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Abstract 

This paper presents a model for refinery tankage assessment. Special characteristics covered are a hybrid demand 
process and a periodic-review target-stock policy for production control. The demand is assumed to be in two forms: 
as large parcels, collected at fixed intervals, and as many small parcels, modelled through a Brownian motion. 
Analytical approximations for the average stock level, the probability and expected volumes of overflow and stockout 
per period have been developed and compared with exact and simulation results. Using these approximations the 
problem of determining both the optimal tank capacity and the optimal target stock can be separated and solved 
rapidly on a PC. Finally, some sensitivity analyses to determine the most important model parameters have been 
carried out. 

Keywords: Inventory; Production; Petroleum; Stochastic processes 

1. Introduction 

Tankage assessment is an important problem when constructing a new refinery tankfarm or rationaliz- 
ing an existing one, as almost all tanks have a dedicated purpose, which is costly to change. Moreover, 
existing tankage is often an important determinant of the amount of stocks a refinery has. Setting aside 
the fact that about 10% of the contents of a tank consists of unpumpables which cannot be used, refinery 
schedulers and traders tend to exploit existing tankage as much as possible without taking tankage or 
stock holding costs into account. A similar problem exists with respect to target stock setting: it is a 
common feeling among refinery schedulers that (apart from unpumpables) the ideal tank stock level is 
midway, because in that case one is most far away from both minimum and maximum level. However, the 
underlying assumption, viz. that the tank has the optimum size, is often violated and therefore better 
methods are needed for target stock setting. 
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In this paper we analyse a basic model for tankage assessment. It is meant as a building block for 
larger and more complicated models as actual refinery operations are quite complex (see, e.g. Klingman 
et al., 1987, and Langeveld, 1989). The model was kept simple as to provide insight in the relationships 
between various logistic elements and moreover, to allow a nice analysis. 

The model has three special characteristics. First, it deals with a single tank with finite capacity, taking 
both stockout and overflow into account. Next, it considers a hybrid demand process, in which both large 
parcels are collected (e.g. by an ocean going vessel) at fixed intervals and many small parcels are 
delivered almost continuously. The third characteristic concerns the use of a periodic-review target-stock 
policy. For quality reasons the production rate can only be changed after a period of fixed duration and 
its value is set such that the expected stock level at the end of the coming period equals a target value. 

The model is analysed with respect to its long-term behaviour, that is, we calculate for a given tank 
capacity and target stock the long-term average stock level, the fraction of periods with smckout or 
overflow, and finally the average volumes of stockout and overflow. Brownian motion theory is used to 
analyse the model and we derive simple and complex approximations which are easy to evaluate. The 
approximations are compared with exact expressions for the Brownian motion and with simulations of a 
Poisson process. Next we show that the problem of optimising both the target stock and the tankage 
capacity can be separated in case of linear cost functions. Finally, we give some results on sensitivity 
analyses. 

The model presented here has not been discussed elsewhere. Miltenburg and Silver (1984a,b) and 
Miltenburg (1987) also use a Brownian motion to approximate the pdf of the residual stock in 
periodic-review multiple-item inventory models. Shreve et al. (1984) cite a number of papers dealing with 
diffusion models in inventory/product ion control. These papers, however, are mainly concerned with 
determining the structure of optimal policies in far more simplified models. Odi and Karimi (1988) 
primarily consider intermediate tankage and determine the amount of tankage that would, with a given 
probability, decouple the supply process from the offtake process. They do not consider a controlled 
supply process, and their analysis is concerned more with worst cases than with the average behaviour. 

The structure of this paper is as follows. In Section 2 we present the model, which is analysed in 
Section 3. In Section 4 simple and complex approximations, are derived. Using these the tank capacity 
and target stock level can easily be optimised, as is shown in Section 5. Section 6 deals with the 
numerical performance of the approximations and sensitivity analyses. 

