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pathogens [9,21-24]. Figure 1 shows that in all disease phases, data can be generated for syndromic surveillance. 
This ranges from data reflecting mild morbidity not even requiring medical treatment, to data reflecting more 
severe morbidity (requiring hospitalization) or even death. In the prodromal phase, elevations of absenteeism 
and over-the-counter sales of medications could indicate early disease elevations. In the clinical phase, work-
diagnoses, (acute) chief complaints, prescription medications or emergency-department diagnoses can be 
used for syndromic surveillance. Trends in the number of specimens submitted to diagnostic laboratories 
— before the test results become available — could indicate disease elevations as well. Even in the final phase 
of disease, cause-of-death or crude (overall) mortality data can be used for syndromic surveillance purposes. 
Traditional surveillance, on the other hand, is mainly limited to diagnoses based on laboratory detection of 
pathogens (Figure 1), followed by notification. 

Analyses and Response
A syndromic surveillance system that is used for early warning, is supposed to generate a signal if a certain 
syndrome shows an unexpected elevation [5,25]. For signaling such elevations in time and/or space-time, 
statistical algorithms can be used to compare the difference between the number of observed and expected 
cases, often derived from historical data [5,6]. Obviously, in order to have added value for public health, 
syndromic surveillance signals have to be translated in public-health responses such as active case finding, 
treatment and/or quarantine. 

Performance evaluation
To evaluate the added value of syndromic surveillance, it would make sense to assess its performance for 
different systems and disease events in a standardized way. However, one should keep in mind that quantitative 
performance measures like the sensitivity, specificity and timeliness of outbreak detection are difficult to 
standardize, because detection of disease events depends on many sometimes unpredictable factors; these 
include data types and sources, syndrome definitions, detection algorithms, response actions, surveillance 
populations and types of disease event [25-27]. In addition, there is a lack of data on real (major) disease events 
to use as “gold standard”, whereas simulated test outbreaks may not reflect the diversity and unpredictability 
of real-life disease events [25,28]. An additional problem is that many existing syndromic surveillance systems 
have limitations like low data quality or coverage, making these systems unfit for evaluating the potential 
performance and thus added value of syndromic surveillance. 

Objective, approach, specific research questions and outline of the PhD-thesis
The objective of this PhD-thesis is to evaluate the added value of syndromic surveillance for infectious disease 
surveillance and control, and to make recommendations for its possible implementation in the Netherlands. We 
chose to evaluate a range of syndromic data types from existing Dutch medical registries — all retrospective but 
with high-quality data and preferably high coverage. Table 1 lists the six registries included in the study, with data 
on work-absenteeism, General Practitioner (GP) consultations, pharmacy prescriptions, laboratory submissions, 
hospital diagnoses and mortality. Data was available from 1999-2009 or parts of this period. 

Rather than estimating performance parameters like sensitivity and specificity for detecting fictitious major 
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Background
In the last decade, worldwide several major infectious disease events occurred — like the anthrax attacks in the 
USA in 2001, the SARS epidemic in 2003 and the 2009 influenza pandemic. As a result, public-health authorities 
worldwide have acknowledged the need for improved surveillance for emerging infectious diseases, as early 
detection and control may well mitigate the impact of emerging outbreaks. For instance, the SARS epidemic 
could have caused a major pandemic with millions of deaths if it had not been contained by public health 
measures. Still, the SARS epidemic was only recognized several months after its emergence, and in the end it 
infected 8096 patients in 27 countries and caused 774 deaths before it could be controlled [1,2]. SARS, and most 
other pathogens that are considered a high threat for public health, cause symptoms that are common in clinical 
practice, like pneumonia (e.g. B. anthracis, SARS or pandemic influenza), gastro-enteritis (e.g. Vibrio cholerae) 
or neurological disease (e.g. West Nile virus) [3,4]. That is why traditional outbreak detection based on astute 
clinicians and laboratory diagnoses can have blind spots for such emerging diseases, because patients reporting 
with such common symptoms might not alarm clinicians — especially since individual clinicians may only see 
one or a few of these “new” cases — and uncommon pathogens can remain undetected by the laboratory. 

To reveal such blind spots, many countries have implemented so called syndromic surveillance systems that 
aim to capture infectious disease events earlier and more completely than traditional surveillance; they do this by 
monitoring new health indicators, such as basic symptom information or clinical diagnoses, rather than positive 
laboratory results for specific pathogens [5-14]. Surveillance of symptom based data has been used since decades 
for surveillance of polio (acute flaccid paralysis) and influenza (influenza-like illness) [15,16], but the increasing 
availability of electronic health-care data with information on specific morbidity in time, has made large-scale 
real-time monitoring of syndromes possible. Syndromic surveillance was initially developed for early-warning 
detection of bioterrorism attacks, but is also used for early detection of naturally occurring (local) outbreaks, 
following the size and spread of ongoing outbreaks, monitoring disease trends in the general population, and 
providing reassurance that an outbreak has not occurred [5,6]. At the same time, in light of limited resources for 
public health, there has been an ongoing debate about the actual added value of syndromic surveillance, with 
particular concerns about its specificity [17-20].

Because little validation had been done to address these concerns[18,20], we chose to evaluate the potential 
value of syndromic surveillance for infectious disease surveillance and control, before starting any implementation. 
This thesis is the result of that evaluation project.

The concept of syndromic surveillance

Syndromic data
There is no official definition of syndromic surveillance, but systems designated as such monitor all kinds of 
pre- or non-diagnostic data in order to capture (infectious) disease dynamics. In this context, a syndrome can be 
defined as a combination of complaints and symptoms of a patient which could indicate an infection with certain 
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disease events, we first assessed whether known infectious disease dynamics and outbreaks during the study 
period were reflected in these data sources, assuming that good reflection of known dynamics and outbreaks 
implied good reflection of emerging pathogen activity as well. Therefore we selected respiratory, gastro-enteritis 
and/or neurological syndromes for analysis. These syndromes can be expected to reflect the clinical presentations 
of both high-threat and common pathogens [3,4,21]. This not only makes it possible to use common pathogen 
activity as a test-case for these syndromes, but also implies that emergence of the high-threat pathogens concerned 
will be relatively difficult to recognize by clinicians. See the appendix of chapter 1 for details on the syndrome 
definitions for each registry.
The specific research questions addressed were:
1.	�What syndromic data types track known dynamics of infectious diseases in the general population, and thus 

will also likely reflect emerging pathogen activity (chapter 2)? 
2.	�Can syndromic surveillance improve the monitoring of disease burden and/or detect shifts in virulence of 

common pathogens (chapter 3)?
3.	�Can syndromic surveillance detect known local outbreaks with a limited number of signals in time, independent 

of laboratory detection of the causative pathogens (as an indication for sensitivity and specificity, chapters 4 and 5)?
In chapter 6 we give a perspective on the added value and possible applications of syndromic surveillance 

and make recommendations for implementation, based upon the results of our project. 
In chapter 7 we further elaborate on the implications of this thesis’ results for syndromic surveillance 

system requirements regarding data, analyses and response, in light of the current literature. We also discuss 
future challenges and possibilities of syndromic surveillance, and conclude upon the added value of syndromic 
surveillance for an improved infectious disease surveillance. 

Symptoms
increase

Symptoms
decrease / disappearInfection First

symptoms

Incubation
phase

Prodromal
phase

Absenteeism
OTC-medication

Symptom registration
  GP
  Emergency departments
  Ambulance
Prescription medication

Laboratory
submissions

Death causes/
Crude mortality 

Clinical phase Recovery
Chronical phase

Death

Syndromic-
surveillance

Traditional
surveillance

Work diagnosis Speci�c diagnosis

Diagnosis

Figure 1. Phases in time of infectious diseases in relation to possible data sources for syndromic and 
traditional surveillance.
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Syndromic surveillance is increasingly used to signal 
unusual illness events. To validate data-source selection, 
we retrospectively investigated the extent to which 6 respi-
ratory syndromes (based on different medical registries) 
refl ected respiratory pathogen activity. These syndromes 
showed higher levels in winter, which corresponded with 
higher laboratory counts of Streptococcus pneumoniae,
respiratory syncytial virus, and infl uenza virus. Multiple lin-
ear regression models indicated that most syndrome varia-
tions (up to 86%) can be explained by counts of respiratory 
pathogens. Absenteeism and pharmacy syndromes might 
refl ect nonrespiratory conditions as well. We also observed 
systematic syndrome elevations in the fall, which were un-
explained by pathogen counts but likely refl ected rhinovirus 
activity. Earliest syndrome elevations were observed in ab-
senteeism data, followed by hospital data (+1 week), phar-
macy/general practitioner consultations (+2 weeks), and 
deaths/laboratory submissions (test requests) (+3 weeks). 
We conclude that these syndromes can be used for respira-
tory syndromic surveillance, since they refl ect patterns in 
respiratory pathogen activity.

Early warning surveillance for emerging infectious dis-
ease has become a priority in public health policy since 

the anthrax attacks in 2001, the epidemic of severe acute 
respiratory syndrome in 2003, and the renewed attention 
on possible in uenza pandemics. As a result, new surveil-
lance systems for earlier detection of emerging infectious 
diseases have been implemented. These systems, often la-
beled “syndromic surveillance,” bene t from the increasing 

timeliness, scope, and diversity of health-related registries 
(1–6). Such alternative surveillance uses symptoms or clini-
cal diagnoses such as “shortness of breath” or “pneumonia” 
as early indicators for infectious disease. This approach not
only allows clinical syndromes to be monitored before lab-
oratory diagnoses, but also allows disease to be detected for 
which no additional diagnostics were requested or avail-
able (including activity of emerging pathogens). Our study 
assessed the suitability of different types of healthcare data 
for syndromic surveillance of respiratory disease.

We assumed that syndrome data—to be suitable for 
early detection of an emerging respiratory disease—should 
re ect patterns in common respiratory infectious diseases 
(7–10). Therefore, we investigated the extent to which 
time-series of respiratory pathogens (counts per week in 
existing laboratory registries) were re ected in respiratory 
syndrome time-series as recorded in 6 medical registries in 
the Netherlands. We also investigated syndrome variations 
that could not be explained by pathogen counts. As an indi-
cation for syndrome timeliness, we investigated the delays 
between the syndrome and pathogen time-series.

Methods

Syndrome Data Collection and Case Defi nitions
We de ned syndrome data as data in health-related 

registries that re ect infectious disease activity without 
identifying causative pathogen(s) or focusing on pathogen-
speci c symptoms (such as routine surveillance data for 
in uenza-like illness [11] or surveillance of acute  accid 
paralysis for polio [12]).

Registries for syndrome data were included if they 
met the following criteria: 1) registration on a daily basis;
2) availability of postal code, age, and sex; 3) availability 
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of retrospective data (>2 years); and 4) (potential) real-time 
data availability.

Six registries were selected (Table 1) that collected data 
on work absenteeism, general practice (GP) consultations, 
prescription medications dispensed by pharmacies, diag-
nostic test requests (laboratory submissions) (13), hospital 
diagnoses, and deaths. In all registries, data were available 
for all or a substantial part of 1999–2004. For the GP, hos-
pital, and mortality registry, de nition of a general respira-
tory syndrome was guided by the case de nitions and codes 
found in the International Classi cation of Diseases, 9th 
revision, Clinical Modi cation (ICD-9-CM), as selected by 
the Centers for Disease Control and Prevention (Atlanta, 
GA, USA) (www.bt.cdc.gov/surveillance/syndromedef). 
For the laboratory submissions and the pharmacy syn-

drome, we selected all data that experts considered indica-
tive of respiratory infectious disease (for detailed syndrome 
de nitions, see online Technical Appendix, available from 
www.cdc.gov/EID/content/14/6/917-Techapp.pdf).

Respiratory Pathogen Counts 
As a reference for the syndrome data, we included 

speci c pathogen counts for 1999–2004 from the follow-
ing sources: 1) Weekly Sentinel Surveillance System of the 
Dutch Working Group on Clinical Virology (which cov-
ers 38%–73% of the population of the Netherlands [14] for 
routine laboratory surveillance of respiratory syncytial vi-
rus [RSV], in uenza A virus, in uenza B virus, rhinovirus, 
Mycoplasma pneumoniae, parain uenza virus, enterovirus, 
and adenovirus); 2) 6 regional public health laboratories for 
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Table 1. Registries from which syndrome data were obtained, the Netherlands, 1999–2004* 

Data type Period
%

Coverage†
Respiratory syndrome 

definitions‡ Analyzed data
International
code system Registry

Absenteeism 2002–2003 80§ Reported sick 
employees; no further 
medical information

Sick leave reports of 
employees

– Statistics 
Netherlands (CBS),

www.cbs.nl
General 
practice
consultations

2001–2004 1–2 Symptoms and 
diagnoses indicating 
respiratory infectious 

disease

Symptoms and 
diagnoses recorded in 
practice or telephone 
consultations and in 

home visits 

ICPC Netherlands
Information Network 
of General Practice 

(LINH), 
www.nivel.nl/linh

Pharmacy 
dispensations

2001–2003 85 Prescribed medications 
indicative for respiratory 

infectious disease

Prescription
medications dispensed 
in Dutch pharmacies, 

coded according to the 
WHO ATC 

classification

ATC Foundation for 
Pharmaceutical

Statistics,
http://www.sfk.nl

Hospitalization 1999–2004 99 General respiratory 
symptoms/diagnoses; 

specific respiratory 
biologic agent diagnoses 

Discharge and 
secondary diagnoses, 
date of hospitalization

ICD-9-CM Dutch National 
Medical Register 

(LMR)

Laboratory 
submissions¶

2001–2004
(1999–2000 

excluded due 
to unstable 
coverage)

16 All submissions for 
microbiologic diagnostic 

tests on respiratory 
materials; all 

submissions for serologic 
testing on known specific 
respiratory pathogens; all 

submissions for 
Legionella or 

Streptococcus
pneumoniae antigen 

tests on urine 

Laboratory submission 
requests for diagnostic 

testing

– National Infectious 
Diseases

Information System 
(ISIS) (13)

Mortality 1999–2004 100 General respiratory 
symptoms/diagnoses; 

specific respiratory 
biologic agent diagnoses

Date of death, primary 
cause of death, 

complicating factors, 
other additional causes 

of death

ICD-10 CBS

*ICPC, International Classification of Primary Care; WHO, World Health Organization; ATC, Anatomic Therapeutic Chemical Classification System; ICD-
9-CM, International Classification of Diseases, 9th revision, Clinical Modification; ICD-10, International Classification of Diseases, 10th revision.  
†Percentage of total population, 16.3 million. 
‡For detailed syndrome definitions and codes, see online Technical Appendix, available from www.cdc.gov/EID/content/14/6/917-Techapp.pdf. 
§Percentage of working population, 8 million. 
¶Diagnostic test requests with both negative and positive results. 
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respiratory disease–related counts of Streptococcus pneu-
moniae (data in 2003–2004 were interpolated for 2 labora-
tories during short periods of missing data; total coverage 
24%); and 3) national mandatory noti cations of pertus-
sis. The networks for respiratory pathogen counts are other 
networks than the earlier described laboratory submissions 
network for syndrome data.

Data Analysis and Descriptive Statistics
Data were aggregated by week and analyzed by using 

SAS version 9.1 (SAS Institute Inc., Cary, NC, USA). For 
the GP, pharmacy, and laboratory submissions registries, 
we expressed the respiratory counts as a percentage of to-
tal weekly counts to adjust for the in uence of holidays 
and, for laboratory submissions, changes in the number of 
included laboratories over time. By looking at the graphs, 
we explored the relationship between the time-series of re-
spiratory pathogens and syndromes and calculated Pearson 
correlation coef cients.

Linear Regression Models
To investigate whether the respiratory syndromes 

re ect patterns in respiratory pathogen counts, we con-
structed multiple linear regression models. These models 
estimated respiratory syndrome levels at a certain time 
with, as explanatory variables, the lagged (range of –5 to 
+5 weeks) pathogen counts as explanatory variables. We 
used linear regression of the untransformed syndrome to 
estimate the additive contributions of individual pathogens 
to the total estimated syndrome. We assumed a constant 
syndrome level attributable to factors other than the respi-
ratory pathogens and constant scaling factors for each of 
the lagged pathogens. A forward stepwise regression ap-
proach was used, each step selecting the lagged pathogen 
that contributed most to Akaike’s information criterion of 
model  t (15). Each pathogen entered the model only once 
and only if it contributed signi cantly (p<0.05). Negative 
associations (e.g., between enteroviruses, which peak in 
summer, vs. respiratory syndromes, which peak in winter) 
were excluded to avoid noncausal effects.

To discriminate between primary and secondary in-
fections by S. pneumoniae (as a complication of respira-
tory virus infection) (16–19), we used the residuals from 
regressing S. pneumoniae counts on other pathogens as the 
variable for S. pneumoniae (instead of its counts) for all the 
earlier described models for respiratory syndromes.

We checked for autocorrelation in the residuals of the 
models with hierarchical time-series models (using SPLUS 
6.2) (20,21). We calculated R2 values to estimate to what 
extent respiratory pathogen counts explain variations in 
syndromes. To explore to what extent seasonal variation 
could be a confounder, we also calculated R2 values of the 
models after adding seasonal variables (sine and cosine 

terms) and R2 values for seasonal terms alone. We also in-
vestigated the pathogen-speci c effects in the models, by 
calculating the standardized parameter estimates before 
and after adding seasonal terms.

The models were used to estimate the expected syn-
drome level with 95% upper con dence limits (UCLs). We 
considered distinct syndrome elevations that exceeded the 
UCLs, as unexplained by the models (for model details, see 
online Technical Appendix).

Timeliness
We investigated the timeliness of the registry syn-

dromes in 2 ways: 1) as a measure of differences in timeli-
ness between registries, we evaluated the time delays of the 
syndromes relative to each other by calculating for each of 
the syndromes the time lag that maximized Pearson corre-
lation coef cient with the hospital registry (as a reference); 
2) by estimating the time delays between each of the syn-
dromes and the lagged pathogens included in its regression 
model.

Results

Data Exploration and Descriptive Statistics
Respiratory syndrome time series were plotted for all 

registries (Figure 1). The Christmas and New Year holi-
days coincided with peaks and dips in the pharmacy and 
absenteeism syndromes (not shown). Because these results 
were probably artifacts, we smoothed these yearly peaks 
and dips and censored them in the analyses performed on 
the absenteeism registry, in which they had a strong in u-
ence on outcomes. For all registries, the respiratory syn-
dromes demonstrated higher levels of activity in winter, 
which overlapped or coincided roughly with the seasonal 
peaks of in uenza A, in uenza B, RSV, and (albeit less 
pronounced) S. pneumoniae laboratory counts (Figure 1). 
Infections with parain uenza virus, M. pneumoniae, ad-
enovirus, and rhinovirus were detected slightly more fre-
quently during winter (data not shown). Bordetella pertus-
sis and enterovirus showed seasonal peaks only in summer 
(data not shown).

The seasonal peaks in laboratory counts of in uenza 
A, in uenza B, and RSV corresponded with peaks in the 
GP, pharmacy, and hospital syndromes. Other syndromes 
did have less obvious correspondence. Each year, around 
October, the respiratory syndrome showed a peak in the 
GP (2001–2004), pharmacy (2001–2003), and absentee-
ism (2002–2003) registries (Figure 1, panels A–C) that was 
observed neither for the other registries nor in any of the 
laboratory pathogens.

We calculated Pearson correlation coef cients between 
the different unlagged time series of respiratory pathogens 
and syndromes (Table 2). Syndrome time series in all reg-
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istries correlated strongly with S. pneumoniae (unadjusted 
total counts). The hospital, GP, pharmacy, and laboratory 
submissions data strongly correlated with RSV and in u-
enza A counts (Table 2). Mortality data correlated strongly 
with in uenza A (r = 0.65) and in uenza B (r = 0.50) infec-
tions. The highest correlations between pathogen time se-
ries were between S. pneumoniae and the other pathogens 
(up to 0.51 with in uenza A, Table 3).

Linear Regression Models
Table 4 presents, for each registry, the time lag (in 

weeks) that maximized the model  t of regressing syndrome 

on pathogens. For the GP, hospital, mortality, and pharma-
cy data, the respiratory pathogens explained the syndrome 
variation very well (78%–86%). Variations in the absentee-
ism syndrome could be explained for 68% by variations in 
the pathogen counts. Although the laboratory submissions 
syndrome had the lowest explained variance, still 61% of 
the variations in this syndrome were explained by variations 
in pathogen counts. Hierarchical time-series models did not 
show signi cant autocorrelation in the residuals of the mod-
els with pathogen counts as explanatory variables (20,21).

When seasonal terms were added to the model, the 
variations in the mortality syndrome were just as well ex-
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Figure 1. Respiratory syndrome time series and laboratory pathogen counts in the Netherlands. Respiratory syndromes were defi ned 
for the 6 registries defi ned in Table 1: A) absenteeism, B) general practice (GP) consultations, C) pharmacy, D) laboratory submissions, 
E) hospitalizations, and F) mortality counts. Pathogens plotted were respiratory syncytial virus (RSV), infl uenza A, infl uenza B, and 
Streptococcus pneumoniae [1999–2004 or part of this period, panels A–C]. Recurrent unexplained syndrome elevations in October are 
circled. Pathogen counts are daily counts of pathogens found in laboratory survellience.
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istries correlated strongly with S. pneumoniae (unadjusted 
total counts). The hospital, GP, pharmacy, and laboratory 
submissions data strongly correlated with RSV and in u-
enza A counts (Table 2). Mortality data correlated strongly 
with in uenza A (r = 0.65) and in uenza B (r = 0.50) infec-
tions. The highest correlations between pathogen time se-
ries were between S. pneumoniae and the other pathogens 
(up to 0.51 with in uenza A, Table 3).

Linear Regression Models
Table 4 presents, for each registry, the time lag (in 

weeks) that maximized the model  t of regressing syndrome 

on pathogens. For the GP, hospital, mortality, and pharma-
cy data, the respiratory pathogens explained the syndrome 
variation very well (78%–86%). Variations in the absentee-
ism syndrome could be explained for 68% by variations in 
the pathogen counts. Although the laboratory submissions 
syndrome had the lowest explained variance, still 61% of 
the variations in this syndrome were explained by variations 
in pathogen counts. Hierarchical time-series models did not 
show signi cant autocorrelation in the residuals of the mod-
els with pathogen counts as explanatory variables (20,21).

When seasonal terms were added to the model, the 
variations in the mortality syndrome were just as well ex-
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Figure 1. Respiratory syndrome time series and laboratory pathogen counts in the Netherlands. Respiratory syndromes were defi ned 
for the 6 registries defi ned in Table 1: A) absenteeism, B) general practice (GP) consultations, C) pharmacy, D) laboratory submissions, 
E) hospitalizations, and F) mortality counts. Pathogens plotted were respiratory syncytial virus (RSV), infl uenza A, infl uenza B, and 
Streptococcus pneumoniae [1999–2004 or part of this period, panels A–C]. Recurrent unexplained syndrome elevations in October are 
circled. Pathogen counts are daily counts of pathogens found in laboratory survellience.
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plained as by the model with only pathogen counts (Table 
5; R2 remains 78%), while by the model with only seasonal 
terms, the explained variance was much lower (only 52%, 
Table 5). For the hospitalizations, laboratory submissions, 
and GP data, only slightly more syndrome variation was 
explained by adding seasonal terms. With only seasonal 
terms, the explained variance for these syndromes was 
clearly lower than with only pathogens in the models 
(8%–11% lower, Table 5). However, for the absenteeism 
and, to a lesser extent, the pharmacy data, the model with 
both pathogen and seasonal terms clearly explained more 
syndrome variations (Table 5, absenteeism 68% vs. 80%; 
pharmacy 80% vs. 87%). Furthermore, for the absenteeism 
data, the model with only seasonal terms had an even high-
er R2 than the model with only pathogens, whereas for the 
pharmacy data, the R2 with only seasonal terms was only 
slightly lower (3%, Table 5).

Table 6 shows that for mortality, hospitalizations, 
laboratory submissions, and GP data, the pathogens with 
the highest effect clearly were RSV, in uenza A, and in-
 uenza B, with no or only modest decline in standardized 
parameter estimates after adding seasonal terms. For the 
GP and hospital data, some pathogens became insigni -

cant after seasonal terms were added (GP: rhinovirus and 
adenovirus; hospital: parain uenza virus). For the phar-
macy data, half of all pathogen variables became insig-
ni cant after seasonal terms were added, whereas for the 
absenteeism data, almost all pathogens became insigni -
cant (Table 6).

Several syndrome observations exceeded the 95% 
UCLs of the models (0–10/registry/year), which indi-
cates that those syndrome observations deviated strongly 
from model predictions. The recurrent elevation in Octo-
ber of the absenteeism, GP, and pharmacy syndrome sev-
eral times exceeded the UCLs (October 2001: pharmacy 
and GP; 2002: absenteeism; 2003: GP, absenteeism; not 
shown), which indicated that the model could not explain 
these elevations.

Timeliness
In Figure 2, for each registry, the difference in timeli-

ness with the hospital registry is indicated by the lag that 
maximizes R2. The absenteeism syndrome (green line) pre-
ceded the hospital syndrome by 1 week, followed by the 
GP-based and prescription-based syndromes at +1 week 
and the syndrome based on mortality and laboratory sub-
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Table 2. Pearson correlation coefficients between time series of syndromes and laboratory pathogen counts, the Netherlands, 1999–
2004*†

Pathogen Hospital GP Mortality Pharmacy
Laboratory 

submissions Absenteeism
RSV 0.74 0.67 0.41 0.58 0.53 0.47
Influenza A 0.57 0.61 0.65 0.60 0.47 0.35
Influenza B 0.31 0.39 0.50 0.42 0.34 0.33
Streptococcus pneumoniae 0.73 0.71 0.56 0.75 0.58 0.69
Rhinovirus 0.33 0.34 0.33 0.33 NS 0.35
Parainfluenza 0.20 NS NS NS 0.25 NS
Adenovirus 0.37 0.35 0.33 0.36 NS 0.34
Enterovirus 0.65 0.66 0.59 0.61 0.57 0.51
Mycoplasma pneumoniae 0.13 0.27 0.25 0.39 0.32 0.26
Bordetella pertussis NS NS NS NS NS NS
*GP, general practice; RSV, respiratory syncytial virus; NS, nonsignificant. Correlations >0.50 in boldface; p>0.05. 
†Unlagged.

Table 3. Pearson correlation coefficients between time series in respiratory pathogen counts, the Netherlands, 1999–2004*† 

Pathogen
S.

pneumoniae RSV
Influenza

A
Influenza

B RV PIV Adenovirus Enterovirus
Mycoplasma 
pneumoniae

Bordetella
pertussis

S. pneumoniae 1.00 0.35 0.51 0.36 NS 0.32 0.32 –0.44 0.21 0.31
RSV 1.00 0.23 NS 0.30 0.13 0.21 –0.30 0.19 NS
Influenza A 1.00 0.36 NS 0.12 0.24 –0.39 0.16 0.25
Influenza B 1.00 NS NS NS –0.30 0.25 0.21
RV 1.00 NS 0.21 NS NS NS
PIV 1.00 NS –0.19 NS NS
Adenovirus 1.00 –0.21 NS 0.14
Enterovirus 1.00 0.15 0.21
M. pneumoniae 1.00 NS
B. pertussis 1.00
*S. pneumoniae, Streptococcus pneumoniae; RSV, respiratory syncytial virus; RV, rhinovirus; PIV, parainfluenza virus; NS, nonsignificant. Correlations 
>0.50 in boldface; p value >0.05. 
†Unlagged.

RESEARCH

mission data at +2 weeks after the hospital syndrome (pro-
jected on x-axis, Figure 2).

The differences in timeliness between the syndromes 
and the pathogen surveillance data were re ected by the 
regression models relating the syndromes to the (positive 
or negative) lagged pathogens (Table 4). In uenza A and 
in uenza B had lags of 0–5 weeks, which suggests that 
the registry-syndromes were 0–5 weeks ahead of labora-
tory counts for these infections. Fluctuations in the time se-
ries of respiratory hospitalizations and the laboratory RSV 
counts seemed to appear in the same week (lag = 0). All 
other syndromes appeared to be 1–3 weeks later than the 
RSV counts, except absenteeism, which is 2 weeks earlier. 
Again, absenteeism seemed to be the earliest syndrome 
(2–5 weeks earlier than RSV, in uenza A, and in uenza 
B), followed by the hospital syndrome (0–2 weeks earlier), 
the GP-based and prescription-based syndromes (2 weeks 
earlier until 1 week later), the laboratory submission syn-
drome (1 week earlier until 2 weeks later), and the mortal-
ity syndrome (0–3 weeks later than RSV, in uenza A, and 
in uenza B).

Discussion
We explored the potential of 6 Dutch medical reg-

istries for respiratory syndromic surveillance. Although 
several other studies also evaluated routine (medical) data 
for syndromic surveillance purposes (22–27), most evalu-
ated only 1 syndrome and correlated this only to in uenza 
data. An exception is Bourgeois et al. (24), who validated 
a respiratory syndrome in relation to diagnoses of several 
respiratory pathogens in a pediatric population, and Cooper 
et al. (27), who estimated the contribution of speci c re-
spiratory pathogens to variations in respiratory syndromes. 
Both studies concluded that RSV and in uenza explain 
most of the variations in these syndromes, consistent with 
our  ndings.

Our study shows that all syndrome data described in 
this study showed higher levels in winter, which corre-
sponded to the seasonal patterns of RSV, S. pneumoniae, 
and in uenza A and B viruses. Linear regression showed 

that the syndromes can be explained by lagged laboratory 
counts for respiratory pathogens (up to 86%, highest ef-
fect of in uenza A, in uenza B, and RSV), which indi-
cates their potential usefulness for syndromic surveillance. 
Timeliness differed, with up to 5 weeks potential gain in 
early warning by syndromic data, compared with routine 
laboratory surveillance data.

A limitation of our study is the short duration of our 
time series, especially for absenteeism and pharmacy data. 
Therefore, whether our observed associations between syn-
dromes and pathogen counts can be generalized remains 
unclear.

We relied on laboratory pathogen counts as a proxy 
for their prevalence and the illness they cause. Changes in 
test volume over time would result in misclassi cation bias 
(as noncausative pathogens will be detected as well). How-
ever, such changes are presumably dwarfed by changes 
during “truly” epidemic elevations of common respiratory 
pathogens. Additionally, laboratory diagnostics are mostly 
performed on hospitalized patients, and thus results inad-
equately re ect activity of pathogens that predominantly 
cause mild illness.

By adding seasonal terms, we observed that for the 
absenteeism and, to a lesser extent, the pharmacy registry, 
the associations between the respiratory syndromes and the 
pathogen counts might be biased to some extent. For the 
GP, hospital, laboratory submission, and mortality data, 
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Table 4. All respiratory pathogen counts included as explanatory variables in the regression models, the Netherlands, 1999–2004*†

Syndrome data RSV
Influenza

A
Influenza

B
S. pneumoniae

(residual) RV PIV Adenovirus Enterovirus
Mycoplasma 
pneumoniae

Bordetella
pertussis

Absenteeism 2 5 4 2 4 5 – – –
GP –1 1 2 –1 1 2 2 – –3
Pharmacy –1 0 2 0 2 5 2 – 5 3
Hospitalization 0 2 1 – –2 3 – – –
Laboratory 
submissions

–2 0 1 –3 – 2 – 5

Mortality 3 1 0 – – – – – –
*S. pneumoniae, Streptococcus pneumoniae; RSV, respiratory syncytial virus; RV, rhinovirus; PIV, parainfluenza virus; GP, general practice; –, pathogen 
not included in model. 
†The lag time (in weeks) is indicated, that showed optimal fit between syndrome time-series and lagged pathogen counts included in the linear regression 
model; e.g., according to the model, the trend in hospitalizations precedes the influenza A laboratory counts by 2 weeks. 

Table 5. Syndrome variation that can be explained by either the 
pathogen counts, seasonal terms, or pathogen counts and 
seasonal terms together* 

Syndrome data 
Pathogens,

%
Pathogens and 

seasonal terms, % 
Seasonal
terms, % 

Absenteeism 68 80 79
GP 86 89 75
Pharmacy 80 87 77
Hospitalization 84 88 75
Laboratory 
submissions

61 63 53

Mortality 78 78 52
*Estimated by 3 different R2 values for each registry: 1) for the syndromes 
explained by pathogen counts alone; 2) after adding seasonal terms to the 
pathogen model; and 3) for the syndromes explained by seasonal terms 
alone (sine and cosine parameters). GP, general practice. 
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season is probably not an important confounder for the as-
sociation between the syndromes and pathogens, because 
including seasonal terms in the models resulted in the same 
or only slightly higher explained syndrome variance (mea-
sured by R2). Models with seasonal terms alone mostly had 
lower explained variance than the pathogen models. For the 
GP and hospital data, some pathogens became insigni cant 
after seasonal terms were added (Table 6) but not those 
pathogens with the largest effect estimates (RSV, in uenza 
A and B). Therefore, we are con dent in concluding that 
the GP, hospital, laboratory submission, and mortality syn-
dromes do re ect pathogen activity suf ciently for use in 
syndromic surveillance.

The higher R2 value of the absenteeism model with 
seasonal terms alone suggests seasonality of absenteeism 
caused by several nonrespiratory conditions (28,29). To 
some extent, this also applies to the pharmacy syndrome, 
which includes medications that are not speci c for respi-
ratory infections (e.g., antimicrobial drugs). This could be 
validated in future studies by linking medications to illness. 
However, for both the absenteeism and pharmacy syn-
dromes, the variation explained by seasonal terms is prob-
ably overestimated to some extent because data for only 
2 and 3 years were used. Consequently, these time series 
contained less information on variation between different 
years than for the other registries, which bene ts  tting of 
a model with several sine and cosine terms.

To our knowledge, laboratory submission data (test 
requests) have not been evaluated before as a data source 
for syndromic surveillance. The modest explained variance 
for the laboratory submissions syndrome could possibly 
re ect the limited use in our country of laboratory testing 
algorithms, which leads to substantial differences in diag-
nostic regimes for patients with similar clinical symptoms. 
In addition, occasional extra alertness by clinicians can 

make these data unreliable for surveillance. For instance, 
an unusual peak was observed in the laboratory submis-
sions syndrome in 1999, after the of cial announcement of 
an outbreak of Legionnaires’ disease (30).

