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CHAPTER 1 

INTRODUCTION 

VIEWS ON DIAGNOSTIC RESEARCH 





Introduction 

"Identify the sensitivity and specificity of the sign, symptom, or diagnostic test 

you plan to use. Many are already published and subspecialists 1V0rth their salt 

ought either to knolV them fi"Oln their field or be able to track them dowl! ". I 

11 

To set a diagnosis in a patient is one of the key challenges in medical practice and 

forms the basis for clinical care. Diagnosis is not an aim in itself but is relevant in as 

far as it directs treatment and indicates the prognosis of the patient. Diagnosis amounts 

to an estimation of the probability of the presence of a particular disease in view of all 

diagnostic information (patient history, physical examination and test results) in order 

to decide whether treatment should be initiated or not. A diagnosis is rarely based on 

one single variable or test and therefore is a multivariable concern per se. However, 

most diagnostic studies or studies in which diagnostic tests are evaluated still follow a 

univariable approach. This means that a diagnostic test is evaluated in isolation without 

explicit regard to the clinical context in which the test is applied. In this respect, 

clinical practice and diagnostic research frequently do not cohere. In applied medical 

research of the last decades, little attention has been paid to the principles of diagnostic 

studies compared to, for example, etiologic studies and studies of treatment efficacy.' 

Traditionally, diagnostic studies evaluate whether a particular test discriminates 

between the presence and absence of a particular disease as determined by a reference 

standard. This research, referred to as diagnostic accuracy studies"', is often 

conducted in a patient population selected on disease status and non-diseased controls. 

In case of a dichotomous test, the diagnostic accuracy of the test is usually expressed 

by parameters as the sensitivity, specificity, likelihood ratio (LR), and predictive value 

(table 1.1). For tests that provide results on a continuous or ordinal scale, the area 

under the Receiver Operating Characteristic curve (ROC area) is commonly used 

(figure 1.1). The sensitivity, specificity and to a lesser extent the ROC area, are the 

most popular measures of diagnostic performance. Because they are conditional on the 

presence or absence of the disease, whereas diagnosis in practice starts from the 

presence of symptoms and signs, they have no direct clinical interpretation. Therefore, 

the use of Bayes' theorem is advocated to estimate diagnostic probabilities. To this 

aim, sensitivity and specificity or the LR of the applied tests are used togeOler with the 

prior probability, estimated by the prevalence of disease in the population to which the 

patient under evaluation belongsY·' In this application of Bayes' theorem the user 
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assumes that sensitivity, specificity and LR are constant over patient populations while 

the prevalence of disease may vary. 

Unfortunately, for the same test different diagnostic studies often report different 

values of the test parameters. 

Table 1.1 Characteristics of a dichotomous diagnostic test for a certain disease. 

Disease 

present absent 

+ TP FP TP+FP 
Test result 

FN TN FN+TN 

TP+FN 

Sensitivity 

Specificity 

LR of a positive test result 

LR of a negative test result 

FP+TN 

TP 

TP+FN 

TN 
FP+TN 

sensitivity 
1 - specificity 

1 - sensitivity 

specificity 

Predictive value of a positive test result 

Predictive value of a negative test result 

TP 
TP+FN 

FP 
FP+TN 

FN 
TP+FN 

TN 
FP+TN 

TP 
TP+FP 

TN 

FN+TN 

+ = positive test result; - = negative test result; TP = true positive diagnosis; FP = 
false positive diagnosis; FN = false negative diagnosis; TN = true negative diagnosis. 
TP, FP, FN and FN refer to the observed number of patients in the category. 
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Figure 1.1 Theoretical example of a ROC curve of a quantitative diagnostic test for a particular 
disease. A ROC curve plots the sensitivity and 1 ~specificity as the cut-off value varies over the .test 
result scale. The area under the curve (ROC area) provides an estimate of the overall diagnostic 
value of the test.6,1 The diagonal represents a complete non-informative test with a ROC area of 
0.50 (for each cut-off value the proportion of true positives equals the proportion of false 
positives). When the ROC area = 1.0 the test discriminates perfectly between the presence and 
absence of disease. 

