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In the standard (S — 1,S) stock model, demand follows a Poisson process.
[t has appeared to many stock analysts that this model causes an abundance of
stock in reality. In case demand is caused by failure or is derived from another
process, demand typically does not follow a Poisson process. In this paper, we
discuss the (S — 1, 5) stock model where demand follows a renewal process and
the lead time is deterministic. Moreover, we will extend this to compound
renewal demand and multi-echelon inventory systems. Our goal is to show the
severe influence of taking the Poisson process for granted.

1. INTRODUCTION

For slow-moving stock, the lot-for-lot, or one-for-one, replenishment policy is
a very popular policy in practice. To our surprise, literature has paid very lit-
tle attention to (S — 1, S) stock inventory control with renewal demand. One
paper worth mentioning is that by Kalpakam and Sapna [9]. In their paper, they
consider perishable inventory and exponential lead times. They use semi-Markov
modeling to compute the probability of a shortage. In numerous articles in
which the (S — 1,5) stock system is analyzed, one usually makes the comfort-
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able assumption that demand follows a (compound} Poisson process (cf. Graves
[4], Lee [11], Muckstadt [12], Nahmias [13], Schaeffer [15], Sherbrooke [16,18],
and Sherbrooke and Feeney [19]). This assumption is usually justified by Palm’s
theorem (cf. Khintchine [10], stating that, under mild assumptions, the distri-
bution of the total number of events in a small time interval coming from dif-
ferent independent renewal processes tends to a Poisson distribution as the
number of independent processes grow. So, if demand originates from a large
number of independent clients, a Poisson process on a small time scale may be
justifiable.

The (S — 1, 5) policy is often used in spare parts inventory control. Prac-
tical experience of stock managers of critical equipment is that the (§ — 1,5)
model with Poisson demand often advises more stock than they consider really
necessary, especially if spares are installed in only a few machines. For exam-
ple, Rooij [14] considers spare parts inventory control of a large petrochemical
plant in Rotterdam. One of the spare parts, an oil baffle, installed in one unit,
~had an average demand of once every 20 months. The lead time was half a
year, and a service level of 99.5% was required. The company had two spare
- oil baffles, which seemed to them a very reasonable amount of spares. However,
the (S — I, S) stock model with Poisson demand advised twice as many.

The observation is that although the failure process of equipment often fol-
lows a Poisson process, this is not the case at component level. Take, for exam-
ple, a seal in a pump. Once replaced it is unlikely that it will fail shortly again.
~Instead, the failure process may be described by a renewal process where the
interarrival distribution has an increasing failure rate. This lowers the proba-
bility of another demand during the lead time.

In case demand follows a renewal process, the (S — 1, S) policy is, in gen-
eral, not optimal. When there is less variation in the demand, it can be more
advantageous to delay an order for some period of time. Such a policy, how-
ever, is too complex for today’s spare parts management systems. Therefore, we
restrict ourselves in this paper to (S — 1, S) policies with immediate reordering.

We will assume that the lead time is deterministic, which is not an unreal-
istic assumption. There can be strict agreement between the client and the sup-
plier about the lead time. Smaller as well as larger lead times are not desired
(cf. Rooij [14]).

2. THE (S — 1,S) MODEL WITH BACKLOGGING
2.1 Single Echelon

Consider the (S — 1,.5) model where demand follows a renewal process with a
nonarithmetic arbitrary interarrival distribution, G(.). We assume that a replen-
ishment order takes a constant time D and that orders that cannot be delivered
directly are backlogged. Furthermore, we assume that the demand process is not
- affected by stock-outs. This is an approximative assumption that is also made
~ in most of the aforementioned hiterature. Because the (S — 1,.5) stock model
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aims to choose S such that the stock-out probability is small, the influence of
the assumption will be rather trifling. Moreover, in practice, there are differ-
ent alternative actions possible when a stock-out occurs. A rush order, for
example, can be placed or sometimes a different, better, but more expensive
spare can be used or some provisional solution is found, such as replacing a
v-snare by a panty. The steady-state probabilities of the number of outstand-
‘ing orders follow directly from renewal theory.

LemMA 1. The steady-state probability, say, p,(D), that there are n outstund-
ing replenishment orders_is given by

pn(D) =G, % G"™ND) - G.xG"™(D), n>0,

2.1}
po(D) = 1 ~ Go(D),

where * denotes a convolution, the superscript ‘" the n-fold iterated convolu-
tion of a distribution with itself, and G,(t) = (1/u)[; (1 — G(x)) dx the equi-
librium distribution.