An unexpected increase was also observed in the ab-
senteeism, GP, and pharmacy syndromes, which occurred 
consistently each year around October (2001–2004). These 
peaks preceded the syndrome peaks concurring with peaks 
in in uenza A, in uenza B, and RSV counts and may be 
caused by rhinovirus activity—and asthma exacerbations 
caused by rhinovirus—which usually rises in the fall (31–
33). Rhinovirus might go undetected because GP physi-
cians rarely ask for diagnostics if they suspect a nonbacte-
rial cause for relatively mild respiratory disease. Although 
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Figure 2. The (maximum) R2 by the lagged syndromes with the 
hospital syndrome as a reference. Aggregated by week, univariate 
Pearson correlation coeffi cients were calculated of the hospital 
syndrome and each of the other syndromes. Note that the Pearson 
correlation coeffi cients are calculated over different periods for the 
different registries because not all registries cover the same period 
(Table 1). Measured by the syndrome lag with the maximized R2,
the timeliness differed between the registries in the following order: 
absenteeism, hospital, pharmacy/general practice (GP), mortality/
laboratory submissions (as projected on the x-axis).

Table 6. Standardized parameter estimates ( s) for all respiratory pathogen counts included as explanatory variables in the regression 
models, before and after adding seasonal terms to the models*†  

Syndrome data RSV
Influenza

A
Influenza

B

S.
pneumoniae

(residual) RV PIV Adenovirus Enterovirus
Mycoplasma 
pneumoniae

Bordetella
pertussis

Absenteeism 0.31/
(NS)

0.27/
(NS)

0.33/
(NS)

0.28/
0.12

0.19/
(NS)

0.20/
(NS)

– _ _ _

GP 0.60/
0.51

0.32/
0.32

0.20/
0.16

0.13/
0.10

0.07/
(NS)

0.14/
0.08

0.07/
(NS)

_ 0.06/
0.05

_

Pharmacy 0.51/
0.54

0.27/
0.22

0.24/
(NS)

0.25/
0.11

0.16/
0.08

0.16/
(NS)

0.08/
(NS)

_ 0.12/
(NS)

0.11/
0.11

Hospitalization 0.60/
0.44

0.36/
0.34

0.21/
0.12

_ 0.13/
0.05

0.09/
(NS)

_ _ _ _

Laboratory 
submissions

0.49/
0.47

0.19/
0.20

0.22/
0.18

0.28/
0.22

_ 0.17/
0.08

_ _ 0.10/
0.10

_

Mortality 0.40/
0.36

0.52/
0.51

0.24/
0.24

_ _ _ _ _ _ _

*S. pneumoniae, Streptococcus pneumoniae; RSV, respiratory syncytial virus; RV, rhinovirus; PIV, parainfluenza virus; GP, general practice; –, pathogen 
not included in model; NS, the pathogen variable is no longer significant after seasonal terms are added. 
†For example, 0.60/0.40 for RSV indicates a standardized  of 0.60 for RSV in the model with only pathogen variables and a  of 0.40 in the same model 
after adding seasonal terms. 
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speci c asthma diagnoses were excluded from the respira-
tory syndrome de nitions, exacerbations of asthma might 
affect other respiratory categories in the GP or pharmacy 
syndrome. This observation illustrates that additional diag-
nostics are needed for identifying the causes of unexplained 
respiratory disease elevations. Several novel respiratory 
pathogens for which diagnostics are not yet widely avail-
able have been discovered in recent years, underlining that 
it is quite possible that “hidden” epidemics occur (34–36). 
The extra October peak and several other syndrome eleva-
tions above the 95% UCLs in our study may well re ect 
such hidden epidemics. The fact that these occur is sup-
ported by studies showing that many individual syndrome 
cases cannot be linked to known pathogens. For example, 
Cooper et al. (37), who investigated syndromic signals by 
using patient self-sampling (at home), could only obtain di-
agnostic results for 22% of these cases.

For early warning surveillance, timeliness is crucial. 
Absenteeism data seem to have the best timeliness, but 
their lack of medical detail complicates interpretation. Un-
expectedly, the hospital data re ect respiratory pathogen 
activity earlier than the GP data. Although in the Nether-
lands patients are encouraged to consult their GP before 
going to the hospital, elderly persons, for whom respiratory 
infections are more likely to cause severe illness, may often 
go to a hospital directly. Therefore, hospital data may prove 
to be an earlier marker for respiratory disease than GP data, 
but this possibility needs further exploration.

An important concern when using syndromic surveil-
lance is that it may generate nonspeci c alerts, which, if 
they happen regularly, would lead to lack of con dence in 
a syndrome-based surveillance system. Here, we see a clear 
advantage of using data from multiple registries in parallel 
so that signal detection can be made more speci c by focus-
ing on signals that occur concurrently in >1 data source. To 
illustrate this we de ned every exceeding of the UCLs of the 
regression models as a “signal,” i.e., a syndrome elevation 
unexplained by known pathogen activity and therefore pos-
sibly re ecting activity of underdiagnosed or emerging in-
fectious disease. Over 2002–2003 (the period that all 6 regis-
tries were in the study), only 5 “concurrent” signals occurred 
versus 34 “single” signals over all registries. We did not 
evaluate whether the syndromes indeed detect outbreaks of 
infectious diseases earlier than clinical or laboratory patho-
gen surveillance. Such an evaluation is often performed by 
testing the ability to detect historical natural outbreaks or 
simulated outbreaks (10,38). However, historical natural 
outbreaks are rare and simulated outbreaks may be unrealis-
tic. Nevertheless, further research into the outbreak detection 
performance of these syndromes would be worthwhile.

The results of this study suggest that it might be best to 
combine syndromic data and pathogen counts in a prospec-
tive surveillance system. Such surveillance can identify 

distinct syndrome elevations that cannot be explained by 
respiratory pathogen activity as indicated by routine labo-
ratory pathogen surveillance.

Conclusion
Overall, the GP, hospital, mortality and, to a lesser 

extent, laboratory submission syndromes re ect week-to-
week  uctuations in the time-series of respiratory patho-
gens as detected in the laboratory. Registries monitoring 
trends of these syndromes will therefore most likely re ect 
illness caused by emerging or underdiagnosed respiratory 
pathogens as well and therefore are suited for syndromic 
surveillance. Further research would be required to assess 
to what extent absenteeism and pharmacy data re ect respi-
ratory illness. Investigating the actual outbreak detection 
performance of the syndromes in this study would also be 
worthwhile.

Data from the registries in this study are not yet real-
time available, although given modern information tech-
nology, this availability is clearly feasible. Our study can 
help prioritize which type of healthcare data to include in 
future syndromic real-time surveillance systems.
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Detection of Excess Influenza Severity: Associating Respiratory
Hospitalization and Mortality Data With Reports of Influenza-Like
Illness by Primary Care Physicians
Cees C. van den Wijngaard, MSc, Liselotte van Asten, PhD, Adam Meijer, PhD, Wilfrid van Pelt, PhD, Nico J.D. Nagelkerke, PhD, Gé A. Donker, PhD,
Marianne A.B. van der Sande, PhD, and Marion P.G. Koopmans, DVM, PhD

Syndromic surveillance is increasingly used to
monitor symptoms or clinical diagnoses such as
shortness of breath or pneumonia as indicators of
infectious disease. The primary objective of many
syndromic surveillance systems is the detection
of unexpected disease increases such as those that
occur as a result of bioterrorism attacks or out-
breaks of emerging diseases such as severe acute
respiratory syndrome (SARS). However, the sig-
nals generated by such syndromic surveillance
also reflect influenza activity.1–4

Worldwide, influenza continues to result in
serious morbidity and mortality.5,6 The recur-
rence of influenza epidemics is predominantly
caused by both the antigenic drift of influenza
viruses and changes in the dominant virus types
or subtypes. Antigenic drift occurs during the
replication process of influenza viruses when
mutations in surface proteins lead to declines in
the level of immunity acquired through natural
infection or vaccination.7 In addition, the annual
variations in dominant virus types or subtypes,
such as A(H1), A(H3), and B, can lead to dif-
ferences in influenza-related morbidity and
mortality. For example, in recent decades levels
of morbidity and mortality seem to have been
lower in the influenza A(H1) and B epidemic
seasons than in the A(H3) seasons.8,9

In the Netherlands, as in many countries,
surveillance of influenza is conducted by a net-
work of sentinel general practitioners. Influenza-
like illness (ILI) consultations are reported
weekly, and antigenic properties of isolated
viruses are analyzed to determine their effects
on annual ILI fluctuations.10,11 Such sentinel
surveillance is considered adequate for moni-
toring the onset and magnitude of annual in-
fluenza epidemics. However, it is not sufficient
for monitoring the incidence of severe influenza
infections leading to hospitalization or death.

Although the relationship between the viru-
lence and transmission capacity of influenza

viruses is still incompletely understood,7 varia-
tions in virulence may result in disproportionate
increases in severe illness relative to increases in
the number of patients with ILI consulting their
general practitioners. Such increases might be
captured by monitoring temporal changes in the
association of ILI data obtained from general
practitioners (hereafter GP–ILI data) with hospi-
talization and mortality surveillance data. Such
monitoring is not a part of current global in-
fluenza monitoring activities, although in some
countries ILI data in addition to hospitalization
and mortality data are included in influenza
surveillance.12,13

We explored the potential of this monitoring
strategy to detect excesses in influenza infection
severity by investigating shifts in the annual
association of respiratory hospitalizations and
mortality with GP–ILI incidence data in the
Netherlands between 1999 and 2005. In

addition, we evaluated whether such shifts were
associated with reported circulation of influenza
virus drift variants, mismatches with vaccine
strains, or changes in dominant circulating virus
types or subtypes.

METHODS

We obtained hospital and mortality data
from the Dutch national medical register (99%
coverage of discharge and secondary diagnoses
by date of hospitalization) and the Dutch
causes of death registry (100% coverage of
primary causes of death, as well as complicating
causes and other additional causes of death,
by date of death). We formulated respiratory
hospitalization and mortality syndrome defini-
tions guided by the syndrome definitions of the
Centers for Disease Control and Prevention,
as coded in the International Classification of

Objectives. We explored whether excesses in influenza severity can be

detected by combining respiratory syndromic hospital and mortality data with

data on influenza-like illness (ILI) cases obtained from general practitioners.

Methods. To identify excesses in the severity of influenza infections in the

population of the Netherlands between 1999 and 2005, we looked for increases in

influenza-associated hospitalizations and mortality that were disproportionate to

the number of ILI cases reported by general practitioners. We used generalized

estimating equation regression models to associate syndromic hospital and

mortality data with ILI surveillance data obtained from general practitioners. Virus

isolation and antigenic characterization data were used to interpret the results.

Results. Disproportionate increases in hospitalizations and mortality (relative

to ILI cases reported by general practitioners) were identified in 2003/04 during

the A/Fujian/411/02 (H3N2) drift variant epidemic.

Conclusions. Combined surveillance of respiratory hospitalizations and mor-

tality and ILI data obtained from general practitioners can capture increases in

severe influenza-associated illness that are disproportionate to influenza in-

cidence rates. Therefore, this novel approach should complement traditional

seasonal and pandemic influenza surveillance in efforts to detect increases in

influenza case fatality rates and percentages of patients hospitalized. (Am J
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Diseases, Ninth Revision, Clinical Modification
(ICD-9-CM; see Appendix A, available as an
online supplement to this article at http://
www.ajph.org).14 It has been demonstrated that
these respiratory hospitalization and mortality
syndrome data reflect respiratory pathogen ac-
tivity as measured via laboratory counts.4

We collected ILI data from a sentinel net-
work of general practitioners.10 Data on in-
fluenza viruses detected in the Netherlands
between1999 and 2005 were derived from the
Dutch influenza surveillance consortium (com-
prising the National Influenza Centre and the
Netherlands Institute for Health Services Re-
search).11,15

We used weekly counts of various respira-
tory pathogens to adjust for the effects on
respiratory hospitalizations and mortality of
pathogen activity other than influenza. We
collected data on respiratory syncytial virus
(RSV), rhinovirus, Mycoplasma pneumoniae,
parainfluenza virus, enterovirus, and adenovi-
rus pathogen counts from a routine laboratory
surveillance system (the Weekly Sentinel Sur-
veillance System of the Dutch Working Group
on Clinical Virology, which covers 38%–73%
of the population of the Netherlands).16 We
also used national mandatory notifications to
obtain weekly pertussis counts.

Data Analysis

With the exception of laboratory pathogen
counts (for which data on age were not avail-
able), we aggregated data by week and age
category (0–4 years, 5–19 years, 20–64 years,
65 years or older). In our analyses, we ex-
cluded respiratory mortality among those in
the 0- to 4-year and 5- to 19-year age groups
because of the sporadic counts in these groups.
SAS version 9.1 (SAS Institute Inc, Cary, NC)
was used in conducting the analyses.

For the general practitioner, hospital, and
mortality data, we calculated incidence rates
instead of counts to quantify risk differences
between age categories and to correct for
changes in the age distribution of the popula-
tion and (for the general practitioner sentinel
data) changing registry coverage over time.
After plotting time series of GP–ILI, respiratory
hospitalization, and mortality incidence data,
we looked for increases in hospitalizations and
mortality that seemed disproportionate to in-
creases in ILI cases as a measure of severity of

illness. We also examined time series of re-
spiratory pathogens other than influenza to
assess whether elevations in respiratory hospi-
talizations or mortality might be associated
with other pathogen activity (measured via
routine laboratory surveillance).

We used additive generalized estimating
equation (GEE)17 models with a Poisson error
distribution to detect elevations in respiratory
hospitalizations and mortality that were dispro-
portionate to seasonal rises in ILI incidence in the
general practitioner sentinel data. We estimated
hospitalization and mortality time series, strati-
fied by age, according to lagged ILI incidence.
We then used the 95% upper limits of the
models (details on the model variables are pro-
vided in Appendix B, available as an online
supplement to this article at http://www.ajph.
org) to determine distinct episodes in time in
which hospitalizations and mortality increases
were disproportionate to average modeled asso-
ciations with ILI incidence rates.

To adjust for the activity of respiratory
pathogens other than influenza, we considered
RSV, rhinovirus, parainfluenza virus, M pneu-
moniae, adenovirus enterovirus, and pertussis
counts for inclusion in the models as well. We
also assumed a constant basic syndrome level
attributable to factors other than respiratory
pathogen activity. In the summer months,
however, as the basic syndrome level appeared
to be lower with respect to hospitalizations
(possibly as a result of fewer planned hospital-
izations during that period), we used a lower
basic syndrome level (by including a dummy
variable for ‘‘summer’’). The regression model
coefficients for each of the lagged pathogens
and for the GP–ILI incidence data were as-
sumed to be constant in time.

We initially built a generalized linear model
with a Poisson error distribution and an iden-
tity link. To do so we used a forward stepwise
regression approach, selecting the lagged ILI
incidence and lagged pathogen counts that
contributed most to the model fit (5-week lags
were used; e.g., in step 1, ILI was included with
a 1-week lag if that exhibited a better model
fit than all other pathogen–lag combinations,
assessed with Akaike’s information criterion18).
We included lagged GP–ILI incidence and the
counts for each pathogen in the model only once
and only if results were significant at the P£ .05
level.

We analyzed age-stratified hospitalization,
mortality, and GP–ILI incidence data in the
regression models. Age stratification was not
possible for pathogen counts. We excluded
negative associations for pathogen counts to
avoid spurious model fits due to biologically
implausible associations (e.g., negative associa-
tions between enterovirus, which peaks in
summer, and respiratory syndromes, which
peak in winter). Also, we added seasonal vari-
ables (sine and cosine terms)—guided by
periodograms of the model residuals, which
reflect the importance of specific cyclical pe-
riods (e.g., 26 weeks, 52 weeks) in explaining
the variance in the residuals—to correct for
seasonal variation and used GEEs to correct
the model outcomes for autocorrelation be-
tween observations.

To quantify temporal heterogeneity in asso-
ciations of GP–ILI data with data on hospitali-
zations and mortality respiratory syndromes, we
modified the models by using time-dependent
(by epidemic year, defined as July 1 through
June 30) ILI regression coefficients (instead of
a single regression coefficient for all years).
These annual ILI regression coefficients can be
seen as scaling factors for the number of
hospitalizations or deaths associated with
a one-case increase in ILI incidence per 10000
population. We plotted estimates for these
coefficients on a bar chart. The years with the
highest estimated ILI regression coefficients
were considered as those associated with the
most severe illness per ILI case. We conducted
F tests (with a null hypothesis of no differences
in associations over the study period) to de-
termine whether the coefficients differed across
the years of the study (Appendix B, available as
an online supplement to this article at http://
www.ajph.org).

Influenza Virus Isolation and Antigenic

Characterization

To assess whether disproportionate levels of
respiratory hospitalizations and mortality (rel-
ative to GP–ILI incidence rates) might be
related to the circulation of specific influenza
virus variants or subtypes, we explored weekly
reports of influenza virus subtypes A(H1),
A(H3), and B and assessed, on the basis of
antigenic characterization, which influenza
virus drift strains were present in the Nether-
lands during 1999–2005.
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We also evaluated to what extent these drift
strains were reported to match or not match
the vaccine strains for those years. Individuals
at increased risk for complications of influenza
(elderly people and those with specific comor-
bid conditions) are offered annual influenza
vaccination19 (during the study period, vaccine
coverage levels in the Netherlands were above
65% for individuals aged 65 years or older and
approximately 80% for those aged older than 75
years). Data on antigenic characteristics and the
match between vaccines and circulating viruses
were derived from annual influenza surveillance
reports.11 To assess other possible explanations
for disproportionate levels of respiratory hospi-
talizations and mortality relative to GP–ILI in-
cidence rates, we also compared the analysis
results against plotted time series of specific
morbidity patterns associated with respiratory

hospitalizations, as measured via ICD-9-coded
hospital diagnosis incidence rates.

RESULTS

Plots of GP–ILI time series and respiratory
hospitalization and mortality time series
showed approximately concurrent peaks in all
winter seasons. The highest peaks were ob-
served in 1999/00 and 2004/05 (data not
shown). The influenza epidemics in 2000/01,
2001/02, and 2002/03 were relatively mild.
When data on respiratory pathogen counts
(other than influenza) were plotted (data not
shown), RSV showed the clearest winter peaks,
concurrent with elevations in respiratory hos-
pitalizations and mortality.

Therefore, we plotted respiratory hospitali-
zations and mortality against GP–ILI incidence

rates and laboratory RSV counts stratified by
age (Figure 1). Elevations in respiratory hospi-
talizations were highest in the youngest and
oldest age groups (0–4 years and 65 years or
above), and elevations in respiratory mortality
were highest in the oldest age group. Hospi-
talizations in the 0–4-year age group corre-
sponded more with the RSV time series than
with the ILI time series (Figure 1). During the
2003/04 winter season, steep peaks in re-
spiratory hospitalizations were observed
among those aged 5 to 19 years and those 65
years or older, and (although RSV counts
peaked at the same time) these peaks seemed
disproportionately high relative to the ILI time
series during that season (Figure 1). This trend
was also observed for mortality among in-
dividuals 65 years or older (Figure 1, indicated
by ellipse).

Note. RSV= respiratory syncytial virus; ILI = influenza-like illness. No mortality time series were plotted for the 0–4-year and 5–19-year age groups because of their low numbers. RSV counts were

plotted for all age groups (because no age data were available), and the counts were scaled to fit the graph.

FIGURE 1—Respiratory hospitalizations and mortality incidences versus ILI incidence rates and RSV laboratory counts, by age group (a) 0–4

years, (b) 5–19 years, (c) 20–64 years, and (d) 65 years or older: the Netherlands, 1999–2005.
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Regression Analysis

In the models with constant ILI regression
coefficients over the entire study period,
variations in respiratory hospitalizations and
mortality among individuals 65 years or
older and variations in hospitalizations
among those aged 0 to 4 years were ex-
plained quite well by variations in ILI in-
cidence and respiratory pathogen counts.
The explained variance was lower for the
other age groups.

Periodograms of the model residuals
showed sharp peaks at 1 year along with
smaller harmonics for shorter periods. We
therefore added sine and cosine terms to the
models to adjust for seasonal trends, and we
used GEEs to correct for autocorrelation in
the residuals. These model refinements led to
only minimal changes in the ILI regression
coefficients and the explained variance of
the models; percentages of explained variance
for hospitalizations were 95% among those
aged 0 to 4 years, 47% among those aged 5 to
19 years, 68% among those aged 20 to 64
years, and 78% among those 65 years or
older. Percentages of explained variance for
mortality were 37% among those aged 20 to
64 years and 76% among those 65 years or
older.

With respect to periods of peak influenza
activity (as measured by peaks in GP–ILI
incidence concurrent with peaks in the
counts of influenza isolates), the time series
of actual hospitalizations among both those
aged 0 to 4 years (data not shown) and those
65 years or older (Figure 2) most clearly
exceeded the 95% upper limit of the models
during winter 2003/04. A subsequent (F-
test) analysis of the model in which year-
specific ILI regression coefficients were used
showed significant annual heterogeneity in
these coefficients for all age categories
(P£ .001).

Figure 3a shows the annual GP–ILI re-
gression coefficients for respiratory hospital-
izations. For example, the regression coeffi-
cient value of 3.94 for hospitalizations in the
0- to 4-year age group in 2003/04 indicates
that, for a hypothetical ILI incidence of 100
per 10000 population, the estimated respi-
ratory hospitalization incidence for that age
group is 3.94 (per 10000 population). The

annual GP–ILI regression coefficients for re-
spiratory hospitalizations were highest among
those 65 years or older and those aged 0 to 4
years. In addition, the regression coefficients
for these age groups were significantly higher
in 2003/04 than in any other study year
(P£ .001).

Figure 3 (panel b) shows that, as expected,
the mortality regression coefficient was much
higher for those 65 years or older than for
those aged 20 to 64 years. Similar to the data
for hospitalizations, the ILI regression coeffi-
cient for those 65 years or older was clearly
higher in 2003/04 than in any other study
year (P£ .03). In 2000/01, some of the esti-
mated ILI regression coefficients were below
zero, reflecting the mild influenza impact in
that season.

Influenza Virus Isolation and Antigenic

Characterization

Figure 2 presents data on influenza virus
subtypes and reported introductions of drift
variants.11,20–22 All reported influenza drift
strains mismatched to some extent with the
vaccine strains observed over the study period

with the exception of the Caledonia/20/99
(H1N1) strain in 2000/01.

Specific Hospital Diagnoses

In visually exploring respiratory hospital-
ization discharges and diagnoses (data not
shown), we focused on elevations in time that
may have been related to the excess number
of respiratory hospitalizations observed in
2003/04. The elevations in hospitalizations
involving a diagnosis of pneumococcal
pneumonia (ICD-9 code 481) or pneumonia
due to streptococcus (ICD-9 code 4823)
during peak winter influenza activity in
2003/04 and, to a lesser extent, 2002/03
were among the highest observed in the
study period (in 2002/03, as a percentage of
respiratory hospitalizations overall, pneu-
mococcal pneumonia showed the highest
elevation over the study period). The second
highest elevation in hospitalizations involv-
ing an influenza diagnosis (ICD-9 codes
4870 and 4871) was observed in 2003/04
(the highest elevation was in 1999/00; no
significant elevations were observed in
2002/03).

Note. The hospitalization incidence for individuals aged 65 years or older is plotted in a line graph with the predicted value

and the 95% upper limit (Appendix B, available as an online supplement at http://www.ajph.org). Values exceeding the

model’s upper limit are indicated by the ellipse. Below the line graphs, the counts of influenza isolates by subtype—A(H3),

A(H1), and B—are presented as bars on the x-axis, and reports of drift variants are indicated.
aBecause we used generalized estimating equation models, confidence intervals for prediction were not available.

FIGURE 2—Respiratory hospitalization incidence explained by influenza-like illness

incidence versus influenza virus subtype counts and reports of drift variants: the

Netherlands, 1999–2005.
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Note. The horizontal line in each chart gives the value of an ILI regression coefficient that is constant in time, as an indication of the average value of the ILI regression coefficients over the study

period. The 95% confidence intervals for the regression coefficients are presented in the figure as well.

FIGURE 3—Annual (July 1–June 30) estimates of the association of influenza-like illness (ILI) incidence with (a) respiratory hospitalization

incidence in all age groups and (b) respiratory mortality incidence for individuals aged 20–64 years and individuals 65 years or older: the

Netherlands, 1999–2005.
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DISCUSSION

We observed increases in severe illness due
to influenza in the Netherlands between 1999
and 2005 that were disproportionate to ILI
incidence rates. Our observations reveal the
existence of temporal heterogeneities in the
severity of influenza infections, possibly stem-
ming from variations in the virulence of circu-
lating influenza viruses. Several studies have
shown that syndromic data on general respi-
ratory symptoms and clinical diagnoses can be
useful in influenza surveillance.2,3,23–25 We
combined respiratory syndrome data on hospi-
talizations and mortality with traditional ILI
surveillance data obtained from general practi-
tioners to determine year-to-year differences in
the number of respiratory hospitalizations and
deaths in proportion to the number of ILI cases.

We linked our observations to virological
changes by visually exploring time series of
influenza subtype counts and reported anti-
genic information about influenza virus strains.
Five drift variants were reported in the
period under study—2 A(H3) variants, 1 A(H1)
variant, and 2 B variants (Figure 2)—but only
in 2003/04, in the case of A/Fujian/411/
02(H3N2),20 did this reporting of a drift variant
concur with disproportionate levels of hospitali-
zations and mortality.

Although at first glance these results seem to
suggest that it is difficult to predict clinical
effects from virological data, a more thorough
look at our virological findings explains the
absence of excess effects in years other than
2003/04. The relatively low hospitalization
and mortality levels in comparison with ILI
incidence rates in 2000/01 and 2001/02 can
be explained by the relative lack of fitness of
the A/New Caledonia/20/99(H1N1) and B/
Victoria/2/87 variants (respectively), as mor-
bidity and mortality levels tend to be lower in
seasons with predominantly A(H1)21 or B22

strains than in A(H3) seasons.8,9

In addition, the A/New Caledonia/20/
99(H1N1) drift variant reported during 2000/
01 had emerged in 1999/00, and the vaccine
for the 2000/01 season contained this strain
and probably provided optimal protection
against this drift variant, thereby reducing
severe illness in elderly people who had been
vaccinated.21 In 2004/05, influenza A(H3) and
influenza B drift strains were reported,11but their

impact was only moderate. During this season,
the antigenic distance of the dominant A/Cal-
ifornia/7/04-like(H3N2) drift variant virus to-
ward the influenza A(H3N2) virus in 2003/04
(A/Fujian/411/02-like) was relatively small.11

This was not the case for A/Fujian/411/02-
like(H3N2) viruses in 2003/04, which were
quite distinct from preceding A(H3N2) vi-
ruses,11 thereby representing a likely explanation
for the observed excess hospitalizations and
mortality in that flu season. The high influenza
impact among young children and the elderly,
relative to the limited size of the 2003/04
epidemic measured according to GP-ILI data,
seems to be consistent with the high hospitaliza-
tion rates during the 2003 influenza season in
New Zealand in combination with the limited
size of the epidemic also according to GP-ILI
data.26 There A/Fujian/411/02(H3N2) was the
dominant subtype as well.

Some other European countries reported
dominant activity or more severe outbreaks
of A/Fujian/411/02(H3N2) in 2002/03, but
there was great variation across Europe in
circulating strains during that winter.27,28 In the
Netherlands, A/Fujian/411/02(H3N2) strains
were also circulating in that period, but they were
isolated only sporadically; 5 isolates were ob-
served, accounting for 4% of A(H3N2) isolates
overall.29

The introduction of new influenza drift vari-
ants and shifts in influenza subtypes are not the
only possible explanations for the observed
differences in influenza impact. Other viral
factors (e.g., viral replication capacity, virulence,
viral transmissibility) and climatic factors (e.g.,
temperature and relative humidity) may likewise
influence the impact of seasonal influenza on
morbidity and mortality. For instance, studies
have suggested that the antigenic drift of the
A(H3N2) viruses reported in 2003/04 resulted
in declines in the level of population immunity
(leading to A/Fujian/411/02 in 2002) but that
this drift variant became widespread only after
gaining a higher viral replication capacity
through additional reassortment-related changes
in internal genes.30–32

Limitations

A limitation of this study is that it was based
on associating time series of hospitalizations and
mortality with ILI data, and such associations
could be confounded by seasonally circulating

pathogens other than influenza. Tominimize this
possibility, we adjusted for the possible impact of
RSV and other respiratory pathogens by in-
cluding them in our regression models. We also
included seasonal terms to correct for possible
confounding by other seasonally varying factors.
Our use of autocorrelation in our models cor-
rected for other, possibly transient causes of
hospitalization and mortality.

Another observation lent additional support
for the association of influenza with excess
elevations. That is, in 2003/04, concurrent
with a moderately high ILI peak, hospitaliza-
tions involving an influenza diagnosis exhibited
the second highest elevation over the study,
and hospital diagnoses of pneumococcal
pneumonia showed a high elevation as well
(which seems to be in line with observations
that influenza infections may predispose pa-
tients for S pneumoniae infections33–35).

Also, to enhance prospective surveillance,
there is a need to further evaluate how in-
creases in hospitalizations and mortality that
are disproportionate to ILI incidence rates can
be detected on a timely basis within a particular
influenza season. Quality control chart ap-
proaches36,37 might be developed for the timely
detection of such temporal changes that require
the attention of health authorities.

Conclusions

Our results show that increases in severe
influenza-associated illness that are dispropor-
tionate to the incidence of influenza in the
community can be detected through combined
analyses of GP–ILI data and data on respira-
tory hospitalizations and mortality. This novel
approach should be implemented in global
influenza surveillance programs to provide
better estimates of increases in severe mor-
bidity and mortality due to influenza infections.

Our data also show that there is a possible
relationship between influenza impact and
specific influenza strains. Further research is
needed to better understand the causes of such
relationships. It seems worthwhile to develop
prospective respiratory syndromic surveillance
of hospitalizations and mortality complement-
ing traditional seasonal and pandemic influ-
enza surveillance to allow detection of increases
in influenza case fatality rates and percentages of
patients hospitalized. During ongoing (pandemic)
influenza epidemics, such surveillance
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information could be used to determine the need
for control measures such as additional vaccina-
tion or prophylactic treatment. j
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Abstract

Background: Although syndromic surveillance is increasingly used to detect unusual illness, there is a debate whether it is
useful for detecting local outbreaks. We evaluated whether syndromic surveillance detects local outbreaks of lower-
respiratory infections (LRIs) without swamping true signals by false alarms.

Methods and Findings: Using retrospective hospitalization data, we simulated prospective surveillance for LRI-elevations.
Between 1999–2006, a total of 290762 LRIs were included by date of hospitalization and patients place of residence (.80%
coverage, 16 million population). Two large outbreaks of Legionnaires disease in the Netherlands were used as positive
controls to test whether these outbreaks could have been detected as local LRI elevations. We used a space-time
permutation scan statistic to detect LRI clusters. We evaluated how many LRI-clusters were detected in 1999–2006 and
assessed likely causes for the cluster-signals by looking for significantly higher proportions of specific hospital discharge
diagnoses (e.g. Legionnaires disease) and overlap with regional influenza elevations. We also evaluated whether the number
of space-time signals can be reduced by restricting the scan statistic in space or time. In 1999–2006 the scan-statistic
detected 35 local LRI clusters, representing on average 5 clusters per year. The known Legionnaires’ disease outbreaks in
1999 and 2006 were detected as LRI-clusters, since cluster-signals were generated with an increased proportion of
Legionnaires disease patients (p:,0.0001). 21 other clusters coincided with local influenza and/or respiratory syncytial virus
activity, and 1 cluster appeared to be a data artifact. For 11 clusters no likely cause was defined, some possibly representing
as yet undetected LRI-outbreaks. With restrictions on time and spatial windows the scan statistic still detected the
Legionnaires’ disease outbreaks, without loss of timeliness and with less signals generated in time (up to 42% decline).

Conclusions: To our knowledge this is the first study that systematically evaluates the performance of space-time syndromic
surveillance with nationwide high coverage data over a longer period. The results show that syndromic surveillance can
detect local LRI-outbreaks in a timely manner, independent of laboratory-based outbreak detection. Furthermore, since
comparatively few new clusters per year were observed that would prompt investigation, syndromic hospital-surveillance
could be a valuable tool for detection of local LRI-outbreaks.
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Introduction

The SARS epidemic in 2003, the bioterrorism attacks in 2001,

and the ongoing threat of new infectious disease outbreaks have

prompted many countries to invest in their capacity to respond

timely to emerging infectious disease outbreaks, as early outbreak-

detection may well mitigate their impact. As a result, new

surveillance systems for earlier detection have been implemented,

often labeled ‘‘syndromic surveillance’’ [1–6]. These systems use

increased reporting of critical symptoms or clinical diagnoses as

early indicators of infectious disease outbreaks. This not only

allows monitoring of clinical syndromes before laboratory

diagnoses have been made, but also allows detection of outbreaks

of diseases for which no diagnostics were requested or available

(including emerging pathogens). Geographic analysis methods –

such as space-time scan statistics – may further increase the

sensitivity of syndromic surveillance for detection of local

outbreaks or of regional differences in regular seasonal epidemic

diseases [2,6]. In the SARS outbreak in Hongkong in 2003, it is

believed that a near real-time space-time analysis would have

detected the highly unusual clustering of severe acute respiratory

syndrome cases much sooner [7]. However, concerns exist about

the specificity of space-time syndromic surveillance, i.e. that it

might generate many false signals [8,9].

The objective of this study was to evaluate to what extent

syndromic surveillance detects local outbreaks of lower-respiratory

infections (LRIs) without swamping true signals by false alarms.

Using retrospective hospitalization data, we simulated prospective

space-time syndromic surveillance for LRI-elevations. The two

largest outbreaks of Legionnaires’ disease in the Netherlands in the

PLoS ONE | www.plosone.org 1 April 2010 | Volume 5 | Issue 4 | e10406

last decade were used as ‘‘positive controls’’ to test whether these

known outbreaks would have been detected by space-time signals

in LRI data. To assess other (likely) causes for detected LRI-

elevations, we examined regional increases in the reported

incidence of influenza-like-illness (ILI), hospital discharge diagno-

ses for respiratory illnesses and age group distributions for LRI

cases. We also evaluated whether the number of generated space-

time signals can be reduced by restricting the time and spatial

windows for the analyses.

