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Abstract 

In this paper we analyse an (s, Q) inventory model in which used products can be remanufactured to new ones. Wc 
develop two approximations for the average costs and compare their performance with that of an approximation 
suggested by Muckstadt and Isaac. Next we extend the model with the option to dispose returned products and present 
a heuristic optimisation procedure which is checked with full enumeration. 
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1. Introduction 

Environmental pressures have more and more 
impact on the way manufacturers operate. An im- 
portant issue in this respect is that manufacturers 
have to take care of their products after use. This 
may lead to recycling, in which the materials in the 
products are reused, or to remanufacturing, in 
which old products undergo some kind of manufac- 
turing to make them as good as new (see [1]) for an 
overview of the area of product recovery manage- 
ment). The last variant is considered in this paper. 

The result of remanufacturing is that producers 
have to take returns into account in their planning, 
next to outside procurement and internal produc- 
tion. This complicates their inventory control as 
the returns increase the fluctuations in inventory 
levels. At some point one may even go over to 
disposal of items. 

* Corresponding author. E-mail: dekker@opres.few.eur.nl 
(Internet). 

Although there are many papers on inventory 
control of repairable items, they almost all concern 
systems in which the number of items remains con- 
stant (see [2, 4] for reviews). Few papers consider 
returns and outside procurement in a manufactur- 
ing environment, where the total number of items 
changes in course of time. The most relevant papers 
can be categorised in three groups: cash balance 
models, periodic and continuous review models (see 
[5] for a detailed review). In cash balance models 
demands and returns of money are explicitly 
modelled and various inventory control policies are 
considered, yet in all variants there is no leadtime 
which makes the inventory control much easier (see 
]-6] for an overview). The same holds for the few 
papers [7,8] for the periodic review case. In the 
continuous-review case the leadtimes and repair 
times can be modelled explicitly which makes them 
interesting from a manufacturing point of view. Yet 
also Heyman ]-9] and Hoadley and Heyman [10] 
who consider this case, assume zero repair times 
and no procurement leadtimes and do no! take 
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order costs into account. The only paper which 
does consider leadtimes is from Muckstadt and 
Isaac [11]. They develop an approximative method 
for the single-item (s, Q) model with fixed leadtimes, 
but without disposal and apply this method in 
a two-echelon warehouse-retailer problem. 

In this paper we take Muckstadt and Isaac 1-11] 
as starting point in investigating the effects of re- 
manufacturing on the inventory control of a single 
item. We develop alternative methods in Section 2 
and extend them with the option to dispose items in 
Section 3. The justification for disposal is that ac- 
cepting all returns leads to very high inventory 
levels in case of a high return rate. Apart from 
a performance evaluation and an approximative 
optimisation procedure, we give ample numerical 
results, showing the effect of disposal. 

2. An (s, Q) inventory system with returns 

We consider a single-item single-location inven- 
tory system (Fig. 1) with unit demands and returns 
according to independent Poisson processes with 
rates 2 and ~,, respectively. Every returned item has 
to undergo a repair in a repair facility before it is 
available to satisfy demands (in this paper we ne- 
glect testing and disassembly problems (see e.g. 
1-12]; it is not allowed to hold up repairs). Initially 
we only assume independence of repair times with 
respect to the repair shop. To calculate perfor- 
mance measures, however, one needs to specify the 
repair capacity and for some cases we will give 
results. Apart from using the returned items, it is 
also possible to order items from outside against 
fixed order costs A. Orders arrive after a fixed 

leadtime z. Demands not directly satisfied are back- 
ordered. The other costs considered consist of 
backorder costs z~ per item per unit of time, and 
holding costs h per item in serviceable inventory 
per unit of time. We assume that the inventory is 
continuously reviewed and that an (s, Q) inventory 
control policy is applied to the inventory position. 
Our objective is to determine those parameters s, Q 
that minimize the total long-term average costs. 