2. The model 

Consider a tank with finite capacity K containing a (continuously divisible) product from which 
customers are supplied. A production unit feeds the tank continuously. After fixed periods of length t B 
the amount of stock in the tank is reviewed and the production rate can be adjusted. There  are two types 
of demand. First, there is demand for small parcels by customers who arrive according to a Poisson 
process with arrival rate A, each collecting an amount of z. Next, there is demand for large parcels, 
which is planned in advance; in each period one large parcel of size L is collected exactly in the middle 
of the period. Demand which cannot be met from stock on hand is supplied later (complete backlogging); 
production which cannot be stored in the tank is stored in another, more expensive way and can be used 
to satisfy later demand. In fact, in this model the stock value can assume any value, if it is negative we 
speak of a stockout and if it is above K we speak of an overflow. 

Summing over the two types of demand yields for the total expected demand per period E ( D )  = L + 

h~-t B. The production rate is set according to a stationary target-stock rule, which works as follows. Let 
stg (0 < stg < K)  denote the target-stock level, if s B is the observed stock level at the start of a period, 
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then the production rate 19 is set such that the expected stock level at the end of the period equals Stg. In 
formula, 

Stg - s  n + E ( D )  
p = (1) 

ta 

We now assume that the difference between the production into the tank and the offtake by the small 
customers can be modelled by a Brownian motion with a drift equal to /x = p -  Az and variance 
parameter  0.2= Are. For completeness we recapitulate the definition of a Brownian motion (see, e.g. 
Karlin and Taylor, 1975). 

A Brownian motion or Wiener process is a stochastic process {X(t); t > 0} with the following 
properties: 
(a) each increment X( t  + s) - X ( s )  is normally distributed with mean 0 and variance ITzt, with IT being a 

fixed constant; 
(b) for every pair of disjoint time intervals [/1, t2], [t3, t4], say t I < t 2 < t 3 <t4, the increments 

S ( t  4) - S ( t  3) and X ( t  2) - X ( t l )  are independent random variables with distributions given in (a), 
and similarly for n disjoint intervals, where n is an arbitrary integer; 

(c) X(0) = 0 and X ( t )  is continuous at t = 0. 
A stochastic process {X(t); t > 0} is called a Brownian motion with drift /z if X ( t )  - tlz is a Brownian 
motion. A Brownian motion is obtained as a continuous limit of a random walk. In our case, as the limit 
for an infinite number of small customers each collecting an infinitesimal amount. 

Let  the r.v. S(t)  denote the stocklevel at time t and let the r.v.'s Sm~ x and Smin denote the maximum 
and minimum of the stock level in a period respectively, given that the initial stock has a stationary 
distribution. Vov-'= E(max(0, Sm~ x - K ) )  and V~o := E(max(0, -Stain)) represent the expected amount of 
overflow and stockout in a period respectively. 

We finish this section with some notation. Let  N(/~, 0 -2) denote a normal distribution with mean /z 
and variance IT2 and let ~ ( . ;  ~, 0.2) and ¢ ( . ; / z ,  0.2) denote its cumulative distribution function (Cdf) 
and probability density function (pdf) respectively. Furthermore,  let q0(x) := q~(x; 0, 1) and th(x) := ~b(x; 
0, 1). Finally, let 12(/z, 0.2):= 0.~b(/z/iT)+/z~(/z/0.) ,  which expresses expected surplus or shortage 
amounts of a normally distributed r.v. For instance, the expected surplus above level z of an N(/z, 0.2) 
distributed r.v. X is given by 

E [ m a x ( z ,  X )  - z ]  = fz=(Z - x ) ~ b ( x ;  ~z, IT2) dx ,  

which after some simple calculations is reduced to 

+ - z ,  IT2). 
IT 

(2) 

3. Analysis of the model 

From the target-stock production rule (1) and the definition of the Brownian motion the following 
lemma follows directly. 

Lemma 1. Let s B be the observed stock level at the beginning of a period. Then the stock level at the end of 
this and all further periods is normally distributed with mean stg and variance tB0. z, independently of  s B. 
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Lemma 1 implies that after one period, the stock level at the end of a period already assumes a 
stationary distribution, regardless of the initial stock level. To study the long-run behaviour of  the stock 
process, we therefore need to consider one period only with a stationary distribution for the starting 
stock. In the sequel we will denote by t the time passed since the start of such a period. 