Methods

Ethical Approval
Since we only used anonymous data from existing medical

research and surveillance registries, neither formal ethics commit-

tee approval nor informed consent from the patients were

required.

LRI-syndrome data (1999–2006)
Hospitalization data were collected from the Dutch National

Medical Register (discharge and secondary diagnoses by date of

hospitalization for 1999–2006). In 1999–2004 this registry had a

99% coverage (16 million pop.) and in 2005/6 approximately

80%, after exclusion of hospitals with incomplete data for those

years.

We included all records on hospitalizations with any kind of

LRI as either discharge or secondary diagnosis, under the

assumption that this reflects prospective classification of patients

with a lower respiratory infection in a ‘‘LRI-syndrome’’ on the day

of hospitalization. ICD-9-CM (International Classification of

Diseases, 9th revision, Clinical Modification) codes for a LRI

syndrome were selected from the CDC respiratory syndrome

codes-list (Centers for Disease Control and Prevention, USA,

http://www.bt.cdc.gov/surveillance/syndromedef/; and see Ap-

pendix S1). After excluding duplicate hospitalizations of the same

patient within 6 weeks (5% excluded), 222638 records were

included for 1999–2004, and 68124 for 2005–2006. Data were

aggregated by hospitalization date, postal-code and age group

(0–4, 5–19, 20–49, 50–64, $65 years). Since higher levels of

spatial resolution can result in more sensitive detection of

outbreaks [10,11] we used 4-digit postal-codes (4023 areas in a

16 million population), which provide the highest level of spatial

resolution available within privacy regulations.

Regional ILI-surveillance data
ILI-data were collected from a sentinel network of general

practitioners (GPs, Continuous Morbidity Registration Centres,

CMR sentinel stations, 1% population coverage) [12]). The ILI-

counts and underlying GP-practice populations were aggregated

by region and week. The GP-practice populations were corrected

for weeks that specific GP-practices did not supply data. Due to

the small number of GP-practices in some parts of the country, the

weekly ILI-data were aggregated in 4 major regional groups

instead of postal codes.

Test-case outbreaks
Two large outbreaks of Legionnaires’ disease were used as

‘‘positive controls’’ for emerging LRI-outbreaks [13,14]:

1) In March 1999, a large Legionnaires’ disease outbreak

occurred among persons who had visited a flower show [13].

Ten patients with pneumonia were admitted to one hospital

between March 7th to 11th. By March 11th, six patients were

diagnosed with Legionnaires’ disease and an alarm notice was

given to hospitals and GPs in the region. Follow-up

investigation detected a total of 188 cases, of whom 167

(87%) were hospitalized and 21 (11%) died.

2) Between July 6th–28th 2006, 30 Legionnaires’ disease cases

were identified in Amsterdam, 2 of which were fatal [14]. On

July 7th an alarm notice was given. A cooling tower in the

town centre was later identified as the outbreak-source.

Scan statistics for space-time clusters
For the LRI-data, we used a space-time permutation scan

statistic which compared the observed number of cases in circular

areas with variable radii in flexible time periods vs the expected

number of cases, based on the geographic distribution of cases in

the whole dataset [15]. In this way, only the case data is needed to

estimate the expected number of cases in each space-time window,

and population density and time trends in the case data are

automatically adjusted for.

We used SaTScan software [16] and the SaTScan Macro

Accessory for Cartography (SMAC [17], applied in SAS version

9.1, SAS Institute Inc., Cary, NC, USA) to run the scan-statistic

and visualize the results. We simulated a prospective surveillance

by running the scan-statistic on data from the year preceding each

time unit (day or week) in the analysis period. Thus, weekly or

daily space-time signals were generated, each time that the

observed number of cases in a certain space and time window

exceeded the defined significance threshold. Since such analysis

consumes a lot of computation time, we performed weekly analysis

(instead of daily) over the whole study period. Daily analyses were

also performed in the years that the test-case outbreaks occurred

(1999 and 2006), to assess the earliest possible detection date. For

all analyses, we chose to use a time-aggregation level of 7-days

length. For the daily analyses, these 7-day aggregation windows

shifted one day forward for each daily run. Thus we both reduced

the computation time and adjusted for day-of-week effects (both

purely temporal and spatial day-of-week effects).

To indicate the significance of detected space-time signals, we

used recurrence intervals, which indicate how often a signal of the

observed significance would be observed by chance under the

hypothesis of no outbreak [18]. I.e. if the recurrence interval of a

signal is say 1 year, 1 signal of the observed significance is expected

in 1 year. Two thresholds levels were used: signals with recurrence

interval $1 and $5 years. We assessed whether successive signals

overlapped in space and time, which suggests the same cause. For

the sake of readability, we indicated a group of such overlapping

space-time signals as ‘‘cluster’’ and an individual space-time signal

as ‘‘cluster-signal’’.

We evaluated how many LRI-clusters and signals were detected

over the whole study period (1999–2006) and looked for explanations

guided by the two-step criteria in Figure 1. In step one, we assessed

likely causes for the cluster-signals by looking for significantly higher

proportions of specific hospital discharge diagnoses (e.g., Legion-

naires’ disease [19,20]). In step two we assessed overlap with regional

ILI clusters (Appendix S2), as (local) influenza activity might be

reflected in local LRI-elevations. Since other pathogens than

influenza might cause some ILI fluctuations, influenza activity was

only considered to be a likely cause if space-time overlap between

LRI and ILI-clusters coincided with the annual influenza season

(Figure 1). If a specific cause was defined for one or more signals

within one cluster, we considered that to be a likely cause for the

whole cluster. We also evaluated the timeliness of detection for the

clusters related to the known Legionnaires’ disease outbreaks.

A sensitivity analysis was used to evaluate the impact of time

and spatial window settings on the number of clusters and signals

Syndromic Outbreak Detection
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detected. For the initial analyses, we put only minor constraints on

the maximum temporal and spatial windows of the scan-statistic,

to avoid wrongful assumptions about time, geographical location

and size of an outbreak. We then repeated these weekly analyses

with a temporal window of maximum 7 weeks and also with a

spatial window of maximum 25 km radius, to assess the impact of

these parameters on the number of signals generated.

See Appendix S2 for further details on use and settings of the

scan-statistics.

Results

LRI-clusters
Between Feb 1st 1999 and Sept 30th 2006, a total of 35 LRI-

clusters with 221 cluster-signals were detected by weekly analysis

(Table 1, non-restrictive parameter settings, recurrence interval

$1 year). By raising the threshold (recurrence interval $5 years),

we observed only 24 clusters with 146 cluster-signals (respectively

31% and 34% decrease). Figure 2a shows all LRI-clusters and

signals on a timescale for the different recurrence interval levels –

as detected with the initial non-restrictive parameter settings for

space and time windows. The time between the first and the last

signal within one cluster ranged from 0 to 26 weeks. By daily

analysis, in 1999 and 2006 a total of 194 cluster-signals were

detected (compared to 75 signals by weekly analysis with a $1

year recurrence level, both with non-restrictive parameter

settings). However, the number of clusters was lower (10 clusters

by daily analysis vs 12 by weekly analysis in 1999 and 2006).

Figure 2a and Table 1 also show the likely causes for the

detected LRI-clusters (according to the criteria in Figure 1, see

methods section). The known Legionnaires’ disease outbreaks in

1999 and 2006 were detected by LRI-clusters, since cluster-signals

were generated with an increased proportion of patient discharge

diagnoses for Legionnaires’ disease in both outbreak areas and

periods (Table 1, Figure 2a and 3a–b) (proportions differed

between successive signals: 44–65% in 1999, and 21–63% in 2006;

p:,0.0001). The 1999 Legionnaires’ disease related cluster-signals

included a higher proportion of persons 50–64 years of age (37–

48%; p:,0.0001). We compared the earliest detection dates for

these outbreaks for daily and weekly analysis. Daily analysis

signaled the outbreak 4 days earlier than weekly analysis, 2 days

before the national alarm was given during the 1999 Legionnaires’

disease outbreak. The 2006 Legionnaires’ disease outbreak was

detected by weekly analysis on 2006 July 15th, and could have

been detected by daily analysis 5 days earlier, 3 days after the

national alarm was given.

Many of the other clusters and signals seemed to be related to

local RSV and/or influenza activity (70% of cluster-signals and

60% of clusters, Table 1). Some of the influenza and RSV related

clusters tended to persist over longer periods (Figure 2a). Young

children (0–4 years old) were overrepresented in 82 of the 99

cluster-signals that we scored as RSV related (Table 1; p:,0.05).

In 2000, a cluster was detected with an unusually high number

of patients diagnosed with aspergillosis, which was traced to a

registration error (one patient was accidentally registered under 28

different anonymous identifiers).

For 46 cluster-signals we did not find a ‘‘likely cause’’ according

to the criteria in Figure 1. Of these, 6 belonged to influenza and/

or RSV related clusters (Figure 2a), and 11 coincided with local

ILI-elevations outside the influenza season (1 at the end of spring

2000, 4 at the end of summer 2000 and 6 at the end of 2005).

When repeating the weekly analyses with restricted time or

spatial windows, both Legionnaires’ disease outbreaks were still

detected with the same timeliness. Table 1 and Figure 2b and 2c

also show the clusters and signals that were still detected with a

temporal window of maximum 7 weeks, and with a spatial window

of maximum 25 km respectively (as compared to the signals

detected with the initial non-restrictive settings).

With a time window of maximum 7 weeks, 129 of the 221 initial

cluster-signals and 30 of the initial 35 clusters were still detected

(respectively 42% and 14% decline, Table 1). Of the 5 clusters not

detected — as compared to the initial analyses — 2 had been

scored as likely due to RSV, 1 to influenza and for the other 2 no

likely cause had been scored (Table 1 and Figure 2a–b).

With a maximum 25 km radius, 165 of the 221 initial cluster-

signals and 33 of the 35 clusters were still detected (respectively

25% and 6% decline, Table 1). One of the 2 undetected clusters

Figure 1. Two-step criteria to define (likely) causes for LRI hospitalization clusters detected in 1999–2006. * As evaluated by the right-
sided Fisher’s exact test for 262 Tables (alpha#0.01) of hospitalizations within vs hospitalizations outside of the cluster-signal. The proportion of
hospitalizations with a specific characteristic (e.g. legionnaires’ disease as discharge diagnoses, or age 20–49 yrs) can be significantly higher among
hospitalizations within the cluster-signal than the proportion outside of the cluster-signal. ** For the ILI-cluster-signals we could only use 4 major
regions as spatial resolution. Overlap in time between LRI and ILI-cluster-signals was defined as occurrence of weekly ILI-cluster-signals within 2
weeks (+/2) around LRI-cluster-signals. ***The annual influenza season was defined as all weeks with a national weekly ILI-incidence $3 per 10.000
pop. **** Possibly unreported/undetected local LRI-outbreaks by undetected pathogens.
doi:10.1371/journal.pone.0010406.g001
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had been scored as likely due to RSV, for the other no likely cause

had been scored (Table 1, Figure 2a and 2c).

Some of the cluster-signals detected with restrictive time/spatial

windows had not been detected with the initially detected signals

(data not shown). With the restrictive time window 2 borderline

significant cluster-signals were detected, that had been non-

significant in the initial analysis. This was due to the fact that the

restrictive settings limited the adjustments for taking into account

the multiple testing (stemming from the many potential cluster

locations and sizes evaluated) [15]. With the restrictive spatial

window 3 extra cluster-signals were detected due to the same

mechanism, and 2 other extra cluster-signals were detected due to

the fact that initial cluster-signals that geographically overlapped

with them had dropped out.

Discussion

In this study, prospective surveillance of hospitalization data was

simulated using retrospective data, to evaluate whether syndromic

surveillance can effectively detect local outbreaks of lower-

respiratory infections (LRIs). Over 1999–2006 (400 weeks), 35

space-time LRI-clusters were detected by weekly analysis, with a

total of 221 generated cluster-signals. This represents an average

rate of approximately 5 new clusters per year, or 3 per year using a

threshold recurrence interval $5 years. The number of clusters

detected per year differed over the study period, reflecting

substantial annual variation in influenza epidemics.

Two clusters were related to the Legionnaires’ disease ‘‘test-

case’’ outbreaks and would have been detected around the same

time as the outbreaks were actually detected. This indicates that

syndromic surveillance will pick up similar outbreaks of severe

respiratory disease in a timely manner. Note that the Legionnaires’

disease outbreaks are used here as ‘‘positive controls’’ (or Gold

Standard) for realistic severe respiratory outbreaks by uncommon

pathogens that may not be (timely) detected by traditional

surveillance, such as the Dutch Q-fever outbreak in 2007, for

which the initial diagnoses were delayed by several weeks [21,22].

As 17 out of the total 35 LRI clusters probably reflected local RSV

and/or influenza activity, many signal investigations could be

limited to checking their concurrence with local RSV and/or

influenza activity. The 3 clusters with ‘‘unknown cause’’, that

concur with local ILI-elevations outside the influenza season,

possibly represent very early local influenza activity or local

activity of another respiratory pathogen reflected in both GP-ILI-

data and hospital LRI-data. For these 3 clusters and the other 8

clusters for which no likely cause was defined, it would have been

interesting to investigate possible causes in a truly prospective

setting (e.g., by additional diagnostics). Some of these clusters

possibly represent unreported and/or undetected local LRI-

outbreaks.

As a threshold value for the significance of cluster signals, we

used a threshold of recurrence intervals $1 year, and only

evaluated the LRI clusters that were above this threshold. To

illustrate the impact of changing the threshold we repeated the

analyses for recurrence intervals $5 years. At both threshold

levels, two LRI clusters showed a higher proportion of Legion-

naires’ disease cases (p:,0.0001, see also results section)

overlapping with the known outbreak areas, which made us

conclude that these LRI clusters indeed detected the Legionnaires’

disease outbreaks.

The results of the sensitivity analysis show that the test outbreaks

are still detected with the restricted time and spatial windows (at

both threshold levels), without loss of timeliness and with less

signals generated in time. To limit the computation time we only

performed a modest sensitivity analysis. In this study, the

restrictions on the time window almost halved the number of

signals (42% decline), whereas the clusters in time to investigate

declined much less (14% decline). The spatial restrictions resulted

in less decline in generated signals (25% decline in signals and 6%

decline in clusters). This indicates that with little loss of sensitivity,

the restricted time window would be most appropriate to limit the

number of generated signals.

Table 1. Detected LRI-clusters and signals between 1999 Feb 1st and 2006 Sept 30th by weekly analysis (recurrence interval $1 or
$5 years) for different parameter settings.

(A) Non restrictive settings for time
and spatial windows (B) Maximum 7 weeks time window (C) Maximum radius 25 km

(Likely) cause LRI-cluster-signals LRI-clusters* LRI-cluster-signals LRI-clusters* LRI-cluster-signals LRI-clusters*

Recurrence
interval

Recurrence
interval

Recurrence
interval

Recurrence
interval

Recurrence
interval

Recurrence
interval

$1 yr. $5 yr. $1 yr. $5 yr. $1 yr. $5 yr. $1 yr. $5 yr. $1 yr. $5 yr. $1 yr. $5 yr.

Legionnaires’ disease outbreak 1999 10 10 1 1 7 7 1 1 10 10 1 1

Legionnaires’ disease outbreak 2006 4 4 1 1 4 4 1 1 4 4 1 1

Local RSV activity 99 78 9 7 62 55 7 7 68 56 8 6

Local influenza activity 55 28 8 5 25 13 7 5 40 17 9 4

Local RSV and influenza activity n/a n/a 4 3 n/a n/a 4 3 n/a n/a 3 2

Other specific pathogen** 7 6 1 1 5 5 1 1 7 6 1 1

No cause defined*** 46 20 11 6 26 12 9 4 36 16 10 5

Total 221 146 35 24 129 96 30 22 165 109 33 20

The total number of detected clusters and signals is presented, for the non-restrictive parameter settings on space and time (A), for the settings with a maximum time
window of 7 weeks (B), and for the settings with a maximum radius of 25 km (C). The distribution of (likely) causes according to the criteria in Figure 1 is also presented
in the Table.
* A cluster is defined by a set of successive cluster-signals that overlap in space and time.
** The cluster-signals in this category formed only one cluster, which appeared to be caused by a data artifact.
*** Possibly unreported/undetected local LRI-outbreaks by undetected pathogens.
doi:10.1371/journal.pone.0010406.t001
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To our knowledge this is the first study that evaluates the

performance of syndromic surveillance with nationwide high

coverage data (80–99% of hospitalizations) over a longer period (8

years) with all detected clusters analyzed and (if possible) explained

in a systematic way. Feasibility of localized outbreak detection is

demonstrated without swamping true signals by excessive false

alarms. Some other studies evaluating the performance of space-

time syndromic surveillance have concluded differently, but these

studies were based on shorter periods, had lower coverage or lacked

comparable outbreaks which could be tested [8,23,24]. Cooper et

al. tracked the spatial diffusion of influenza and norovirus, using

space-time analysis on syndromic data from a telephone help line

system in the UK, but did not test space-time detection for more

localized outbreaks [23]. Using syndromic surveillance for detection

of local gastro-intestinal outbreaks in New York City, Balter et al.

found numerous cluster-signals in time, but these could not be used

for effective surveillance because of insufficient comparable

diagnostic data [8]. Respiratory disease outbreaks could not be

evaluated in the NYC study, because no local respiratory outbreaks

had been reported in the study period. Nordin et al. used simulated

anthrax attack data injected in true physician’s visit data to confirm

that a respiratory outbreak initiated by bioterrorism will be detected

in a timely manner by syndromic surveillance [24]. However, no

results on the number of possibly false alarms were presented. These

studies present space-time cluster detection analyses over relatively

few years and are therefore prone to miss the effects of annual

variation. Furthermore, sensitivity for local outbreaks is reduced by

using data with relatively low coverage levels. For such data sources

with low coverage, methods other than space-time scan statistics

seem more appropriate to generate useful information for public

health practice (like aberration detection in time).

We performed weekly analyses (instead of daily) over the whole

study period, because these analyses consume considerable

computation time. Daily analyses in 1999 and 2006 detected

fewer clusters than weekly analyses because the threshold level for

recurrence intervals ($1 year) is more strict (see Appendix S2).

Daily analyses would therefore probably not detect more

epidemiological events but would yield more timely signals.

Hospital based syndromic surveillance could be a helpful tool in

detecting local LRI-outbreaks, complementing outbreak detection

by laboratory surveillance or astute clinicians. Syndromic surveil-

lance might be most valuable for outbreaks due to uncommon or

novel pathogens (like the SARS outbreak), as these seem more likely

to be missed by the laboratory and clinicians. Furthermore, out-

breaks due to more common pathogens could also be missed, as for

community acquired pneumonia often no causative pathogen is

detected [25,26]. Apart from that, under-notification can complicate

outbreak detection through laboratories and clinicians [20].

Figure 2. Clusters and generated cluster-signals on a timescale, including all (likely) causes (by weekly analysis).* *Clusters are
indicated by sets of successive space-time overlapping cluster-signals placed next to each other on the same height on the y-axis. The cluster-signals
caused by a data artifact in 2000 are not presented in the graphs. See Figure 1 for the criteria by which the likely causes were defined and see the
Figure 2 legend for the graphic indication of likely causes. **In Figure 2a — for the analyses with non-restrictive settings on time and spatial windows
— all detected clusters and signals are presented, as well as the (likely) causes according to the criteria in Figure 1. Figure 2b presents the signals and
clusters that are still detected with a maximum time window of 7 weeks, and Figure 2c signals and clusters still detected with a maximum radius of
25 km. ***Signals indicated by open symbols (e.g. ‘‘#’’) have a $1 year recurrence interval, coloured symbols (e.g. ‘‘N’’) have a $5 yr recurrence
interval. A recurrence interval reflects how often a signal of the observed significance level would be observed by chance [18]. I.e. if the recurrence
interval of a signal is say 1 year, 1 signal of the observed significance is expected in 1 year.
doi:10.1371/journal.pone.0010406.g002
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A prerequisite for prospective syndrome surveillance is the real-

time availability of hospitalization data, including clinical

diagnoses and symptoms by date of hospitalization. Although at

present not available in the Netherlands, such real-time syndromic

data collection may become feasible after the nationwide

implementation of electronic health-care information exchange.

In this light, the results of our study justify further development of

these methods, including retrospective evaluation of other types of

documented health events than the ones presented in our study.

Besides that, further research should focus on prospective

application of these methods. In a prospective setting, sustaining

reliable data with high coverage and few data artifacts might be more

challenging, thus possibly leading to higher numbers of false alarms.

In addition, it should be evaluated to what extent 3 to 5 new

syndromic clusters per year would indeed be manageable in a

prospective setting. Responding to such clusters is complicated,

because the cause and thus possible threat will initially often be

unknown. For each new cluster, it should first be verified whether

plausible explanations can be found in epidemiological or laboratory

data. For example, LRI clusters need to be interpreted in relation to

local influenza or RSV activity similar as we did in our study, and

provided the age distribution of cases reflects the usual pattern,

further investigation would seem unnecessary. Internet-based ILI-

monitoring [27] combined with virological self -sampling (at home)

[28] could increase the microbiological base for interpreting

syndromic surveillance data. Age stratified syndromic surveillance

with a multivariate space-time scan statistic [29] may further facilitate

quick interpretation of clusters by revealing the affected age groups.

Conclusion
This retrospective study shows that space-time syndromic

surveillance on hospitalizations can timely detect local LRI-

outbreaks independent of detection of the causative pathogen. The

frequency of cluster detection, when interpreted in the light of

available epidemiological and microbiological data, does not give

rise to excessive levels of further investigations.

Consequently, we recommend real-time syndromic surveillance

as an additional tool for detection of local LRI outbreaks, but only if

syndromic data with sufficient quality and coverage can be

collected, coupled with epidemiological and microbiological data.

Public health responses can be based on a combination of

syndromic surveillance data, reports by astute clinicians and early

diagnostic test results, which all could generate the first alarm for

different kinds of disease events. Future research on prospective

syndromic surveillance should therefore focus on practical methods

for integrating syndromic surveillance alarms with clinical reports

and laboratory information for effective public-health responses.

Supporting Information

Appendix S1 Detailed syndrome definition for hospitalizations

with lower-respiratory infection syndrome.

Figure 3. The earliest detected Legionnaires’ disease outbreak related LRI-cluster-signals (1999 and 2006) as presented on a map of
the Netherlands (by daily analysis). Figure 3a and 3b show the cluster-signals that detected the 1999 and 2006 outbreak respectively. Output of
the Satscan scan-statistic software is presented in the legend. On the map the borders of all postal code areas are indicated, the postal code areas of
the cluster-signals are marked in dark-grey with the center postal code marked in red.
doi:10.1371/journal.pone.0010406.g003
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Found at: doi:10.1371/journal.pone.0010406.s001 (0.06 MB

DOC)

Appendix S2 Details on space-time analyses and Satscan

settings.

Found at: doi:10.1371/journal.pone.0010406.s002 (0.03 MB

DOC)
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SUMMARY

Large Q-fever outbreaks were reported in The Netherlands from May 2007 to 2009, with dairy-

goat farms as the putative source. Since Q-fever outbreaks at such farms were first reported in

2005, we explored whether there was evidence of human outbreaks before May 2007. Space–time

scan statistics were used to look for clusters of lower-respiratory infections (LRIs), hepatitis, and/

or endocarditis in hospitalizations, 2005–2007. We assessed whether these were plausibly caused

by Q fever, using patients’ age, discharge diagnoses, indications for other causes, and overlap

with reported Q fever in goats/humans. For seven detected LRI clusters and one hepatitis cluster,

we considered Q fever a plausible cause. One of these clusters reflected the recognized May 2007

outbreak. Real-time syndromic surveillance would have detected four of the other clusters in

2007, one in 2006 and two in 2005, which might have resulted in detection of Q-fever outbreaks

up to 2 years earlier.

Key words : Outbreaks, Q fever, respiratory infections, surveillance, zoonoses.

INTRODUCTION

Q fever is a zoonosis occurring worldwide caused

by Coxiella burnetii, an intracellular bacterium. Al-

though most human infections remain asymptomatic

or present as a non-specific flu-like illness, severe

acute Q fever presents primarily with atypical pneu-

monia or hepatitis. The infection poses an increased

risk for pregnant women and persons with heart-valve

disorders or impaired immunity, who may develop

chronic disease with endocarditis as its most frequent

chronic clinical manifestation. Q fever in pregnancy,

whether symptomatic or asymptomatic, may result in

adverse pregnancy outcomes. Cattle, sheep and par-

ticularly goats are considered the primary reservoirs

from which human infection occurs, typically by in-

halation of infected aerosols, and less commonly

through ingestion [1–3].

For many years, Q fever in humans was very rare

in The Netherlands, with around 15 reported cases
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per year [4], but since the end of May 2007, outbreaks

have occurred in rural areas mainly in the southern

part of the country, with 20–25% of the reported

cases requiring hospitalization [5]. In 2007, 178

Q-fever cases were reported, most of which occurred

in May and June 2007. In total, 31% (n=55) of these

cases occurred in a relatively small rural area [6]. In

2008 and 2009, large outbreaks of Q fever recurred

with increasing numbers of reported cases and an

expanding geographic area [5, 7].

Dairy-goat farms are considered the most likely

source of infection for these outbreaks, although evi-

dence is still inconclusive [5, 7, 8]. Q-fever abortion

waves have been reported at several dairy-goat farms,

starting at least 2 years before the first recognized

human outbreak [5, 9]. This time lag raised the

question whether unrecognized human outbreaks

may have preceded May 2007, particularly since most

severe cases present as pneumonia, for which labora-

tory tests are often not requested. In fact, the diag-

noses of the May/June 2007 outbreak cases were

delayed by several weeks, until pneumonia patients

were retested for C. burnetii, triggered by an increase

in the number of Q fever reports in humans in the

region [8, 10].

Syndromic surveillance allows monitoring of

clinical syndromes such as ‘pneumonia’ or ‘ lower-

respiratory infection’ (LRI) independent of labora-

tory confirmation. It also permits detection of out-

breaks of diseases for which diagnostics are either

not available or not requested. In order to optimize

its sensitivity for detection of local outbreaks, sur-

veillance of syndrome spikes can be performed in

space and time [11, 12]. Earlier we demonstrated the

value of this approach by showing that syndromic

surveillance of Dutch hospitalizations can indeed de-

tect local lower-respiratory disease outbreaks [13].

In the current study, we retrospectively explored

whether there is evidence for human Q-fever out-

breaks in The Netherlands in 2005–2007, before the

May/June 2007 outbreak. Using space–time scan

statistics, we looked for local increased numbers of

hospitalized patients with LRIs and other syndromes

that can be associated with C. burnetii infection.

Based on available epidemiological and surveillance

data, and the geographical proximity of small-rumi-

nant farms that tested positive for Q fever, we then

assessed whether these local increases could have been

caused by Q fever or by other infections like respir-

atory syncytial virus (RSV) or influenza. Finally, we

evaluated whether real-time syndromic surveillance of

hospitalizations could have accelerated the detection

of human Q-fever outbreaks.

METHODS

Hospitalization data

For the period 1 January 2005 to 30 September 2007,

hospitalization data were obtained from the Dutch

National Medical Register, which has about 80%

population coverage. We excluded data before 2005,

as data on farms that tested positive for Q fever was

not then available. The data included discharge and

secondary diagnoses by date of hospitalization. We

selected all hospitalization records showing diagnoses

involving clinical syndromes compatible with Q fever,

i.e. LRI, hepatitis, and/or endocarditis. We used a

case definition for LRI, which has proved functional

for detecting severe respiratory disease outbreaks in

hospitalization data [13]. See Appendix A (available

online) for detailed hepatitis and endocarditis case

definitions.

We analysed 108 338 hospitalizations for LRI after

excluding 5% of 114 245 records because of patients

readmitted within six consecutive weeks ; 3826 hospi-

talizations for hepatitis after excluding 29% of 5382

records because of readmissions from 1999 to 2007 (to

avoid chronic cases first hospitalized before 2005);

and 2130 hospitalizations for endocarditis after ex-

cluding 18% of 2612 records because of readmissions

from 1999 to 2007 (to avoid chronic cases first hospi-

talized before 2005). Data were aggregated by week of

hospitalization, postal code, and patients’ age group

(0–4, 5–19, 20–49, 50–64, o65 years). Of these, we

regarded the 20–49 and 50–64 years age groups to be

at higher risk for Q fever, since most reported cases

were adults, with the median age y50 years [5, 7].

Since higher levels of spatial resolution can result in

more sensitive detection of outbreaks [14, 15], we used

4-digit postal codes designating 4023 areas in a 16.3

million population. This provided the highest level of

spatial resolution available within national privacy

regulations.

Infectious disease surveillance data

To assess alternative causes (other than Q fever) for

detected local clusters of syndromic hospital cases,

we explored mandatory reports of psittacosis, Le-

gionnaires’ disease, hepatitis A, B and C, and Q fever,

although prior to 2007 Q-fever cases may have re-

mained undetected or misdiagnosed. The counts of
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reports were aggregated by week of disease onset

and 4-digit postal codes. We used regional data on

influenza-like illness (ILI) to assess whether a rise in

local LRI cases could be due to influenza. These data

are collected weekly by a sentinel network of general

practitioners, the Continuous Morbidity Registration

(CMR) centres, which provide 1% population cover-

age, representative by age, gender, geographic distri-

bution and population density [16]. ILI is defined as an

acute beginning of a respiratory infection with fever

(rectal temperature o38 xC), and with at least one of

the following symptoms present: cough, coryza, sore

throat, frontal headache, retrosternal pain, myalgia.

Due to the limited number of sentinel practices, these

weekly data were aggregated into four major regions

instead of 4-digit postal codes, as for the hospitaliza-

tion data.

Data on positive goat and sheep farms

To identify possible point sources of C. burnetii, we

used Q-fever-related abortion waves on dairy-goat

and dairy-sheep farms as reported to the Dutch

Animal Health Service. For each farm that tested

positive for C. burnetii between 2005 and 2008, we

recorded its 4-digit postal code and the date of its first

submission of placental tissue.

Diagnostic tests for Q fever as a cause of abortion

waves in animals were first available in 2004. In 2005

the first positive results were obtained from two dairy-

goat farms, in 2006 from six dairy-goat farms and one

dairy-sheep farm, in 2007 from seven dairy-goat

farms, and in 2008 from eight dairy-goat farms and

one dairy-sheep farm. Until 12 June 2008, reporting

of abortion waves and subsequent laboratory testing

of placental tissue were voluntary in The Nether-

lands; thus previous Q-fever abortion waves cannot

be excluded in areas making no reports. For one farm,

placental tissue from 2001 was retrospectively tested

and found positive for C. burnetii.

We regarded these farms as possible point sources

of C. burnetii during the entire study period, as some

were known to have had abortion problems in the

year before and/or after they first submitted placental

tissue. Moreover, infected animals can become long-

term shedders, and C. burnetii is very persistent in the

environment [17].

Scan statistics for space–time clusters

In order to detect a possible increase in Q-fever-

related regional cases in the hospitalization data, we

used a space–time permutation scan statistic that

compared observed and expected numbers of cases

in flexible circular areas over flexible time periods

[18]. SaTScan software and SAS (version 9.1, SAS

Institute Inc., USA) were used to run the scan-statistic

[19, 20].

For each week in the analysis period, we ran the

scan statistic on data from the preceding year, thus

simulating prospective (real-time) surveillance. This

generated weekly space–time signals. To indicate the

significance of detected space–time signals, we used

recurrence intervals, which indicate how often a signal

of the observed significance would be observed by

chance under the hypothesis of no outbreak [21]. That

is, if the recurrence interval of a signal is say 1 year, one

signal of the observed significance is expected in 1 year.

If the recurrence interval of a signal was o1 year, it

was viewed as a significant signal. Besides that, we also

used a threshold of recurrence intervals o5 years to

indicate highly significant signals. We defined a cluster

as a group of successive overlapping space–time sig-

nals, since overlap suggests the same cause; we defined

a cluster signal as an individual space–time signal

within a cluster. Unlike an earlier study [13], in the

present study we also assessed whether the same cause

for successive overlapping cluster signals seemed un-

likely due to shifts in space or time windows or shifts

in predominant age groups or discharge diagnoses.

We used previously validated parameter settings for

the scan statistic, with minimal constraints on the

maximum space and/or time windows, to avoid in-

correct assumptions about time, geographical lo-

cation, or size of possible Q-fever outbreaks [13].

We also performed space–time scans on specific

infectious disease data (mandatory reports and ILI

sentinel data), to assess whether these might explain

the space–time clusters of hospitalizations that we

detected. For the mandatory reports, the same par-

ameter settings were used as for the hospitalizations.

For the ILI data, the space–time scans were per-

formed using both case data and population-at-risk

data [22], as previously described [13].

LRI clusters

To determine the LRI clusters for which Q fever was

an unlikely, possible or plausible cause, we used two-

step criteria (Fig. 1). In step 1, the upper box shows

the criteria for LRI clusters unlikely to be caused by

Q fever, based on indications for other causative

pathogens and epidemiological characteristics (e.g.

patients’ age) that differed from the confirmed Q-fever

In search of hidden Q-fever outbreaks 3

cases. The lower box shows the criteria for LRI clus-

ters possibly caused by Q fever, based on epidemio-

logical data [5, 7, 23] as well as overlap with clusters of

human Q-fever reports. In step 2, we assessed whether

clusters identified as possibly caused by Q fever (in

step 1) showed geographical overlap with farms that

tested positive in 2005–2008. If so, we considered

Q fever a plausible cause for these clusters.

Hepatitis and endocarditis clusters

To assess whether detected hepatitis and/or endocar-

ditis clusters might have been caused by Q fever,

we again used two-step criteria, similar as for the

LRI clusters. In step 1, we now evaluated whether

hepatitis clusters overlapped with clusters of hepatitis

A, B, or C reports and assessed whether hepatitis and/

or endocarditis clusters had any characteristics (age

distribution, specific diagnoses) suggesting causes

other than Q fever. In step 2, clusters for which no

alternative causes were found, were assessed for

overlap with reported Q-fever abortion waves at

farms in 2005–2008. If they overlapped, we con-

sidered Q fever a plausible cause for these human

disease clusters.