For  the analysis define the net inventory at time 
t as the number of on-hand serviceable units in the 
storage facility, O(t), minus the number of out- 
standing backorders, B(t). The inventory position, 
I(t), is the sum of the net inventory, N(t),  the 
number of items in the repair system, R(t),  and the 
number of units on order, P(t). Notice now that at 
time t all the outstanding orders from moment 
t - ~ have arrived. Hence the net inventory at time 
t equals the inventory position at time t - z minus 
the number in the repair shop at that moment 
minus the demand plus the output of the repair 
shop during the interval [ - t -  r , t] .  In formula, 
N(t) = l(t  - ~) - R(t - ~) + Z( t  - ~, t) - D(t - ~, t), 
where the latter two indicate the output of the 
repair shop and the demand over the interval 
It - ~, t] respectively. For  the analysis we are inter- 
ested in the average number of orders, the average 
on-hand inventory and the average number of 
backorders. Since both demand and return interar- 
rival times are exponentially distributed, we can 
formulate a continuous-time Markov chain for the 
inventory position. Demands now decrease the in- 
ventory position with one item unless the level s is 
reached in which case a replenishment directly in- 
creases the inventory position to s + Q. A return 
increases the inventory position by one item. If 
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Fig. 1. A schematic representation of the inventory system. 
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7 < 2, then the Markov chain is ergodic and the 
limiting distribution of the inventory position 
equals the stationary distribution. The limiting 
values are denoted with the vo symbol replacing t, 
e.g. I( ~ ) = limt~ ~ I(t). Let p~ = l i m t ~  P(I(t) = i). 
Using a generating function approach it is easy to 
obtain the following explicit expressions for the p[s: 

P s . i 4  1 : 

, 

I 1  - ty/;~) ~+ ~] 
Q 

(y/,i)~ e ÷  ~ [1 - ( y / ; : ) e ]  

Q 

i < o ,  

o < ~ i < Q .  

Q < ~ .  

The resulting first two moments are 

Q 1 7 
E(l( u-.J l) -- s + 1 + + 2 -  7' 

Q 2 _  1 )~7 
car(l( -x:. )) - 12 + (2 -- , ,,12, (2) 

Taking limits yields E(N( ~. )) = Eft( oc )) - E(R( ~_ )) 
+ (7 - 2)t and a similar formula can be derived for 
the variance, The long-run number  of units in the 
repair shop, E(R( < )), abbreviated to R, can be 
calculated for various repair shops; for an M/M/rF_ 
queue it equals 7/lz, where It denotes the expected 
repair time. 

In order to calculate the average number of 
backorders we need to get hold of the distribution 
of the net inventory at an arbitrary point in time. In 
case the repair times are exponentially distributed, 
it is possible to obtain the exact distribution. To 
this end a continuous-time Markov chain has to be 
formulated for both the inventory position and the 
number of items in the repair shop. Solving this 
Markov chain yields the joint stationary distribu- 
tion of the inventory position and the number  in 
the repair shop (note that they are not independent 
and that we need to truncate the state space to 
allow numerical computations). Next the distribu- 
tion of the output of the repair shop over r time 
units given an initial number in the repair shop has 
to be determined. Finally the distribution of the net 
inventory follows from the twofold convolution of 
the joint stationary inventory position and number 

in the repair shop with the output of the repair shop 
and the demand over r time units (see [5] for 
details). It will be clear that this procedure requires 
considerable numerical effort and does not yield 
explicit formulas. Therefore we will develop two 
approximation procedures ([5] only provides exact 
results) and compare them with the exact solutions 
and with a procedure developed by Muckstadt and 
Isaac [11]. 

For both approximations we assume that at any 
point in time there is at most one order outstand- 
ing. The output of the repair shop is now approx- 
imated by an independent Poisson process with 
mean 7, which is exact for M/M/c and M / G / <  
queues [11]. In the first approximation we assume 
that the net demand (i.e. demand minus output of 
the repair shop) during the leadtime follows a nor- 
mal distribution. Hence the expected number 
of backorders just before a replenishment, F(s, rl, 
is given by the expected surplus demand over 
a level s - R  of a normal distribution with 
mean tq = (/ - ;,)r and variance ~-~ = (2 + ,')r. In 
formula 

F ( s , r , = ( t q  + R -  s)CI)( s - R - a :  ~:) 

+ c~ch( s-R-''~)a: " (3) 

Assuming a linear increase of the number  of back- 
orders per time unit, it follows that the average 
number of backorders during the time thal net 
inventory is negative equals FIs, r)/2. From the 
same assumption it also follows that the average 
time that net inventory is negative equals 
F(s. r)/(fi - 7 )  divided by the average cycle length 
Q/(fi - 7). Hence the expected number of backor- 
ders at a random point in time, E(B( ~ t1 can be 
approximated by F(s,r)X/2Q, which for reference 
we denote by BLI(S,r). 