Proposition I.  Suppose that the stock level at the beginning o f  a period (t = O) is normally distributed with 
mean stg and variance tBcr 2. The stock level at time t, S( t  ), 0 <_ t < t B, is also normally distributed but with 
mean 

Stg + L ( t / t B )  -- 6 ( t  -- ½tB)L (3) 

and with variance 

0-2( t2 -- tat  + t2 ) / t B ,  

where 6( x ) := 1 i f  x >_ O, and 8(x)  := 0, otherwise. 

Proof. Let the r.v. S B be the stock level at the beginning of the period. Upon  observing a realisation s B 
of S B, the production rate is changed such that the dr i f t /z  becomes (stg - s B + L ) / t  B. According to the 

1 definition of the Brownian motion the increment of the stock level at t ime t (0 < t < ~tB), S( t )  - s a, can 
be written as t(stg - SB) / t  B + Y(t), where Y ( t )  is an N(0, to- z) distributed r.v., which is independent  of 
S B. As this holds for any realisation s B of S B, we have 

t B - t  t 
S ( t )  = S B -  + ( S t g + L ) -  + Y ( t ) .  

tB tB 

1 As S B is N(stg , tB o'2) distributed, the proposition follows directly for t < ~t B. As the large parcel of size 
1 1 L is collected at t = 5t a, the part  of the proposition for 5t a < t < t B follows in a similar way. [] 

Proposition 1 yields directly the probability on a stockout, on an overflow at the end of a period or at 
the collection of a large parcel. It  also implies that the variance of the stock level is lowest in the middle 
of a period. Therefore,  the assumption that large parcels arrive in the middle of the periods, reduces the 
probability on stockout and overflow. Another  immediate result f rom Proposition 1 is that the expected 
average stock level increases linearly from Stg - ½L just after the collection of a large parcel to Stg + ½L 
just before the collection of the next one. Hence,  the average stock over a period and the long-run 
average stock equal Stg. 

Remark  1. One of the advantages of  using a Brownian motion is its symmetry property. Consider the 
process S(t)  := K - S( t  B - t), 0 _< t < t B. It  follows directly from Proposition 1 that S(t)  - (K  - sty) and 
S ( t ) -  Stg have the same distribution for all 0 ___ t _< t B, which does not depend on Stg! Let us call 
K + : = K - s t g ,  the ullage. As S m ~ - K = - m i n 0 < t < t  S(t)  , expressions for the expected volume and 
probability of overflow follow directly from the respective expressions for stockout by replacing Stg by 
g +" 

We will next consider the overflow and stockout occurrences. The pdf  of the first entrance time Tz,~, 
into level z for a Brownian motion with drif t /x ___ 0 and variance 0 -2 per  time unit, given initial level 0, is 
given by (see Karlin and Taylor, 1975, Theorem 5.3) 

f ( t ; z ,  lx) 0-(2.rrt3)l/2exp , t > O ,  z > O .  (5) 
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Its Cdf F(t; z, tz) equals 

F ( t ; z ,  l z ) = ~  ~ +expl---  ~ -  • trOt- 

These results are also valid for/z < 0 with the provision that the density f ( t;  z, ~) no longer integrates to 
one. From symmetry arguments it follows that T_z,~, = Tz,_~,, which thus covers the case that z < 0. Let 
Fl(Z) denote the probability on a stockout in (0, 1 ~ta), i.e. in the first half of a period before the collection 
of a large parcel, given initial stock S(0) = z > 0. Hence 

1 Fl(z  ) = P ( m i n o < t < k t S ( t )  < 0 I S ( 0 ) = z  > 0) =P(T~,_~, < ~ts)  , (6) 

which can be calculated by integrating f ( t;  z, -Ix), where/z  equals ( s t g - z  + L ) / t  a. The next step is to 
obtain an expression for the pdf of the stock directly after the collection of the large parcel, S(½ta), 
conditioned on the fact that there was no stockout before. Let 

fs(t),r~_,<,(x) = ~-~--~[e(s(t) <x ,  Tz,_~, < t lS (O)  = z ) ] .  