The patients of all clusters for which we considered

Q fever a plausible cause were then line-listed and

inspected for data anomalies that might have caused

a cluster signal. Finally, we evaluated to what extent

actual prospective syndromic surveillance could have

accelerated the detection of human Q-fever out-

breaks.

RESULTS

LRI clusters

We detected 20 LRI clusters in hospitalization data

between 2005 and 2007 [for details see Appendix B,

Table B1 (available online)]. Applying the criteria in

Figure 1, for seven of these LRI clusters, Q fever was

considered a plausible cause ; for three clusters a

possible cause, and for ten clusters an unlikely cause.

Figure 2 shows all LRI clusters and signals on a

timescale, and Figure 3a shows the locations of the

LRI clusters for which we considered Q fever a

plausible cause.

Q fever: a plausible cause

Of the seven clusters for which Q fever was considered

a plausible cause, one reflected the known May/June

2007 outbreak, as it strongly overlapped in space and

time with that outbreak. If monitored in real time, this

Q fever an UNLIKELY cause
•  At least 2 out of the following criteria apply to one or more of the cluster
    signals:

Q fever a POSSIBLE cause
•  At least 2 out of the following criteria apply to one or more of the cluster
    signals:

OR
•  The criteria for Q fever unlikely to be the cause are not met (see box
    above)

•  Spatial overlap with
   voluntarily reported Q
   fever-related abortion
   waves on goat/sheep
   farms (2005–2008)

Q fever a PLAUSIBLE
cause

LRI
clusters

STEP 1 STEP 2

a significantly* higher proportion of other specific disease‡ 
a significantly* higher proportion of patients aged 0–19 and �65 years
of age
overlap with space-time clusters in specific disease surveillance
data§

a significantly* higher proportion of patients aged 20–64 years 
a significantly* higher proportion of unexplained pneumonia†
overlap with space-time clusters of mandatory Q fever reports

Fig. 1. Two-step criteria to explore the plausibility that Q fever caused the lower-respiratory infection (LRI) hospitalization
clusters detected in 2005–2007. * Right-sided Fisher’s exact test for 2r2 tables (af0.05 and/or <0.01) of hospitalizations

inside vs. outside of the cluster signal. The proportion of hospitalizations with a specific disease characteristic (e.g.
Legionnaires’ disease as discharge diagnoses, or patients aged 20–64 years) can be significantly higher in hospitalizations
within the cluster signal than the proportion outside the cluster signal. # ICD-9 codes 485/486/481/4829. $ We considered
high proportions of bronchitis/bronchiolitis (ICD-9 codes 4801/4660/4661/490) as a likely indication for RSV activity.

· Mandatory reports and influenza-like illness sentinel data. || Only assessed if the cluster meets the criteria for Q fever to be a
possible cause.
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2005 2006 2007

1
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12

18

17

16

19

20

15

14

13

7

6

Reflected the
initial 2007
outbreak

First reports of 
uncommon pneumonia
cases†

Causative pathogen
confirmed as Coxiella
burnetii†

Q fever a plausible cause*

Q fever a possible cause*

Q fever a unlikely cause*

Fig. 2. All lower-respiratory infection (LRI) signals and clusters on a timescale. The legend indicates which clusters have Q
fever as a plausible, possible, or unlikely cause (see criteria in Fig. 1). * For each cluster, horizontal dotted lines indicate the

total cluster episode, and triangles indicate weekly generated cluster signals. As some clusters overlapped in time, consecutive
clusters are presented at different heights at the y-axis. The significance level of cluster signals, as measured by the recurrence
interval (see Methods section), is indicated by the colour value of the triangles. For those with uncoloured backgrounds, the

recurrence interval of the signal is o1 year ; with coloured backgrounds, the recurrence interval iso5 years). # At the end of
May 2007 the first uncommon pneumonia patients were reported in the area of the initial 2007 outbreak, and on 11 July
C. burnetii was confirmed to be the causative pathogen. This initial 2007 outbreak was reflected by cluster 16.

no cluster
2005, cluster 3
2005, cluster 4
2006, cluster 9
2007, cluster 15
2007, cluster 16
2007, cluster 18
2007, cluster 20

(a) (b)

no cluster
2007, cluster 2

Fig. 3. (a) Lower-respiratory infection (LRI) clusters for which Q fever seemed a plausible cause, presented on the 4-digit

postal code map of The Netherlands. See criteria for Q fever as a plausible cause in Figure 1. If LRI cluster areas overlapped,
the smaller cluster area was drawn on top of the larger area. (b) The hepatitis cluster for which Q fever seemed a plausible
cause, presented on the 4-digit postal code map of The Netherlands.
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cluster would have given the first signal at the end of

May 2007, i.e. in the same week that suspicious

pneumonia patients were first reported, and 6 weeks

before the first positive laboratory results for C. bur-

netii were obtained [8, 10].

Of the other six clusters, three would have given

the first signal 1–2 years earlier than the known out-

break in 2007 (two in 2005 and one in 2006), one

cluster 3 months earlier, one at the same time, and one

cluster 4 months afterwards [Fig. 2 and Appendix B,

Table B1 (online)]. All but one of these clusters oc-

curred in the southeast or the middle of the country

(Fig. 3a) but in a more widespread area than the

May/June 2007 outbreak. The two 2005 clusters

and two clusters in 2007 were highly significant with

recurrence intervals o5 years.

Q fever: a possible cause

For only three clusters was Q fever a possible cause,

i.e. not plausible because they lacked geographical

proximity to Q-fever abortion waves on farms. All

three clusters occurred in 2007 [see Fig. 2 and

Appendix B (online)].

Q fever: an unlikely cause

The ten clusters for which Q fever was considered

an unlikely cause were not assessed for geographical

overlap with infected farms, because other pathogens

(e.g. influenza and RSV) seemed probable. As pre-

viously described, one cluster was clearly due to

Legionella, as it comprised many cases of Le-

gionnaires’ disease and overlapped in space and time

with a known Legionella outbreak [13, 24].

Hepatitis and endocarditis clusters

Two hepatitis clusters (two signals) were detected in

2005–2007. The first was possibly due to hepatitis C

[Appendix B, Table B2 (online)]. The other over-

lapped with reported abortion waves on goat farms,

making Q fever its plausible cause. The cluster oc-

curred more to the southeast (Fig. 3b) than the

May/June 2007 outbreak. It would have given the first

signal 2 weeks before the first reports of suspicious

pneumonia patients in 2007. The cluster does not ex-

ceed the threshold level for highly significant clusters

(i.e. recurrence interval o5 years).

For endocarditis, we revealed probable duplicates

in all three detected clusters based on line-listing the

age, postal code, and diagnoses of cluster patients.

Although duplicates had been excluded from the

analyses by using anonymous patient identifiers, some

patients appeared to have obtained two or more

anonymous identifiers through transfers between

hospitals. We therefore excluded the endocarditis

clusters from further analysis.

DISCUSSION

Using space–time syndromic surveillance methods,

we found substantial support for the occurrence of

human Q-fever outbreaks in The Netherlands pre-

ceding the 2007 outbreak and covering a wider area.

In proximity to infected small-ruminant farms, local

clusters of human LRI and hepatitis were detected in

hospitalization data for 2005–2007. Although the

retrospective nature of this study precluded labora-

tory confirmation, available epidemiological and sur-

veillance data suggested Q fever as the cause for

several syndrome clusters that mostly occurred in the

southeast and middle of the country.

Prospective syndromic surveillance on hospitaliz-

ations, as simulated in this study, would have signalled

some of these clusters long before detection of the

May/June 2007 outbreak. The space–time signals of

LRI or hepatitis could then have prompted further

evaluation and/or laboratory tests, possibly confirm-

ing C. burnetii to be the causative pathogen. Although

such efforts might not have prevented the large-scale

outbreaks in the following years, it possibly would

have lead to the detection and the appropriate treat-

ment of Q-fever patients in a more timely manner.

Apart from that, earlier detection of human Q-fever

outbreaks might have facilitated research into trans-

mission routes between specific farms and humans.

For the Dutch human Q-fever outbreaks after 2007,

this research has been complicated by dissemination

of disease in the dairy-goat population, leading to

widespread environmental contamination. These fac-

tors complicate the identification of specific farms as

the source of human infections.

Of the LRI clusters detected in this study, one re-

flected the already known 2007 outbreak, confirming

that syndromic surveillance can indeed detect Q-fever

clusters, consistent with our findings on syndromic

detection of respiratory outbreaks [13]. For six other

LRI clusters and one hepatitis cluster as well, Q fever

seemed a plausible cause. So far, hepatitis due to Q

fever has been reported sporadically in The Nether-

lands: 33 hepatitis cases out of 1000 reported Q-fever

cases in 2008 [5] and 5/178 in 2007. Hepatitis due to Q

6 C. C. van den Wijngaard and others



58 Chapter 5 In Search of Hidden Q-fever Outbreaks 59

fever might be more likely from infection by ingestion

rather than inhalation [25, 26] and may thus follow

distribution channels of contaminated unpasteurized

products like raw cheese. If such contaminated pro-

ducts were to cause infections nationwide (without

regional clustering), this would not be detected by our

space–time analysis.

Our results suggest that the rise in reported Q-fever

cases in 2008 and 2009 may partially reflect increased

awareness among clinicians following the first rec-

ognized outbreak in 2007. This would be consistent

with the fact that in 2008 and 2009, Q-fever reports

originated from a wider area that overlaps with the

area of most hospitalization clusters of 2005–2007

for which Q fever seemed a plausible cause. More-

over, the proportion of hospitalizations in confirmed

Q-fever cases was smaller in 2008 and 2009 than in

2007, possibly indicating that increased awareness

among clinicians led to diagnosis of earlier and milder

Q-fever infections [5]. However, in 2007 we observed

four clusters for which Q fever seemed a plausible

cause vs. a total of three clusters in 2005 and 2006

combined, which suggests an actual rise in Q-fever

infections in 2007.

Our finding that syndromic hospital data can reveal

disease clusters possibly caused by Q fever, supports

the value of prospective syndromic surveillance for

detection of otherwise hidden outbreaks. We showed

previously that syndromic surveillance for LRI would

detect a modest number of clusters in time to investi-

gate: on average five clusters per year at the lowest

threshold level (recurrence intervals o1 year), and

three clusters at the highest (recurrence intervals o5

years) [13]. If such prospective surveillance were to

focus on detection of Q-fever outbreaks, inclusion of

data on infected small-ruminant farms, as in the cur-

rent study, would further decrease the number of

clusters to investigate. Nevertheless, even then such

surveillance also requires sufficient complementary

epidemiological and microbiological data to guide

further investigation of detected clusters. For ex-

ample, LRI clusters are best interpreted in relation to

local influenza or RSV surveillance data. A prerequi-

site for prospective syndrome surveillance is the real-

time availability of hospitalization data, including

clinical diagnoses and symptoms by date of hospi-

talization. Although at present not available in The

Netherlands, such real-time syndromic data collection

might become feasible due to the nationwide im-

plementation of electronic healthcare-information

exchange. Finally, proper data collection and analysis

will be more challenging in a prospective setting, for

example due to data quality problems such as re-

porting delays.

This study has some further limitations. Due to its

retrospective setting, C. burnetii infection could not be

laboratory-confirmed for detected cluster patients.

Therefore, we could only indicate whether Q fever

seemed a plausible cause by excluding clusters with

other apparent causes and assessing the presence of

C. burnetii in cluster areas, as measured by overlap

with infected farms. Another limitation lies in our use

of voluntary reports from farmers to indicate possible

C. burnetii point sources. Cluster areas not overlap-

ping with reportedly infected farms may still have

been contaminated by farms not tested or, possibly,

by the spreading of manure from non-local contami-

nated farms. If so, this may explain those clusters that

seemed possibly due to Q fever but did not overlap

with reported Q fever on farms.

Serological testing of preserved human samples

might confirm the occurrence of Q-fever clusters be-

fore 2007. However, to our knowledge no historical

samples from specific LRI patients within the cluster

areas are available. Other studies have found that

substantial proportions of a human population can

be exposed to Q fever without symptomatic in-

fections [27, 28]. Therefore, a solution might be to

use historical samples from blood donors, if suf-

ficient samples from the cluster areas are still avail-

able.

This study shows substantial support for the oc-

currence of human Q-fever outbreaks in The Nether-

lands before detection of the May/June 2007 outbreak

and covering a wider area. Retrospectively, suspicious

LRI and hepatitis hospitalization clusters from 2005

to 2007 were detected and found to overlap with

small-ruminant farms reporting Q-fever abortion

waves. Further research on historical serological

samples from the detected cluster areas, if available,

should be performed to confirm occurrence of human

Q-fever outbreaks before the May/June 2007 out-

break. In a real-time setting, detection of these clus-

ters should have prompted further investigation and

additional laboratory tests, which might have resulted

in detection of human Q-fever outbreaks up to 2 years

earlier. In this light, it seems worthwhile to make

syndromic hospitalization data available real-time for

prospective outbreak detection. Finally, our study

also illustrates the added value of integrated human

and animal surveillance for improved detection of

zoonotic disease outbreaks.

In search of hidden Q-fever outbreaks 7

NOTE

Supplementary material accompanies this paper on

the Journal’s website (http://journals.cambridge.org/

hyg).
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Syndromic surveillance has increasingly been 
used for capturing infectious disease dynamics 
that might be missed by surveillance based on 
notifications by clinicians and laboratory diagnoses 
alone. There is, however, an ongoing debate about 
the feasibility of syndromic surveillance and its 
potential added value. Here we give a perspective 
on syndromic surveillance, based upon the results 
of a retrospective analysis of syndromic data from 
six health-care registries. These registries had been 
designed for other purposes, but were evaluated for 
their potential use in signaling infectious disease 
dynamics and outbreaks. Our results show that 
syndromic surveillance clearly has added value in 
revealing the blind spots of traditional surveillance, 
in particular by detecting unusual (local) outbreaks 
independent of diagnoses of specific pathogens, and 
by monitoring disease burden and virulence shifts of 
common pathogens. Therefore we recommend the 
use of syndromic surveillance for these applications, 
if feasible in real-time or else retrospectively. 

Background
In the last decade, syndromic surveillance has 
increasingly been implemented to detect and monitor 
infectious disease outbreaks, as early detection and 
control may well mitigate the impact of epidemics 
[1-3]. Traditional outbreak detection based on 

astute clinicians and laboratory diagnoses can have 
blind spots for emerging diseases, because patients 
reporting with common symptoms (e.g. pneumonia) 
may not alarm clinicians, and uncommon or new 
pathogens can remain undetected by laboratories 
(like initially happened with SARS in 2003). 
Syndromic surveillance may reveal such blind spots 
of traditional surveillance by monitoring elevations 
of common symptoms or clinical diagnoses like 
“shortness of breath” or “pneumonia”. The increasing 
use of syndromic surveillance seems driven by two 
factors: high profile disease events (2001 anthrax 
attacks, 2003 SARS outbreak, pandemic threat, 
excess mortality due to heat waves) stressing the need 
for an improved early warning surveillance; and the 
increased availability of electronic health care data, 
making large scale monitoring of non-specific health 
indicators increasingly feasible. 
There is, however, an ongoing debate about the 
feasibility and the added value of syndromic 
surveillance. Some skepticism exists about the 
potential work load it may generate if used for real-
time outbreak detection (i.e. if the system creates 
many false positive signals) [4]. In the Netherlands, 
this debate has led to a research project to evaluate 
the potential value of syndromic surveillance for 
infectious disease surveillance and control, and to 
make recommendations for implementation. 

Evaluation of Syndromic Surveillance: Perspective on Its Added Value and Recom-
mendations for Implementation.

Cees C. van den Wijngaard1, Wilfrid van Pelt1, Nico J.D. Nagelkerke2, Mirjam Kretzschmar1, 
Marion P.G. Koopmans1,3

1National Institute for Public Health and the Environment, Bilthoven, the Netherlands
2United Arab Emirates University, Al-Ain, United Arab Emirates
3Erasmus Medical Center, Rotterdam, The Netherlands.

The research questions addressed were:
1.	What syndromic data types track known dynamics 

of infectious diseases in the general population, 
and thus will also likely reflect emerging pathogen 
activity? 

2.	Can syndromic surveillance improve the 
monitoring of disease burden and/or detect shifts 
in virulence of common pathogens?

3.	Can syndromic surveillance detect (local) 
outbreaks with a limited number of signals in 
time, independent of laboratory detection of the 
causative pathogens?

We addressed these questions by retrospectively 
analyzing syndromic data from Dutch health-
care registries, and also by applying syndromic 
surveillance to ad-hoc upcoming infectious disease 
problems. To select potential syndromic data 
sources, Dutch health-care-registry owners were 
asked to provide information on predefined criteria 
(coverage, timeliness, potential for transition to 
real-time data availability). Table 1 shows the 
six registries included in the study, with data on 
work-absenteeism, General Practitioner (GP) 
consultations, pharmacy prescriptions, laboratory 
submissions, hospital diagnoses and mortality. Data 
was available for 1999-2009 or parts of this period. 

Based on a literature search, we selected 
syndromes that were expected to reflect the clinical 
presentations of both high-threat and common 
pathogens, and therefore seemed most suitable for 
syndromic surveillance purposes [5,6]; thus we 
selected respiratory syndromes (e.g. for high-threat 
pathogens like B. anthracis or pandemic influenza), 
gastro-enteritis syndromes (e.g. for Vibrio cholerae) 
and neurological syndromes (e.g. for West-Nile 
virus) for evaluation. The syndromes were defined for 
each registry guided by a list of syndrome definitions 
defined by the Centers for Disease Control and 
Prevention (CDC, USA,  http://www.bt.cdc.gov/
surveillance/syndromedef) and expert opinion. 

These registry syndromes were then evaluated for 
their potential use in signaling infectious disease 
dynamics and outbreaks. 

In this article we give a perspective on 
the added value of syndromic surveillance for 
infectious disease surveillance and control, based 
upon the results of our project and in light of the 
current literature. 

Main findings of syndromic surveillance 
evaluation

Tracking infectious disease dynamics in the 
general population
The first question addressed was to what extent 
trends in respiratory, gastro-enteritis and 
neurological syndromes in the various registries 
reflect known pathogen activity, as measured by 
laboratory pathogen counts. This indicates whether 
these registries have the potential to reflect emerging 
pathogen activity (Table 2). 

The respiratory syndromes associated best 
with known disease dynamics (Table 2), displaying 
higher levels in winter corresponding with higher 
laboratory counts of respiratory pathogens [7]. Up 
to 86% of syndrome variations were explained by 
respiratory pathogen counts, particularly influenza 
and RSV, which is in line with other studies [8,9]. 
Our respiratory syndromes were 0-5 weeks ahead 
of laboratory counts of influenza, suggesting better 
timeliness of the syndromes. For RSV, the pathogen 
counts were concurrent with the hospital syndrome, 
in line with the fact that most RSV tests are performed 
on hospitalized young children [10,11]. Most other 
registry syndromes lagged behind the RSV counts, 
and thus behind the hospital syndrome, which 
suggests that young children are affected relatively 
early in the annual RSV season. 

Our gastro-enteritis syndromes showed winter 
peaks concurrent with increased rotavirus activity, 
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better communication to the public during the 2003 
SARS outbreak might have prevented economic 
loss due to unnecessary precautions by the public, 
like staying away from crowds in areas with low 
level of spread. Also during high-profile public 
events (like the Olympics, or G8 summit) [20,21], 
syndromic surveillance should mainly be used to 
confirm the absence of (major) unusual disease 
outbreaks. During our project, we illustrated the 
value of syndromic data for assessing the absence or 
limited size of unusual disease triggered by ad-hoc 
upcoming concerns about the possible emergence 
of specific diseases. For West-Nile virus (WNV), an 
enhanced surveillance was established by laboratory 
testing of cerebrospinal fluids (CSFs) from patients 
with unexplained viral meningitis/encephalitis [13]. 
None of the CSFs tested positive for WNV, but the 
probability that WNV was indeed absent in the 
Netherlands could only be assessed from the annual 
count of unexplained viral meningitis/encephalitis 
cases (in relation to the number of CSFs tested). For 
hepatitis E and Ljungan virus, we evaluated whether 
considerable hidden viral activity might have 
occurred, by inspecting time series of unexplained 
hepatitis and abortion/perinatal death respectively. 
For impetigo, rumors about a continuing increase in 
children were countered by inspection of time series 
of GP consultations for impetigo. 

Other spin-offs of syndromic surveillance
In addition to the above described applications, 
other uses of syndromic surveillance were illustrated 
during the recent influenza pandemic. We used 
respiratory syndromic data on hospitalizations and 
GP consultations to plan the diagnostic capacity that 
would be needed if a larger proportion of the persons 
with respiratory symptoms would be tested — as is 
the case in the early stages of a pandemic [22]. Also 
early in the pandemic, the reaction of the public to 
media reports on pandemic influenza was illustrated 

by sharp elevations of oseltamivir prescriptions 
[23]. This information was used to urge physicians 
to exercise restraint in prescribing oseltamivir, in 
order to decrease the risk of oseltamivir shortage and 
resistance later in the 2009 pandemic.

Data requirements
The results of our project suggest specific data 
requirements for successful syndromic surveillance. 
Data quality is important for all applications of 
syndromic surveillance, but probably most for local 
outbreak detection. Here, relatively small artifacts 
can already result in false alarms, for example 
duplicates of the same patient in one registry, as we 
experienced when using hospital data for space-
time cluster detection [17,18]. In a real-time setting 
(e.g. daily or weekly data updates), reporting delays 
can also lead to data artifacts and false alarms, if for 
example hospitals submit their data with a delay [24]. 
In addition to having few data artifacts, data needs 
to be representative, and for local outbreak detection 
also needs to have a high coverage (preferably close 
to 100%) to be able to timely detect local outbreaks in 
any region.  By using data with relatively low coverage 
levels, sensitivity for local outbreaks obviously will 
be reduced [25,26]. Nordin et al. [25] used simulated 
anthrax attack data injected in true physician’s visit 
data to show that the sensitivity for respiratory 
outbreaks initiated by bioterrorism was not very high. 
However, the authors evaluated a maximum system 
coverage of only 36% of the population. In another 
study, Balter et al. [26] reported that a syndromic 
surveillance system in New York City sometimes 
missed several gastro-enteritis outbreaks due to data 
quality and coverage problems, such as miscoding of 
patients’ chief complaints and hospitals that did not 
participate in the system. 

For effective signal verification, sufficient 
information on individual patients’ characteristics 
and concurrent laboratory trends have to be available 

and summer peaks concurrent with peaks in Shigella, 
Campylobacter and Salmonella activity (Table 2). 
The syndrome variation explained by pathogen 
counts was lower (29-40%) than in the respiratory 
syndromes, although it increased up to 85% when 
limiting the analysis to young children, with the 
syndrome counts 1-2 weeks ahead of the rotavirus 
laboratory counts [12]. 

Our general syndromes on infectious 
neurological disease did not clearly reflect known 
patterns of pathogen activity, but a more specific 
viral neurological syndrome did (Table 2). For this 
“unexplained viral meningitis” syndrome in our 
hospital data, 62% of the variation was explained 
by known seasonal enterovirus activity, suggesting 
that elevated levels of “unexplained viral meningitis” 
indicate undiagnosed enterovirus infections [13]. 

Monitoring disease burden and detecting 
virulence shifts
Relating time series of syndromic surveillance 
data with pathogen specific surveillance data 
allows quantifying the disease burden of common 
pathogens in time. Thus, the monitoring of disease 
burden and also shifts in virulence can be improved. 
An example is the clear association of norovirus 
with mild to severe morbidity and even deaths in 
the elderly, observed in recent years and coinciding 
with emergence of new norovirus variants [14]. The 
latter had been suspected but could not be assessed 
previously by any other routine surveillance. For 
influenza, we detected previously unknown shifts in 
the annual numbers of hospitalizations and deaths 
related to the number of ILI cases, coinciding with 
shifts in antigenicity of circulating viruses [15]. 
Such analyses can also be used for investigating the 
severity of new influenza A(H1N1) 2009 infection 
compared with seasonal influenza [16]. 

Detecting local outbreaks
Obviously, the prime objective of syndromic 
surveillance is to detect unexpected disease outbreaks 
in a timely manner. For this purpose, analysis of 
nationwide data may not be a very sensitive method. 
Local detection of syndrome elevations — when 
they are (still) too small to be detected on the 
national level — might signal emerging outbreaks 
earlier. To test this, we used known outbreaks of 
Legionnaires’ disease as “positive controls” (or gold 
standard) for realistic severe respiratory disease 
outbreaks by uncommon or new pathogens that may 
not be (timely) detected by traditional surveillance. 
Simulating prospective surveillance, we were able to 
timely detect these known gold-standard outbreaks 
in syndromic hospital data using space-time scan 
statistics [17]. The fact that the overall alarm rate 
was modest (on average 5 local clusters detected 
per year) suggests that a syndromic surveillance 
on hospitalization data can indeed be a useful 
early-warning tool for local outbreak detection. By 
the same approach, previously unknown disease 
clusters plausibly due to Q fever were detected [18], 
thus illustrating that in some occasions syndromic 
surveillance can identify outbreaks that otherwise 
remain undetected. These analyses were motivated 
by the clinical detection of a large Q-fever outbreak 
in 2007 and the subsequent years, which raised the 
question whether smaller outbreaks might have 
preceded the 2007 outbreak. Real-time detection 
and investigation of these previously unknown 
clusters, could possibly have led to earlier awareness 
of increased Q-fever activity. 

Assessing the absence or limited size of unusual 
disease events
In public-health practice, besides timely detection of 
unusual outbreaks, assessing the absence or (limited) 
size of unusual disease events can be important as 
well. For example, Blendon et al. [19] suggested that 
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coverage. If prospective collection of syndromic 
data of high quality and coverage is not feasible, 
real-time early warning for (local) outbreaks should 
not be performed, since true outbreaks will then 
likely be missed while at the same time numerous 
false alarms will be generated. For real-time early 
warning, sufficient laboratory and epidemiological 
information is needed, in order to be able to quickly 
verify possible causes for syndromic signals, and thus 
recognize relevant signals that might need a response. 
Retrospective analyses as performed in our project 
can validate the involved data and analyses before 
prospective implementation. 
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to identify possible causes of generated signals. For 
example, we interpreted local respiratory syndrome 
clusters in relation to local influenza or RSV activity; 
if the age distribution of cases reflected the usual 
pattern for these viruses, we regarded further 
investigation unnecessary [17]. Also, the rise in 
oseltamivir prescriptions early in the 2009 pandemic 
could be ascribed to the “worried well”, because 
influenza activity had not increased in the laboratory 
surveillance [23]. Without such verification options, 
the value of syndromic surveillance is limited [26]. 

Perspective 

Cost effectiveness of real-time systems
An important question is whether syndromic 
surveillance is cost effective. Events like a bioterrorist 
attack, a SARS epidemic or an influenza pandemic are 
rare and the question is how much of the public-health 
budget should be spent on a detection system for such 
rare events. 

Estimating the costs of a surveillance system is 
quite well possible. Studies that report the operating 
costs associated with real-time syndromic surveillance 
found annual operating costs ranging from $130.000-
$150.000 to $280.000 [27]. However, estimating its 
benefits is less obvious. Kaufmann et al. [28] reported 
that the economic damage caused by a bioterrorist 
attack can amount to millions or billions of dollars. 
The SARS epidemic in 2003 and the influenza 
A(H1N1) pandemic in 2009 showed that the damage 
caused by naturally occurring outbreaks can be 
similarly high [29,30]. If similar disease events emerge 
every few years, and syndromic surveillance leads to 
earlier detection and control of such outbreaks, then 
the benefits of syndromic surveillance likely outweigh 
its costs. The question here is whether earlier 
detection would indeed lead to control or at least 
reduced impact of a (new) disease, for instance for the 
SARS outbreak or for the 2009 influenza pandemic. 

Simulation studies could help to further evaluate for 
what specific types of major disease events syndromic 
surveillance could likely lead to interventions that 
limit the damage. 

Possibly just as important as benefits by 
earlier detection and control, is the downscaling of 
unnecessary interventions during ongoing outbreaks. 
This requires quick assessment of the (limited) 
size and severity of outbreaks. For example, if the 
severity of a new pandemic can be quickly assessed 
(as WHO requires, http://www.who.int/csr/disease/
influenza/PIPGuidance09.pdf) by reliable syndromic 
hospital surveillance of severe respiratory infections, 
costly interventions like quarantine and prophylactic 
treatment or vaccination could be downscaled or 
stopped earlier.  

In the Netherlands, prospective surveillance 
has now started for crude mortality data, with weekly 
data collection and analysis since the 2009 influenza 
pandemic. The existing mortality registry allowed 
prospective implementation at relatively low extra 
costs. Real-time data collection is currently also being 
implemented for the Dutch GP registry (Table 1). 
Possibly, including hospital data and other data types 
in future syndromic surveillance systems is feasible 
at limited costs as well, if the data collection can be 
integrated into already planned real-time (future) 
data infrastructures like the Dutch national health-
information-exchange system (EPD, http://www.
minvws.nl/dossiers/elektronisch-patienten-dossier).

Conclusion
Based on our evaluation project, we recommend the 
use of syndromic surveillance to reveal blind spots 
of traditional surveillance, in particular by detecting 
unusual (local) outbreaks independent of diagnoses 
of specific pathogens, and by monitoring of disease 
burden and virulence shifts of common pathogens. 

Our results are mostly based on retrospective 
analysis of syndromic data with high quality and 
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General Discussion  

Introduction
Syndromic surveillance has increasingly been used for capturing infectious disease dynamics [1-8] and the 
impact of other public-health events, like heat waves or chemical incidents [7,9,10]. In chapters 2, 3, 4 and 
5 of this thesis the feasibility of several syndromic surveillance applications was investigated and in chapter 
6 we concluded that syndromic surveillance — either in real-time or retrospectively — can be used for 1) 
monitoring disease dynamics in the general population, 2) monitoring disease burden and/or virulence shifts 
and 3) detection of (local) outbreaks. Below we will further elaborate on the implications of this thesis for 
syndromic surveillance regarding data, analyses and response, in light of the current literature. Then we will 
discuss challenges and future possibilities of syndromic surveillance, and finally will conclude upon the added 
value of syndromic surveillance for infectious disease surveillance.

Data 
The included data types and quality, as well as the syndrome definitions can greatly impact the performance of 
syndromic surveillance systems. The syndromic data types investigated in this thesis all more or less reflected 
infectious disease dynamics in the general population. This has also been observed for other health-care 
data types, like over-the-counter medication sales data [11],  telephone help-line data [12,13], and hospital 
emergency-department data [3,4,14]. A recent trend is the use of internet-based data sources, like search terms 
[15-17], media reports [18], or web-based questionnaires [19-21]. Internet-based data types capture disease 
dynamics in the community more or less independent of health-care-seeking behavior of the population. 

An important difference between the various syndromic data types is that some reflect mild morbidity, 
not even requiring medical treatment, whereas others reflect more severe morbidity or even mortality. Besides 
a difference in severity level, this also implies differences in vulnerability to biases like reactions by the “worried 
well” due to media attention for major infectious disease events, as discussed in chapter 6. For this reason, 
signal verification is especially important for mild morbidity data, whereas for internet-based data this is a 
weak point; for searches and media reports signal verification on patient level is difficult. Also, web-based 
applications often provide biased datasets due to lack of coverage in the very young and the elderly that do 
not use internet routinely [19,20]. Finally, for internet searches or media reports, standardized metrics such 
as disease incidence and prevalence do not apply, although they are being developed [22]. For mild morbidity 
data based on health-care registries (GP consultations, medical prescriptions) signal verification on patient 
level is less of a problem, since epidemiological data on patient level (age, place of residence, specific symptoms 
etc.) will be available, and additional laboratory testing is often possible. 

The sensitivity and specificity of (local) outbreak detection are also strongly influenced by the included 
data types. Using milder morbidity data may lead to low specificity; numerous alarms will be generated that only 
reflect space-time variations in common mild disease that do not necessarily need a public-health intervention. 
Thus, a way to increase the specificity is to focus on data reflecting severe morbidity (like hospitalizations or 
mortality) hereby limiting the alarm rate. Then again, that may decrease the sensitivity, since data on severe 
morbidity will miss early signals generated by local increases of still mild but progressing disease. Also, for 

monitoring the disease burden or shifts in virulence of common pathogens by combined analysis of syndromic 
data and specific (pathogen) surveillance (chapter 3 and [23]), data ranging from mild to severe morbidity 
should be available, to be able to assess the impact of pathogens at all morbidity levels. 

Data quality is most important for local outbreak detection, since small artifacts can already result in 
false alarms (see data requirements described in chapter 6). Besides quality parameters like few data artifacts 
and high coverage, a higher spatial resolution in the data reportedly improves outbreak detection, but there is 
a trade-off with privacy concerns [24,25].

We focused on respiratory, gastro-enteritis and neurological syndrome definitions, since these syndromes 
represent clinical presentations of both high-threat and common pathogens (chapter 1). Nevertheless, for all 
syndromic surveillance applications and data types, syndrome definitions should be flexible, to be able to adapt 
to new unforeseen disease events. For example, in our hospitalization data we could easily adapt the general 
neurological syndrome definition based on CDC-guidelines [26] into a more specific viral meningitis/encephalitis 
syndrome, which made it possible to assess the validity of an enhanced West-Nile virus surveillance [27]. 

Syndromic data can be available as structured (coded) data or free-text data. Surveillance on structured 
data has shown good performance in our and other studies (chapter 2 and [28-30]); syndrome definitions are 
often based upon combinations of structured registrations of symptoms or (clinical) diagnoses (like ICD-9-
codes). Surveillance based on free-text data [28,31-33] is methodologically more challenging since it requires 
natural language processing to encode the data text fields, and can lead to mixed results. For instance, Hripcsak 
et al. found that free-text syndromes based on electronic health records correlated well with influenza-like-
illness, but not with gastro-intestinal infections [28]. Nevertheless, if structured data is lacking, using free-text 
data makes it possible to implement syndromic surveillance as long as the accuracy of syndrome classifiers is 
properly validated.