Proor: When there are »n outstanding replenishment orders, it follows that
exactly n customers have arrived during the past D time. Because the interarrival
distribution is nonarithmetic, it follows that the length of time since the last
customer arrived is distributed according to the equilibrium excess distribution
(cf. Tiyms [20]). Therefore, the probability of # outstanding orders equals the
probability that n events have happened in D time units in an equilibrium re-
newal process (¢f. Cox and Miller [3]).

LEMMA 2: The steady-state probability that there are n outstanding orders just
after a customer has arrived is given by

pa(D) = G (DY — G"(D), n >0, (2.2)
with G'9(D) = 1.

Proor: When an order just has been made, the probability that there are n out-
standing orders equals the probability of # — 1 events in an ordinary renewal
process at time D (cf. Cox and Miller [3]). |

The main problem in evaluating p, and p, lies in the computation of the
convolutions. A popular way to manage convolutions is to approximate the dis-
tribution by a phase-type distribution by fitting the first two or three moments
and subsequently calculate the convolutions of these distributions analytically
(cf. Harrison [5]). If we apply this approach directly to p,,, the problem occurs
that we need to approximate two distributions, namely, G,(.) and G(.). In the
next theorem, we show how p, can be written as a function of p,;. This way
we only need to fit to the distribution G(.) and nof to the distribution G.(.),
which simplifies the computation of p, considerably. In the Appendix, we will
elaborate on this topic.
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Another method is to approximate the distribution by cubic splines, in
. which case a spline approximation of the n-fold convolution can be obtained by
matrix multiplication (cf. Iseger, Smith, and Dekker [7]).

+ THEOREM 1: The steady-state probabilities p, can be expressed as

1 D
Pa(D) = —f (Pa(t) — ppoi (1)) dt
B Jo

D
= lf lG("'”(t) — ZG(”’(I‘) + G(’””(t)] dt, n>0, (2.3)
K Jy
qnd
1 [P 1 2
po(D)zlf—f pi'”(t)dt=1——f {1 —G(r)}ar. 2.4)
B Jo ® Jo

Proor: First notice that Pu(t) = proy(£) = GU7D(1) = 2G"(4) + Gy,
Next, consider the probabilities p, (D) as a function of the lead time D. The
Laplace transform is given by

Pals) = f e~*p, (D) dD = g,(s)(&""(s) — §"(s)) /s, 2.5)
0

with £(s) and g.(s) the Laplace transform of G and G.. Because g,(s) =
(1 — 8(s))/(pns), we obtain

Pu(s) = (£"7(s) — 287(s) + "))/ (us?). (2.6)
" Formal inversion yields the desired result. [

From these results, it easily follows that the long-term average proportion
of time that there is a stock-out is given by

Pioss(D) = 3 p(D) = G, GS-D(D) @.7)
i=5

and that the probability of an arbitrary customer finding the stock empty is
. given by ‘

Pross(D) = 23 pl'=GB(D). (2.8)

i=5+1
Another important aspect of the (S — 1, S) model is the waiting time distri-
bution (cf. Higa, Feyerherm, and Machado [6] and Sherbrooke {17]). Let us de-
note the distribution of the waiting time of an arbitrary customer by P(W < t).
In the (S — 1, S) stock policy, we might say that a customer gets the part that
was ordered as a replenishment for the Sth customer before him or her. Hence,

PW=<t)y=1—-pr(D—1t)=1—GOHD —1). (2.9)

Slightly different from the waiting time is the average uninterrupted time that
there is no stock on hand. By using the level crossing method (cf. Tijms [20]), we
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find that this is given by upe. (D) /D54 (D). In words, the average number of
times per unit time that a stock-out appears, pg,/u, should equal the avcrage
number of times per unit time that a stock-out disappears, p..(D)/(average
stock-out length).

2.2. Extension: Multi-Echelon

In this section, we show that the analysis can easily be extended to the casc that
the demand stems from a superposition of renewal processes. Consider a two-
~ level system where retailers order at a central warehouse. At each local retailer,
there is a local inventory. Upon demand at the retailer, the retailer sets an order
at the central warchouse to replenish its stock. In this case, the demand at the
warehouse stems from a superposed renewal process. Here the usual Poisson
assumption may be justified as an approximation when the lead time is relatively
small. We will not pursue this approximation.

