. Hence the 
change in the discounted value equals aATepaT, i.e., 
h(T) = ae-OLT, and thus m(T) = (kb(T)/a) -c. 

3 MODEL OF BLOCK ET AL. [15] 

Block et al. introduced in [15] a model which includes 
several basic preventive maintenance models as 
special cases. The model is briefly described in the 
following. 

Assume that a unit is minimally repaired or 
replaced according to the following scheme. The 
component is ‘new’ at time zero, and it is replaced 
whenever it reaches age T (planned replacement). The 
case T = m corresponds to no planned replacement. 
The expected cost of a planned replacement equals u. 
If the unit fails at age t < T, then it is either replaced 
by a new unit of the same type with probability a(t) 
(unplanned replacement) or it undergoes minimal 
repair with probability p(t) = 1 - a(t). Whether the 
component is replaced or minimally repaired at a 
failure may depend on a number of factors, such as 
the extent and cost of the repair, but ‘on average’ the 
unit is replaced at a failure at t lOOa( of the times 
and minimally repaired lOOP(t)% of the times. The 
expected cost of an unplanned replacement is Y. The 
expected cost of a minimal repair at time t is r(t). We 
assume negligible repair and replacement times. 

Let N(t) represent the number of minimal repairs in 
[O,t], assuming that no replacement is performed in 
the time interval. The process N(t) is assumed to be a 

non-homogeneous Poisson process with a failure 
intensity A(t). 

The application of the framework now proceeds as 
follows, cf. step (II) of the procedure described in 
Section 2. Consider the unit having age T and let us 
consider deferring the planned replacement to age 
T + AT. First notice that to survive up to age T there 
should be no failure and subsequent replacement up 
till age T, which occurs with probability S(T) = 
e-Jd&)Wd~ (a survival probability from a non- 
homogeneous Poisson process). Given survival up to 
time T the cycle is extended to time T + AT. Hence 
h(T) = 1. We next determine the expected extra costs 
by extending the cycle given survival, i.e., E(T), which 
consists of the costs due to a failure occurring with 
probability A(T) Given a failure the unit is 
minimally repaired with probability p(T) against costs 
r(T) and replaced with probability o(T) against costs 
(v - u). Concluding, we have 

h(T) = S(T) = e-J,T+)A(s)d~ 

m(T) = C(T) = [r(T)P(T) + (v - u)a(T)]h(T) 

c=u 

d = 0. 

We have thus by some rather straightforward 
arguments identified the key functions of the set-up of 
Section 2, and the conclusions of Section 2 follow, 
e.g.: If m(T) is continuous, then Y(T) is continuous 
and a finite, optimal T* satisfies W(T*) - c = 0. If 
m(T) is non-decreasing, then g(T) is non-increasing 
for T < T* and non-decreasing for T > T*. If W(T) is 
strictly increasing in T, then T* is unique and g(T) is 
strictly decreasing for T < T* and strictly increasing 
for T > T*. 

Using the formal link established in Section 2 
between the marginal cost functions and the average 
cost criterion, the analysis has been considerably 
simplified compared to the traditional analyses in 
[14,15], which first derive a formula for the average 
cost criterion and then take the derivative. 

Similar results can be shown for the total expected 
discounted cost. It is not difficult to see that in this 
case we obtain 

h(T) = ae-“?S(T) 

m(T) = t [r(T)p(T)h(T) + (v - u)a(T)A(T) - ua] 

c=u 

d = 0. 

4 OPPORTUNITY-BASED AGE 
REPLACEMENT- 

This model, which is referred to as the opportunity 
age replacement model (OARP), is presented in 
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Dekker and Dijkstra [161]. We consider a unit with a 
stochastic lifetime X with cumulative distribution 
function F(t), probability density function f(t) and 
failure rate function z(t). The density function f(t) is 
assumed to be continuous. Upon failure, the unit is 
replaced at cost cf. A preventive replacement of the 
unit against cost cp is possible only at opportunities, 
which are supposed to be generated according to a 
Poisson process, independently of failures of the unit. 
Let the random variable Y denote the time between 
successive opportunities, and let EY denote its finite 
mean. The problem is to determine a strategy for 
preventive maintenance which minimises the total 
long run (expected) cost per unit of time. Attention is 
restricted to the class of so-called age-based control 
limit policies. Under these policies a unit is 
preventively replaced at an opportunity if its age has 
passed the control limit 7’. 