Analyses 
Many time-series methods are being used for syndromic time trends, mostly focusing on aberration detection 
in time [34]. In our project, rather than aberration detection, we first of all wanted to evaluate to what extent 
our syndromes reflected known disease dynamics. Therefore, we constructed multivariate regression models 
that explained the syndrome time series by specific disease or pathogen surveillance data (chapter 2 and 3). 
When modeling the syndromes we did not transform them to the log scale, to be able to estimate the additive 
contributions of individual pathogens on the syndromes. In chapter 3, in order to estimate better confidence 
intervals when using such additive models to search for shifts in disease burden or virulence of common 
pathogens, we refined our time-series method by using a poisson (instead of linear) error distribution, and 
including autocorrelation in the model residuals. 

For local outbreak detection, we used the space-time permutation and the poisson-distributed scan 
statistic as available in the SaTScan software (chapters 4 and 5). Although these scan-statistics are currently 
among the most widely used methods for space-time surveillance systems, they have a disadvantage that they 
can only search for circular- (or elliptic-) shaped clusters, which makes them less sensitive to clusters that are 
shaped otherwise. That is why Takahashi et al. proposed an alternative scan statistic for irregularly shaped 
clusters [35]; however, their method is not practical to apply on large data sets, because of its long computation 
time. Recently an alternative scan-statistic approach has been described by Neill and Cooper that might solve 
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importantly, identifying the reporting physicians was not allowed by privacy regulations. Obviously, without 
identification of patients or their physicians, additional diagnostics (step 3) were not possible either. Because 
the cause of this signal remained uncertain, no specific further action was taken. 

This example illustrates that small to moderate syndromic signals that cannot be verified in 
epidemiogical or laboratory data, or by consulting patients’ physicians, will have to be ignored by public-
health authorities, as without such information irrelevant signals cannot be distinguished from relevant 
signals. Nevertheless, syndromic surveillance systems with similar privacy or practical limitations as 
described above can still be helpful for public-health decision making; our real-time surveillance on 
mortality data did support the decision making during the 2009 pandemic, particularly when weighing 
the (limited) severity of disease against the impact of control measures. Suppose that the observed excess 
mortality would have been higher and/or more persistent, then additional response measures could have 
been imposed — even without detailed signal verification — such as increased and sustained active case 
finding and prophylactic treatment of contacts. For each system to be implemented it should be investigated 
how surveillance can best be performed within the privacy regulations involved, or whether the surveillance 
purposes are relevant enough for public health to maybe adapt the privacy regulations. 

In a prospective setting, responses will be based on a combination of syndromic surveillance data, 
reports by clinicians and early diagnostic test results, which all could generate the first alarm for different 
kind of disease events. Further research should focus on practical methods for integrating syndromic 
surveillance alarms — preferably from systems with high data quality and coverage as in our retrospective 
study — with clinical reports and laboratory information for effective public-health responses. 

Performance evaluation
One of the major concerns is that syndromic surveillance could have low specificity resulting in many 
false alarms [47-50]. As described in the introduction (chapter 1), standardizing performance evaluation 
is difficult, also because real-life test outbreaks are scarce, while simulated outbreaks do not reflect real-life 
diversity and unpredictability. Therefore, quantitative performance measures like sensitivity and specificity 
of detection cannot be generalized. In our project we chose to evaluate local outbreak detection using the 
few recent known outbreaks of severe respiratory infectious diseases in the Netherlands. We then formally 
assessed whether these true outbreaks could be detected (as an indication for sensitivity), and calculated 
the average overall alarm rate in time (as an indication for specificity, or the work load of investigating 
these alarms, see chapter 4). Buckeridge et al. attempted to improve performance evaluation for temporal 
aberration detection algorithms; they designed a conceptual model that decomposes the different tasks of 
the algorithms, to facilitate the identification of the precise characteristics that determine their performance 
(e.g. whether forecasting is used to generate an expected value, the forecasting method etc.) [34]. They 
implemented this model into software to conduct detection performance evaluation studies in a formal 
systematic way, which might lead to a more standardized evaluation of detection algorithms in the future. 

Buehler et al. interviewed US syndromic surveillance users to assess qualitatively for what kind of 
disease events syndromic surveillance systems were considered useful in public-health practice [51]. These 
users reported that they valued syndromic surveillance systems most for monitoring widespread health 
effects and affirming the absence of outbreaks in crisis situations (“situational awareness”). This is in line with 

both the problem of irregularly shaped clusters and the problem of long computation time, but this method has 
not been evaluated yet in real-life surveillance systems [36].

Further research is needed in methodology for analyzing multiple data streams [36-41]. Many studies 
on syndromic surveillance analyze disease dynamics in univariate syndromic time series, whereas multiple 
data streams are often available. Shifts in single syndromes can easily be biased by shifts in health-care 
utilization (e.g. during major public events), whereas the relation between multiple syndromes will likely 
be more stable during shifts in health-care utilization. Multivariate analyzes can therefore provide better 
information on disease dynamics; for instance, by focusing on shifts in the relation between multiple 
syndromes, instead of focusing on mean shifts in single syndromes, thus raising the specificity of signals 
[37,40]. Similarly, multivariate methods exist for space-time analysis, to detect outbreaks in multiple data 
streams at the same time [36,38]. 

Response 
If syndromic surveillance is used for early warning, responding on signals can be complicated, because the 
cause and thus possible threat of a syndromic signal initially is often unknown. No standardized response 
protocol for syndromic surveillance signals is available in the current literature [42,43]. A logical stepwise 
approach, after excluding obvious data artifacts, would be:
�1. �to verify whether explanations can be found in readily available laboratory and epidemiological data 

(like patients’ demographics and clinical diagnoses) or other relevant data sources (e.g. climate data for 
possibly temperature related morbidity/mortality)

2. �to contact the patients’ physicians to ask for possible explanations for the signal
�3. �to perform additional laboratory diagnostics to identify possible causative pathogens or other causes. 

Step 1, verification using epidemiological and laboratory (and other relevant) data, would often be 
sufficient to decide that no further investigation is necessary. For example, for local respiratory hospital 
signals, we described that assessing activity of RSV or influenza overlapping with syndromic signals would 
often make further investigation unnecessary (see chapter 4). In step 2, identification of patients or their 
physicians is necessary. Whether this is allowed will depend on national privacy regulations which may 
differ between countries. For example in Sweden, personal identity numbers and even patients’ addresses 
can be used for surveillance purposes [44], whereas in many other countries this would not be allowed. Step 
3, performing additional diagnostics, would only be necessary if no explanation has yet been found, but 
might be hard if patients are not in the immediate surrounding of health-care facilities (e.g. hospitalized). 
Cooper et al. describe a possible solution for this; they successfully obtained additional laboratory results 
by sending self-sampling test kits to “cold/flu” patients who called in to a telephone health-help line [45]. 

When using real-time total mortality monitoring as an early-warning tool for excess mortality during 
the 2009 pandemic, we experienced that we could not follow the above described response steps, mainly due 
to privacy regulations. We did observe some small but persistent elevations in infant mortality (less than 
one year of age, and scattered all over the country), for which we wanted to verify if they might be related 
to the pandemic [46]. Privacy regulations did not allow us to verify any further detailed epidemiological, 
clinical, or laboratory data for these patients (step 1). Without such basic information, it may have been 
difficult to convince the reporting physicians (step 2) to supply additional information for verification. More 
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effect of applying syndromic surveillance tools for local purposes could be that health-care staff will be extra 
motivated to improve the quality of data that goes into the system (e.g. electronic health records) if they find 
the output useful for their own daily practice [61]. It should thus be further investigated whether health-
care workers could indeed use local syndromic surveillance tools for their daily practice in a useful manner. 

Conclusion
In the last decade, syndromic surveillance systems worldwide have improved the situational awareness for 
(infectious) disease dynamics and outbreaks. The results of our analyses confirm that syndromic data can 
reflect disease dynamics that remain undetected by traditional surveillance alone, and also indicate that 
early outbreak detection is feasible if syndromic data with high quality and coverage can be collected. For 
an effective signal verification and response, preferably timely epidemiological and laboratory information 
should be available, and it should be possible to contact patients or their physicians as well. 

If syndromic data is not real-time available yet, retrospective data collection and analysis can still 
be of added value for emerging infectious disease control. Emerging diseases can become persistent or 
recurrent in affected populations, especially if their introduction is initially not detected. Our results showed 
that the Q-fever outbreak that was first detected in 2007, could possibly have been detected in syndromic 
hospital data from 2005. Even with the current lag time before this hospital data becomes available (once 
a year), these clusters could already have been detected in 2006, which is still one year before the official 
recognition of the outbreak. For pandemic influenza A(H1N1), retrospective syndromic analyses could 
be used for prospective public-health responses; by doing a comparative analysis of the pandemic impact 
in 2009 compared to seasonal influenza in previous years, it becomes possible to reconsider interventions 
measures like additional vaccination or treatment if the same pandemic influenza strain would return in 
2010/11. Public-health authorities should therefore periodically collect and analyze available retrospective 
syndromic data from mild to severe morbidity as long as no real-time substitute is available.  

In this thesis, we illustrated how syndromic data can be used complementary to laboratory data to 
reveal infectious disease dynamics and outbreaks that otherwise would remain undetected. Syndromic 
data in currently existing real-time systems often lacks coverage and quality. For future inclusion of 
better syndromic data for surveillance, further research is necessary to assess to what extent the growing 
development of health–information-exchange and electronic-health-records might facilitate data collection 
at limited costs, with no or minimal extra work-load for health-care personnel, but without crossing legal or 
ethical boundaries regarding privacy. 

our own experiences (see chapter 6), and suggests that, besides a system’s outbreak detection performance, 
the ability to quickly address ad-hoc concerns should also be weighed (e.g. by flexible syndrome definitions 
that can be real-time adapted to focus on specific diseases). 

Integrated surveillance
In the future, instead of implementing systems with only syndromic or only laboratory data, it would make 
sense to use integrated surveillance data from different sources for better situational awareness and early 
warning. In this light, one could for example think of first detecting the emergence of a new variant of a 
specific pathogen, and then monitoring its clinical impact by integrated surveillance of both molecular and 
syndromic data. Some studies already presented ideas in this direction. Rabadan et al. suggested that the 
increased availability of patient data from Electronic Health Records together with increased availability 
of molecular typing techniques could facilitate an integrated pandemic influenza surveillance to evaluate 
and understand the severity of the pandemic virus and to identify the populations at risk of mild or severe, 
life-threatening illness [52]. Retrospective analyses of the 2009 pandemic could show to what extent 
this approach results in additional information about its impact. Ansaldi et al. showed that syndromic 
surveillance combined with molecular typing can improve the early-warning and tracing back the origin of 
measles outbreaks [53]. 

Several studies suggested that syndromic animal surveillance can improve the preparedness for human 
disease events ([27,54-56] chapter 5). Gubernot et al. presented a framework for an integrated animal-
human disease surveillance in the US, for a specific list of zoonotic agents (such as B. anthracis, C. botulinum 
toxin, Brucella spp.) [57]. This framework was presented as a plan that only becomes active during times of 
increased threat for specific agents, with temporary extra work-load for the involved public-health, health-
care and veterinary staff. Implementing a useful routine integrated human-animal surveillance system with 
an acceptable extra work-load seems more challenging. In the Netherlands, syndromic animal surveillance 
on poultry farms has already been implemented after the influenza-A(H7N7) outbreak in 2003 (mainly 
based on mandatory reporting of increased mortality) [58]. For better preparedness to future threats of 
avian influenza, integration of such syndromic animal and human surveillance systems seems worthwhile, 
since detection of human severe respiratory infection clusters in proximity of poultry farms with increased 
mortality could trigger earlier laboratory confirmation. For an effective response to signals from such 
integrated human-animal surveillance, an extra challenge could be to overcome jurisdictional barriers and 
conflicts of interest between human and veterinary public health.  

Feedback to local health-care staff
Besides improving the situational awareness and early warning surveillance for national or regional public-
health authorities, syndromic surveillance could fulfill the same purpose for local hospital and ambulatory-
care staff, or even the local public. Johansen et al. reported that patients in Norway expected their GP 
to know the current disease dynamics in the local population, which might be relevant for their consult, 
whereas the GP’s in this study stated that they actually were not systematically informed of local disease 
dynamics [59]. Horst et al. suggested tracking the spread of common illnesses by syndromic surveillance 
and GIS to improve local health-system resource allocation and inform the public [60]. A positive side 
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Table 1. Examples of high threat pathogens that can cause a respiratory, gastro-enteritis or neurological 
syndrome [1-3].

Respiratory syndrome Gastro-enteritis syndrome Neurological syndrome
Category A B. anthracis (inhalational anthrax)

Y. pestis (pneumonic plague)
F. tularensis (tularemia)

B. anthracis (gastrointestinal anthrax)

Category B C. burnetii (Q fever)
C. psittaci (Psittacosis)

Food safety threats (e.g., Salmonella 
spp., Escherichia coli O157:H7) 
Water safety threats (e.g., Vibrio 
cholerae, Cryptosporidium parvum)

Alphaviruses (VEE, EEE, WEE)

Category C (Pandemic) influenza, SARS West-Nile virus and other 
flaviviruses 

Table 2. ICD-9-CM codes for the gastro-enteritis (a) and neurological syndrome (b) in hospital data.*
2a. Gastro-enteritis syndrome.

ICD-9-CM code Description
001.0 Cholera due to Vibrio cholerae
001.1 Cholera due to Vibrio cholerae el tor
001.9 Cholera, unspecified
003.0 Salmonella gastroenteritis
003.20 Localized Salmonella infection unspecified
003.29 Other localized Salmonella infections
003.8 Other specified Salmonella infections
003.9 Salmonella infection, unspecified
004.0 Shigella dysenteriae
004.1 Shigella flexneri
004.2 Shigella boydii
004.3 Shigella sonnei
004.8 Other specified Shigella infections
004.9 Shigellosis, unspecified
005.0 Staphylococcal food poisoning
005.2 Food poisoning due to Clostridium perfringens [C. welchii]
005.3 Food poisoning due to other Clostridia
005.4 Food poisoning due to Vibrio parahaemolyticus
005.8 Other bacterial food poisoning
005.9 Food poisoning, unspecified
006.0 Acute amebic dysentery without mention of abscess
006.8 Amebic infection of other sites
006.9 Amebiasis, unspecified
007.0 Balantidiasis
007.1 Giardiasis
007.2 Coccidiosis
007.3 Intestinal trichomoniasis
007.8 Other specified protozoal intestinal diseases
007.9 Unspecified protozoal intestinal disease
008.0 Intestinal infection due to Escherichia coli [E. coli]
008.1 Enteritis due to Arizona group of paracolon bacilli
008.2 Enteritis due to Aerobacter aerogenes enteritis
008.3 Enteritis due to Proteus (mirabilis) (morganii)

Appendix chapter 1

Syndrome definitions for the included medical registries.

Based on a literature search and a syndrome list as selected by the CDC (Centers for Disease Control and 
Prevention, USA) we selected syndromes that were expected to reflect the clinical presentations of both high-
threat and common pathogens [1-3]. By this approach, we included respiratory, gastro-enteritis and neurological 
syndromes for evaluation. Table 1 shows high-threat pathogens and/or diseases that can present with any of these 
clinical syndromes.  

Then, general respiratory, gastro-enteritis and neurological syndromes were defined for each medical 
registry in our project (except for the absenteeism registry which contained no medical information). In this 
chapter 1 appendix we only describe the general gastro-enteritis and neurological syndromes for the medical 
registries included in the project. The general respiratory (and additional) syndromes are described in detail in 
the appendices of chapters 2 to 5. 

To define the syndromes, we used the ICD-9-CM (International Classification of Diseases, 9th revision, 
Clinical Modification) codes as selected by the CDC [3]. We selected both the codes for general symptoms and 
diagnoses (‘category 1’ in CDC-list) and the codes for specific pathogens diagnoses (‘category 3’ in CDC-list). 
For the hospital registry (see Table 2a and 2b) we used these syndrome codes with some minor adaptations 
for the Dutch version of ICD-9-CM. For the mortality registry (see Table 3a and 3b) the ICD-9-CM-codes 
were converted into ICD-10 (International Classification of Diseases, 10th revision) codes using the WHO ICD-
9/ICD-10 translation list and expert opinion if necessary (ICD-9/ICD-10 Translator, see http://www.who.int/
classifications/en/). For the GP registry (see Table 4a and 4b), ICPC (International Classification of Primary 
Care) codes were included in a gastro-enteritis/neurological syndrome by expert opinion, guided by the CDC 
syndrome case definitions. 

For the pharmacy registry, we defined a gastro-enteritis syndrome by including all subcategories of the ATC 
(Anatomical Therapeutic Chemical Classification System) code A07 (“antidiarrheals, intestinal anti-inflammatory/
anti-infective agents”), see Table 5. We did not investigate a neurological syndrome for the pharmacy data.

For the laboratory submissions registry we defined a gastro-enteritis syndrome by including all submissions 
for specific diagnostics on faeces material, but only if the requested diagnostics were likely to be related to gastro-
enteral symptoms (according to expert opinion, see list of diagnostics in Table 6). For a neurological syndrome 
definition based on the laboratory submissions data we included all submissions for microbiological diagnostics 
on cerebrospinal fluids.
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3. 	 Syndrome Definitions for Diseases Associated with Critical Bioterrorism-associated Agents. Available at http://www.bt.cdc.

gov/surveillance/syndromedef/word/syndromedefinitions.doc, accessed at May 28th 2010.
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047.1 Meningitis due to echo virus
047.8 Other specified viral meningitis
047.9 Unspecified viral meningitis
048 Other enterovirus diseases of central nervous system
049.0 Lymphocytic choriomeningitis
049.1 Meningitis due to adenovirus
049.8 Other specified non-arthropod-borne viral diseases of central nervous system
049.9 Unspecified non-arthropod-borne viral diseases of central nervous system
052.0 Postvaricella encephalitis
053.0 Herpes zoster with meningitis
053.10 Herpes zoster with unspecified nervous system complication
054.3 Herpetic meningoencephalitis
054.72 Hsv, meningitis
055.0 Postmeasles encephalitis
056.00 Rubella with unspecified neurological complication
056.01 Encephalomyelitis due to rubella
056.09 Rubella with other neurological complications
061 Dengue
062.0 Japanese encephalitis
062.1 Western equine encephalitis
062.2 Eastern equine encephalitis
062.3 St. louis encephalitis
062.4 Australian encephalitis
062.5 California virus encephalitis
062.8 Other specified mosquito-borne viral encephalitis
062.9 Mosquito-borne viral encephalitis, unspecified
063.0 Russian spring-summer [taiga] encephalitis
063.1 Louping ill
063.2 Central european encephalitis
063.8 Other specified tick-borne viral encephalitis
063.9 Tick-borne viral encephalitis, unspecified
064 Viral encephalitis transmitted by other and unspecified arthropods
066.4 West nile fever
071 Rabies
072.1 Mumps meningitis
072.2 Mumps encephalitis
084.9 Other pernicious complications of malaria
086.2 Chagas’ disease without mention of organ involvement
086.3 Gambian trypanosomiasis
086.4 Rhodesian trypanosomiasis
086.5 African trypanosomiasis, unspecified
091.81 Acute syphil meningitis
098.82 Gonoccocal, meningitis
100.81 Leptospiral infections,meningitis (aseptic)
114.2 Coccidioidal meningitis
115.01 Histoplasmosis meningitis
115.11 Histoplasma duboisii, meningitis
115.91 Histoplasmosis, unspec, meningitis
117.5 Cryptococcosis

008.41 Intestinal infection due to Staphylococcus
008.49 Intestinal infection due to other gram-negative bacteria
008.5 Bacterial enteritis, unspecified
008.6 Enteritis due to specified virus
008.8 Enteritis due to other organism, not elsewhere classified
009.0 Infectious colitis, enteritis, and gastroenteritis
009.1 Colitis, enteritis, and gastroenteritis of presumed infectious origin
009.2 Infectious diarrhea
009.3 Diarrhea of presumed infectious origin
021.1 Enteric tularemia
022.2 Gastrointestinal anthrax
078.82 Epidemic vomiting syndrome
088.0 Intestinal infection due to e. coli unspecified
127.0 Ascariasis
127.1 Anisakiasis
127.2 Strongyloidiasis
127.3 Trichuriasis
127.4 Enterobiasis
127.5 Capillariasis
127.6 Trichostrongyliasis
127.7 Other specified intestinal helminthiasis
127.8 Mixed intestinal helminthiasis
127.9 Intestinal helminthiasis, unspecified
129 Intestinal parasitism, unspecified
535.0 Acute gastritis
535.4 Other specified gastritis
535.5 Unspecified gastritis and gastroduodenitis
535.6 Duodenitis
536.2 Persistent vomiting
555.0 Regional enteritis of small intestine
555.1 Regional enteritis of large intestine
555.2 Regional enteritis of small intestine with large intestine
558.2 Toxic gastroenteritis and colitis
558.9 Other and unspecified noninfectious gastroenteritis and colitis
567.0 Peritonitis in infectious diseases classified elsewhere
569.9 Unspecified disorder of intestine
787.0 Nausea and vomiting
787.3 Flatulence, eructation, and gas pain
787.4 Visible peristalsis
787.9 Other symptoms involving digestive system

2b. Neurological syndrome.
ICD-9-CM code Description
003.21 Salmonella meningitis
036.0 Meningococcal meningitis
036.1 Meningococcal encephalitis
036.2 Meningococcemia
036.89 Infection, meningococcal nec
036.9 Meningococcal infection, unspecified
047.0 Meningitis due to coxsackie virus
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A040 Enteropathogenic Escherichia coli infection
A041 Enterotoxigenic Escherichia coli infection
A042 Enteroinvasive Escherichia coli infection
A043 Enterohaemorrhagic Escherichia coli infection
A044 Other intestinal Escherichia coli infections
A045 Campylobacter enteritis
A046 Enteritis due to Yersinia enterocolitica
A047 Enterocolitis due to Clostridium difficile
A048 Other specified bacterial intestinal infections
A049 Bacterial intestinal infection, unspecified
A050 Foodborne staphylococcal intoxication
A052 Foodborne Clostridium perfringens [Clostridium welchii] intoxication
A053 Foodborne Vibrio parahaemolyticus intoxication
A054 Foodborne Bacillus cereus intoxication
A058 Other specified bacterial foodborne intoxications
A059 Bacterial foodborne intoxication, unspecified
A060 Acute amoebic dysentery
A061 Chronic intestinal amoebiasis
A063 Amoeboma of intestine
A069 Amoebiasis, unspecified
A070 Balantidiasis
A071 Giardiasis [lambliasis]
A072 Cryptosporidiosis
A073 Isosporiasis
A078 Other specified protozoal intestinal diseases
A079 Protozoal intestinal disease, unspecified
A080 Rotaviral enteritis
A081 Acute gastroenteropathy due to Norwalk agent
A082 Adenoviral enteritis
A083 Other viral enteritis
A084 Viral intestinal infection, unspecified
A085 Other specified intestinal infections
A09 Diarrhoea and gastroenteritis of presumed infectious origin
A213 Gastrointestinal tularaemia
A22 Anthrax
A881 Epidemic vertigo
B770 Ascariasis with intestinal complications
B779 Ascariasis, unspecified
B780 Intestinal strongyloidiasis
B787 Disseminated strongyloidiasis
B789 Strongyloidiasis, unspecified
B79 Trichuriasis
B80 Enterobiasis
B810 Anisakiasis
B811 Intestinal capillariasis
B812 Trichostrongyliasis
B813 Intestinal angiostrongyliasis
B814 Mixed intestinal helminthiases
B818 Other specified intestinal helminthiases

130.0 Meningoencephalitis due to toxoplasmosis
136.2 Specific infections by free-living amebae
320.0 Hemophilus meningitis
320.1 Pneumococcal meningitis
320.2 Streptococcal meningitis
320.3 Staphylococcal meningitis
320.7 Meningitis in other bacterial diseases classified elsewhere
320.8 Meningitis due to other specified bacteria
320.9 Meningitis due to unspecified bacterium
321.0 Cryptococcal meningitis
321.1 Meningitis in other fungal diseases
321.2 Meningitis due to viruses not elsewhere classified
321.3 Meningitis due to trypanosomiasis
321.4 Meningitis in sarcoidosis
321.8 Meningitis due to other nonbacterial organisms classified elsewhere
322.0 Nonpyogenic meningitis
322.1 Eosinophilic meningitis
322.9 Meningitis, unspecified
323.0 Encephalitis in viral diseases classified elsewhere
323.1 Encephalitis in rickettsial diseases classified elsewhere
323.2 Encephalitis in protozoal diseases classified elsewhere
323.4 Other encephalitis due to infection classified elsewhere
323.5 Encephalitis following immunization procedures
323.6 Postinfectious encephalitis
323.7 Toxic encephalitis
323.8 Other causes of encephalitis
323.9 Unspecified cause of encephalitis
348.3 Encephalopathy, unspecified
781.6 Meningismus

*ICD-9-CM, International Classification of Diseases, 9th Revision, Clinical Modification

Table 3. ICD-10 codes for the gastro-enteritis (a) and neurological syndrome (b) in mortality data.*
3a. Gastro-enteritis syndrome.

ICD-10 code Description
A000 Cholera due to Vibrio cholerae 01, biovar cholerae
A001 Cholera due to Vibrio cholerae 01, biovar eltor
A009 Cholera, unspecified
A020 Salmonella enteritis
A022 Localized salmonella infections
A028 Other specified salmonella infections
A029 Salmonella infection, unspecified
A030 Shigellosis due to Shigella dysenteriae
A031 Shigellosis due to Shigella flexneri
A032 Shigellosis due to Shigella boydii
A033 Shigellosis due to Shigella sonnei
A038 Other shigellosis
A039 Shigellosis, unspecified
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A841 Central European tick-borne encephalitis
A848 Other tick-borne viral encephalitis
A849 Tick-borne viral encephalitis, unspecified
A850 Enteroviral encephalitis (G05.1*)
A851 Adenoviral encephalitis (G05.1*)
A852 Arthropod-borne viral encephalitis, unspecified
A858 Other specified viral encephalitis
A86 Unspecified viral encephalitis
A87 Viral meningitis
A888 Other specified viral infections of central nervous system
A89 Unspecified viral infection of central nervous system
A90 Dengue fever [classical dengue]
B003 Herpesviral meningitis (G02.0*)
B004 Herpesviral encephalitis (G05.1*)
B010 Varicella meningitis (G02.0*)
B011 Varicella encephalitis (G05.1*)
B020 Zoster encephalitis (G05.1*)
B021 Zoster meningitis (G02.0*)
B022 Zoster with other nervous system involvement
B050 Measles complicated by encephalitis (G05.1*)
B060 Rubella with neurological complications
B261 Mumps meningitis (G02.0*)
B262 Mumps encephalitis (G05.1*)
B341 Enterovirus infection, unspecified
B38 Coccidioidomycosis
B451 Cerebral cryptococcosis
B457 Disseminated cryptococcosis
B458 Other forms of cryptococcosis
B459 Cryptococcosis, unspecified
B500 Plasmodium falciparum malaria with cerebral complications
B509 Plasmodium falciparum malaria, unspecified
B520 Plasmodium malariae malaria with nephropathy
B54 Unspecified malaria
B569 African trypanosomiasis, unspecified
B57 Chagas’ disease
B580 Toxoplasma oculopathy
B582 Toxoplasma meningoencephalitis (G05.2*)
B602 Naegleriasis
B832 Angiostrongyliasis due to Parastrongylus cantonensis
G00 Bacterial meningitis, not elsewhere classified
G01 Meningitis in bacterial diseases classified elsewhere
G02 Meningitis in other infectious and parasitic diseases classified elsewhere
G03 Meningitis due to other and unspecified causes
G040 Acute disseminated encephalitis
G042 Bacterial meningoencephalitis and meningomyelitis, not elsewhere classified
G048 Other encephalitis, myelitis and encephalomyelitis
G049 Encephalitis, myelitis and encephalomyelitis, unspecified
G05 Encephalitis, myelitis and encephalomyelitis in diseases classified elsewhere
G062 Extradural and subdural abscess, unspecified
G07 Intracranial and intraspinal abscess and granuloma in diseases classified elsewhere

B820 Intestinal helminthiasis, unspecified
B829 Intestinal parasitism, unspecified
K29 Gastritis and duodenitis
K500 Crohn’s disease of small intestine
K501 Crohn’s disease of large intestine
K508 Other Crohn’s disease
K521 Toxic gastroenteritis and colitis
K529 Noninfective gastroenteritis and colitis, unspecified
K639 Disease of intestine, unspecified
K670 Chlamydial peritonitis (A74.8 )
K671 Gonococcal peritonitis (A54.8 )
K672 Syphilitic peritonitis (A52.7 )
K673 Tuberculous peritonitis (A18.3 )
K678 Other disorders of peritoneum in infectious diseases classified elsewhere
K929 Disease of digestive system, unspecified
K930 Tuberculous disorders of intestines, peritoneum and mesenteric glands (A18.3 )
R11 Nausea and vomiting
R14 Flatulence and related conditions
R19 Other symptoms and signs involving the digestive system and abdomen
T629 Noxious substance eaten as food, unspecified

3b. Neurological syndrome.
ICD-10 code Description
A390 Meningococcal meningitis (G01*)
A392 Acute meningococcaemia
A394 Meningococcaemia, unspecified
A398 Other meningococcal infections
A399 Meningococcal infection, unspecified
A548 Other gonococcal infections
A800 Acute paralytic poliomyelitis, vaccine-associated
A801 Acute paralytic poliomyelitis, wild virus, imported
A802 Acute paralytic poliomyelitis, wild virus, indigenous
A803 Acute paralytic poliomyelitis, other and unspecified
A809 Acute poliomyelitis, unspecified
A818 Other slow virus infections of central nervous system
A820 Sylvatic rabies
A821 Urban rabies
A829 Rabies, unspecified
A830 Japanese encephalitis
A831 Western equine encephalitis
A832 Eastern equine encephalitis
A833 St Louis encephalitis
A834 Australian encephalitis
A835 California encephalitis
A836 Rocio virus disease
A838 Other mosquito-borne viral encephalitis
A839 Mosquito-borne viral encephalitis, unspecified
A840 Far Eastern tick-borne encephalitis [Russian spring-summer encephalitis]
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Table 5. ATC codes for the gastro-enteritis syndrome in pharmacy data.* 
(All 5-digit ATC codes listed in the table are subcategories of the 3-digit ATC code A07: antidiarrheals, 
intestinal anti-inflammatory/anti-infective agents.)

ATC-5 code Description 
A07AA Antibiotics 
A07AB Sulfonamides 
A07AC Imidazole derivatives 
A07AX Other intestinal anti-infectives 
A07BA Charcoal preparations 
A07BB Bismuth preparations 
A07BC Other intestinal adsorbents 
A07CA Oral rehydration salt formulations 
A07DA Antipropulsives 
A07EA Corticosteroids acting locally 
A07EB Antiallergic agents, excluding corticosteroids 
A07EC Aminosalicylic acid and similar agents 
A07FA Antidiarrheal micro-organisms 
A07XA Other antidiarrheals 

*ATC, Anatomical Therapeutic Chemical Classification System

Table 6. Laboratory test requests for stool samples that were included in the gastro-enteris syndrome for 
laboratory submissions.

Subjects of stool-sample test requests 
Adeno 31 virus
Adeno 40 virus
Adeno 41 virus
Adeno virus
Aeromonas caviae
Aeromonas hydrophila
Aeromonas sobria
Aeromonas species
Amoeba
Antigen Cryptosporidium species
Antigen Entamoeba histolytica
Antigen Giardia lamblia
Arcobacter butzleri
Ascaris lumbricoides
Bacillus cereus
Bacillus species
Bacterium
Balantidium coli
Blastocystis hominis
Calici noro virus
Campylobacter species (and sub-species and –types)
Clonorchis sinensis
Clostridium clostridiiforme

G373 Acute transverse myelitis in demyelinating disease of central nervous system
G374 Subacute necrotizing myelitis
G92 Toxic encephalopathy
G96 Other disorders of central nervous system
R29 Other symptoms and signs involving the nervous and musculoskeletal systems

*ICD-10, International Classification of Diseases, 10th Revision

Table 4. ICPC codes for the gastro-enteritis (a) and neurological syndrome (b) in GP consultations data.*
4a. Gastro-enteritis syndrome.