1.0 ,----------------===--", 

// 
" 

" 

,/,/// 
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This may be due to the use of different cut-off values (in tlle case of a dichotomized 

quantitative test), differences in patient selection, selection or verification bias, or a 

difference in mutual dependencies among the test at issue and other patient 

characteristics. Many reports have shown that sensitivity and specificity are dependent 

on the cut-off level that is chosen for test positivity, and that a difference in patient 

population (e.g. according to symptom or disease severity) may result in different test 

properties. to.I ' In clinical practice, patients with positive diagnostic test results 

generally have a higher probability to be referred to further clinical work-up, including 

a final verification of their disease status, than patients with a negative test result. 

Accordingly, when diagnostic studies select patients on the true disease status rather 

than on the patients' indication for diagnostic testing or when diagnostic data obtained 
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from routine clinical practice are used, verification bias may result. This usually leads 

to biased estimates of the sensitivity and specificity; higher and lower, respectively. II-IS 

Other studies have demonstrated that test properties may vary according to clinical 

(symptoms, signs and other test results) and non-clinical (age, gender and co

morbidities) characteristics of the patient profile, and in particular to the severity of the 

underlying disease. IO,I'.17 This is due to complex mutual dependencies between all 

diagnostic indicators implying that to some extent different diagnostic indicators 

provide tlle same information. Hence, the diagnostic performance of a particular test 

may (partially) depend on the result of another test. In our view, these mutual 

dependencies always occur in every patient popUlation. At present, it is generally 

appreciated that test parameters obtained from a particular population are not directly 

transferrable to other popUlations. However, given a certain patient population, 

diagnostic studies still commonly present the sensitivity, tile specificity, tile LR and the 

ROC area as a corntant and, therefore, as an appropriate indicator of the diagnostic 

capacity of the test. They are presented as "properties" or "characteristics" of the test 

for that population. The clinical spectrum of disease manifestations within the domain 

for which the test parameters are estimated is often neglected. Since test parameters 

seem to vary across subgroups of this clinical spectrumlO•I'.17 and cOllditional 

probabilities of test results given the absence or presence of disease are hardly 

knownl', the use of tllese test parameters to estimate diagnostic probabilities in 

individual patients with Bayes' theorem is questionable. Consequently, if a test is 

evaluated by the use of "test properties" without consideration of the clinical domain 

its true diagnostic value remains questionable as well. 

The so called "evidence-based medicine working group"I' and the "outcomes 

movement"'O, have emphasized the importance of conducting diagnostic research 

within the relevant clinical setting with use of all routinely obtained data. I The aim is 

to reflect common clinical practice in diagnostic research as a basis for protocol based 

patient care. In clinical practice, the point of departure is the patient who presents 

himself with a particular indication for diagnostic testing. A variety of diagnostic tests 

is often routinely applied. The diagnostic work-up follows a phased approach. 

Diagnostic indicators from patient history and, subsequently, physical examination are 

always obtained before the application of diagnostic tests. Subsequent tests may 

provide additional diagnostic information but may also be burdening for the patient, be 

time consuming or expensive, and may even produce adverse effects. In agreement 
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with the phased diagnostic work-up in practice, and to consider mutual dependencies, 

each indicator or test must be evaluated within its diagnostic phase. The fundamental 

question is whether an indicator or test provides information added to the information 

that is obtained anyway, and in which patient subgroups this is realized. Similarly, 

when results from other tests are already available, one should question the value of a 

subsequent test over and beyond the diagnostic information obtained from these 

previous tests. Thus, the added or independent diagnostic value of a test is important. 

To conduct diagnostic research in a systematic fashion a database is required with all 

obtained information on patient history, physical examination, diagnostic tests and final 

diagnosis. Patients should be selected on their problem of referral (e.g. the indication) 

to prevent a biased selection on a particular final diagnosis. Using multivariable 

logistic regression modelling, mutual dependencies and the additional value of each 

diagnostic indicator can be estimated. In this way, diagnostic probabilities can validly 

be estimated from all diagnostic determinants simultaneously. 18.21 Diagnostic 

determinants are those indicators that independently contribute to the prediction of the 

disease presence. Definition of these determinants should be the objective of diagnostic 

research; to describe the occurrence or prevalence of a particular disease as a joint 

function of its diagnostic determinants. Using logistic modelling, the aim should be to 

construct a diagnostic function which includes those determinants that discriminate well 

between the absence and presence of the disease and are bearable with respect to 

patient burden and measurement costs. The trade-off between discriminative power and 

measurement costs and patient burden is at issue. These considerations of efficiency 

should motivate diagnostic research but are still largely ignored. 