Notice next that 

1 2 fs(½tB)( x ) = ~b(x; ½(z + stg - L ), ~taCr ) = fs(½tB),r~,_ <~,B( X ) + fs(½tB),r~ _~>½t~( X ). (7) 

The first term on the right hand can be obtained by conditioning on Tz,_~,, resulting in 

!t 1 
fs(½t,),rz,_~½t.(x) = fo ~ " ~ b ( x ; / x ( t -  ~tB) - L,  o ' Z ( / -  ½/a)) f(t; z, - / z )  dt .  

The probability Fz(z) that the first stockout in a cycle is due to the large parcel collection follows from 
integrating fs(½t~)r, ~> ½tB(x) • Next we calculate the probability F3(z), that the first stockout in a period 
occurs in the secon~-~aalf, by conditioning on the stock level x after the large parcel collection. Hence the 
probability F~o(Z) of a stockout in a period given initial stock level z > 0 (else we have already and 
stockout) is given by F~o(Z) = Fl(z) + F2(z) + F3(z), where F3(z) is given by 

at)  

Fa(z )  = f 0  F(½tB; x, )fs(~tB),r~,_,>~t,(x) dx ,  x - / x  , ~ > 0 .  

For z < 0, F~o(Z) obviously equals one. Finally, the long run fraction of periods with a stockout, Fso is 
given by integrating F~o(Z) over the initial stock level. Hence we obtain 

Fso= Stg, tB O'2) d z .  (8)  

The expected volume of stockout V~o can be obtained by noticing that 

0 " <t < x )  dx ,  v~o = f~ P(mm0 <,S(t)  (9) 

where the probability within the integral can be calculated in a similar way as F~o. 
By conditioning on a stockout event, i.e. Wso := V~o/F~o we obtain another, more meaningful character- 

istic. According to Remark 1, approximations for both the volume and the probability of overflow follow 
- for reasons of symmetry - directly from those for stockout by replacing stg by the ullage K ÷. 
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Although the formulas so obtained remain valid if L is small, one can simplify them if L = 0. For this 
case we only have to integrate P(Tz,_ ~ < t B) over the initial stock distribution yielding 

F~o= f ~ P ( T z _  ~ </B)~b(z;  stg , /Btr  2) dz  

= ~ trv~-B J + e x p  - - - tB  tr2 q~ ~----V~-B t~(Z;  Stg , tBO'2) dz .  

4. Approximations 

The formulas for the performance measures derived in the previous section require three and fourfold 
numerical integration, which is cumbersome: it may take much time and the algorithms are not stable. 
Fast approximations are therefore needed to guarantee short response times in a decision support 
system, or to use the model as building block in more complex models or to optimise with respect to the 
target stock or tank size. In this section we derive both complex and simple approximations. 

Consider a period which starts with initial stock level Sa = z. The production level is now set such that 
the corresponding Brownian motion dr i f t /z  equals (L  + st~ - z ) / t  B. Hence, the stock level just after the 
collection of a large parcel, that is ~t a time units after the beginning of the period, is normally 

1 1 2 distributed with mean ~(stg + z - L)  and variance ~tatr . We now approximate the minimum level of the 
Brownian motion reached after the collection of a large parcel and before the end of the period, by the 
minimum level of a Brownian motion with the same drift over an infinite interval (which will be referred 
to as the infinity assumption). This minimum level is exponentially distributed with mean trE//(2/x), which 
in this case equals ½tBtrE//(Stg -- Z + L) .  Notice that this only holds if the drift is positive, which is the 
case if z < stg + L. Let fE( ' ;  7) be the pdf  of an exponentially distributed r.v. with mean 1/~" and let 
fmin( "; z)  be the pdf of the minimum stock level during the second half of the period given Sa = z. Hence 
fmin is given by 

fmi . (Y;  z)  = E X; ~)(X-'by; ~(Stg-J-Z 1 2 
tBO "2 

The probability that a stockout occurs given S a = z, From(0; z), now follows from integrating fmin(Y, Z) 
over y. Changing the order of integration and using the Cdf • of th (for which basic:arithmetic 
approximations exist, see Abramowitz and Stegun, 1965) yields 

Fmin(0, z )  = E X; t~ 1 2 tBO" 2 ½~tBtr d x .  