ICPC code Description 
D01 Abdominal pain/cramps general
D02 Abdominal pain epigastric
D03 Heartburn
D04 Rectal/anal pain
D06 Abdominal pain localized other
D08 Flatulence/gas/belching
D09 Nausea
D10 Vomiting
D11 Diarrhoea
D14 Haematemesis/vomiting blood
D16 Rectal bleeding
D18 Change faeces/bowel movements
D24 Abdominal mass not otherwise specified
D25 Abdominal distension
D29 Digestive symptom/complaint other
D70 Gastrointestinal infection
D73 Gastroenteritis presumed infection
D87 Stomach function disorder
D99 Disease digestive system, other

4b. Neurological syndrome.
ICPC code Description 
A07 Coma
N01 Headache
N03 Pain face
N07 Convulsion/seizure
N19 Speech disorder
N29 Neurological symptom/complt. other
N70 Poliomyelitis
N71 Meningitis/encephalitis
N72 Tetanus
N73 Neurological infection other
N89 Migraine
N99 Neurological disease, other
P20 Memory disturbance

*ICPC, International Classification of Primary Care
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Small round structured viruses
Strongyloides species
Strongyloides stercoralis
Chilomastix mesnili
Entamoeba hartmanni
Vibrio cholerae
Vibrio parahaemolyticus
Vibrio species
Virus
Worms
Yersinia bercovieri
Yersinia enterocolitica (and subtypes)
Yersinia frederiksenii
Yersinia kristensenii
Yersinia mollaretti
Yersinia rohdei
Yersinia species

Clostridium difficile
Clostridium perfringens
Clostridium species
Cryptococcus neoformans
Cryptococcus species
Cryptosporidium parvum
Cryptosporidium species
Cyclospora cayetenesis
Cyclospora species
Cysts Blastocystis hominis
Cysts Cryptosporidium species
Cysts Entamoeba polecki
Dientamoeba fragilis
DNA Entamoeba dispar
DNA Entamoeba histolytica
Eggs Diphyllobotrium latum
Eggs Trichuris trichiura
Endolimax nana
Entamoeba coli
Entamoeba dispar
Entamoeba hartmanni
Entamoeba histolytica
Entamoeba histolytica dispar
Entamoeba histolytica hematofaag
Entamoeba species
Enterobacter species
Enterococcus faecium
Enterococcus species Vancomycine resistent
Escherichia coli (and subtypes)
Escherichia species
Giardia
Giardia lamblia
Iodamoeba butschlii
Isospora belli
Listeria monocytogenes
Listeria species
Microsporidia
Eggs Ancylostoma/Necator
Mycobacterium avium complex
Norwalk-like virus / norovirus
Parasite
Plesiomonas shigelloides
Prototheca zopfii(alg)
Protozoa
Rhabditiforme larven Strongyloides species
Rotavirus
Salmonella species  (and sub-species and -types)
Shigella species (and all subtypes)
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032.89 Diphtheria not elsewhere classified
032.9 Diphtheria not otherwise specified
033.0 Bordetella pertussis
033.1 Bordetella parapertussis
033.8 Whooping cough not elsewhere classified
033.9 Whooping cough (unspecified organism)
034.0 Streptococcal sore throat
055.1 Postmeasles pneumonia
055.2 Postmeasles otitis media
073.0 Ornithosis, with pneumonia
073.7 Ornithosis, with other specified complication
073.8 Ornithosis, with unspecified complication
073.9 Ornithosis, unspecified
079.0 Adenovirus infection not otherwise specified
079.1 Echovirus infection not otherwise specified nos.
079.2 Coxsackie virus
079.3 Rhinovirus infection not otherwise specified
079.8 Viral infection in conditions classified elsewhere and of unspecified site
098.6 Gonoccocal, infection of pharynx
114.0 Primary coccidioidomycosis (lung)
114.5 Pulmonary coccidioidomycosis, unspecified
114.9 Coccidioidomycosis not otherwise specified
115.00 Histoplasmosis, without mention of manifestation
115.05 Histoplasma capsulatum pneumonia
115.09 Histoplasma capsulatum not elsewhere classified
115.10 Histoplasma duboisii not otherwise specified
115.15 Histoplasma duboisii pneumonia
115.90 Histoplasmosis, without manifestation
115.95 Histoplasmosis pneumonia
115.99 Histoplasmosis not elsewhere classified
116.0 Blastomycosis
116.1 Paracoccidioidomycosis
117.1 Sporotrichosis
117.3 Pulmonary aspergillosis
117.5 Cryptococcosis
130.4 Toxoplasma pneumonitis
136.3 Pneumocystosis
460   Nasopharyngitis, acute
462   Pharyngitis, acute not otherwise specified
463   Tonsillitis, acute
464.0 Acute laryngitis
464.10 Tracheitis without obstruction
464.11 Acute tracheitis with obstruction
464.20 Laryngotracheitis without obstruction
464.21 Acute laryngotracheitis with obstruction
464.30 Epiglottitis acute without obstruction
464.31 Acute epiglottitis with obstruction
464.4 Croup
465.0 Laryngopharyngitis, acute

Appendix chapter 2

Detailed Syndrome Definitions for Each Syndrome Data Source
A general respiratory syndrome was defined for each data source (except for the absenteeism data, which 
contain no medical information; see Table 1). We used the International Classification of Diseases, 9th revision, 
Clinical Modification (ICD-9-CM) codes as selected by the Centers for Disease Control and Prevention (CDC), 
Atlanta, Georgia, USA (http://www.bt.cdc.gov/surveillance/syndromedef). To define a respiratory syndrome, 
we selected both the codes for general respiratory symptoms and diagnoses (category 1 in CDC list) and the 
codes for specific respiratory biologic agent diagnoses (category 3 in CDC list). For the hospital data (see Table 
1), we used these syndrome codes with some minor adaptations for the Dutch version of ICD-9-CM. For the 
mortality data (see Table 2) the ICD-9-CM codes were converted into ICD 10th revision (ICD-10) codes by 
using the World Health Organization ICD-9/ICD-10 translation list and expert opinion, if necessary (ICD-
9/ICD-10 Translator; see http://www.who.int/classifications/en). For the GP consultation data (see Table 3), 
International Classification of Primary Care (ICPC) codes were included in a respiratory syndrome by expert 
opinion, guided by the CDC respiratory syndrome case definition. 

For a respiratory syndrome definition based on the pharmacy data, we used Anatomical Therapeutic 
Chemical Classification System (ATC) codes of medications that experts considered indicative for respiratory 
infectious disease complaints. Of those, we included only ATC-5 codes that had higher levels in winter. See 
Table 4 for the specific included ATC-5 codes. 

For a respiratory syndrome definition based on the laboratory submissions data, we included all 
submissions for specific diagnostics that are known to be of respiratory cause: 1) all submissions for 
microbiologic diagnostic tests on respiratory materials (sputum, bronchoalveolar lavage, pleural liquid); 2) 
all submissions for serology on known specific respiratory pathogens Page 2 of 11 (see list of serologic tests in 
Table 5); 3) all submissions for Legionella spp. or Streptococcus pneumoniae antigen tests on urine. 

For all data types we assumed that in a prospective setting real-time syndrome classification would be 
feasible (on date of consultation, hospitalization, death, submission or dispense).

Table 1. ICD-9-CM codes for the respiratory syndrome in hospital data.*
ICD-9-CM code Description
020.3 Primary pneumonic plague
020.4 Secondary pneumonic plague
020.5 Pneumonic plague not otherwise specified
021.2 Pulmonary tularemia
022.1 Pulmonary anthrax
031.0 Mycobacteria, pulmonary
031.8 Other specified mycobacterial diseases
031.9 Mycobacteria diseases/unspecified
032.0 Faucial diphtheria
032.1 Nasopharynx diphtheria
032.2 Anterior nasal diphtheria
032.3 Laryngeal diphtheria
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Table 2. ICD-10 codes for the respiratory syndrome in mortality data.*
ICD-10 code Description
A202 Pneumonic plague
A212 Pulmonary tularaemia
A221 Pulmonary anthrax
A310 Pulmonary mycobacterial infection
A318 Other mycobacterial infections
A319 Mycobacterial infection, unspecified
A360 Pharyngeal diphtheria
A361 Nasopharyngeal diphtheria
A362 Laryngeal diphtheria
A368 Other diphtheria
A369 Diphtheria, unspecified
A370 Whooping cough due to Bordetella pertussis
A371 Whooping cough due to Bordetella parapertussis
A378 Whooping cough due to other Bordetella species
A379 Whooping cough, unspecified
A481 Legionnaires’ disease
A545 Gonococcal pharyngitis
A70 Chlamydia psittaci infection
B012 Varicella pneumonia (J17.1*)
B052 Measles complicated by pneumonia (J17.1*)
B053 Measles complicated by otitis media (H67.1*)
B340 Adenovirus infection, unspecified
B341 Enterovirus infection, unspecified
B342 Coronavirus infection, unspecified
B348 Other viral infections of unspecified site
B380 Acute pulmonary coccidioidomycosis
B382 Pulmonary coccidioidomycosis, unspecified
B389 Coccidioidomycosis, unspecified
B390 Acute pulmonary histoplasmosis capsulati
B392 Pulmonary histoplasmosis capsulati, unspecified
B393 Disseminated histoplasmosis capsulati
B394 Histoplasmosis capsulati, unspecified
B395 Histoplasmosis duboisii
B399 Histoplasmosis, unspecified
B400 Acute pulmonary blastomycosis
B402 Pulmonary blastomycosis, unspecified
B407 Disseminated blastomycosis
B408 Other forms of blastomycosis
B409 Blastomycosis, unspecified
B410 Pulmonary paracoccidioidomycosis
B417 Disseminated paracoccidioidomycosis
B418 Other forms of paracoccidioidomycosis
B419 Paracoccidioidomycosis, unspecified
B420 Pulmonary sporotrichosis (J99.8*)
B427 Disseminated sporotrichosis
B428 Other forms of sporotrichosis

465.8 Upper respiratory infection, other multiple sites
465.9 Upper respiratory infection, acute not otherwise specified
466.0 Bronchitis acute
466.1 Acute bronchiolitis
478.9 Respiratory tract disease
480.0 Adenoviral pneumonia
480.1 Pneumonia due to respiratory syncytial virus
480.2 Parinfluenza viral pneumonia
480.8 Viral pneumonia not elsewhere classified
480.9 Pneumonia, viral
481   Pneumococcal pneumonia (lobar)
482.0 Pneumonia due to Klebsiella pneumoniae
482.1 Pneumonia due to Pseudomonas
482.2 Haemophilus influenzae pneumonia
482.3 Pneumonia due to Streptococcus
482.4 Pneumonia due to Staphylococcus
482.8 Pneumonia due to bacteria not elsewhere classified
482.9 Pneumonia due to bacteria not otherwise specified
483 Pneumonia due to organism not elsewhere classified
484.1 Pneumonia due to cytomegalic inclusion disease
484.3 Pneumonia in whooping cough
484.5 Pneumonia in anthrax
484.6 Pneumonia in aspergillosis
484.7 Pneumonia in other systemic mycoses
484.8 Pneumonia in infection disease not elsewhere classified
485   Bronchopneumonia organism unspecified
486   Pneumonia, organism not otherwise specified
487.0 Influenza with pneumonia
487.1 Influenza with other respiratory manifestations
487.8 Influenza with other manifestations
490   Bronchitis not otherwise specified
511.0 Pleurisy without mention of effusion or current tuberculosis
511.1 Pleurisy with effusion, with mention of a bacterial cause other than tuberculosis
511.8 Hemothorax
513.0 Abscess lung
513.1 Abscess of mediastinum
518.4 Edema lung acute not otherwise specified
518.8 Other diseases of lung not otherwise classified
519.2 Mediastinitis
519.3 Mediastinum, diseases not elsewhere classified
769   Respiratory distress syndrome
786.00 Respiratory abnormality
786.09 Other specified respiratory abnormality
786.1 Stridor
786.2 Cough
786.3 Hemoptysis
786.52 Painful respiration/pleurodynia
799.1 Respiratory arrest

*ICD-9-CM, International Classification of Diseases, 9th Revision, Clinical Modification.
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J154 Pneumonia due to other streptococci
J155 Pneumonia due to Escherichia coli
J156 Pneumonia due to other aerobic Gram-negative bacteria
J157 Pneumonia due to Mycoplasma pneumoniae
J158 Other bacterial pneumonia
J159 Bacterial pneumonia, unspecified
J160 Chlamydial pneumonia
J168 Pneumonia due to other specified infectious organisms
J170 Pneumonia in bacterial diseases classified elsewhere
J171 Pneumonia in viral diseases classified elsewhere
J172 Pneumonia in mycoses
J173 Pneumonia in parasitic diseases
J178 Pneumonia in other diseases classified elsewhere
J180 Bronchopneumonia, unspecified
J182 Hypostatic pneumonia, unspecified
J188 Other pneumonia, organism unspecified
J189 Pneumonia, unspecified
J200 Acute bronchitis due to Mycoplasma pneumoniae
J201 Acute bronchitis due to Haemophilus influenzae
J202 Acute bronchitis due to streptococcus
J203 Acute bronchitis due to coxsackievirus
J204 Acute bronchitis due to parainfluenza virus
J205 Acute bronchitis due to respiratory syncytial virus
J206 Acute bronchitis due to rhinovirus
J207 Acute bronchitis due to echovirus
J208 Acute bronchitis due to other specified organisms
J209 Acute bronchitis, unspecified
J210 Acute bronchiolitis due to respiratory syncytial virus
J218 Acute bronchiolitis due to other specified organisms
J219 Acute bronchiolitis, unspecified
J22 Unspecified acute lower respiratory infection
J398 Other specified diseases of upper respiratory tract
J40 Bronchitis, not specified as acute or chronic
J850 Gangrene and necrosis of lung
J851 Abscess of lung with pneumonia
J852 Abscess of lung without pneumonia
J853 Abscess of mediastinum
J942 Haemothorax
J949 Pleural condition, unspecified
J960 Acute respiratory failure
J969 Respiratory failure, unspecified
J985 Diseases of mediastinum, not elsewhere classified
J998 Respiratory disorders in other diseases classified elsewhere
P220 Respiratory distress syndrome of newborn
R042 Haemoptysis
R049 Haemorrhage from respiratory passages, unspecified
R05 Cough
R061 Stridor
R063 Periodic breathing
R064 Hyperventilation
R065 Mouth breathing

B429 Sporotrichosis, unspecified
B440 Invasive pulmonary aspergillosis
B441 Other pulmonary aspergillosis
B442 Tonsillar aspergillosis
B447 Disseminated aspergillosis
B448 Other forms of aspergillosis
B449 Aspergillosis, unspecified
B450 Pulmonary cryptococcosis
B457 Disseminated cryptococcosis
B458 Other forms of cryptococcosis
B459 Cryptococcosis, unspecified
B583 Pulmonary toxoplasmosis (J17.3*)
B59 Pneumocystosis
B970 Adenovirus as the cause of diseases classified to other chapters
B971 Enterovirus as the cause of diseases classified to other chapters
B972 Coronavirus as the cause of diseases classified to other chapters
B974 Respiratory syncytial virus as the cause of diseases classified to other chapters
B978 Other viral agents as the cause of diseases classified to other chapters
G473 Sleep apnoea
J00 Acute nasopharyngitis [common cold]
J020 Streptococcal pharyngitis
J028 Acute pharyngitis due to other specified organisms
J029 Acute pharyngitis, unspecified
J030 Streptococcal tonsillitis
J038 Acute tonsillitis due to other specified organisms
J039 Acute tonsillitis, unspecified
J040 Acute laryngitis
J041 Acute tracheitis
J042 Acute laryngotracheitis
J050 Acute obstructive laryngitis [croup]
J051 Acute epiglottitis
J060 Acute laryngopharyngitis
J068 Other acute upper respiratory infections of multiple sites
J069 Acute upper respiratory infection, unspecified
J100 Influenza with pneumonia, influenza virus identified
J101 Influenza with other respiratory manifestations, influenza virus identified
J108 Influenza with other manifestations, influenza virus identified
J110 Influenza with pneumonia, virus not identified
J111 Influenza with other respiratory manifestations, virus not identified
J118 Influenza with other manifestations, virus not identified
J120 Adenoviral pneumonia
J121 Respiratory syncytial virus pneumonia
J122 Parainfluenza virus pneumonia
J128 Other viral pneumonia
J129 Viral pneumonia, unspecified
J13 Pneumonia due to Streptococcus pneumoniae
J14 Pneumonia due to Haemophilus influenzae
J150 Pneumonia due to Klebsiella pneumoniae
J151 Pneumonia due to Pseudomonas
J152 Pneumonia due to Staphylococcus
J153 Pneumonia due to Streptococcus, group B
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Table 5. Serologic test subjects included in the respiratory syndrome for laboratory submissions (see 
information on other included tests in text).

Serologic tests performed on
Adenovirus 2
Adenovirus
Antibodies to adenovirus
Antibodies to Aspergillus fumigatus
Antibodies to Aspergillus species
Antibodies to Chlamydia pneumoniae
Antibodies to Chlamydia psittaci
Antibodies to Chlamydia species
Antibodies to coronavirus
Antibodies to Corynebacterium diphtheriae
Antibodies to influenza A virus
Antibodies to influenza B virus
Antibodies to Legionella
Antibodies to Legionella pneumophila
Antibodies to Legionella pneumophila serogroup 1
Antibodies to Mycoplasma pneumoniae
Antibodies to parainfluenza 1 virus
Antibodies to parainfluenza 2 virus
Antibodies to parainfluenza 3 virus
Antibodies to parainfluenza virus
Antibodies to respiratory syncytial virus
Antibodies to Streptococcus pneumoniae
Antigen Aspergillus fumigatus
Antigen Aspergillus species
IgA Chlamydia pneumoniae
IgA Chlamydia species
IgA Mycoplasma pneumoniae
IgG adenovirus
IgG Leptospira
IgG Aspergillus fumigatus
IgG Chlamydia pneumoniae
IgG Chlamydia psittaci
IgG Chlamydia species
IgG influenza virus A
IgG influenza virus B
IgG Legionella pneumophila
IgG Legionella species
IgG Mycoplasma pneumoniae
IgG parainfluenza 1 virus
IgG parainfluenza 2 virus
IgG parainfluenza 3 virus
IgG respiratory syncytial virus
IgG Streptococcus pneumoniae
IgM influenza virus A
IgM Chlamydia psittaci

R068 Other and unspecified abnormalities of breathing
R071 Chest pain on breathing
R091 Pleurisy
R092 Respiratory arrest

*ICD-10, International Classification of Diseases, 10th Revision.

Table 3. ICPC codes for the respiratory syndrome in general practice consultations data.*
ICPC codes Description
H71 Acute otitis media/myringitis
L04 Chest symptom/complaint
R01 Pain respiratory system
R02 Shortness of breath/dyspnoea
R03 Wheezing
R04 Breathing problem, other
R05 Cough
R07 Sneezing/nasal congestion
R21 Throat symptom/complaint
R24 Haemoptysis
R29 Respiratory symptom/complaint other
R71 Whooping cough
R74 Upper respiratory infection acute
R75 Sinusitis acute/chronic
R76 Tonsillitis acute
R77 Laryngitis/tracheitis acute
R78 Acute bronchitis/bronchiolitis
R80 Influenza
R81 Pneumonia
R82 Pleurisy/pleural effusion
R83 Respiratory infection other
R93 Pleural effusion not otherwise specified
R99 Respiratory disease other

*ICPC, International Classification of Primary Care.

Table 4. ATC codes (5 digits) for the respiratory syndrome in pharmacy data.*
ATC-5 code Description
J01AA Tetracyclines
J01CA Penicillins with extended spectrum
J01CR Combinations of penicillins, including β-lactamase inhibitors
J01FA Macrolides
R05CA Expectorants
R05DA Opium alkaloids and derivatives
R06AD Phenothiazine derivatives

*ATC, Anatomical Therapeutic Chemical Classification System.
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IgM Chlamydia species
IgM influenza B virus
IgM Legionella pneumophila
IgM Legionella species
IgM Mycoplasma pneumoniae
IgM Mycoplasma species
IgM parainfluenza 1 virus
IgM parainfluenza 2 virus
IgM parainfluenza 3 virus

 *Ig, immunoglobulin.

Details on the Regression Model Variables

We constructed a multiple linear regression model:

St = b0 + b1PA,t+x + b2PB,t+y +…+ R,t

S = level of a respiratory syndrome

t = time in weeks

PA/B/etc = lagged respiratory pathogens detected in the laboratory

x/y/etc = lag time in weeks, for shifting the pathogen time series over a range of -5 up to +5 weeks.

R = residual of the model

A forward stepwise regression approach was used, each step selecting the lagged pathogen that 
contributed most to the model fit (assessed with Akaike’s information criterion). Each pathogen was included 
in the model only once and only if it contributed significantly (p<0.05). Negative associations were excluded 
to avoid biologically implausible associations in the models between the pathogens and the syndromes (e.g., 
negative associations between enteroviruses, which peak in summer, and respiratory syndromes, which peak 
in winter). We checked for significant autocorrelation in the residual of the models. 

To investigate whether seasonal variation could be a confounder for the association between pathogens 
and syndromes we then calculated three R2 values for the models: 1) with only pathogen variables, 2) after 
adding seasonal terms (sine(k2πweek/52) and cosine(k2πweek/52), k = 1, 2, 3), and 3) with only seasonal 
terms. We calculated the standardized parameter estimates as well, before and after adding seasonal terms. The 
standardized parameter estimates are the beta values that result when all variables are standardized to a mean 
of 0 and a variance of 1. These estimates are computed by multiplying the original estimates by the standard 
deviation of the regressor (independent) variable and then dividing by the standard deviation of the dependent 
variable.
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073.8  Ornithosis, with unspecified complication
073.9  Ornithosis, unspecified
079.0  Adenovirus infection not otherwise specified
079.1  Echovirus infection not otherwise specified
079.2  Coxsackie virus
079.3  Rhinovirus infection not otherwise specified
079.8  Viral infection in conditions classified elsewhere and of unspecified site
098.6  Gonoccocal, infection of pharynx
114.0  Primary coccidioidomycosis (lung)
114.5  Pulmonary coccidioidomycosis, unspecified
114.9  Coccidioidomycosis not otherwise specified
115.00  Histoplasmosis, without mention of manifestation
115.05  Histoplasma capsulatum pneumonia
115.09  Histoplasma capsulatum not elsewhere classified
115.10  Histoplasma duboisii not otherwise specified
115.15  Histoplasma duboisii pneumonia
115.90  Histoplasmosis, without manifestation
115.95  Histoplasmosis pneumonia
115.99  Histoplasmosis not elsewhere classified
116.0  Blastomycosis
116.1  Paracoccidioidomycosis
117.1  Sporotrichosis
117.3  Pulmonary aspergillosis
117.5  Cryptococcosis
130.4  Toxoplasma pneumonitis
136.3  Pneumocystosis
460  Nasopharyngitis, acute
462  Pharyngitis, acute not otherwise specified
463  Tonsillitis, acute
464.0  Acute laryngitis
464.10  Tracheitis without obstruction
464.11  Acute tracheitis with obstruction
464.20  Laryngotracheitis without obstruction
464.21  Acute laryngotracheitis with obstruction
464.30  Epiglottitis acute without obstruction
464.31  Acute epiglottitis with obstruction
464.4  Croup
465.0  Laryngopharyngitis, acute
465.8  Upper respiratory infection, other multiple sites
465.9  Upper respiratory infection, acute not otherwise specified
466.0  Bronchitis acute
466.1  Acute bronchiolitis
478.9  Respiratory tract disease
480.0  Adenoviral pneumonia
480.1  Pneumonia due to respiratory syncytial virus
480.2  Parinfluenza viral pneumonia
480.8  Viral pneumonia not elsewhere classified
480.9  Pneumonia, viral
481  Pneumococcal pneumonia (lobar)

Appendix chapter 3

Appendix A: Detailed syndrome definitions for respiratory hospitalizations and mortality.

For the hospitalizations, we used discharge and secondary diagnoses on date of hospitalization from the Dutch 
National Medical Register (LMR, 99% coverage over 1999-2004, coded in Dutch version of ICD-9-CM). For 
the mortality we used primary cause of death, as well as complicating and other additional causes of death from 
Statistics Netherlands (CBS, http://www.cbs.nl, 1999-2004, 100% coverage, by date of death, coded in  ICD-10 
(Internat. Classification of Diseases, 10th revision))	
To define respiratory syndromes, we used the ICD-9-CM (International Classification of Diseases, 9th revision, 
Clinical Modification) codes as selected by the CDC (Centers for Disease Control and Prevention, USA, www.
bt.cdc.gov/surveillance/syndromedef).We selected both the codes for general respiratory symptoms and 
diagnoses (‘category 1’ in CDC-list) and the codes for specific respiratory biologic agent diagnoses (‘category 3’ in 
CDC-list). For the hospital data (Table A1) we used these syndrome codes with some minor adaptations for the 
Dutch version of ICD-9-CM. For the mortality data (table A2) the ICD-9-CM-codes were converted into ICD-10 
codes using the WHO ICD-9/ICD-10 translation list and expert opinion if necessary (ICD-9/ICD-10 Translator, 
see http://www.who.int/classifications/en/). 

Table A1. ICD9-CM codes for the respiratory syndrome in hospital data.
ICD-9-CM Description
020.3  Primary pneumonic plague
020.4  Secondary pneumonic plague
020.5  Pneumonic plague not otherwise specified
021.2  Pulmonary tularemia
022.1  Pulmonary anthrax
031.0  Mycobacteria, pulmonary
031.8  Other specified mycobacterial diseases
031.9  Mycobacteria diseases/unspecified
032.0  Faucial diphtheria
032.1  Nasopharynx diphtheria
032.2  Anterior nasal diphtheria
032.3  Laryngeal diphtheria
032.89  Diphtheria not elsewhere classified
032.9  Diphtheria not otherwise specified
033.0  Bordetella pertussis
033.1  Bordetella parapertussis
033.8  Whooping cough not elsewhere classified
033.9  Whooping cough (unspecified organism)
034.0  Streptococcal sore throat
055.1  Postmeasles pneumonia
055.2  Postmeasles otitis media
073.0  Ornithosis, with pneumonia
073.7  Ornithosis, with other specified complication
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A362 Laryngeal diphtheria
A368 Other diphtheria
A369 Diphtheria, unspecified
A370 Whooping cough due to Bordetella pertussis
A371 Whooping cough due to Bordetella parapertussis
A378 Whooping cough due to other Bordetella species
A379 Whooping cough, unspecified
A481 Legionnaires’ disease
A545 Gonococcal pharyngitis
A70 Chlamydia psittaci infection
B012 Varicella pneumonia (J17.1*)
B052 Measles complicated by pneumonia (J17.1*)
B053 Measles complicated by otitis media (H67.1*)
B340 Adenovirus infection, unspecified
B341 Enterovirus infection, unspecified
B342 Coronavirus infection, unspecified
B348 Other viral infections of unspecified site
B380 Acute pulmonary coccidioidomycosis
B382 Pulmonary coccidioidomycosis, unspecified
B389 Coccidioidomycosis, unspecified
B390 Acute pulmonary histoplasmosis capsulati
B392 Pulmonary histoplasmosis capsulati, unspecified
B393 Disseminated histoplasmosis capsulati
B394 Histoplasmosis capsulati, unspecified
B395 Histoplasmosis duboisii
B399 Histoplasmosis, unspecified
B400 Acute pulmonary blastomycosis
B402 Pulmonary blastomycosis, unspecified
B407 Disseminated blastomycosis
B408 Other forms of blastomycosis
B409 Blastomycosis, unspecified
B410 Pulmonary paracoccidioidomycosis
B417 Disseminated paracoccidioidomycosis
B418 Other forms of paracoccidioidomycosis
B419 Paracoccidioidomycosis, unspecified
B420 Pulmonary sporotrichosis (J99.8*)
B427 Disseminated sporotrichosis
B428 Other forms of sporotrichosis
B429 Sporotrichosis, unspecified
B440 Invasive pulmonary aspergillosis
B441 Other pulmonary aspergillosis
B442 Tonsillar aspergillosis
B447 Disseminated aspergillosis
B448 Other forms of aspergillosis
B449 Aspergillosis, unspecified
B450 Pulmonary cryptococcosis
B457 Disseminated cryptococcosis
B458 Other forms of cryptococcosis
B459 Cryptococcosis, unspecified

482.0  Pneumonia due to Klebsiella pneumoniae
482.1  Pneumonia due to Pseudomonas
482.2  Haemophilus influenzae pneumonia
482.3  Pneumonia due to Streptococcus
482.4  Pneumonia due to Staphylococcus
482.8  Pneumonia due to bacteria not elsewhere classified
482.9  Pneumonia due to bacteria not otherwise specified
483  Pneumonia due to organism not elsewhere classified
484.1  Pneumonia due to cytomegalic inclusion disease
484.3  Pneumonia in whooping cough
484.5  Pneumonia in anthrax
484.6  Pneumonia in aspergillosis
484.7  Pneumonia in other systemic mycoses
484.8  Pneumonia in infection disease not elsewhere classified
485  Bronchopneumonia organism unspecified
486  Pneumonia, organism not otherwise specified
487.0  Influenza with pneumonia
487.1  Influenza with other respiratory manifestations
487.8  Influenza with other manifestations
490  Bronchitis not otherwise specified
511.0  Pleurisy without mention of effusion or current tuberculosis
511.1  Pleurisy with effusion, with mention of a bacterial cause other than tuberculosis
511.8  Hemothorax
513.0  Abscess lung
513.1  Abscess of mediastinum
518.4  Edema lung acute not otherwise specified
518.8  Other diseases of lung not otherwise classified
519.2  Mediastinitis
519.3  Mediastinum, diseases not elsewhere classified
769  Respiratory distress syndrome
786.00  Respiratory abnormality
786.09  Other specified respiratory abnormality
786.1  Stridor
786.2  Cough
786.3  Hemoptysis
786.52  Painful respiration/pleurodynia
799.1  Respiratory arrest

Table A2. ICD-10 codes for the respiratory syndrome in mortality data.
ICD-10 Description
A202 Pneumonic plague
A212 Pulmonary tularaemia
A221 Pulmonary anthrax
A310 Pulmonary mycobacterial infection
A318 Other mycobacterial infections
A319 Mycobacterial infection, unspecified
A360 Pharyngeal diphtheria
A361 Nasopharyngeal diphtheria
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J171 Pneumonia in viral diseases classified elsewhere
J172 Pneumonia in mycoses
J173 Pneumonia in parasitic diseases
J178 Pneumonia in other diseases classified elsewhere
J180 Bronchopneumonia, unspecified
J182 Hypostatic pneumonia, unspecified
J188 Other pneumonia, organism unspecified
J189 Pneumonia, unspecified
J200 Acute bronchitis due to Mycoplasma pneumoniae
J201 Acute bronchitis due to Haemophilus influenzae
J202 Acute bronchitis due to Streptococcus
J203 Acute bronchitis due to coxsackievirus
J204 Acute bronchitis due to parainfluenza virus
J205 Acute bronchitis due to respiratory syncytial virus
J206 Acute bronchitis due to rhinovirus
J207 Acute bronchitis due to echovirus
J208 Acute bronchitis due to other specified organisms
J209 Acute bronchitis, unspecified
J210 Acute bronchiolitis due to respiratory syncytial virus
J218 Acute bronchiolitis due to other specified organisms
J219 Acute bronchiolitis, unspecified
J22 Unspecified acute lower respiratory infection
J398 Other specified diseases of upper respiratory tract
J40 Bronchitis, not specified as acute or chronic
J850 Gangrene and necrosis of lung
J851 Abscess of lung with pneumonia
J852 Abscess of lung without pneumonia
J853 Abscess of mediastinum
J942 Haemothorax
J949 Pleural condition, unspecified
J960 Acute respiratory failure
J969 Respiratory failure, unspecified
J985 Diseases of mediastinum, not elsewhere classified
J998 Respiratory disorders in other diseases classified elsewhere
P220 Respiratory distress syndrome of newborn
R042 Haemoptysis
R049 Haemorrhage from respiratory passages, unspecified
R05 Cough
R061 Stridor
R063 Periodic breathing
R064 Hyperventilation
R065 Mouth breathing
R068 Other and unspecified abnormalities of breathing
R071 Chest pain on breathing
R091 Pleurisy
R092 Respiratory arrest

B583 Pulmonary toxoplasmosis (J17.3*)
B59 Pneumocystosis
B970 Adenovirus as the cause of diseases classified to other chapters
B971 Enterovirus as the cause of diseases classified to other chapters
B972 Coronavirus as the cause of diseases classified to other chapters
B974 Respiratory syncytial virus as the cause of diseases classified to other chapters
B978 Other viral agents as the cause of diseases classified to other chapters
G473 Sleep apnoea
J00 Acute nasopharyngitis [common cold]
J020 Streptococcal pharyngitis
J028 Acute pharyngitis due to other specified organisms
J029 Acute pharyngitis, unspecified
J030 Streptococcal tonsillitis
J038 Acute tonsillitis due to other specified organisms
J039 Acute tonsillitis, unspecified
J040 Acute laryngitis
J041 Acute tracheitis
J042 Acute laryngotracheitis
J050 Acute obstructive laryngitis [croup]
J051 Acute epiglottitis
J060 Acute laryngopharyngitis
J068 Other acute upper respiratory infections of multiple sites
J069 Acute upper respiratory infection, unspecified
J100 Influenza with pneumonia, influenza virus identified
J101 Influenza with other respiratory manifestations, influenza virus identified
J108 Influenza with other manifestations, influenza virus identified
J110 Influenza with pneumonia, virus not identified
J111 Influenza with other respiratory manifestations, virus not identified
J118 Influenza with other manifestations, virus not identified
J120 Adenoviral pneumonia
J121 Respiratory syncytial virus pneumonia
J122 Parainfluenza virus pneumonia
J128 Other viral pneumonia
J129 Viral pneumonia, unspecified
J13 Pneumonia due to Streptococcus pneumoniae
J14 Pneumonia due to Haemophilus influenzae
J150 Pneumonia due to Klebsiella pneumoniae
J151 Pneumonia due to Pseudomonas
J152 Pneumonia due to Staphylococcus
J153 Pneumonia due to Streptococcus, group B
J154 Pneumonia due to other streptococci
J155 Pneumonia due to Escherichia coli
J156 Pneumonia due to other aerobic Gram-negative bacteria
J157 Pneumonia due to Mycoplasma pneumoniae
J158 Other bacterial pneumonia
J159 Bacterial pneumonia, unspecified
J160 Chlamydial pneumonia
J168 Pneumonia due to other specified infectious organisms
J170 Pneumonia in bacterial diseases classified elsewhere
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sided 95% upper limit of the models as the 95 percentile of the residual divided by the square root of the 
predicted value. By plotting this upper limit together with the actual observations (Figure 2), the 5% most 
extreme upper observations can be recognized. 

We then replaced the constant regression coefficient for ILI by different regression coefficients for separate 
years (between July 1st-June 30st) (again multiplying the model for the incidence by the populations size, see 
formulas above):

I(t) = b0 + Σ b1 k  ILI k (t+n1) + b2P2(t+n2) + b3P3(t+n3)+ … bzPz(t+nz)

The regression coefficients and variables for ILI in this model are: 

b1k 	 regression coefficient for ILI-incidence in year k, k+1,…,6
k	 first year of the analysis period (1999)
ILIk(t)	 ILI-incidence in year k (ILIk(t) = 0 for t outside year k).

The annual regression coefficients for ILI (b1k) in this model describe the association between hospitalizations 
or mortality and incidence of ILI by year. 