Usually the area under the ROC curve of a diagnostic function is taken to indicate 

the overall diagnostic value of the function. 22
•
23 In this way, the diagnostic function 

represents one (overall) diagnostic test and the individual probability of the presence of 

disease as estimated by the function represents the "test result". The overall diagnostic 

value of two or more diagnostic functions can be compared by statistical comparison of 

their ROC areas." The functions are compared over the entire range of predicted 

probabilities. However, a decision in the clinical diagnostic work-up commonly reflects 

a dichotomy (or a trichotomy if additional tests are available). This means that after 

performing a diagnostic test and adding its information to prior information, the 

physician has to decide whether to treat or not (or to continue testing). Ideally, the 

physician wants to bring the previous or prior probability for a patient to have the 
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disease of interest to 1 (absolute certainty on presence) or 0 (absolute certainty on 

absence). Because this is usually not feasible, the physician endeavours to increase or 

decrease the prior probability to justify initiation 01' witlmolding of treatment, 

respectively. For example, to initiate treatment the disease must be present with a 

sufficiently high probability, i.e. the diagnostic probability must exceed a certain 

threshold. Such threshold is determined by the proportion of misclassifications on 

disease status (false positive and false negative diagnosis) and the corresponding risks 

and benefits."·" Physicians intuitively define and apply Olese thresholds. This suggests 

that in clinical diagnosis only a specific part of the entire range of "test results" is 

relevant to decision making. Therefore, the question arises whether the ROC 

methodology adequately corresponds to clinical practice. 

The general aim of this thesis is to outline the principles of clinical diagnostic research 

and to evaluate methods of diagnostic test evaluation in view of the clinical context. 

This thesis comprises six studies on diagnostic research. There are three studies 

(described in chapter 2) that concentrate 011 the theoretical basis of clinical diagnosis 

and diagnostic research. Three other studies (described in chapter 3) provide different 

examples of how the principles of diagnostic research may be applied. Chapter 2.1 

discusses the clinical limitations of the conventional diagnostic "test properties". 

Chapter 2.2 evaluates whether a univariable analysis in diagnostic research or in the 

evaluation of a diagnostic test in isolation, has relevance from a clinical perspective. 

Chapter 2.3 examines the use of ROC curves to compare diagnostic tests (or functions) 

and evaluates an alternative approach to evaluate diagnostic tests taking the (risk and 

benefits of) subsequent therapeutic decisions into account. Chapter 3.1 evaluates the 

diagnostic value of patient history, physical examination, and additional tests in 

patients suspected of pulmonary embolism. Chapter 3.2 evaluates Ole value of 

continuous ST -segment monitoring to predict infarct size and left ventricular function 

in patients with acute myocardial infarction using data from the GUSTO-ischemia 

monitoring substudy. GUSTO is a large randomized trial to compare four thrombolytic 

strategies for acute myocardial infarction. Chapter 3.3 describes a study in which the 

research principles as outlined in previous chapters are applied to increase the 

efficiency of the selection period of a large primary prevention trial on the efficacy of 

a cholesterol lowering drug. An approach to improve the cost-effectiveness of the 

patient selection which amounts to the prediction of eligibility for therapeutic trials, is 
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proposed. In fact, the selection period can be viewed to determine the diagnosis 

"eligible for the trial". Finally, chapter 4 is a general discussion on the clinical and 

practical relevance and includes suggestions for further diagnostic research. 
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probabilities: a clinical example 
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Introduction 

Diagnosis in clinical practice amounts to the estimation of the probability of presence 

of the target disease given all diagnostic information as obtained from patient history, 

physical examination and tests results, in an individual patient. To arrive at a diagnosis 

is one of the key challenges in medical practice, as it forms the basis for clinical work

up; it directs treatment and often is indicative of prognosis. In applied medical 

research, however, little attention has been paid to the principles of diagnostic 

research. "Diagnostic" studies usually evaluate whether a particular test in a particular 

clinical situation can discriminate between presence and absence of disease by 

calculating sensitivity, specificity and likelihood ratio (LR). These parameters are 

generally taken as summary measures of performance of diagnostic tests in a certain 

popUlation although they have no direct diagnostic interpretation. Therefore, the use of 

Bayes' theorem has been advocated to calculate individual (diagnostic) probabilities by 

consecutively applying the parameters of all performed tests together with the pre-test 

probability. I .. This application of Bayes' theorem assumes that sensitivity, specificity 

and LR are constant over patient populations While the pre-test probability may vary. 