By integrating over all possible values of z we could now obtain a more accurate approximation for the 
overflow probability. If, however, z is close to stg + L, the resulting drift of  the Brownian motion is 
almost zero, and the infinity approximation will be very poor. To compensate for this effect we limit the 
integration of Fmi~(0; z)  to values of z smaller than st~ + k, where k is some constant 0 _< k _<L, and use 
an compensation term Rso(Z) for all larger values of z. It turned out that k = ½L worked well. For 
Rso(Z) we took ( ( 1 )  )) 

m a x  ' ~) "2 ( $tg +t~BZ -- Z ) [ -- Stg 
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the maximum of the stockout probabilities at two moments: just after the collection of the large parcel 
and at the end of the period. The complex approximation is therefore 

Fso= J o rm~°(O; z )~ (z ;  st,, , .o':)  dz + (z; ~,.. t.o-:) d~ 

rs,,+k r= { 2 [ s t g - z + L ]  ( /o:EtX; )" ' - L )  X - -  ~ - ( S t g  -~- Z 

1 2 

+ f max ~ -- ~(Stg + z - ta o'2) dz.  (10) 

An approximation for the expected amount of stockout then follows in a similar way. Given an initial 
stock z the expected amount equals f~Yfmin(-Y; z) dy. Hence, a complex approximation for V~o is given 
by 

stg+k " tB O'2 ) dz  rs"+kr~ tBO.Z) d y d z +  f ° Vso(Z)d~(z, stg, , J-® Jo Y f m i n ( - - Y ;  Z)~(Z'~ Stg , (11) 

where the compensation term V~o(Z) is determined in a similar way as F~o(Z), i.e. as the expected 
stockout at the same moments. Hence V~o(Z).'= ma x ( O( -  1 ~tBo.1 2), ~(Stg + z - L), g2(-Stg, tBcr2)). Inte- 
grating over y yields as result for the complex approximation 

rst,+kr ~ [ 2[s tg - z+L]  tj.]( x }  l(stg + z - L ) ,  tBo2)dp(z; Stg, tBo2) dx dz 

oo 
1 1 2 + f max(g-2(-~(Stg + z - L ), ~tBo" ), g-2(--Stg, tao'2))dp(Z; Stg, tBo'2) dz. 

s t g + k  

(12) 

Although we reduced the order of integration we will also derive simple approximations which do not 
need numerical integration at all. The integration over the initial stock level can be removed by 
considering the drift corresponding with the average initial stock level, stg, only. Furthermore, we replace 
the distribution of the minimum level of the Brownian motion by a deterministic drop equal to the 
expectation of the former, i.e. tscr2/L. To avoid an overestimate we take the average with a lowerbound, 
the stockout probability just after a large parcel collection. This yields as simple approximation 

f( ) (13, 1 ½L - -  Stg "Jr ½tB~r2/L 1 
Fs° = 2 q~ 0 +q~ 0 ' 

where 0 2 3 2 1 := ~cr t B indicates the variance and stg - ½L the expectation of the stock level at ~t~ given a 
stationary initial stock distribution. For the expected volume of stockout a simple approximation is 
derived in a similar way: 

[( ,B 2 ) o2)) V~o--- ~ a ~ L - s , , +  - - 2 - , o  2 + a ( L - s , , ,  . (14) 
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5. Optimal capacity and target stock level 