Notice next that the average number of orders 
per time unit is given by (2 - 7)/Q. Hence the aver- 
age ordering costs equal A(2 - ;')/Q. In this way we 
obtain as total cost function Kls, Q): 

K ( s , Q ) =  A ( ~ f / )  + ~E(B(~,<, 

4- hIE(N(  ~ )t + E(BI ~ ))] 
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+ h  s + l +  + 2 - 7  R 

- ( 2 - 7 ) r ) .  (4) 

The function K(s, Q) can be shown to be a strict 
convex function in s and Q (see Appendix A). The 
optimal value of Q given s* is easily found by taking 
the first derivative of (4) and equals 

/ + h 2(2 - ~)A Q* = I rc F(s*, z) 2 + (5) 
h h 

Notice that the second term within the square root 
resembles the well-known EOQ formula, adjusted 
for returns. Taking the derivative with respect to 
s and using (3) yields the following equation for the 
optimal value of s given Q*: 

F(s*,r)  ( s* - R - ll~) h 
Q, q~ = (6) 

G 7 r+h  

which can easily be solved with numerical tech- 
niques. Since both s and Q are integer valued, the 
final optimal combination is that neighbour which 
has lowest average costs. 

In the second procedure we approximate the dif- 
ference between the demand and the output process 
from the repair facility by a Brownian motion with 
drift equal to (2 - 7) and variance parameter (2 + 7). 
Moreover, we assume that at the moment of order- 
ing there are R items in the repair shop. Consequen- 
tially the net inventory at t time units since the 
ordering of a replenishment follows a normal distri- 
bution with mean s -  R -  ( 2 -  7)t and with vari- 

Table 1 
Summary of asymptotic results 

ance (2 + 7)t. Hence the time-average amount back- 
ordered, BLdS, z), equals 

v 

2 - 7 f  BL2(S,V) = ~ - -  F(s, t )dt .  (7) 

0 

This leads to another total cost function which we 
denote by K2(s, Q). Again it is possible to show that 
this function is convex (see Appendix A). Using 
approximation (7), the optimal value of Q, Q*, is 
computed as 

i ) Q* = (g + h) F(s* , t )d t  + A 2 ( 2 - 7 )  
h 

0 

(8) 

and the optimal value of s, s*, must satisfy 

f dF(__~s,t)_ h Q* 
ds n + h  2 - 7 '  (9) 

0 

Muckstadt and Isaac [-11] approximate the net in- 
ventory by a normal distribution, where they deter- 
mine the moments from those of the stationary 
inventory position and those of the demand and 
output of the repair shop during the leadtime, while 
assuming independence of the random variables. As 
a result they obtain different formulas for the ex- 
pected number of backorders. A disadvantage of 
their analysis is that the asymptotic properties of the 
approximation of the net inventory do not corres- 
pond to actual behaviour in some cases. We have in 
this connection Table 1 (the indices MI and L denote 
the approximations of the respective authors). 

Moreover, it is more difficult to incorporate 
disposal in their method. Extensive simulation 

Procedure of Muckstadt Van der Laan et al. 
and Isaac Procedure 1 

S* Q *  BM1 s *  Q *  BLI  

Van der Laan et al. Actual behaviour 
Procedure 2 

s* Q* BL2 s* Q* E(B(~)) 

Q - ~ o o  - -  - -  o c  - -  - -  0 

y -* ,t O/oc const, oo const, const, const. 
s~oo  --  --  0 --  0 

- -  - -  0 - -  - -  0 

0 1 0 0 1 0 
- -  - -  0 - -  - -  0 
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experiments using the optimal values obtained by 
our two methods and method of Muckstadt and 
Isaac, and computing the accompanying exac t  costs, 
show that the three methods differ only slightly 
for moderate values of ~ (see Figs. 2(a) and 3(a)). 
For higher values of z, our first procedure does 
not perform very well for 7/2 < 0.75, whereas for 
values of ? close to ), the procedure of Muckstadt 
and Isaac performs considerably worse (see Figs. 
2(b),{c), 3(a) to (c)). In all cases we considered, our 
second method generated results that are very close 
to optimal, and we conclude that this procedure is 
very accurate, and superior to the other methods in 
almost all cases. The computation time needed for 
the second procedure is slightly more than that of 
the first procedure and that of procedure of Muck- 
stadt and Isaac but still factors less than the exact 
cost evaluation. 