The lead time for replenishment orders of the warehouse will be denoted by
D,,. The distribution of the interarrival times of customers at retailer / will be
denoted by G;(f) with mean y;. The lead time for replenishment orders of
retailer / from the warehouse is given by D;. This constant lead time D, is madc
under the assumption that there is no stock-out at the warehouse and can be
interpreted as the transportation time between the warehouse and retailer /.
There is no coordination of replenishment orders.

Let us denote by p; (D) and p;(D,,) the probability that there are j; out-
standing orders from retailer / at the warehouse, respectively, at an arbitrary
moment and when retailer / has just ordered. These probabilities have been
given in the previous section. The total number of outstanding orders now fol-
lows directly.

LeEMMA 3: Consider a warehouse and k retailers. The probabilities, say, r, (1.},
- that at an arbitrary point in time there are n outstanding orders at the warehouse
is given by

r.(D,) = > Tl pi(Dy). (2.10)

bt B d=n)
PRrooF: To have n outstanding orders at the warehouse at an arbitrary point
in time, there have to be j; outstanding orders of retailer / and the sum of j;,
i=1,...,k, should equal n. [ |

LEMMA 4: The probabilities, say, ri(D,,), that there are n outstanding orders at
the warehouse just after an order has been made is given by

N . k n 1/#’ .
rn(Dw) - E k pj,-(Dw)qn—j,-(Dw): (2-]1)

=1

with q,_; (D,,) the probability r,_; (D,,) as given in Theorem 3 without retailer i
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Proor: When a customer arrives, then the steady-state probability that the cus-
tomer is of type i is given by the ratio of the individual arrival frequency and
the total arrival frequency. When the customer is of type i, then there will be
Ji customers of type i in the system with probability p;(D,,). Because the dis-
tributions G;(.) are mutually independent and nonarithmetic, the arrival of a
customer of type i will have happened at an arbitrary point in time as far as the
other customers are concerned. Hence, the probability that the other custom-
~ers total in the system equals n — j; is given by q,_;,(D,,). |

The stock-out probabilities are given by

o

Fos(Dw) = 31 ri(Dy) and i (Dy) = 3 (D) 2.12)

i=S i=S+1

and the waiting time distribution yields
| PW<t)y=1—r4 (D, —1). (2.13)

The average uninterrupted length of time that there is no stock on hand is given by

k1
r!oss(Dw)/(r§+l(Dw) Z ;’) . (2.14)
i=1 i

The average lead time for the replenishment of retailer i is given by

D
D,' = D,‘ + f r;;ss(t) dt. (2.15)
0

Followiilg the METRIC approximation (cf. Axséter [1] and Sherbrooke [16}),
‘we use D; for the replenishment lead time of retailer /. The extension to more
than two levels is straightforward.

3. RESULTS

To illustrate the influence of the arrival process, we consider again the exam-
ple we mentioned in the introduction. One of the spare parts at the petrochem-
ical plant is an oil baffle. It is installed in one vital machine for which
breakdown would mean an immediate and serious interruption causing unsafe
‘operations. Therefore, the management requires a high service level of 99.95%.

The oil baffle has an average demand interval of 20 months and a lead time
of half a year. The price of the baffle is around $5250, which is reasonably
expensive,

In Table 1, we compare the distributions of the number of outstanding
orders in case the arrival process is a Poisson process and a renewal process with
interarrival distribution Erlang-4. The number of spares on stock is determined
by the tail of the distribution. We see that the Poisson process and the renewal

process cause a completely different tail. The tail caused by the renewal process
is much thinner.
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TasrLe 1. Distribution of the Number of
QOutstanding Orders at a Retailer Just
after a Customer Has Arrived?

Dn Poisson Erlang,
1 0.7408 0.9962
2 0.2222 0.0337
3 3.33E-2 3.70E-5
4 3.33E-3 6.17E-9
5 2.50E—4 2.8E-13
6 1.50E-5 5.0E—-18
7 7.50E~-7 4.1FE-23
8 3.21E-8 1.7E-28
9 1.21£-9 4.1E-34
10 4.0E-11 5.9E—-40

2The replenishment lead time is half a vear, and the mean interarrival
time is 20 months.