O p t i m i s a t i o n  with  r e spec t  to the  t a rge t  s tock level and  the  t ank  size may  be  in te res t ing  in case  of  
bu i ld ing  a new t ank  or  choos ing  a b e t t e r  o p e r a t i o n a l  policy. In  e i the r  cases  one  may  min imize  a cost  
funct ion  subject  to  poss ib le  service level const ra in ts .  Costs  may  be  due  to cons t ruc t ing  t h e  tank,  
s tock-hold ing ,  overf low or  s tockout .  To d e t e r m i n e  the  tanks ize  a two-d imens iona l  op t imisa t ion  p r o b l e m  
has  to be  solved,  unless  the  cost  func t ion  can  be  s e pa ra t e d .  Not ice  tha t  the  s tockout  p robab i l i ty  and  the  
expec ted  s tockout  vo lume d e p e n d  only on  the  t a rge t  s tock level,  bo th  for  the  exact  fo rmulas  and  the  
approx ima t ions .  T h e  s tockhold ing  costs,  which are  a l inear  funct ion  of  the  average  s tock level, also 
d e p e n d  on the  t a rge t  stock. H e n c e  if the  capac i ty  costs  a re  a l inear  funct ion  of  the  tanks ize  K it is 
poss ib le  to s e p a r a t e  the  cost  func t ion  in a pa r t  d e p e n d i n g  on the  t a rge t  s tock and  a pa r t  d e p e n d i n g  on 
the  u l lage  K +. 

6. N u m e r i c a l  resu l t s  

In  this sec t ion  the  numer i ca l  resul ts  f rom the  app rox ima t ions  are  discussed.  Tab le  1 gives s t a n d a r d  
va lues  of  all  the  p a r a m e t e r s  used  in the  ca lcula t ions .  A l t h o u g h  they  r e p r e s e n t  one  case  only, we be l ieve  
this  case  d e m o n s t r a t e s  all p rac t ica l  re levan t  aspects .  

Comparison o f  the Brownian motion approximations with Poisson simulations 

Poisson arr ivals  of  the  smal l  cus tomers  were  s imula ted ,  bo th  for  the  comple t e  back logg ing  case  as well  
as for  a lost  sales  (upon  s tockout )  and  lost  p roduc t i on  (upon  overf low) case. Tab les  2, 3a, 3b and  3c yie ld  
a c ompa r i son  of  these  resul ts  wi th  those  f rom the  Brownian  mot ion .  Tab le  2 shows the  e f f ec t  of  var ious  
arr ival  ra tes  (varying be tween  50 and  800 arr ivals  p e r  per iod) .  In  symmetr ic  cases  (i.e. whe re  Stg = K ÷) 
the  s imula t ion  resul t s  for  overf low a re  lower  than  those  for  s tockout .  The  exp lana t ion  is tha t  the  Poisson 
d i s t r ibu t ion  is not  symmet r i c  and  has  as lower  b o u n d  zero.  This  impl ies  tha t  ex t remely  low d e m a n d  is less 
l ikely than  ex t r eme ly  high d e m a n d ,  implying tha t  an overf low is less l ikely than  a s tockout .  These  
d i f fe rences  b e c o m e  smal l e r  if the  arr ival  ra te  A increases ,  as for  l a rge r  A the  Poisson d i s t r ibu t ion  is c loser  
to a no rma l  d is t r ibut ion .  T a b l e  2 fu r the r  shows tha t  the  d i f fe rences  b e t w e e n  the  back logging  and  lost 
sales cases  a re  small .  

Table 1 
Standard values for the parameters 

Stg = 10 
K = 20 
K + = 10 
L=10 
A=16 
~" =0.2 
0 -2 = 0.64 
t B = 12.5 
Cso = 8.0 E + 3 a 

Coy = 4.0 E+3 
c h = 10 
Ccc = 2 
Cvc = 1 

Target stock level 
Capacity of the tank 
Ullage ( = K - Stg) 
Size of a large parcel 
Arrival rate of small parcels 
Size of small parcels 
Variance of small demand per time unit ( = k~'2) 
Length of a period 
Stockout costs per unit of stockout 
Overflow costs per unit of overflow 
Holding costs per unit of stock per unit of time 
Fixed capacity depreciation costs per unit of time 
Variable capacity depreciation costs per unit of time 