In [16] an expression for the optimality criterion is 
established and some optimality results shown. Using 
our framework the optirnisation could however been 
simplified and more structured. 

According to step (II) of the procedure in Section 2, 
we consider again a cha.nge of the decision variable 
from T to T + AT. This will only effect the cycle 
length if an opportunity fails in the interval 
[T,T + AT], which occurs with probability AT/EY. In 
that case the cycle length is extended either to the first 
opportunity thereafter or to a failure, whichever 
occurs first. Let the r.v. X, denote the remaining 
lifetime beyond age t, i.e., X, = max(X - t,O). Hence 
the extension of the expected cycle length is 
E(min(X,,Y)). The expected extra cost over that 
period equals (c~ - c,,)P(X, < Y)/EY (only in case of 
a failure we have extra costs, otherwise we just do the 
preventive replacement). Accordingly we have 

c = cp + (Cf - c,)P(X < Y) 

d = E(min(X, Y)) 

h(T) = E(min(Xr,Y))/EY 

c(T) = (q - cJP(X, .=c Y)/EY. 

For a function w(s) define 

V,,,(T) = I^ e-shw(s) ds 
T 

where A =l/EY. Then it follows that 

h(T) = he7A&0(T) 

m(T) = (cf - 4 
VP) 

4, -F)(T) 
c = cp -I- (Cf - CJVf(0) 

d = V,,__n(0). 

The results of Section :! now follow. It can be shown 

by differentiation that m(T) is increasing (strictly 
increasing) if the hazard rate z(T) has this property. 
We also see that m(m) = z(m)(cf -c,). Hence since 
g(m) = q/EX, it follows that the condition m(m) > 
g(m) is equivalent to 

z(m) > cfl(cf - c,)EX, 

which is seen to been identical to the condition stated 
in Theorem 3 of [16]. 

Alternatively, we could have derived these results 
by first establishing the average cost criterion. Let YT 
denote the time from T to the subsequent 
opportunity. Observing that 

I 

CT 
cp + (cr - c,) P(t < T + YT)f (t) dt 

g(T)= ct 
0 

I 
P(t < T + Y,)(l - F(t)) dt 

0 

and P(t < T + YT) equals e-(‘-“” for t 2 T, and 1 for 
t < T, the desired expressions follow by straightfor- 
ward differentiations of the numerator and the 
denominator with respect to T, and then writing these 
functions as the integrals of their derivatives. 

It is left to the reader to establish similar results for 
the discounted case. 

5 OPPORTUNITY 
REPLACEMENT 

BASED BLOCK 

The opportunity block replacement model [17] is an 
extension of the block replacement model in which 
preventive replacement of a component may only be 
carried out at opportunities, which occurrence can be 
described by a renewal process with the generic r.v. Y 
denoting the time between successive opportunities. 
Let V(t) denote its distribution function, and let c 
denote the cost associated with a replacement at an 
opportunity, and cr the cost induced by a failure with 
successive replacement. The decision variable T is a 
control limit after which the first opportunity is used 
for replacing the component. In this case the 
long-term average costs amount to 

c 

z 
c + Cf B( T+ Z)d&&-"z) 

g(T)= ‘O T+EZ (5) 
T 

where B(T) denotes the renewal function correspond- 
ing to the components failures and the r.v. ZT the 
forward recurrence time of the opportunity process. In 
[17] the authors take much trouble to differentiate 
g(T) and derive an optimality equation with a 
marginal cost interpretation. Here we can derive that 
directly by remarking that if the control limit T is 
changed to T + AT, we no longer use the opportunity 
occurring between [T,T + AT] but take the next one 
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for replacement. Hence the extension of the expected 
cycle length equals P(Zr 5 AT)EY and the expected 
increase in the expected cycle costs P(Zr cAT)cf 
E [B(T + y) - B(T)]dV(y). Accordingly we have 
d = EZ,, h(T) = zz,EY and m(T) = q/EY p: [B(T + 
y) - B(T)]dV(y), where zz, denotes the hazard or 
failure rate corresponding to Zr. The optimality 
equation m(T) = g* can now be interpreted as the 
expected cost rate of deferring execution of preventive 
maintenance to the next opportunity equals the 
minimum average cost. 