Furthermore, let us assume that the plant orders the oil baffles at some
warehouse and that there are in total three more (identical) petrochemical plants
that do the same. The distribution of the number of outstanding orders at the
warchouse, with D, = 0.5 year, is depicted in Table 2. Here we can draw the

TaBLE 2. Distribution of the Number of
Qutstanding Orders at the Warehouse
Just after a Customer Has Arrived?

DPn Poisson Erlang,
1 0.3012 0.3348
2 0.3614 0.4338
3 0.2168 0.1956
4 8.67E~-2 341E-2
5 2.60E-2 1.59F—-3
6 6.24E-3 2.TTE-S
7 1.25E-3 2.25E-17
8 2.14E-4 8.8E—10
9 3.21E-5 [.eE—~12
10 4.28E—6 1.6E—15

2The demand is coming from four retailers, The replenishment lead
time is half a year, and the mean interarrival time is 20 monthe
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same conclusion; in case the interarrival distribution has a smaller variance,
the tail of the distribution of the number of outstanding orders at the warehouse
is thinner. -

As a result, if management requires a service level of 99.95%, the (S — 1, .5)
stock model with Poisson demand would suggest four spare parts at the retailer
(ploss = 3E — 4) and seven at the warehouse (rj, = 3E — 4). The (S - 1,8)
model with demand following a renewal process with interarrival distribution
~ Erlang, would suggest only two spares at the retailer ( py,,, = 4E — 5) and five
at the warchouse (rp, = 1E — 4).

Further computational experiments confirm the hypothesis that substan-
tially less stocks are needed for interarrival distributions with squared coefficient
of variation less than 0.25.

As there are thousands of very slow-moving spare parts items at a petro-
chemical plant, each with a low stock level, the effect of a non-Poisson arrival
distribution is considerable.

In case the replenishment lead time is relatively large, we can make the
difference also insightful by looking at the mean, m*(D), and especially the
variance, V*(D), of the number of outstanding orders at a retailer when a cus-
tomer has just arrived. The variance is especially important because it can be
used as a measure of the tail —consider, for example, Chebychev’s inequality.
I'rom Theorem 2, it follows (cf. Cox and Miller [3]) that

D 2 _ .2
m D) =1+ =+ L + o(1/D) 3.1)
p 2p

and

02D 1 50 2p,
VD)= — + | — + — -2 ) L oa/D 3.2
(D) = = (12 ™" 3u3) (1/D) (3.2)

with pu, py, and ¢? the mean, third central moment, and variance of the inter-
arrival distribution. Note that in the leading term of the variance, (¢2D)/p?,
the variance of the interarrival distribution is presented. This shows again that
a smaller variance of the interarrival distribution causes a smaller tail of the dis-
tribution of the number of orders in the lead time that determines the number
of stock necessary. Furthermore, it can be derived (cf. Barbour, Holst, and
Janson {2]) that in case V(D) < m*(D) we have

o0 i e—m*(D)]n* D)n
Z Pa (D) - ) (
n=0 n.
. | |
min{l,max(m*(D),l)(l + 1n(—)) }
€
> ce , 3.3)

I + ln(l)
€
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with
e = min{1, m* (D) (1 — V(D)/m*(D)) (3.4)

and ¢ some universal constant. This formula shows us explicitly the order of
the lower bound of the error as a function of the variance.

For Tables 1 and 2, the replenishment lead time is not large enough to usc-
the preceding formulas, though. The mean and variance of the number of out-
standing orders at a retailer are 1.30 versus 1.003 and 0.30 versus 0.09 for the
Poisson and the Renewal processes, respectively. Formulas (3.1) and (3.2) give
1.30 versus 0.925 and 0.30 versus —1.39.

4. CONCLUSIONS

Practical experience shows that the standard models where the demand is
assumed to follow a Poisson process may cause an abundance of stock. In case
demand is caused by wear-out failures, demand typically does not follow a Pois-
son process. In this paper, we have discussed the (S — 1, S) stock model where
demand follows a renewal process and the lead time is deterministic. We have
extended the results to compound renewal demand and multi-echelon inventory
systems. We have seen that the distribution of the number of orders depends
heavily on the variance of the interarrival times. The influence of the variance
of the demand process is such that it can easily lead a stock manager to make
a wrong decision about the base stock level in case the Poisson process is mis-
takenly taken for granted.
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