a E denotes the base 10, e.g. E+2 stands for 10  2. 
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The relative differences between the simulation results and the Brownian motion results vary between 
10% and 100%, the latter in case of very small probabilities and large confidence intervals. The complex 
approximations for the Brownian motion were mostly closer to the exact results than the simple ones. 
Relative differences were between 10% and 20%. The sensitivity analyses indicate that the effect of 
some model parameters such as o -2 can be quite large. From a modeller's viewpoint the differences 
between the analytical approximations and the simulation results are acceptable as in practice model 
parameters are not accurately known and have to be estimated (in fact also the assumption with regard 
to the Poisson distribution has to be verified). However, there is a big difference in the computational 
effort required. One evaluation of all performance measures took less than 0.01s for the simple, 8s for 
the complex approximations and 20 minutes for the exact expressions, whereas simulations with 200 
arrivals per period took 30 minutes on a 25MHz PC with numerical coprocessor! Moreover, the complex 
approximations suffer from problems related to the infinity approximation. The truncation of the 
integration with respect to the initial stock level is rather arbitrary. From the calculations for the exact 
expressions it appears that high initial stock levels (in the order of Stg) can still have a large contribution 
to the stockout probability. These calculations have to be done carefully as to avoid numerical 
inaccuracies. Hence for optimisation purposes or for inclusion in more complicated models, the simple 
approximations are to be preferred, possibly followed by a check of the outcomes with the results of the 

Table 2 

Comparison of approximations with simulation results a 

A E(S)  F~o ( % )  Fo~ ( % )  V~o Vov 

Simulation results for the backlogging model (A~ 2 is kept constant): 
(0.5) (0.2) (0.3) (0.4 E - 2) (0.4 E - 2) 

4 10.5 3.49 2.43 3.7 E - 2 1.9 E - 2 

8 10.3 3.43 2.41 3.5 E - 2 2.1 E - 2 

16 10.3 3.14 2.62 3.1 E - 2 2.2 E - 2 

32 10.1 3.11 2.80 3.1 E - 2 2.4 E - 2 

64 10.1 3.02 2.73 2.9 E - 2 2.4 E - 2 

Simulation results for the lost sales model (Az is kept constant): 
(0.7) (0.4) (0.3) (0.6 E - 2) (0.4 E - 2) 

4 10.6 3.33 2.21 3.4 E - 2 1.8 E - 2 

8 10.4 3.30 2.41 3.4 E - 2 1.9 E - 2 

16 10.3 3.18 2.63 3.0 E - 2 2.3 E - 2 

32 10.2 2.98 2.77 2.8 E - 2 2.6 E - 2 

64 10.2 2.98 2.75 2.6 E - 2 2.5 E - 2 

Simple approximations Eq. (13) b, (14): 
lower 10.0 2.06 2.06 1.86 E - 2 1.86 E - 2 

average 10.0 2.54 2.54 2.36 E - 2 2.35 E - 2 

upper 10.0 3.02 3.02 2.86 E - 2 2.86 E - 2 

Complex approximations Eq. (10), (12): 
k = 0 10.0 2.80 2.80 2.64 E - 2 2.64 E - 2 

1 
k = 7 L  I0.0 2.95 2.95 2.76 E - 2 2.76 E - 2 

k = L 10.0 2.99 2.99 3.10 E - 2 3.10 E - 2 

Exact formulas Eq. (8), (9): 
10.0 2.87 2.87 2.68 E - 2 2.68 E - 2 

a The figure in parentheses above each column indicates the average half length of the 95% confidence interval for the simulation 
results. 
b 'upper', 'lower' indicate the first and second term of the simple approximations (denoted by 'average'). 
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complex approximat ions  or s imulat ion.  The  exact expressions should be used if the large parcel  size is 
very small or zero. 

Sensitivity results 

Tables  3a and  3b show that  overflow and  stockout are highly sensitive to changes in the var iance of 
the Brownian  mot ion  and  to an  increase in the large parcel  size. The  probabil i ty  of stockout is qui te  
sensitive to low values of stg according to Table  3c. The  condi t ional  volume of stockout,  W~o, however, is 
only sensitive to tr 2 and  not  so much  to the tank  size K or Stg. 

Optimisation results 

For  l inear  cost funct ions  gtot = Ccc + cvcK + ChE(S)  + csoV~o + CovVov, Table  4 shows opt imal  values for 
Stg, K ÷, K and  gtot ( indicated by a '* ') .  F rom Table  4a, it would seem that  the opt imal  values, except for 

* and  K* to any great  K ÷*, d e p e n d  logari thmically on Cso. Table  4b shows that  c h does not  inf luence  stg 
extent.  Accord ing  to Table  4c, the opt imal  values tu rn  out  to be sensitive to changes in the var iance 0 -2. 