Different studies, however, often report different values of the parameters for the same 

test. Many reports have demonstrated tllat test parameters are prone to vary across 

different patient populations owing to selection or verification bias'-20 , but only few 

have shown that they may vary across subgroups within a certain population. 21 -24 

The aim of this paper is to evaluate the relevance of the sensitivity, specificity and 

LR of a test in clinical diagnosis, particularly for the same population as that from 

which the measures are derived. The implications for the use of Bayes' theorem in the 

assessment of diagnostic probabilities in an individual patient are discussed. 

Patients and Methods 

Study popUlation 

We used cross sectional data from a study conducted in 1988 at the Thoraxcentre, 

Department of Cardiology, University Hospital Rotterdam, The Netherlands. 2S The 

study population comprised of 295 subjects consecutively referred by general 

practitioners to the Thoraxcentre for evaluation of chest pain. All patients had a normal 
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electrocardiography (BCG) at rest, no previous myocardial infarction and did not use 

digitalis. After informed consent had been given, patient history, physical examination, 

results from symptom limited exercise testing, and coronary angiography to determine 

the presence of coronary artery disease (CAD) and the number of diseased vessels, 

were recorded in that order. Coronary angiography took place within a period of three 

months after the exercise test and irrespective of its results. A visual reduction of the 

luminal diameter of at least 50 percent in one or more major arteries at angiography 

defined the presence of CAD. Two experienced cardiologists who had been blinded to 

the patient's history and exercise test results independently interpreted the angiograms. 

Exercise test 

The exercise test was performed in sitting position on a bicycle ergometer, as 

described earlier." In brief, workload was increased stepwise by 20 Watts per minute 

until moderate symptoms appeared or exhaustion occurred. Cycling was then continued 

at a low load for four minutes. Chest electrodes attached at the level of the fifth 

intercostal space recorded the corrected orthogonal Frank lead BCG. BCG sampling 

occurred during 20 seconds at rest in the sitting position, and every minute during 

exercise as well as a six minute recovery period. The sampling frequency was 250 Hz. 

The baseline level was defined as the mean signal amplitude five to three samples (20-

12 msec) before the QRS complex. All amplitudes were measured relative to this 

baseline. We defined a Heart Rate adjusted ST segment depression (ST/HR) in Frank 

lead )(" of 2.0 microvolt/beats per minute or more as a positive, and lower Ulan 2.0 as 

a negative exercise test. This threshold corresponds approximately to an absolute ST 

depression of 0.1 millivolt. 

ST/HR = 
(ST", at peak exercise - ST", at rest) lead X 

ileart rate at peak exercise - ileart rate at rest 

where ST", denotes the ST amplitude 60 msec after J-point. We made adjustments for 

heart rate because many patients were taking beta blocking drugs that were not 

discontinued during exercise testing and because previous studies have suggested tllat 

heart rate adjustment improves the diagnostic potential of the exercise test. 26.21 

Putative determinants of sensitivity, specificity and LR 
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To study the variation in sensitivity, specificity and LR of the ST/HR depression of 

exercise testing across patient subgroups, we evaluated determinants of these ST IHR 

parameters among characteristics of patient history, physical examination, exercise test 

and underlying disease severity. The patient history and physical examination included 

age, smoking, diabetes, total cholesterol, systolic blood pressure (baseline SBP), beta 

blocker use, expected workload (based upon age and height) and symptoms of chest 

pain. Typical angina was considered to be present if the following three criteria were 

satisfied: 1) substernal discomfort that was 2) precipitated by exercise, emotion or 

cold and that was 3) relieved within 10 minutes after rest or sublingual nitroglycerine. 

We defined "atypical angina" by the presence of two and "non-specific angina" by the 

presence of only one of the criteria. Beside ST/HR depression, additional variables 

measured during the exercise test included maximal achieved workload, relative 

workload (maximal achieved workload/expected workload) and systolic blood pressure 

at peak exercise. The number of diseased vessels as assessed by coronary angiography 

defined the categories of severity of disease. 