6 MINIMAL REPAIR MODEL 

Consider a system which is subject to failures 
appearing according to a nonhomogeneous Poisson 
process with rate A(t) > 0. Upon failure the system can 
either be minimally repaired against costs c, > 0 or be 
replaced preventively against costs c > 0. The problem 
is now to decide when to replace the system 
preventively. This model was first studied by Muth 
[18]. The optimal policy is of the form: ‘replace the 
system preventively at the first failure after time T’. 
The average costs g(T) are given by the following 
formula: 

c 
T 

c + c, A(t) dt 
g(T)= ” 

T+EWr ’ 

where EWT denotes the expected time to the first 
failure after time T, in formula 

12. 

EW, = 
I 

= e-&++-r)b dt (7) 
0 13. 

We will again demonstrate the usefulness of the 
marginal cost approach. Notice that by increasing T to 
T + AT we only change the expected cycle length 
H(T) if there is a minimal repair in [T,T + AT]. This 
occurs with probability A(T) In that case the cycle 
is extended with a time to the next failure, which 
expectation equals EWT. Hence it easily follows that 
h(T) = h(T)EWr. In a similar way we obtain that 
c(T) = c,A(T). Hence m(T) = c,/EWr. Finally we 
remark that d = EW,. Note that EW, is decreasing if 
A(T) is increasing. We have shown that we have a 
special case of the set-up of Section 2. 

14. 

15. 

16. 

17. 

18. 
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APPENDIX A 

REFERENCES Proof of Theorem 1 

1. McCall, J. J., Maintenance policies for stochastically (i) If m(T) is non-increasing, then Y(T) is 
failing equipment: a survey. Management Science, 1965, non-increasing and the result is immediate. 
11,493-524. (ii) Since Y( To) < c, W(T) passes the level c only 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 
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once for T > T,, which guarantees the unique- 
ness of the minimum. Equations (3) and (4) 
now follow immediately from eqn (2). 

(iii) Follows directly from eqn (2). 
(iv) Notice that Y(T) - Y(T,) = Jg (m(T) - 

m(x))h(x)dx + [m(T) - m(To)] H(T,). Hence, 
Y(T) goes to infinity if m(T) does so (case 
(a)). If condition b) holds it follows that for 
large T we have m(T) - g(T) > 0, which is 
equivalent to Y(T) > c. To establish c), 
observe that g(T) approaches a from below if 
c - ad + Jo” [a - m(T)]h(T)dT < 0. 

Remarks 

1. It will be clear that if m(T) is constant on an 
interval, there may be multiple minima on that 
interval. 

2. If condition b) of iv) holds, then we can conclude 
that there exists fin:ite T* minimizing g without 
assuming that m( 1”) is increasing. Assuming 
c > 0 and d = 0, the condition Y(TJ < c trivially 
holds for small values of To since Y(0) = 0. 

3. The case that h(T) = 0, T > T2 for some G > 0, 
can be treated in a similar way, the condition in 

case (ii) that Y(T,) > c for some TI then changes 
into the condition that Y( T2) > c. 

4. The conditions (a)-(c) in (iv) have been added 
to show the correspondence with existing 
conditions for optimality in standard models. For 
example in the age replacement model we have 
case (b). The condition comes down to 
limT,, (cf - c,)z(T) > c,/EX where EX denotes 
the expected lifetime and z(T) denotes the 
hazard or failure rate of the item to be replaced. 
This condition is also given in [13]. In case of the 
block replacement model we have case (c). Here 
H(T) = T and from renewal theory we obtain 
that a = q/EX. Now from the asymptotic 
expression of the renewal function we find that 
limT_, Jr[a - m(t)]h(t)dt = 91/2(1 - c$) 
where cg represents the coefficient of variation. 
Accordingly the condition comes down to 
1/29[1 - c$] > CP, which is exactly the condi- 
tion in [13]. 

5. The results in (i) and (ii) can form the basis of an 
efficient optimization procedure. If it is easy to 
calculate m(T) then a simple bisection proce- 
dure is quite efficient in solving m(T) = g(T); for 
more details see Barros et al. [ll]. 