In Fig. 4, we compared the situation with a de- 
mand flow, with expected value 2, and a return flow, 
with expected value 7, to the situation where we have 
only a demand flow that is corrected for the expected 
return flow, thus with expected value ;t - 7. It can be 
seen that the uncertainty of return flows gives rise to 
higher costs and higher variability of the processes 
involved. Moreover, as 7 tends to 2 the average costs 
tend to infinity. One way of reducing this explosive 
behaviour is applying a disposal strategy, in order to 
reduce the return flow. 

3. Optimal disposal policies 

An increase in the return rate of items, 7, does not 
result in lower costs, as can be seen in Figs 2(a) and 
(c). The increase in average costs is due to increasing 
inventory costs. Hence it makes sense to extend the 
model with the possibility to dispose items. Here we 
assume that disposal occurs in the first stage, i.e. in 
the repair shop, and is only based on local informa- 
tion, i.e. the number of items in the repair shop. We 
further assume that returned items are either re- 
paired directly or disposed. Salomon et al. [-5] also 
consider disposal on the inventory position. Dis- 
posal on the number in the repair shop may be easier 
implemented, especially if there is a limitation in 
storage space. Besides, the analysis is easier for this 
case than for disposal on the number in the inven- 

tory position. Yet the latter policy may sometimes be 
economically more attractive, see [-13]. 

We will model the repair shop as an 
M/M/c/c + N queue with a Poisson input (i.e. re- 
turn) rate 7, with c parallel servers each having 
a negative exponentially distributed service time 
with mean 1/l~ and with a waiting room (for repair) 
of size N, Hence a returned item is disposed if there 
are N other items waiting for inspection and repair. 
Standard queueing theory yields the following ex- 
pressions for the steady-state probabilities of the 
M/M/c /c+  N queue: 

0, 

(7/;0' 
Po - - ,  7~ 

P ' =  Po ~- . .~ -  (7"/X)c ( )~ )  i-c , (10) 

O, 

i < 0 ,  

0 ~ < i ~ < c - 1 ,  

c <~ i <~ c + N, 

i > c + N ,  

with 

i P0 - ~i;ol (Z'/Oi~ (7/10c 1 1v"4  . (11) 
c, / j  

It follows that the long-run average number of items 
in the repair shop is given by 

("~_i (7/1~); '"" "~"+u tT / I t r  
E(R(<~-)lc ,  N ) = p o  , i ' - / .~ - -+  c! ,~_~.i 

which can be rewritten as 

E ( R (  3o )lc, N)  = Po (7/l~) s (7/P)" 
\ i = l ( i - -  1)!4 c! 

c + (1 - -  p.~,'+ 1 ) _ _  (N q- l}p :~+1 \ 

(121 

(13) 
1 - p  

where p = ;'/c/a. For the expected number of items 
disposed per time unit, D,..x, we obtain 

' (  1 - P N + ' )  -~ 
D<.N =,'p<+ N = Tp ~ V -~ -1 2 7 ] (14) 
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C-tc!(7~i-c 
- ( 1 5 )  V = i ~ o ~ \ i L /  " 

The exact procedure from Section 2 to calculate the 
costs can easily be applied in this case, since disposi- 
ng only limits the state space. Yet the procedure will 
remain time consuming, especially if the return rate 
is high and we have to consider large state spaces. So 
we will also develop approximate cost function. No- 
tice that the output process of the M/M/c/c + N 
queueing system is no longer Poisson. Yet we will 
assume it is, and with a rate equal to 7 - D c ,  N, so 
that we can apply the analysis of the previous sec- 
tion. We now take into account costs 61, 32 and 63 
for production, repair and disposal of an item, re- 
spectively. In the objective function we therefore 
have to replace ~, by ~ - D c ,  u and add a term 
(61-  62 + 63)D(,N. For  the amount backordered 
we take the second approximation, since that yielded 
the best results. For a given disposal level N in the 
repair shop, the optimisation with respect to s and 
Q is similar to that in the previous section. The 
optimisation with respect to N, however, is far more 
difficult, since we cannot prove that the objective 
function is convex in N. To simplify the optimisa- 