Analyses 

Among patients with and without CAD we compared the sensitivity and specificity of 

the ST/HR response, respectively, across patient subgroups as defined by the above 

characteristics. We used rate differences and its 95% confidence interval, where the 

reference group was the subgroup with tlle lowest sensitivity and specificity. For 

efficiency, continuous variables were dichotomised to obtain approximately equal 

numbers without CAD in each subgroup. Based on all subjects, with and without 

CAD, we calculated the LR (sensitivity/I-specificity) for each patient subgroup. We 

used the ratio of two likelihood ratio's, where the reference group was the category 

with the lowest LR, to compare the LR across patient subgroups. Because any two 

likelihood ratio's are independent (based on two different subgroups), we applied the 

Taylor series expansion on the two individual standard errors to estimate the standard 

error of the likelihood ratio ratio." Among patients with and without CAD separately, 

and following an approach previously proposed by Hlatky et a12l , logistic regression 

was employed to evaluate which characteristics independently affected exercise test 

sensitivity and specificity, respectively." We defined the outcome or dependent 
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variable as the positive and negative ST/HR response, respectively. The probability for 

the outcome, P, can be defined as 

where 30 is the intercept and b,--b, are the regression coefficients of independent 

variables X,--X,. Given the CAD population, P equals the sensitivity of the STIHR 

response corresponding to patient subgroups with observed values of the independent 

variables. Similarly, given the population without CAD, P is the specificity of the 

ST/HR response for the subgroup defined by X,--X,. We included continuous 

determinants that had previously been dichotomised as continuous terms in the logistic 

model if a linear relation was plausible. In the modelling of the sensitivity, we 

excluded 13 subjects who had missing values. We constructed the multivariable models 

in concordance with the chronological order in which data generally become available 

in clinical practice. 

Results 

207 patients (70 percent) had significant lesions in one or more of the major coronary 

arteries (table 2.1.1). Of these CAD patients, 119 had a ST/HR depression of 2.0 or 

higher (sensitivity of 57.5 percent), and 81 of the 88 SUbjects without CAD had a 

ST/HR depression lower than 2.0 microvolt/beats per minute (specificity of 92.0 

percent). The corresponding LR was 57.5/8.0 = 7.2. 

Table 2.1.2 shows that sensitivity of the ST/HR depression substantially differed 

according to sex, expected workload, absolute achieved workload, relative workload, 

SBP at peak exercise and number of diseased vessels. Variation over smoking, 

cholesterol level, baseline SBP and across patients with non-specific and atypical 

angina, compared with typical angina, was less marked. The specificity differed 

according to sex, diabetes, baseline SBP and relative workload. Although sensitivity 

and specificity were conversely affected by most variables, the LR of the exercise test 

still varied over categories of sex, smoking, cholesterol level, baseline SBP, relative 

workload and SBP at peak exercise. 

Among all variables of patient history and physical examination, sex, baseline 

SBP, expected workload and cholesterol level were independent determinants of the 
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Table 2.1.1 Exercise test response, characterised by the dichotomised heart rate adjusted ST 
(ST/HR) depression, of patients with and without CAD. 

ST IHR depression CAD patients non-CAD patients LR 
(microvoltlbpm) (n = 207) (n = 88) 

"' 2.0 119 (57.5%) 7 (8.0%) 7.2 

< 2.0 88 (42.5%) 81 (92.0%) 

Total 207 88 

bpm, beats per minute; LR. likelihood ratio 

STIHR sensitivity (table 2.1.3). Addition of all exercise test variables to the previous 

model showed that relative workload and SBP at peak exercise were also independent 

determinants. Since 60 percent of the patients with CAD had a relative workload lower 

than 75 and 25 percent higher than 95, we included relative workload as a 

dichotomous raUICr than as a continuous variable. When we added disease 

specifications to the previous model, sex, SBP at peak exercise, relative workload and 

multi vessel disease remained as the strongest independent determinants of exercise test 

sensitivity. From all characteristics of patient history and physical examination, sex 

was the most important determinant of exercise test specificity (table 2.1.3). After 

including all exercise test variables to this model, relative workload appeared to be the 

only independent determinant of the specificity. The odds ratio for sex was very 

inlprecise. Using thresholds of STIHR depression other than 2.0, the sensitivity, 

specificity and LR of the exercise test similarly varied according to patient 

characteristics. We also found similar results when we used other outcome parameters 

of the exercise test, such as absolute ST depression at maximal workload or ST 

depression at maximal workload relative to rest (data not shown). These results agree 

with previous studies. 21 ,30-32 

Discussiou 

This study demonstrates that sensitivity, specificity and LR of the ST IHR depression of 

exercise testing are not constant but vary across subgroups as defined by various 