In Table B1 the model outcomes for the models with a constant ILI regression coefficient are presented. The 
lag time (in weeks) is indicated, that showed optimal fit between hospitalizations/mortality time series and 
lagged ILI/pathogen counts included in the regression model. E.g.: according to the model, the trend in ILI for 
the 5-19 years of age precedes the hospitalizations in the 5-19 years of age with 1 week. For the time series on 
pathogens no information on age was available. This possibly explains the negative lags that were included in 
the models, since these time series reflect increased pathogen activity over all age categories, while the peak 
activity may differ in time between age categories. Some of the included pathogen variables were not significant 
(NS) anymore after correcting for seasonal variation and autocorrelation. ( “-” = pathogen not included in the 
model; n/a indicates that the analyses were not performed for mortality in the 0-19 years of age due to sporadic 
counts in that category, see Figure 3a-b for the estimated annual ILI regression coefficients.)

Appendix B: details on the regression models

Regression model variables
We constructed a GEE regression model with a poisson error and an identity link. For this, an additive model 
for the incidence was multiplied by the population size to obtain a model for the counts. Thus we could model 
proportional associations between the explanatory variables and the poisson distributed outcome variables, 
taking into account changes in population size. 

Model for the counts:

C(t) = Pop(t) * I(t)+ R(t)

Model for the incidence:

I(t) = b0 + b1 t +  b2 ILI(t+n2) + b3P3(t+n3) + b4P4(t+n4)+ … + bzPz(t+nz)

C(t)	 the counts of a respiratory syndrome at time t (hospitalizations or mortality)
Pop(t)	 the population size at time t
I(t)	 the incidence of a respiratory syndrome at time t (hospitalizations or mortality)
R(t)	 the residual of the count model
t	 time in weeks over the whole study period (1-313 weeks)
b0	 regression coefficient describing constant basic syndrome level (lowered in summertime by 

using a dummy (0/1) variable to indicate the summer)
b1-bz	 regression coefficients 
ILI(t)	 ILI-incidence at time t
Pi(t)	 incidence of i-th respiratory pathogen at time t detected in the laboratory, i=2, 3, 4, …,z 
ni	 lag time in weeks for ILI or the i-th pathogen, -5 ≤ ni ≤  5 weeks.

(Note that for interpretation purposes, we transformed the count model outcomes into incidences, see Figure 2.)

First a forward stepwise regression approach was used to construct a generalized linear model, each step 
selecting the lagged (-/+5 weeks) pathogen that contributed most to the model fit (assessed with Akaike’s 
Information Criterion). Each pathogen was included in the model only once and only if it contributed 
significantly (P≤0.05). Negative associations were excluded to avoid biological implausible associations in the 
models between the pathogens and the syndromes (e.g. negative associations between enteroviruses which 
peak in summer vs respiratory syndromes which peak in winter). We then – guided by periodograms of the 
residuals – added seasonal terms to the models (sine(k2pweek/52) and cosine(k2pweek/52), k=1,2,3,4) to 
correct for seasonal variation and used GEEs16 to include autocorrelation in the residuals in the models. For 
the GEEs we defined each influenza year as a subject (July 1st-June 30th). Since we used GEE models with 
autocorrelated residuals, confidence intervals of prediction were not available, therefore we defined the one-

6

k=1
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Table B1. Estimated model regression coefficients: respiratory hospitalizations and mortality explained by 
ILI and respiratory pathogens with adjustment for seasonal trends (sine/cosine terms) and autocorrelation, 
1999-2005.

0-4 years 5-19 years 20-64 years >=65 years
Hospita-lizations Estimates lag Par.estimate lag Par.estimate Lag Par.estimate lag

ILI 1.48 -1 0.40 1 0.62 0 3.52 0
RSV 1.75 1 - - - - NS -2
Rhinovirus - - NS 2 0.15 -4 0.63 -5
Adenovirus 0.93 -1 NS 0 NS 0 0.63 -4
Parainfluenza NS 3 0.09 4 - - - -
B. pertussis 0.04 4 - - - - - -
M. Pneumoniae - - - - - - - -

Mortality
ILI n/a n/a n/a n/a 0.07 -1 2.90 -1
RSV n/a n/a n/a n/a NS -5 NS -4
Rhinovirus n/a n/a n/a n/a - - - -
Adenovirus n/a n/a n/a n/a 0.02 -4 0.41 -4
Parainfluenza n/a n/a n/a n/a - - - -
B. pertussis n/a n/a n/a n/a - - - -
M. Pneumoniae n/a n/a n/a n/a - - 0.29 -5
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481 Pneumococcal pneumonia (lobar)                                                  
482.0 Pneumonia due to klebsiella pneumoniae                                                   
482.1 Pneumonia due to pseudomonas                                                  
482.2 Haemophilus influenzae pneumonia                                                      
482.3 Pneumonia due to streptococcus
482.4 Pneumonia due to staphylococcus
482.8 Pneumonia due to bact. not elsewhere classified
482.9 Pneumonia, bacterial not otherwise specified                                                    
483 Pneumonia due to organism not elsewhere classified
484.1 Pneumonia due to cytomegalic inclusion disease                                                    
484.3 Pneumonia in whooping cough                                                    
484.5 Pneumonia in anthrax                                                        
484.6 Pneumonia in aspergillosis                                                 
484.7 Pneumonia in other systemic mycoses                                                    
484.8 Pneumonia in infectious disease not elsewhere classified                                                     
485 Bronchopneumonia organism unspec                                      
486 Pneumonia, organism not otherwise specified                                                     
487.0 Influenza with pneumonia                                                    
490 Bronchitis not otherwise specified                                                       
511.1 Pleurisy with effusion, with mention of a bacterial cause other than tuberculosis

Appendix S2: Details on space-time analyses and Satscan settings 
For detection of space-time clusters in the LRI-hospitalizations data, we used a space-time permutation scan 
statistic that compares observed and expected numbers of cases in circular areas with variable radii in flexible 
time periods. A likelihood ratio is calculated for each space-time window, to indicate to what extent the rate 
of cases inside the area is higher than expected. Monte Carlo hypothesis testing is then used to indicate the 
significance level of specific space-time windows. As expected numbers are calculated from the geographic 
distribution of cases in the whole dataset this method does not require additional population-at-risk data, and 
population density and seasonal variation in the case data is automatically adjusted for [15]. 

We simulated a prospective surveillance by running the scan-statistic on data from the year preceding 
each time unit (day or week) in the analysis period. This way, weekly or daily space-time signals were generated. 
For analyses in 1999, we used data from 2000 as historical data (by generating a stand-in-dataset for 1998 based 
on data from 2000). For all analyses, we chose to use time aggregation windows of 7-days length, even for 
the daily analysis for 1999 and 2006. For these daily analyses, the 7-day windows shifted one day forward for 
each daily run. Thus we both limited the computation time and adjusted for day-of-week effects (both purely 
temporal and spatial day-of-week effects). To further limit the computation time - for the initial analyses - we 
chose a maximum spatial cluster-signal size of 40% population at risk (instead of default 50%, the cases are 
here the population) and a maximum temporal cluster-signal size of 21 weeks (to not only detect outbreaks 
that evolve in e.g. 1 or 2 weeks, but also more gradually evolving outbreaks).

As a covariate we included the age group (0-4, 5-19, 20-49, 50-64, >=65 years). 
To measure the significance of the detected cluster-signals we used recurrence-intervals. The recurrence 
interval reflects how often a signal of the observed significance level would be observed by chance, assuming 
that analyses are repeated on a regular basis (e.g. daily/weekly) [18]. E.g. a signal with a recurrence interval 

Appendix chapter 4

Appendix S1: Detailed syndrome definition for hospitalizations with lower-respiratory infection 
syndrome.

We used discharge and secondary diagnoses on date of hospitalization from the Dutch National Medical 
Register (LMR, 99% coverage over 1999-2004, 80 % coverage over 2005-2006 16 million pop., coded in Dutch 
version of ICD-9-CM).	

To define a lower-respiratory infection syndrome, we selected ICD-9-CM (International Classification 
of Diseases, 9th revision, Clinical Modification) codes for any kind of lower-respiratory infection from the 
respiratory syndrome codes-list as selected by the CDC (Centers for Disease Control and Prevention, USA, 
http://www.bt.cdc.gov/surveillance/syndromedef/). See Table 1 below for all selected lower-respiratory 
infection codes. We selected these codes as a subset from the set of codes for general respiratory symptoms and 
diagnoses (‘category 1’ in CDC-list) and the codes for specific respiratory biologic agent diagnoses (‘category 3’ 
in CDC-list). Finally these syndrome codes were slighty adapted for the Dutch version of ICD-9-CM. 

Table 1. ICD-9-CM codes for lower-respiratory infection syndrome in hospitalization data.
ICD-9-CM Description
003.22 Salmonella pneumonia                                                        
020.3 Primary pneumonic plague                                                    
020.4 Secondary pneumon plague                                                    
020.5 Pneumonic plague not otherwise specified                                                        
021.2 Pulmonary tularemia                                                         
022.1 Pulmonary anthrax                                                           
031.0 Mycobacteria, pulmonary                                                     
052.1 Varicella with pneumonia                                                    
055.1 Postmeasles pneumonia                                                       
073.0 Ornithosis, with pneumonia                                                  
114.0 Primary coccidioidomycosis (lung)
114.9 Coccidioidomycosis not otherwise specified                                                      
115.05 Histoplasma capsulatum pneumonia                                                     
115.15 Histoplasma duboisii pneumonia                                              
115.95 Histoplasmosis pneumonia                                                    
116.0 Blastomycosis                                                               
116.1 Paracoccidioidomycosis                                                      
117.3 Pulmonary aspergillosis                                                     
130.4 Toxoplasma pneumonitis                                                      
136.3 Pneumocystosis                                                              
466.0 Bronchitis acute                                                            
466.1 Acute bronchiolitis
480.0 Adenoviral pneumonia                                                        
480.1 Pneumonia due to respiratory syncytial virus                                                    
480.2 Parinfluenza viral pneumonia                                                    
480.8 Viral pneumonia not elsewhere classified                                                         
480.9 Pneumonia, viral                                                            
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of 1 year would, on average, be observed every year. The recurrence interval can be extracted directly from 
the p-value: e.g. for daily analysis the recurrence interval in days can be calculated as “1/p-value” whereas for 
weekly analysis the recurrence interval in days is “7/p-value”. This implies that a recurrence interval of 1 year 
corresponds with a p-value of 0.00274 for daily analyses and 0.0192 for weekly analyses.

A sensitivity analysis was used to evaluate the impact of time and spatial window settings on the number 
of space-time signals detected. For the initial analyses, as described above we put only minor constraints on the 
maximum temporal and spatial windows of the scan-statistic. We then repeated these weekly analyses with a 
temporal window of maximum 7 weeks and also with a spatial window of maximum 25 km radius (arbitrarily 
chosen). We then used the initial analyses results as reference for the analyses with restricted settings, and 
evaluated what signals and clusters from the initial analyses were still detected with the restricted settings (by 
assessing geographical overlap between signals generated at the same date). Restrictions on space and time 
will lead to (little) extra signals as well, as borderline significant signals as detected with restricted settings, 
might have been not significant with non restrictive settings - due to more adjustments for taking into account 
multiple testing - stemming from the many (more) potential cluster locations and sizes evaluated [15]. 

We also performed space-time scans on the ILI-data, to assess whether regional ILI-clusters might explain 
detected LRI-clusters. For the ILI-data prospective space-time scans were performed, with a Poisson-
distributed number of events in a geographical area, according to a known underlying population-at-risk [30]. 
Here we chose to use population-at-risk data, because of variation in the number of GP-practices supplying 
data (e.g. during vacations). We adjusted for purely temporal clusters using the time-stratified randomization 
option of the Satscan software, to prevent concurring ILI-clusters in all regions, e.g. by seasonal variation. In 
contrast with the LRI-analyses we only used recurrence intervals of >= 1 year, we divided the Netherlands in 
4 major regions as spatial input, we used an analysis period of 180 days back from each date the prospective 
scan was performed for, we took a maximum spatial cluster-signal size of 50% population at risk (default) and 
we used a maximum temporal cluster-signal size of 7 days (to only detect weekly cluster-signals corresponding 
with the weekly regional ILI-incidence fluctuations as reported in the Dutch Influenza News letter, http://www.
virology.nl/files/new.pdf). No covariate (age) was used and spatially the clusters were limited to contain only 
1 out of the 4 major regions.
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Appendix chapter 5

Appendix A: Detailed case definition for hospitalizations with LRI, hepatitis, and/or 
endocarditis syndromes

We used discharge diagnoses and secondary diagnoses by date of hospitalization, provided by the Dutch 
National Medical Register (LMR). Coded in the Dutch version of ICD-9-CM, the Register had 80% coverage 
over 16 million population 2005-2007. We included all records on hospitalizations with discharge or secondary 
diagnosis indicative for clinical syndromes that might be attributed to Q fever, i.e. (1) LRI, (2) hepatitis, and/or 
(3) endocarditis. We also included ICD-9-codes for specific diseases other than Q fever, making it possible to 
distinguish alternative possible causes for detected space-time clusters (by the proportion of cluster patients with 
those specific discharge diagnoses).

Although a specific ICD-9 code for Q fever exists (0830), we found for our study period only 18 hospitalization 
records with Q fever as a primary and/or secondary diagnosis. Of these, 13 occurred in 2007, reflecting only a 
fraction of the known outbreak cases; 9 of these 18 hospitalizations were included in the LRI syndrome based on 
other registered diagnostic codes (e.g. pneumonia) and likewise 1 hospitalization was included in the hepatitis 
case definition. The remaining 8 hospitalizations were excluded, since they did not have diagnoses that indicated 
LRI, hepatitis, and/or endocarditis.

For the LRI syndrome, we used the same codes as selected and described in an earlier study [1]. Below, the 
selected ICD-9 codes are presented for the hepatitis and endocarditis syndromes.

Hepatitis
In Table A1, the selected ICD-9 codes for acute and/or chronic hepatitis are presented. 

Table A1. ICD-9-CM codes for hepatitis in hospitalization data.
ICD-9-CM Description
070 Viral hepatitis
070.0 Viral hepatitis A with hepatic coma
070.1 Viral hepatitis A without mention of hepatic coma
070.2 Viral hepatitis B with hepatic coma
070.3 Viral hepatitis B without mention of hepatic coma
070.4 Other specified viral hepatitis with hepatic coma
070.5 Other specified viral hepatitis without mention of hepatic coma
070.6 Unspecified viral hepatitis with hepatic coma
070.9 Unspecified viral hepatitis without mention of hepatic coma
072.71 Mumps hepatitis
091.62 Secondary syphilitic hepatitis
130.5 Hepatitis due to toxoplasmosis
571.4 Chronic hepatitis
573.1 Hepatitis in viral diseases classified elsewhere
573.2 Hepatitis in other infectious diseases classified elsewhere
573.3 Hepatitis, unspecified

Endocarditis 
In Table A2, the selected ICD-9 codes for acute and/or chronic endocarditis are presented. 

Table A2. ICD-9-CM codes for endocarditis in hospitalization data.
ICD-9-CM Description
036.42 Meningococcal endocarditis
074.22 Coxsackie endocarditis
093.2 Syphilitic endocarditis
098.84 Gonococcal endocarditis
112.81 Candidal endocarditis
115.04 Histoplasma capsulatum endocarditis
115.14 Histoplasma duboissii endocarditis
115.94 Histoplasmosis endocarditis
391.1 Acute rheumatic endocarditis
421 Acute and subacute endocarditis
421.0 Acute and subacute bacterial endocarditis
421.1 Acute and subacute infective endocarditis in diseases classified elsewhere
421.9 Acute endocarditis, unspecified
424.9 Endocarditis, valve unspecified

Reference
1. Van den Wijngaard CC, et al. Syndromic surveillance for local outbreaks of lower-respiratory infections: would it work? 

PLoS ONE 2010;5:e10406. 

Appendix B  
Table B1 and B2 present detailed information of all detected LRI and hepatitis clusters. Details presented on 
each cluster are: the weekdate of the first cluster signal (column 2), the total number of cluster signals (with 
recurrence intervals ≥ 1 years or 5 years, column 3), the total episode of the cluster (from the earliest weekdate 
of all cluster-signal episodes to the latest weekdate, column 4), the lowest and the highest difference for a 
cluster signal between the number of observed and the number of expected cases (column 5), the lowest and 
the highest cluster-signal radius (column 6), all relevant cluster characteristics and circumstantial evidence 
(column 7), and whether or not a cluster that was possibly due to Q fever regarding the criteria in Figure 1 
overlapped with positive-tested small-ruminant farms (column 8). Finally, in the last column it is concluded, 
based upon the information in column 7 and 8 and the criteria in Figure 1, whether Q fever seems a plausible 
cause for the clusters or that other causes seem more likely.    



124  Appendix chapter 5 125

C
lu

st
er

1s
t 

si
gn

al
To

ta
l n

o.
 

si
gn

al
s

––
––

––
––

Si
gn

. l
ev

el
 

To
ta

l 
ep

is
od

e 
N

o.
 o

bs
er

ve
d 

ca
se

s-
 n

o.
 

ex
pe

ct
ed

  

R
ad

ii 
in

 k
m

C
lu

st
er

 ch
ar

ac
te

ri
st

ic
s a

nd
 /o

r c
ir

cu
m

st
an

tia
l 

ev
id

en
ce

 
Sp

at
ia

l o
ve

rl
ap

* w
ith

 
po

si
tiv

e-
 te

st
ed

 g
oa

t/
sh

ee
p 

fa
rm

s†

M
ig

ht
 th

e 
cl

us
te

r 
ha

ve
 b

ee
n 

ca
us

ed
 b

y 
Q

 fe
ve

r?

1 
yr

5 
yr

Lo
w

es
t  

H
ig

he
st

7
14

 Ja
n.

 
20

06
4

14
25

 D
ec

. 
20

05
-1

3 
M

ay
 2

00
6

22
0-

15
3 

= 
67

23
61

-
21

30
 =

 
23

1

28
-5

9
•	

8 
clu

ste
r s

ig
na

ls 
ha

d 
hi

gh
er

 p
ro

po
rt

io
ns

 (P
 ≤

 
0.

05
) o

f b
ro

nc
hi

tis
/ b

ro
nc

hi
ol

iti
s c

as
es

 (5
 o

f  
th

es
e a

lso
 at

  P
 ≤

 0
.0

1)
.

•	
16

 cl
us

te
r s

ig
na

ls 
ha

d 
hi

gh
er

 p
ro

po
rt

io
ns

 (P
 ≤

 
0.

01
) o

f p
at

ie
nt

s 0
-4

 y
r o

f a
ge

.
•	

1 
clu

ste
r s

ig
na

l h
ad

 h
ig

he
r p

ro
po

rt
io

ns
 (P

 ≤
 

0.
05

) o
f p

at
ie

nt
s 0

-4
 an

d 
5-

19
 y

r o
f a

ge
.

•	
A

ll 
clu

ste
r s

ig
na

ls 
ov

er
la

pp
ed

 w
ith

 re
gi

on
al

 IL
I 

el
ev

at
io

ns
.

•	
A

 sp
ac

e-
tim

e c
lu

ste
r o

f 4
 L

D
 re

po
rt

s o
ve

rla
pp

ed
 

w
ith

 th
e c

lu
ste

r; 
ho

w
ev

er
, d

ue
 to

 th
e l

ar
ge

 sp
ac

e-
tim

e w
in

do
w

 o
f t

he
 L

RI
 cl

us
te

r, 
th

is 
is 

po
ss

ib
ly

 
a c

oi
nc

id
en

ce
 (t

he
 L

D
 cl

us
te

r h
ad

 a 
w

in
do

w
 o

f 
on

ly
 3

 w
ee

ks
). 

n/
a

Q
 fe

ve
r s

ee
m

s 
un

lik
el

y.
 L

ik
el

y 
ot

he
r 

ca
us

es
: R

SV
/in

flu
en

za
.

8
18

 M
ar

. 
20

06
2

5
19

 F
eb

. 
20

06
-

6 
M

ay
 

20
06

31
-1

1=
 

20
17

71
-

15
74

=
19

7

4-
28

•	
4 

cl
us

te
r s

ig
na

ls 
ha

d 
hi

gh
er

 p
ro

po
rt

io
ns

  o
f 

br
on

ch
iti

s/
 b

ro
nc

hi
ol

iti
s c

as
es

 (P
 ≤

 0
.0

1)
, 

an
d 

 5
 cl

us
te

r s
ig

na
ls 

ha
d 

 h
ig

he
r p

ro
po

rt
io

ns
 

of
 p

at
ie

nt
s 0

-4
 y

r o
f a

ge
 (p

 ≤
 0

.0
5;

 3
 o

f t
he

se
 

cl
us

te
r s

ig
na

ls 
al

so
 at

 P
 ≤

0.
01

).

n/
a

Q
 fe

ve
r s

ee
m

s 
un

lik
el

y.
 L

ik
el

y 
ot

he
r 

ca
us

es
: R

SV
/in

flu
en

za
.

9
20

 M
ay

 
20

06
1

0
14

 M
ay

 
20

06
-2

0 
M

ay
 2

00
6

n/
a

5-
0 

= 
5

3
•	

N
o 

sp
ec

ia
l c

lu
st

er
 si

gn
al

 ch
ar

ac
te

ris
tic

s 
ob

se
rv

ed
.

2 
go

at
 fa

rm
s (

ju
st

 n
ex

t 
to

 th
e 

cl
us

te
r a

re
a 

at
 th

e 
w

es
t s

id
e)

: b
ot

h 
fir

st
ly

 
te

st
ed

 p
os

iti
ve

 in
 2

00
7.

Q
 fe

ve
r s

ee
m

s a
 

pl
au

si
bl

e 
ca

us
e.

10
15

 Ju
ly

   
20

06
0

4
2 

Ju
ly

   
20

06
-

5 
Au

g.
 

20
06

19
-4

 =
 

15
98

-5
3 

= 
45

6-
19

•	
A

ll 
cl

us
te

r s
ig

na
ls 

ha
d 

hi
gh

er
 p

ro
po

rt
io

ns
 (P

 ≤
 

0.
01

) o
f h

os
pi

ta
liz

at
io

ns
 w

ith
 L

D
 a

s d
isc

ha
rg

e 
di

ag
no

sis
 (I

C
D

-9
 4

82
8)

.
•	

A
ll 

LR
I c

lu
st

er
 si

gn
al

s  
st

ro
ng

ly
 o

ve
rla

pp
ed

 
bo

th
 in

 sp
ac

e 
an

d 
tim

e 
w

ith
 a

 cl
us

te
r o

f L
D

 
re

po
rt

s  
(m

ax
. 5

0 
ca

se
s)

.
•	

A
ll 

cl
us

te
r s

ig
na

ls 
oc

cu
rr

ed
 in

 th
e 

al
re

ad
y 

kn
ow

n 
ep

iso
de

 a
nd

 a
re

a 
of

 a
n 

LD
 o

ut
br

ea
k 

in
 

A
m

st
er

da
m

 in
 2

00
6.

n/
a

Q
 fe

ve
r s

ee
m

s 
un

lik
el

y.
 C

er
ta

in
ly

 
an

ot
he

r c
au

se
: 

Le
gi

on
ell

a.

11
16

 S
ep

t. 
20

06
6

0
16

 Ju
ly

   
20

06
-4

 
N

ov
. 

20
06

10
2-

60
 

= 
42

16
0-

10
5 

= 
55

6
•	

A
ll 

cl
us

te
r s

ig
na

ls 
ha

d 
hi

gh
er

 p
ro

po
rt

io
ns

 (P
 

≤ 
0.

01
) o

f b
ro

nc
hi

tis
/ b

ro
nc

hi
ol

iti
s c

as
es

 a
nd

 
pa

tie
nt

s 0
-4

 y
r o

f a
ge

.
•	

A
ll 

cl
us

te
r s

ig
na

ls 
ov

er
la

pp
ed

 w
ith

 re
gi

on
al

 IL
I 

el
ev

at
io

ns
, b

ut
 th

e 
na

tio
na

l I
LI

 in
ci

de
nc

e 
w

as
 

be
lo

w
 3

/1
00

00
 p

op
. 

n/
a

Q
 fe

ve
r s

ee
m

s 
un

lik
el

y.
 L

ik
el

y 
an

ot
he

r c
au

se
: R

SV
.

Ta
bl

e B
1.

 D
et

ai
le

d 
de

sc
ri

pt
io

n 
of

 a
ll 

sp
ac

e-
tim

e c
lu

st
er

s i
n 

ho
sp

ita
liz

at
io

ns
 w

ith
 L

RI
 in

 2
00

5-
20

07
.

C
lu

st
er

1s
t 

si
gn

al
To

ta
l n

o.
 

si
gn

al
s

––
––

––
––

Si
gn

. l
ev

el
 

To
ta

l 
ep

is
od

e 
N

o.
 o

bs
er

ve
d 

ca
se

s-
 n

o.
 

ex
pe

ct
ed

  

R
ad

ii 
in

 k
m

C
lu

st
er

 ch
ar

ac
te

ri
st

ic
s a

nd
 /o

r c
ir

cu
m

st
an

tia
l 

ev
id

en
ce

 
Sp

at
ia

l o
ve

rl
ap

* w
ith

 
po

si
tiv

e-
 te

st
ed

 g
oa

t/
sh

ee
p 

fa
rm

s†

M
ig

ht
 th

e 
cl

us
te

r 
ha

ve
 b

ee
n 

ca
us

ed
 b

y 
Q

 fe
ve

r?

1 
yr

5 
yr

Lo
w

es
t  

H
ig

he
st

1
30

 O
ct

. 
20

04
 

3
8

8 
Au

g.
 

20
04

- 
8 

Ja
n.

 
20

05

19
94

-
17

82
 =

21
2

65
13

-
60

45
 =

46
8

33
-5

0 
•	

A
ll 

cl
us

te
r s

ig
na

ls 
ha

d 
hi

gh
er

 p
ro

po
rt

io
ns

 (P
 

≤ 
0.

01
) o

f b
ro

nc
hi

tis
/ b

ro
nc

hi
ol

iti
s c

as
es

 a
nd

 
pa

tie
nt

s 0
-4

 y
r o

f a
ge

.
•	

1 
cl

us
te

r s
ig

na
l  

ha
d 

hi
gh

er
 p

ro
po

rt
io

ns
 o

f 
un

ex
pl

ai
ne

d 
pn

eu
m

on
ia

.
•	

7 
cl

us
te

r s
ig

na
ls 

ov
er

la
pp

ed
 w

ith
 re

gi
on

al
 IL

I 
el

ev
at

io
ns

.

n/
a

Q
 fe

ve
r s

ee
m

s 
un

lik
el

y.
 L

ik
el

y 
ot

he
r 

ca
us

es
: R

SV
/in

flu
en

za
.

2‡
1 

Ja
n.

 
20

05
1

16
26

 D
ec

. 
20

04
-2

3 
Ap

r. 
20

05

15
6-

10
4 

= 
52

10
12

- 
82

7 
= 

18
5

33
-4

0
•	

16
 cl

us
te

r s
ig

na
ls 

ha
d 

hi
gh

er
 p

ro
po

rt
io

ns
 (P

 
≤ 

0.
01

) o
f b

ro
nc

hi
tis

/ b
ro

nc
hi

ol
iti

s c
as

es
 a

nd
 

pa
tie

nt
s 0

-4
 y

r o
f a

ge
.

•	
13

 cl
us

te
r s

ig
na

ls 
ov

er
la

pp
ed

 w
ith

 re
gi

on
al

 IL
I 

el
ev

at
io

ns
.

n/
a

Q
 fe

ve
r s

ee
m

s 
un

lik
el

y.
 L

ik
el

y 
ot

he
r 

ca
us

es
: R

SV
/in

flu
en

za
.

3‡
30

 A
pr

. 
20

05
1

8
26

 D
ec

. 
20

04
-2

5 
Ju

ne
  

20
05

22
1-

15
1 

= 
70

62
0-

 
47

8 
= 

14
2 

10
-1

4
•	

2 
cl

us
te

r s
ig

na
ls 

ha
d 

hi
gh

er
 p

ro
po

rt
io

ns
 (P

 ≤
 

0.
05

) o
f p

at
ie

nt
s 2

0-
49

 y
r o

f a
ge

.
•	

A
ll 

cl
us

te
r s

ig
na

ls 
ov

er
la

pp
ed

 w
ith

 re
gi

on
al

 IL
I 

el
ev

at
io

ns
, b

ut
 th

e 
cl

us
te

r c
on

ta
in

s a
 re

la
tiv

el
y 

sm
al

l a
re

a,
 w

he
re

as
 th

e 
re

gi
on

al
 IL

I e
le

va
tio

ns
 

ar
e 

m
ea

su
re

d 
by

 d
iv

id
in

g 
th

e 
N

et
he

rla
nd

s i
n 

4 
w

id
es

pr
ea

d 
ar

ea
s.

4 
go

at
 fa

rm
s: 

1 
te

st
ed

 
po

sit
iv

e 
in

 2
00

6,
 1

 in
 

20
07

, a
nd

 2
 in

 2
00

8

Q
 fe

ve
r s

ee
m

s a
 

pl
au

si
bl

e 
ca

us
e.

4§
19

 N
ov

.     
20

05
0

1
23

 O
ct

. 
20

05
-1

9 
N

ov
. 

20
05

n/
a

14
9-

93
 

= 
56

17
•	

Th
e 

cl
us

te
r s

ig
na

ls 
ov

er
la

pp
ed

 w
ith

 re
gi

on
al

 IL
I 

el
ev

at
io

ns
, b

ut
 th

e 
cl

us
te

r c
on

ta
in

s a
 re

la
tiv

el
y 

sm
al

l a
re

a,
 w

he
re

as
 th

e 
re

gi
on

al
 IL

I e
le

va
tio

ns
 

ar
e 

m
ea

su
re

d 
by

 d
iv

id
in

g 
th

e 
N

et
he

rla
nd

s i
n 

4 
w

id
es

pr
ea

d 
ar

ea
s (

in
 a

dd
iti

on
, t

he
 n

at
io

na
l I

LI
 

in
ci

de
nc

e 
w

as
 b

el
ow

 3
/1

00
00

 p
op

).

2 
go

at
 fa

rm
s a

nd
 1

 
sh

ee
p 

fa
rm

:
1 

go
at

 fa
rm

 te
st

ed
 

po
sit

iv
e 

in
 2

00
1,

 th
e 

ot
he

r i
n 

20
07

, a
nd

 th
e 

sh
ee

p 
fa

rm
 in

 2
00

8.
 

Q
 fe

ve
r s

ee
m

s a
 

pl
au

si
bl

e 
ca

us
e.

5§
26

 N
ov

. 
20

05
0

5
24

 Ju
ly

 
20

05
-2

4 
D

ec
. 

20
05

27
66

-
25

02
 =

 
26

4

37
08

-
33

88
 

=3
20

51
-5

3
•	

2 
clu

ste
r s

ig
na

ls 
ha

d 
hi

gh
er

 p
ro

po
rt

io
ns

 (P
 ≤

 
0.

05
) o

f h
os

pi
ta

liz
at

io
ns

 w
ith

 le
gi

on
el

lo
sis

 as
 

di
sc

ha
rg

e d
ia

gn
os

is.
 

•	
5 

clu
ste

r s
ig

na
ls 

ha
d 

hi
gh

er
 p

ro
po

rt
io

ns
 (P

 
≤0

.0
1)

 o
f p

at
ie

nt
s  

0-
4 

yr
 o

f a
ge

.
•	

A
ll 

clu
ste

r s
ig

na
ls 

ov
er

la
pp

ed
 w

ith
 re

gi
on

al
 IL

I 
el

ev
at

io
ns

, b
ut

 th
e n

at
io

na
l I

LI
 in

ci
de

nc
e w

as
 

be
lo

w
 3

/1
00

00
 p

op
. 

n/
a

Q
 fe

ve
r s

ee
m

s 
un

lik
el

y.
Li

ke
ly

 o
th

er
 c

au
se

s: 
RS

V
/in

flu
en

za
, 

po
ss

ib
ly

 L
eg

io
ne

lla
 a

s 
w

el
l.



126  Appendix chapter 5 127

C
lu

st
er

1s
t 

si
gn

al
To

ta
l n

o.
 

si
gn

al
s

––
––

––
––

Si
gn

. l
ev

el
 

To
ta

l 
ep

is
od

e 
N

o.
 o

bs
er

ve
d 

ca
se

s-
 n

o.
 

ex
pe

ct
ed

  

R
ad

ii 
in

 k
m

C
lu

st
er

 ch
ar

ac
te

ri
st

ic
s a

nd
 /o

r c
ir

cu
m

st
an

tia
l 

ev
id

en
ce

 
Sp

at
ia

l o
ve

rl
ap

* w
ith

 
po

si
tiv

e-
 te

st
ed

 g
oa

t/
sh

ee
p 

fa
rm

s†

M
ig

ht
 th

e 
cl

us
te

r 
ha

ve
 b

ee
n 

ca
us

ed
 b

y 
Q

 fe
ve

r?

1 
yr

5 
yr

Lo
w

es
t  

H
ig

he
st

20
15

 S
ep

t. 
20

07
2

0
19

 A
ug

. 
20

07
-1

9 
Se

pt
. 

20
07

44
-1

9 
= 

25
62

-3
1 

= 
31

10
•	

Bo
th

 cl
us

ter
 si

gn
als

 h
ad

 h
ig

he
r p

ro
po

rti
on

s (
P 

≤ 
0.0

5)
 of

 u
ne

xp
lai

ne
d 

pn
eu

m
on

ia 
ca

se
s.

•	
Th

e c
lu

ste
r s

ig
na

ls 
ov

er
lap

pe
d 

in
 sp

ac
e a

nd
 ti

m
e 

wi
th

 th
os

e o
f 6

 Q
 fe

ve
r p

ati
en

ts 
be

tw
ee

n 
 2 

Se
pt

. a
nd

  
29

 D
ec

. 2
00

7, 
bu

t n
o 

Q
-fe

ve
r c

as
es

 w
er

e r
ep

or
ted

 fo
r 

po
sta

l c
od

e a
re

as
 th

at 
ac

tu
all

y o
ve

rla
pp

ed
 w

ith
 th

e 
LR

I c
lu

ste
r.

•	
Ab

or
tio

n 
wa

ve
s w

er
e r

ep
or

ted
 at

 1 
go

at 
far

m
 w

ith
in

 
or

 at
 cl

os
e r

an
ge

 of
 th

e c
lu

ste
r a

re
a i

n 
20

05
-2

00
8.