tion, we assume that the backorder costs are hardly 
influenced by N and can therefore be left out of 
consideration. Replacing 7 by 7 - D~,N into the ob- 
jective function, neglecting the backordering costs 
and setting k = s -  Rc, u,  where R,. u indicates the 
expected number of items in the repair shop given 
c and N, yields the following minimisation problem: 

minK(k*,Q*,N)=A 2 7Q+De.N +h k * + l  
N>~O 

+ Q * - I  ;, - D(.u "] 

2 +;~--{+Dc, N/ 

-- h(2 - ~ + Dc.u)z 

q-  (61  - -  6 2  Jr- 33)D,..N. (16) 

From the derivative of this function it follows that 
a minimum exists if and only if 

Dc.u = _ 2  - (,;. - 7), (17) ~//-/ 

where 

A 
n = - -  - -  h"c + b 1 - b 2 + ~ 3 .  (18) 

O* 
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Since 0~<N<~ oc it follows from (14) that 
0 <<, Dc,N <~ 7/(1 + V), and consequently it follows 
from (18) that a non-boundary  minimum to (16) 
exists if and only if 

( 2h 2 - 7 + ~ - ~ ]  <~ H <~ ),h(2 - ) ,)-2.  (19) 

Now, if H does not satisfy the left inequality, or in 
other words, if Dc, u should be larger than 7/1 + V, 
then we want to dispose more items than is possible, 
since N is restricted to be non-negative, In this case 
the best we can do is to set N = 0. If H does not 
satisfy the right inequality, we do not want to dis- 
pose any item and in fact we want more items 
returned. Since in our model we cannot  increase the 
rate of return, the best we can do is to set N = oc. 
Finally, if H satisfies both inequalities it follows 
directly from (14) and (17) that we can compute  the 
unique optimal value of N from the expression 

- -  = • • - -  ( 2 0 )  

\ c y  / ?, 
+ 

clt 

where 

U = - ()~ - 7). (21) 

We now have obtained the following iterative 
optimisation scheme: 

S t e p  O. 

S t e p  1. 

S t e p  2. 

S t e p  3. 

Set N = oc 
Compute  s* and Q* given N from the 
adapted formulas (5) and (6) 
Compute  H = A / Q *  - hr  + 61 - (~2  -~- 6 3 .  

If H < 2h[2 - 7 + 7/(1 + V)] 2 then 
N* = 0, 
else if H > 2h(2 - )9 2 then N* = cry, 
else solve N from (20) 
Repeat  steps 1 and 2 until N converges. 

We compared this iterative optimisation proced- 
ure with optimisation by a limited enumeration 
scheme of the approximate cost function i nc lud inq  

backorder costs and with a limited enumerat ion of 
the exact cost function. The results are given in 
Appendix B. For  all resulting policies the associated 
average costs K ( s ,  Q , N )  were evaluated using an 
exact procedure. It appeared that in 19 out of the 36 
examples we considered, the iterative procedure yiel- 
ded the op t imum with respect to the full approxim- 
ate cost function, but the costs difference can be 
substantial (up to 21%). This is due to the fact that in 
the first stage of the iterative procedure, backorders 
are not taken into account, causing an underesti- 
mate of N* lin cases where the procedure estimated 

K(s* , Q ' , N * )  

30 
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10 
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Fig. 5. h = l, 2 = l, A = lO, r = lO, rc - lO0. 
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N* to be oo, the cost differential was small). To 
compensate for the consequential under-estimation 
of backorder costs, the second stage computes values 
of s and Q that are higher than the optimal values. 
However, still a substantial reduction in costs can be 
obtained using the iterative scheme with respect to 
the non-disposal case (last column Table 2). The 
enumerative scheme of the full approximate cost 
function performed very well with respect to the 
enumeration of the exact cost function. In 11 out of 
36 cases, the optimal solution was found, whereas 
the maximum deviation in costs was 2% at the most. 
Concluding, we can say that the enumerative scheme 
is superior to the iterative scheme, but it is somewhat 
more time consuming. Yet the exact cost optimisa- 
tion required more than 40 times more time, espe- 
cially if a large state space had to be considered. 
Although we cannot guarantee convergence of the 
iterative scheme, less than four iterations were 
needed in all cases. We could improve our iterative 
procedure somewhat, if we would store the best 
solution encountered during the iterations and do 
a limited enumeration at the end. 