Fig. 1 shows the target  stock re la ted average costs fl(Stg) = Ccc + CvcStg + ChE(S)  + csoVso (for the values 
used see Table  1). Cons ider ing  Fig. 1 in combina t ion  with Tables  4a and  4b, it is not  surpris ing that  S~g 
was not  affected very much  by changes  in Cso or c h, because  these terms only mult iply the average costs 
to the left and  the right, respectively, from the op t imum.  A n  increase of the var iance or 2, however, shifts 

* is also shifted to the right. Genera l ly  the steep descent  in Fig. 1 due to s tockout  costs to the right and  stg 
speaking,  the pa ramete r s  that  shift the steep descent  have a large impact  on S~g. L, t B and  o "z are such 

parameters .  The  cost pa ramete rs  C~o, Cov, Ch, C~c and  cv~ do not  have a large impact  on sty, K +* and  
K*.  F rom Fig. 1, it appears  that  overes t imat ing st~ only means  a small increase in the costs, whereas  

Table 4 
Optimisation results (obtained with the simple approximations) 

st~ K +* K* * gtot 

4a. Effect of stockout costs: 
CSO 

4.0E+ 3 1.21 E+ 1 1.38 E + 1 2.59 E + 1 1.58 E + 2 
8.0 E+  3 1.27 E + 1 1.38 E + 1 2.65 E + 1 1.63 E + 2 
1.6E+4 1.31 E+  1 1.38E+ 1 2.69E+ 1 1.68 E + 2  
3.2 E + 4 1.36 E + 1 1.38 E + 1 2.74 E + 1 1.73 E + 2  

4b. Effect of holding costs: 
Ch 

2.5 1.35 E + 1 1.38 E + 1 2.73 E + 1 6.57 E + 1 
5.0 1.31 E + 1 1.38 E + 1 2.70 E + 1 9.88 E + 1 

10.0 1.27 E + 1 1.38 E + 1 2.65 E + 1 1.63 E + 2 
20.0 1.22 E + 1 1.38 E + 1 2.60 E + 1 1.87 E + 2 

4c. Effect of variance of small demand: 
0.2 

0.16 8.75 E + 0 9.34 E + 0 1.81 E + 1 1.12 E + 2 
0.32 1.03 E + 1 1.12 E + 1 2.15 E + 1 1.33 E + 2 
0.64 1.27 E + 1 1.38 E + 1 2.56 E + 1 1.63 E + 2 
1.28 1.60 E + 1 1.76 E + 1 3.36 E + 1 2.07 E + 2 
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Fig. 1. Total costs fl related to the target-stock level. - -  - Stockout costs calculated with the complex approximations. Idem with 
the simple ones; - - .  Holding and variable capacity costs chE(S)+ Ccc + cvcstg. (Parameter values are given in Table 1, except 
for stg) 

underest imating st~ may cause a large increase in the costs. So, it is safer to do the first. As 
approximation errors of 25% can be compared with changes in stockout costs of 25%, Table 4a also 
shows that the resulting shifts in the opt ima are small, and as the average cost curves are nat  in their 
minimum, use of the simple approximations in optimisation yields very small increases in average costs. 
For example, computing the minima in Fig. 1 yields 1.255 and 1.268 for the simple and complex 
approximations and 1.265 for the exact formulas. The resulting errors by the approximations in the 
average costs are less than 0.1%. 

7, Conclusions 

Brownian motion theory appeared  to be successful in analysing a refinery tankage model with three 
special characteristics, being a hybrid demand process, a fixed production per period and a target-stock 
production control. Expressions for the stationary stock distribution at any moment  in a period could 
easily be derived. Using these expressions various approximations and exact formulas for both the 
probability and expected volume of stockout and overflow per  period could be provided. A comparison 
with a Poisson customer arrival process with either a bounded or unbounded stock process, showed that 
the simple approximations are most successful, in terms of effort required versus accuracy, unless the 
fixed large parcel offtake was absent, in which case exact expressions are to be preferred.  
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