1 
go

at
 fa

rm
 th

at
 fi

rs
t 

te
st

ed
 p

os
iti

ve
 in

 2
00

6 
Q

 fe
ve

r s
ee

m
s a

 
pl

au
si

bl
e 

ca
us

e.

IL
I, 

In
flu

en
za

-li
ke

 il
ln

es
s; 

RS
V,

 re
sp

ira
to

ry
 sy

nc
yt

ia
l v

iru
s; 

LD
, L

eg
io

nn
ai

re
s’ 

D
ise

as
e.

* S
pa

tia
l o

ve
rla

p 
w

ith
 p

os
iti

ve
 fa

rm
s w

as
 a

ss
es

se
d 

on
ly

 if
 th

e 
cl

us
te

r m
et

 th
e 

cr
ite

ria
 fo

r Q
 fe

ve
r t

o 
be

 a
 p

os
sib

le
 c

au
se

.
† 

Th
es

e w
er

e 2
6 

Q
 fe

ve
r p

os
iti

ve
-t

es
te

d 
go

at
/s

he
ep

 fa
rm

s t
ha

t v
ol

un
ta

ril
y 

su
bm

itt
ed

 a
bo

rt
io

n 
m

at
er

ia
l i

n 
20

05
-2

00
8.

 O
nl

y 
3 

fa
rm

s s
ub

m
itt

ed
 th

e m
at

er
ia

l a
fte

r r
ep

or
tin

g 
of

 a
bo

r-
tio

n 
w

av
es

 b
ec

am
e 

m
an

da
to

ry
 in

 2
00

8;
 o

ne
 fa

rm
 w

as
 re

tr
os

pe
ct

iv
el

y 
te

st
ed

 p
os

iti
ve

 o
n 

m
at

er
ia

l f
ro

m
 2

00
1 

(s
ee

 M
et

ho
ds

 se
ct

io
n)

.
‡ 

C
lu

st
er

s 2
 a

nd
 3

 o
ve

rla
pp

ed
 in

 sp
ac

e 
an

d 
tim

e 
bu

t w
er

e 
no

t m
er

ge
d 

be
ca

us
e 

a 
sh

ar
ed

 c
au

se
 se

em
ed

 u
nl

ik
el

y, 
sin

ce
 c

lu
st

er
 3

 c
on

ta
in

ed
 a

 sm
al

le
r g

eo
gr

ap
hi

ca
l a

re
a 

an
d 

di
d 

no
t 

co
nt

ai
n 

sig
ni

fic
an

tly
 h

ig
he

r p
ro

po
rt

io
ns

 o
f p

at
ie

nt
s 0

-4
 y

r o
f a

ge
 a

nd
 b

ro
nc

hi
tis

/b
ro

nc
hi

ol
iti

s c
as

es
, w

he
re

as
 cl

us
te

r 2
 d

id
.

§ 
C

lu
st

er
s 4

 a
nd

 5
 o

ve
rla

pp
ed

 in
 sp

ac
e 

an
d 

tim
e 

bu
t w

er
e 

no
t m

er
ge

d 
be

ca
us

e 
a 

sh
ar

ed
 c

au
se

 se
em

ed
 u

nl
ik

el
y, 

sin
ce

 c
lu

st
er

 4
 c

on
ta

in
ed

 a
 m

uc
h 

sm
al

le
r s

pa
ce

–t
im

e 
w

in
do

w
 a

nd
 

ge
og

ra
ph

ic
al

ly
 o

ve
rla

pp
ed

 w
ith

 cl
us

te
r 5

 in
 o

nl
y 

a 
bo

rd
er

lin
e 

w
ay

.

C
lu

st
er

1s
t 

si
gn

al
To

ta
l n

o.
 

si
gn

al
s

––
––

––
––

Si
gn

. l
ev

el
 

To
ta

l 
ep

is
od

e 
N

o.
 o

bs
er

ve
d 

ca
se

s-
 n

o.
 

ex
pe

ct
ed

  

R
ad

ii 
in

 k
m

C
lu

st
er

 ch
ar

ac
te

ri
st

ic
s a

nd
 /o

r c
ir

cu
m

st
an

tia
l 

ev
id

en
ce

 
Sp

at
ia

l o
ve

rl
ap

* w
ith

 
po

si
tiv

e-
 te

st
ed

 g
oa

t/
sh

ee
p 

fa
rm

s†

M
ig

ht
 th

e 
cl

us
te

r 
ha

ve
 b

ee
n 

ca
us

ed
 b

y 
Q

 fe
ve

r?

1 
yr

5 
yr

Lo
w

es
t  

H
ig

he
st

13
13

 Ja
n.

 
20

07
5

15
17

 D
ec

. 
20

06
-2

6 
M

ay
 2

00
7

28
-8

 =
 

20
12

7-
78

 
= 

49
3-

5
•	

A
ll 

cl
us

te
r s

ig
na

ls 
ha

d 
hi

gh
er

 p
ro

po
rt

io
ns

 (P
 ≤

 
0.

01
) o

f u
ne

xp
la

in
ed

 p
ne

um
on

ia
 c

as
es

.
•	

3 
cl

us
te

r s
ig

na
ls 

ha
d 

hi
gh

er
 p

ro
po

rt
io

ns
  o

f 
pa

tie
nt

s  
≥6

5 
yr

 o
f a

ge
, a

nd
 1

 si
gn

al
 h

ad
 

pa
tie

nt
s 5

-1
9 

yr
 o

f a
ge

 (P
 ≤

 0
.0

5)
.

•	
1 

ho
sp

ita
liz

at
io

n 
w

as
 d

ia
gn

os
ed

 w
ith

 p
sit

ta
co

sis
 

pn
eu

m
on

ia
 a

nd
 2

 w
ith

 a
sp

er
gi

llo
sis

 (w
hi

ch
 

w
as

 si
gn

ifi
ca

nt
ly

 d
iff

er
en

t f
ro

m
 th

e 
re

st
 o

f t
he

 
N

et
he

rla
nd

s, 
at

 P
 ≤

0.
01

 a
nd

 0
.0

5,
 in

 th
at

 o
rd

er
).

•	
5 

cl
us

te
r s

ig
na

ls 
ov

er
la

pp
ed

 w
ith

 re
gi

on
al

 IL
I 

el
ev

at
io

ns
, b

ut
 th

e 
na

tio
na

l I
LI

 in
ci

de
nc

e 
w

as
 

be
lo

w
 3

/1
00

00
 p

op
. 

N
o 

ov
er

la
p 

w
ith

 
po

sit
iv

e-
te

st
ed

 fa
rm

s
A

lth
ou

gh
 th

is 
clu

ste
r 

di
d 

no
t e

xa
ct

ly
 m

at
ch

 
th

e c
rit

er
ia

 fo
r Q

 fe
ve

r 
as

 a 
po

ss
ib

le
 ca

us
e, 

w
e  

de
ci

de
d 

to
 as

se
ss

 
w

he
th

er
 it

 o
ve

rla
pp

ed
 

w
ith

 re
po

rte
d 

Q
-fe

ve
r-

ab
or

tio
n 

w
av

es
  b

ec
au

se
 

of
 th

e c
on

sis
te

nt
ly

 
hi

gh
 p

ro
po

rt
io

n 
of

 u
ne

xp
lai

ne
d 

pn
eu

m
on

ia
 ca

se
s.

14
3 

Fe
b.

 
20

07
5

1
14

 Ja
n.

 
20

07
-1

7 
M

ar
. 

20
07

71
-3

6 
= 

35
65

3-
53

0 
= 

12
3

20
-6

0
•	

A
ll 

cl
us

te
r s

ig
na

ls 
ha

d 
hi

gh
er

 p
ro

po
rt

io
ns

 (P
 

≤ 
0.

01
) o

f b
ro

nc
hi

tis
/ b

ro
nc

hi
ol

iti
s c

as
es

 a
nd

 
pa

tie
nt

s 0
-4

 y
r o

f a
ge

.

n/
a

Q
 fe

ve
r s

ee
m

s 
un

lik
el

y.
 L

ik
el

y 
an

ot
he

r c
au

se
: R

SV
/

in
flu

en
za

.
15

3 
M

ar
. 

20
07

1
1

18
 F

eb
. 

20
07

-1
7 

M
ar

. 
20

07

18
2-

12
0 

= 
62

55
0-

44
0 

= 
11

0

19
-2

9
•	

1 
cl

us
te

r s
ig

na
l h

ad
 h

ig
he

r p
ro

po
rt

io
ns

 (P
 ≤

 
0.

05
) o

f u
ne

xp
la

in
ed

 p
ne

um
on

ia
  c

as
es

.
•	

Bo
th

 cl
us

te
r s

ig
na

ls 
ov

er
la

pp
ed

 w
ith

 re
gi

on
al

 
IL

I e
le

va
tio

ns
.

9 
go

at
 fa

rm
s:

2 
go

at
 fa

rm
s t

es
te

d 
po

sit
iv

e 
in

 2
00

5,
 3

 g
oa

t 
fa

rm
s i

n 
20

06
, 2

 in
 

20
07

, a
nd

  2
 in

 2
00

8 

Q
 fe

ve
r s

ee
m

s a
 

pl
au

si
bl

e 
ca

us
e (

bu
t 

re
gi

on
al

 in
flu

en
za

 
ac

tiv
ity

 a
s w

el
l).

17
26

 M
ay

 
20

07
1

0
13

 M
ay

 
20

07
-2

6 
M

ay
 2

00
7

n/
a

11
-1

 =
 

10
6

•	
Th

e 
cl

us
te

r s
ig

na
l h

ad
 h

ig
he

r p
ro

po
rt

io
n 

of
  

pa
tie

nt
s 5

0-
64

 y
r o

f a
ge

 (P
 ≤

 0
.0

5)
.

•	
Th

e 
cl

us
te

r s
ig

na
l o

ve
rla

pp
ed

 w
ith

 re
gi

on
al

 IL
I 

el
ev

at
io

ns
, b

ut
 th

e 
na

tio
na

l I
LI

 in
ci

de
nc

e 
w

as
 

be
lo

w
 3

/1
00

00
 p

op
.

N
o 

ov
er

la
p 

w
ith

 
po

sit
iv

e-
te

st
ed

 fa
rm

s
Q

 fe
ve

r s
ee

m
s 

po
ss

ib
le

.

18
26

 M
ay

 
20

07
2

0
13

 M
ay

 
20

07
-

2 
Ju

ne
  

20
07

18
-4

 =
 

14
22

-6
 =

 
16

3
•	

Th
e c

lu
ste

r s
ig

na
ls 

ha
d 

hi
gh

er
 p

ro
po

rti
on

s o
f 

br
on

ch
iti

s/ 
br

on
ch

io
lit

is 
ca

se
s (

P 
≤0

.01
).

•	
Th

e c
lu

ste
r s

ign
als

 h
ad

 h
igh

er
 pr

op
or

tio
ns

 of
 p

ati
en

ts 
50

-6
4 y

r o
f a

ge
 (P

 ≤
 0.

01
 an

d 
P 

≤ 
0.0

5, 
in

 th
at 

or
de

r).
•	

Ab
or

tio
n 

w
av

es
 w

er
e r

ep
or

te
d 

at
 1 

sh
ee

p 
fa

rm
 

w
ith

in
 cl

os
e r

an
ge

 o
f t

he
 cl

us
te

r a
re

a i
n 

20
05

-2
00

8.

1 
sh

ee
p 

fa
rm

 
(a

pp
ro

xi
m

at
el

y 
14

 
km

 so
ut

h-
w

es
t o

f t
he

 
cl

us
te

r c
en

te
r)

 fi
rs

tly
 

te
st

ed
 p

os
iti

ve
 in

 2
00

6

Q
 fe

ve
r s

ee
m

s a
 

pl
au

si
bl

e 
ca

us
e.



128  Appendix chapter 5 129

 

Ta
bl

e 
B2

. D
et

ai
le

d 
de

sc
ri

pt
io

n 
of

 sp
ac

e-
tim

e 
cl

us
te

rs
 in

 h
os

pi
ta

liz
at

io
ns

 w
ith

 h
ep

at
iti

s i
n 

20
05

-2
00

7.
Se

t
C

en
tr

e 
pr

ov
in

ce
1s

t 
si

gn
al

To
ta

l n
o.

 
si

gn
al

s
––

––
––

––
––

Si
gn

. l
ev

el
 

To
ta

l 
ep

is
od

e 
N

o.
 o

bs
er

ve
d 

– 
no

. 
ex

pe
ct

ed
  

R
ad

ii 
in

 
km

C
lu

st
er

 ch
ar

ac
te

ri
st

ic
s 

an
d 

/o
r c

ir
cu

m
st

an
tia

l 
ev

id
en

ce
 

Sp
at

ia
l o

ve
rl

ap
* w

ith
 

po
si

tiv
e 

te
st

ed
 g

oa
t/

sh
ee

p 
fa

rm
s†

M
ig

ht
 th

e 
cl

us
te

r 
ha

ve
 b

ee
n 

ca
us

ed
 b

y 
Q

 fe
ve

r?

1y
r

5y
r

lo
w

es
t

hi
gh

es
t

1
U

T
10

 
Fe

b.
 

20
07

1
0

7 
Ja

n.
 2

00
7-

10
 F

eb
. 2

00
7

n/
a

28
-1

1=
17

19
•	

Th
e 

cl
us

te
r s

ig
na

l 
ov

er
la

ps
 in

 sp
ac

e 
an

d 
tim

e 
w

ith
 a

 cl
us

te
r o

f 
4 

he
pa

tit
is 

C
 re

po
rt

s.

n/
a

Q
 fe

ve
r s

ee
m

s 
un

lik
el

y;
 p

os
sib

le
 

ca
us

e 
is 

he
pa

tit
is 

C
.

2
LI

12
 

M
ay

 
20

07

1
0

29
 A

pr
. 2

00
7-

12
 M

ay
 2

00
7

n/
a

10
-2

=8
26

-
2 

go
at

 fa
rm

s, 
bo

th
 fi

rs
t 

te
st

ed
 p

os
iti

ve
 in

 2
00

7
Q

 fe
ve

r s
ee

m
s a

 
pl

au
sib

le
 c

au
se

.

* S
pa

tia
l o

ve
rla

p 
w

ith
 p

os
iti

ve
-t

es
te

d 
fa

rm
s w

as
 a

ss
es

se
d 

on
ly

 if
 th

e 
cl

us
te

r m
et

 th
e 

cr
ite

ria
 fo

r Q
 fe

ve
r t

o 
be

 a
 p

os
sib

le
 c

au
se

.
† 

Th
es

e 
w

er
e 

26
 Q

 fe
ve

r-
po

sit
iv

e-
te

st
ed

 g
oa

t/s
he

ep
 fa

rm
s t

ha
t v

ol
un

ta
ril

y 
su

bm
itt

ed
 a

bo
rt

io
n 

m
at

er
ia

l i
n 

20
05

-2
00

8;
 o

nl
y 

3 
fa

rm
s s

ub
m

itt
ed

 th
e 

m
at

er
ia

l a
fte

r r
ep

or
tin

g 
of

 a
bo

r-
tio

n 
w

av
es

 b
ec

am
e 

m
an

da
to

ry
 in

 2
00

8;
 o

ne
 fa

rm
 re

tr
os

pe
ct

iv
el

y 
te

st
ed

 p
os

iti
ve

 o
n 

m
at

er
ia

l f
ro

m
 2

00
1 

(s
ee

 M
et

ho
ds

 se
ct

io
n)

.

 



130 Summary 131

Disease burden and/or shifts in virulence can be monitored with syndromic surveillance
For influenza, using similar time-series regression models, we detected previously unknown annual shifts 
in the number of hospitalizations and deaths related to the number of influenza-like illness (ILI) cases, 
coinciding with shifts in antigenicity of circulating viruses (chapter 3). Thus combining analysis of syndromic 
and pathogen or disease specific data allows for better quantification of the impact of common pathogens on 
public health. Syndromic data was also used to detect a previously unknown burden of norovirus infections 
(chapter 6); a clear association with mild to severe morbidity and even deaths in the elderly was found. The 
latter was suspected but could not be assessed previously by any other routine surveillance.

Emerging disease outbreaks can be timely detected with syndromic surveillance
Surveillance of local syndrome elevations — if they are (still) too small to detect on the national level — might 
accelerate the detection of emerging outbreaks. To test this on known “gold standard” outbreaks, we used 
space-time scan statistics to detect known outbreaks of severe respiratory infections in syndromic hospital 
data (Legionnaires’ disease in 1999 and 2006, chapter 4). Since only a modest overall number of alarms was 
generated in time (on average 5 detected clusters per year), this indicates that syndromic surveillance can 
also detect local outbreaks caused by uncommon or unknown pathogens. By the same approach, we also 
detected previously unknown disease clusters plausibly due to Q fever (chapter 5), illustrating that in some 
occasions syndromic surveillance can detect outbreaks that otherwise remain undetected. Real-time detection 
and investigation of these previously unknown clusters, may have led to the detection of increased Q-fever 
activity in the Netherlands well before its actual detection in 2007.

Added value of syndromic surveillance for infectious disease surveillance and control
Based on the results of this thesis, we conclude that syndromic surveillance can reveal blind spots of traditional 
infectious disease surveillance, in particularly by detecting unusual (local) outbreaks independent of diagnoses 
of specific pathogens, and by improving the monitoring of disease burden and virulence shifts of common 
pathogens. Syndromic surveillance can also be used for assessing the absence or limited size of unusual 
disease events, especially during episodes of increased alertness due to epidemics in neighboring countries or 
during high-profile public events like the Olympics. Generally speaking syndromic surveillance improves the 
situational awareness of public-health authorities regarding morbidity patterns in the population (chapter 6).

Our results are mostly based on retrospective analysis of syndromic data with high quality and coverage. 
If real-time collection of syndromic data of high quality and coverage is not feasible, syndromic surveillance 
for early warning is best avoided, since true outbreaks will then likely be missed and also be swamped by 
numerous false alarms. For real-time early warning, also sufficient laboratory and epidemiological information 
is needed, in order to be able to quickly explore possible causes for syndromic signals, and thus recognize 
signals that need a response.

Compared to the potential costs of delayed response to major infectious disease outbreaks — which can 
be millions to billions of euros — the costs of maintaining real-time prospective syndromic surveillance are 
low. Of course some types of outbreaks are more likely to be controlled or stopped after early detection (e.g. 
SARS) than others (e.g. pandemic influenza), but even if early detection by syndromic surveillance does not 
lead to control of an outbreak, it can probably still help to scale costly interventions (like quarantine, additional 

Summary  

Timely detection of emerging infectious diseases has become a priority in Public Health since the SARS 
epidemic in 2003, the bioterrorism attacks in 2001 and the ongoing threat of new infectious disease 
outbreaks. Early detection can be difficult, since patients infected with a high-threat pathogen like SARS or 
a new pandemic flu virus can come into the physician’s office with symptoms typical of “common flu”: fever, 
fatigue, some nausea, some coughing. Since on a daily basis many patients will present with such symptoms 
due to common diseases, and individual clinicians may only see one or a few extra patient(s) in case of a 
newly emerging epidemic, one cannot expect them to immediately recognize unusual disease. Furthermore, 
since for such common clinical symptoms often no laboratory diagnosis is made, traditional outbreak 
detection (based on astute clinicians and laboratory detection) could miss outbreaks by uncommon or 
unknown pathogens. Syndromic surveillance might reveal such blind spots of traditional surveillance by 
monitoring trends in non-specific clinical syndromes like “pneumonia by unknown cause”, and by using 
information from very different sources like the number of cough medicine prescriptions. Therefore, 
prospective syndromic surveillance systems have been put in place in several countries, searching for 
unexpected elevations in various kinds of pre- or non-diagnostic data like absenteeism, medical telephone 
help-line calls, hospital emergency-department data or even internet searches and media reports. There 
has, however, been an ongoing debate about their effectiveness with especially concerns about the false 
alarms that these systems could generate. In this thesis, we studied the potential added value of syndromic 
surveillance, both for early warning detection of outbreaks and for tracking disease dynamics of (common) 
pathogens in the general population, including shifts in virulence or disease burden. For this, we included 
retrospective syndromic data from existing Dutch medical registries with data on work absenteeism, general-
practitioner consultations, pharmacy dispensations, hospitalizations, laboratory submissions and mortality. 
Respiratory, gastro-enteritis and neurological syndromes were defined for these registries, since high-threat 
as well as common pathogens can cause these syndromes (chapter 1). We used time-series regression models 
that explained the syndrome time series by pathogen surveillance data, to estimate the contributions of 
individual pathogens on our syndromes. To evaluate whether local outbreaks can be detected in syndromic 
data, we applied space-time scan statistics to detect known historical outbreaks.

Syndromic data from medical registries reflects pathogen activity
Common pathogen activity was clearly reflected by the included syndromic data on respiratory, gastro-
enteritis and neurological syndromes, with seasonal syndrome elevations concurring with elevations of 
specific pathogen counts (chapter 2 and 6). This implies that emerging pathogen activity could potentially 
be reflected in syndromic data as well. Respiratory syndromes best reflected known pathogen activity; in 
the regression models 68-86% of the syndrome variation was explained by the variation in pathogen counts, 
with influenza and RSV explaining most syndrome variation. For gastro-enteritis syndromes 29-85% of the 
variation was explained by known pathogen activity (rotavirus, Shigella, Campylobacter and Salmonella), 
and for a viral neurological syndrome 62% (enterovirus). Some syndromes were up to 5 weeks ahead of 
laboratory surveillance and some reflected pathogen activity that was not or incompletely detected by 
laboratory surveillance. 
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vaccination etc.) to the size and severity of ongoing outbreaks. 
In the Netherlands, prospective surveillance has already started for crude (total) mortality data using the 

existing mortality registry. Real-time data collection is currently also being implemented for the GP registry. It 
should be further investigated whether syndromic surveillance can be embedded into (future) real-time data 
infrastructures, such as the Dutch national health-information-exchange system (EPD). This would possibly 
allow the inclusion of hospital and other data sources at limited costs in (future) syndromic surveillance 
systems. In the mean time, periodic updates of retrospective syndromic data sources should be obtained and 
analyzed to track ongoing infectious disease activity as well as newly emerging disease threats. 

This thesis is aimed to contribute to realistic implementation of real-time syndromic surveillance for an 
improved emerging infectious disease surveillance and control. It illustrates how syndromic data can be used 
complementary to laboratory data to reveal infectious disease dynamics and outbreaks that otherwise would 
remain undetected.
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Samenvatting 

Sinds de SARS epidemie in 2003, de antrax aanslagen in 2001 en de voortdurende dreiging van nieuwe 
infectieziekte-uitbraken, is vroege detectie van nieuw opduikende infectieziekte-uitbraken een prioriteit 
geworden in de publieke gezondheidszorg. Maar vroege detectie van uitbraken is gecompliceerd, aangezien 
patiënten met gevaarlijke infecties als SARS of een nieuw pandemisch influenzavirus zich kunnen presenteren 
met symptomen typisch voor “normale griep”, zoals koorts, vermoeidheid, een beetje misselijk en wat hoesten. 
Dagelijks melden zich vele patiënten met dergelijke symptomen bij hun (huis)arts, en bij een uitbraak door 
ongewone of onbekende ziekteverwekkers zal een individuele arts hoogstens enkele extra patiënt(en) zien. 
Daarom kan niet verwacht worden dat clinici deze ongewone ziektegevallen direct herkennen. Omdat daarnaast 
vaak ook geen laboratoriumdiagnose wordt gesteld bij zulke gebruikelijke symptomen, kunnen ongewone 
uitbraken gemist worden. Syndroomsurveillance zou zulke blinde vlekken van de gangbare surveillance – 
die gebaseerd is op oplettende clinici en laboratoriumsurveillance – kunnen opvangen. Syndroomsurveillance 
signaleert namelijk verdachte toenames in het aantal patiënten met niet-specifieke klinische symptomen en 
syndromen zoals “pneumonie door onbekend pathogeen”, of toenames in andere niet-diagnostische data 
zoals het aantal prescripties voor anti-hoest medicatie. Om die reden hebben diverse landen de laatste jaren 
realtime syndroomsurveillance systemen geïmplementeerd die gebruik maken van pre- of niet-diagnostische 
data zoals absenteïsme, medische telefonische hulplijnconsulten, spoedeisende eerste hulpconsulten, internet-
zoektermen en mediaberichten. Tegelijkertijd wordt echter de effectiviteit van realtime syndroomsurveillance 
betwijfeld, vooral vanwege mogelijke valse alarmsignalen. Dit proefschrift onderzoekt daarom de toegevoegde 
waarde van syndroomsurveillance ten opzichte van de gangbare surveillance wat betreft de vroege (realtime) 
detectie van ongewone infectieziekte-uitbraken en het volgen van de impact van gangbare ziekteverwekkers 
onder de Nederlandse bevolking. 

Voor het onderzoek is allereerst retrospectieve data verzameld uit bestaande Nederlandse medische 
registraties die mogelijk geschikt zijn voor syndroomsurveillance. Deze registraties bevatten gegevens over 
werkabsenteïsme, huisartsconsulten, medicatie prescripties, ziekenhuisopnames, laboratoriumtestaanvragen 
en sterfte. Vervolgens zijn respiratoire, gastro-enteritis en neurologische syndromen gedefinieerd voor deze 
registraties (hoofdstuk 1). Van deze syndromen kan verwacht worden dat ze de activiteit van zowel gangbare 
ziekteverwekkers als van ongewone gevaarlijke ziekteverwekkers reflecteren. Dit impliceert dat patiënten 
met deze ongewone gevaarlijke ziekteverwekkers juist moeilijk te herkennen zijn door clinici, waardoor 
syndroomsurveillance van extra waarde kan zijn. Een ander voordeel is dat voor deze syndromen gangbare 
ziekteverwekkers als testvoorbeeld gebruikt kunnen worden. Daarom zijn tijdserie-regressiemodellen gebruikt 
om te bepalen in hoeverre gangbare ziekteverwekkers bijdragen aan deze syndromen. Deze verklaren het aantal 
syndroompatiënten per week aan de hand van de aantallen gedetecteerde ziekteverwekkers uit de gangbare 
laboratoriumsurveillance. Daarna is onderzocht of locale uitbraken zouden kunnen worden gedetecteerd in 
realtime syndroomsurveillance-data. Dit is gedaan door met behulp van “space-time scan statistics” historische 
uitbraken te detecteren in de syndroomdata uit de ziekenhuisregistratie. Hieronder worden de belangrijkste 
onderzoeksresultaten samengevat. 

Syndroomsurveillance-data uit medische registraties reflecteert activiteit van ziekteverwekkers.
Hoofdstuk 2 en 6 laten zien dat respiratoire, gastro-enteritis en neurologische syndroom-surveillance-data 
de gangbare activiteit van ziekteverwekkers reflecteert, en daarom hoogstwaarschijnlijk ook ongewone 
infectieziekte-activiteit kan reflecteren. Vooral respiratoire syndromen geven een goede reflectie van gangbare 
activiteit van ziekteverwekkers. In de regressiemodellen kon 68-86% van de wekelijkse syndroomvariaties 
worden verklaard door wekelijkse aantallen gangbare ziekteverwekkers uit de laboratoriumsurveillance, 
waarbij influenza en RSV de meeste variatie verklaarden. Voor de gastro-enteritis syndromen werd 29-
85% van de syndroomvariatie verklaard door gangbare activiteit van ziekteverwekkers (rotavirus, Shigella, 
Campylobacter en Salmonella), en voor een viraal neurologisch syndroom 62% (enterovirus). Verder 
liepen sommige syndromen tot 5 weken voor op de laboratoriumsurveillance en ook reflecteerden 
sommige syndromen activiteit van ziekteverwekkers die niet of incompleet werd gedetecteerd door 
laboratoriumsurveillance. 

Verschuivingen in ziektelast en virulentie kunnen worden gevolgd door middel van 
syndroomsurveillance
In hoofdstuk 3 zijn voor influenza met behulp van tijdserie-regressiemodellen voorheen onbekende jaarlijkse 
verschuivingen in het aantal ziekenhuisopnames en sterfgevallen ontdekt, gerelateerd aan het aantal 
gevallen van influenza-achtig-ziektebeeld (IAZ). Deze verschuivingen vallen samen met verschuivingen in 
antigeniciteit van circulerende influenza virussen. Gecombineerde analyse van syndroom- en ziektespecifieke 
data maakt het dus mogelijk om de impact van gangbare ziekteverwekkers op de volksgezondheid beter te 
kwantificeren. Een ander voorbeeld hiervan is de detectie van een voorheen onbekend zware ziektelast van 
norovirus infecties: een duidelijke associatie is gevonden met milde tot ernstige morbiditeit en zelfs sterfte 
onder ouderen (hoofdstuk 6). Dat laatste werd eerder wel vermoed, maar kon niet worden bevestigd door 
de gangbare surveillance.

Nieuwe infectieziekte-uitbraken kunnen tijdig worden gedetecteerd met syndroomsurveillance
De detectie van plots opduikende uitbraken zou kunnen worden versneld indien locale syndroomtoennames 
- wanneer ze nog te klein zijn om op nationaal niveau te detecteren - al zouden kunnen worden opgespoord. 
In hoofstuk 4 is dit getest voor bekende historische (zgn. “gouden standaard”) uitbraken, en zijn door middel 
van “space-time scan statistics” de legionella uitbraken in 1999 en 2006 in ziekenhuis syndroomsurveillance-
data gedetecteerd. Deze analyse resulteerde in gemiddeld vijf gedetecteerde syndroomclusters per jaar. Dit is 
een bescheiden totaal aantal alarmsignalen in de tijd en dat duidt erop dat syndroomsurveillance ook locale 
uitbraken door ongewone of onbekende ziekteverwekkers kan detecteren zonder overspoeld te worden door 
valse alarmsignalen. Met dezelfde benadering zijn in hoofdstuk 5 ook voorheen onbekende ziekteclusters 
gedetecteerd, waarvan het aannemelijk is dat ze door Q-koorts zijn veroorzaakt. Dit illustreert dat 
syndroomsurveillance in sommige situaties uitbraken kan detecteren die anders gemist worden. Realtime 
detectie en het nader onderzoeken van deze Q-koorts verdachte clusters zou wellicht geleid hebben tot 
signalering van toegenomen Q-koorts activiteit vòòr de detectie die nu in 2007 plaats heeft gevonden.
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Toegevoegde waarde van syndroomsurveillance voor infectieziektesurveillance 
Op basis van de resultaten in dit proefschrift wordt geconcludeerd dat syndroomsurveillance blinde vlekken 
van gangbare infectieziektesurveillance kan compenseren. De toegevoegde waarde van syndroomsurveillance 
zit in het detecteren van ongewone uitbraken onafhankelijk van laboratoriumdetectie van de ziekteverwekker 
en in het signaleren van verschuivingen in virulentie en ziektelast van gangbare ziekteverwekkers. Daarnaast 
kan syndroomsurveillance ook gebruikt worden om de afwezigheid of beperkte omvang van ongewone ziekte-
uitbraken in de bevolking vast te stellen, vooral tijdens periodes van toegenomen alertheid, bijvoorbeeld 
tijdens epidemieën in naburige landen of tijdens grote publieke evenementen zoals de Olympische Spelen. 
Samenvattend verbetert syndroomsurveillance het inzicht van volksgezondheidsautoriteiten wat betreft het 
vóórkomen van ziektes onder de bevolking.

De resultaten in dit proefschrift zijn vooral gebaseerd op retrospectieve analyses van syndroomsurveillance-data 
met weinig data-artefacten en hoge dekkingsgraad. Als realtime collectie van dergelijke syndroomsurveillance-
data niet haalbaar is, is het beter syndroomsurveillance niet in te zetten voor vroege (realtime) signalering 
van ziekte-uitbraken. Dit aangezien echte uitbraken dan vaak gemist zullen worden en tevens vele valse 
alarmsignalen gegenereerd kunnen worden. Verder zijn voor vroege signalering ook voldoende laboratorium- 
en epidemiologische gegevens nodig om snel mogelijke oorzaken voor syndroomsignalen te kunnen exploreren, 
waardoor alarmsignalen die een respons nodig hebben beter kunnen worden onderscheiden.
Vergeleken met de mogelijke kosten van een late respons op grote infectieziekte-uitbraken - die miljoenen of zelfs 
miljarden euro’s kunnen bedragen - zijn de kosten voor het onderhouden van realtime syndroomsurveillance 
laag. Natuurlijk kunnen sommige ziekte-uitbraken makkelijker worden beheerst of gestopt (bv. SARS) 
dan anderen (bv. pandemische influenza). Maar zelfs als vroege detectie door syndroomsurveillance 
niet leidt tot beheersing van een uitbraak, dan nog kan syndroomsurveillance van nut zijn om vaak dure 
interventiemaatregelen, zoals quarantaine en aanvullende vaccinatie, beter af te stemmen op de omvang en 
ernst van de uitbraak. 

Bij de start van dit onderzoek was in Nederland nog geen sprake van realtime syndroomsurveillance. 
Inmiddels is begonnen met een wekelijkse sterftesurveillance welke gebruik maakt van data uit de bestaande 
mortaliteitsregistratie. Realtime datacollectie wordt momenteel ook geïmplementeerd voor de in dit 
proefschrift genoemde landelijke huisartsconsult-registratie (hoofdstuk 2 en 6). Het zou verder onderzocht 
moeten worden of collectie van syndroomsurveillance-data kan worden ingebouwd in (toekomstige) realtime 
medische registraties, zoals het elektronisch patiëntendossier (EPD). Wellicht kunnen ziekenhuisdata en 
andere datasoorten zo tegen beperkte meerkosten beschikbaar worden gemaakt voor syndroomsurveillance. 
Tot het zover is kan gebruik gemaakt worden van retrospectieve syndroomsurveillance-data om, weliswaar met 
een vertraging, de impact van infectieziekten onder de Nederlandse bevolking te volgen en nieuw opduikende 
infectieziektedreigingen te signaleren. 

Dit proefschrift beoogt bij te dragen aan een realistisch gebruik van realtime syndroomsurveillance voor een 
betere signalering van nieuw opduikende infectieziekteproblemen. Het illustreert hoe syndroomsurveillance, 

complementair aan gangbare surveillance, nieuwe infectieziekte-uitbraken en impact van gangbare 
ziekteverwekkers kan detecteren die anders gemist zouden worden.
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