From Table 2 we can also observe the following 
behaviour of s*, Q* and N*. If 7/2 increases then 
both s* and Q* decrease, although not always 
monotonically as more experiments showed. The 
optimal value N* decreases with 7/2. 

The effect of the value ofA = ,51 - 32 + ~3, which 
we could denote as the net cost of disposal, is shown 
in Fig. 5, where we computed exact minimum costs 
for various values of A. As expected, average costs 
increase as A increases, but costs are always less than 
those of the non-disposal case, except for z~ = oc, 
when the minimum costs are equal to the minimum 
costs in the non-disposal case. This means that it is 
always meaningful to incorporate a disposal strat- 
egy, since it reduces costs in all instances. This can 
also be seen in Table 2. 

4. Conclusions 

In this note we presented an (s,Q) model for 
inventory control under remanufacturing and dis- 
posal. Although an exact analysis for this model is 
possible, we developed approximations for both the 
cost evaluation and the optimisation which per- 
form reasonably well against much less numerical 

effort. Moreover, they provide more insight into the 
behaviour of the optimal parameters. We have 
shown that disposal is a necessary option because 
inventory levels may otherwise rise to very high 
values because of the variability in the return 
streams. Yet incorporating disposal does compli- 
cate the model and especially the optimisation. 
More research is needed to get insight into the 
value of this model in more complex production 
situations. Other possible extensions are with re- 
spect to a non-stationarity of the demand and re- 
turn rates following life cycles of products, to con- 
sider other disposal strategies (with batch disposal) 
and to relax the Poisson assumptions of demand 
and return processes. 

Appendix A: Convexity of the approximative cost 
functions 

We start with proving that the first approxi- 
mative cost function, given by (4) is convex. It is 
quite easy to show that the second derivative with 
respect to Q is positive. Next consider the second 
derivative with respect to s. The main complication 
lies in the term {F(s, t)} 2. Notice now that 

d 2 F ( s , t }  2 

ds  2 

• deF(s,t) (dF(s , t ) )  2 
- 2F(s,t) ~ + 2\--~-s j 

_ 2__~re F(s,t)c~(s--Ro.L__--/IL) 

+ \ ds / >°,  

which shows that the function is convex in s. To 
finish the proof we apply the following standard 
lemma on convexity, which we state without proof. 

Lemma A.i. Let f (x) be a positive-valued, decreas- 
in9 and convex function in x, and let 9(Y) be a linear 
positive valued function in y, then h(x, y): = f (x)/g(y) 
is convex in (x, y). 

Taking f (x)  = F(s, 0 2 and g(y) = Q/(2 - 7) 
yields the desired result. 

For  the second approximation given by (7) we 
have to consider the first and second derivative of 
T 

f F(s,t) dt 
0 
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with respect to s. 

f F ( s , t ) d t  = F ( s , t ) d t  = - ~ ( z ( t ) ) d t  < O 

0 0 0 

r r 

~ , Fls, t ) d t  = J ~  Y ( s , t ) d t  = ~ ( z ( t ) ) d t  > O 
CS" 

o o o 

where z ( t ) = ( s - I t , - R ) / a , .  Thus, j '~f ' (s , t )d t  is 
strictly decreasing and strictly convex in s. Ap- 
plying the lemma with 

r 

f ( s )  = f F(s,,)dt and g ( y )  = Q/(2 - 7) 

0 

yields the proof. 

Appendix B. Comparison of numerical performance 

Table 2 
Performance of the {iterativet solution procedure for the M/M/1/N repair queue: ,:, = 1.00, A = 10.0, h = 1.00. r = 10.0, it = 2.00 

7/2 7t A" Exact cost function Approximative costs 
with enumeration with enumeration 

s Q N K(s,Q,N) s Q N K{s,Q, Nt  

Approximative costs 
iterative procedure 

Non-disposal case 
exact optimisation 

s Q N K(s.Q,N) s Q Kis, Q) 

0.30 10 0 9 6 0 8.4253 9 6 0 8.4253 
0.50 8 5 0 8.4208 8 6 0 8.4518 
0.70 7 5 0 8.4188 7 5 0 8.4188 
0.80 6 5 0 8.3939 6 6 0 8.4615 
0.90 5 5 0 8.4600 6 5 0 8.4924 
0.95 5 5 0 8.4524 5 6 0 8.5250 

0.30 10 9 6 ~. 8.5735 9 6 ~ 8.5735 
0.50 7 5 m 8.7410 7 6 m, 8.7764 
0.70 5 5 2 9.2493 5 5 m 9.3093 
0.80 5 4 1 9.8308 4 5 2 9.8937 
0.90 4 4 1 10.5696 4 5 1 10.6870 
0.95 3 4 I 11.1074 3 5 1 11.1893 

I).30 20 9 6 ~. 8.5735 9 6 ~ 8.5735 
0.50 7 5 ~ 8.7410 7 6 ~ 8.7764 
0.70 5 4 7 9.3041 5 5 ~ 9.3088 
0.80 4 4 3 10.1298 4 5 ~ 10.3438 
/I.9(I 4 4 1 11.6724 4 5 1 11.7899 
0.95 3 4 1 12.3677 3 5 1 12.4498 

0.30 100 0 13 6 0 12.1248 13 6 0 12.1248 
0.50 12 5 0 12.1365 12 5 0 12.1365 
0.70 I1 5 0 12.1742 11 5 0 12.1742 
0.80 10 5 0 12.2386 11 5 0 12.3366 
0.90 10 4 0 12.2537 10 5 0 12.2877 
0.95 10 4 0 12.2961 10 5 0 12.3853 

0.30 10 13 5 ~z 12.2870 13 5 ~ 12.2870 
0.50 11 5 ~ 12.6465 11 5 -z 12.6465 
0.7/) 10 4 2 13.2528 10 4 ~ 13.3511 
0.80 9 4 1 13.8178 10 4 1 13.9535 
0.90 8 4 1 14.6530 9 4 1 14.7705 
0.95 8 3 1 15.2627 10 5 0 15.4445 

0.30 20 13 5 :£ 12.2870 13 5 vc 12.2870 
0.50 11 5 ~ 12.6465 11 5 ~ 12.6465 
0.70 10 4 5 13.3495 10 4 ~ 13.3511 
0.80 9 4 2 14.2956 9 4 ~ 14.4935 
0.90 8 4 1 15.7558 9 4 1 15.8734 
0.95 8 3 1 16.5231 8 4 1 16.5505 

9 6 0 8.4253 
8 6 0 8.4518 
7 5 0 8.4188 
6 6 0 8.4615 
6 5 0 8.4924 
5 6 0 8.5250 

9 6 0 8.8166 
8 6 0 9.4518 
7 5 0 10.2337 
6 6 0 10.7472 
6 5 0 11.2854 
5 6 0 11.5841 

9 6 ~ 8.5735 
7 6 ~ 8.7764 
5 5 ~ 9.3088 
5 5 I 10.7273 
6 5 0 14.0791 
5 6 0 14.6426 

13 6 0 12.1248 
12 5 0 12.1365 
11 5 0 12.1742 
I1 5 0 12.3366 
10 5 0 12.2877 
l0 5 0 12.3853 

13 5 1 12.311l 
12 5 0 13.1365 
11 5 0 13.9890 
11 5 0 14.6223 
10 5 0 15.0808 
10 5 0 15.4445 

13 5 m 12.2870 
I1 5 ~ 12.6465 
1(! 4 ~ 13.3511 
10 4 1 14.7740 
I0 5 0 17.8739 
I0 5 0 18.5039 

9 6 8.5735 
7 5 8.7410 
5 4 9.3044 
4 4 10.2307 
2 3 13.7291 

1 3 21.9295 

13 5 12.2870 
II 5 12.6465 
10 4 13.3511 
9 3 14.4366 
7 3 18.2580 
6 2 27.0088 

:'A =61 - 62 +,4~. 
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