Table 2.1.2 Variations in sensitivity, specificity and LR of the heart rate adjusted ST depression according by various characteristics of 
t-< 
§t 

patients with and without CAD, expressed as rate difference and likelihood ratio ratio. §" 
CAD patients non-CAD patients ~. 

Patient characteristic n Sens Rate difference n Spec Rate difference LR Likelihood ratio <Q, 
(%) (95% Cl) (%) (95% Cl) ratio (95 % Cl) 

~ 
History + Physical 'S; 
Age (years) .g 

28-50 71 57.8 0.4 (-13.8 to 46 91.3 6.6 '" 51-70 136 57.4 42 92.9 1.6 (. 9.7 to 8.1 1.2 (0.3- 5.2) ~. 
Sex ~ 

male 170 63.5 33.8 (17.4 to 52 88.5 5.5 ;-:" 

female 37 29.7 36 97.2 8.7 (-1.4 to 10.7 1.9 (0.2-16.4) 

'"' Symptoms ~ 
non-specific 18 50.0 37 91.9 3.7 (-14.0 to 6.2 1.2 (0.2- 6.9) ~ atypical 55 50.9 0.9 (-25.7 to 34 94.1 5.9 (-11.4 to 8.7 1.7 (0.3-11.1) 
typical 134 61.2 11.2 (-13.3 to 17 88.2 5.2 ;;' 

Diabetes' 
yes 29 62.1 6.3 (-12.9 to 5 100 9.1 ( 0.1 to 00 

no 172 55.8 77 90.9 6.1 
Smoking' 

yes 114 60.5 8.8 (- 5.0 to 31 93.6 3.6 (- 8.4 to 9.4 1.8 (0.4- 9.0) 
no 87 51.7 50 90.0 5.2 

Beta-blocker use 
yes 123 57.7 0.6 (-13.1 to 45 91.1 6.5 
no 84 57.1 43 93.0 1.9 (- 9.3 to 8.2 1.3 (0.3- 5.4) 

Cholesterol (mmolll)' 
4.0- 6.0 52 51.9 33 87.9 4.3 
6.1-12.0 150 61.3 9.4f5.~2 to 48 93.8 5.9118.~)2 to 9.9 2.3 (0.5- 9.9) 

Expected load (Watt)' 
70-149 94 50.0 45 93.8 3.81~j)8 to 8.1 1.3 (0.3- 5.3) 

150-240 112 64.3 14'2i~ to 43 90.0 6.4 

... To be continued 

tv 
-.] 



Table 2.1.2 Continued. I~ 

CAD patients non-CAD patients 

Patient characteristic n Sens Rate difference n Spec Rate difference LR Likelihood 
(%) (95% CI) (%) (95% CI) ratio ratio 

(95% CI) 

SBP' baseline (nnnHg) 
100-140 79 64.6 11.4 (-2.2 to 25.1) 52 96.2 10.1 (-2.4 to 22.5)* 17.0 4.5 (0.9-21.7) 
141-240 128 53.1 36 86.1 3.8 

Additional test variables 
Maximal load (Watt) 

45-134 162 62.4 22.4 ( 6.2 to 38.9)t 45 91.1 7.0 1.2 (0.3- 5.4) 
135-280 45 40.0 43 93.0 1.9 (-9.4 to 13.2) 5.7 

Relative load (%)1 
30- 90 154 66.2 33.5 (18.8 to 48.3)t 41 85.4 4.5 
91-140 52 32.7 47 97.9 12.5 ( 0.9 to 24. m 15.6 3.5 (0.4-28.1) 

SBP peak (nnnHg)' 
110-175 93 66.7 16.7 ( 3.1 to 30.2)t 42 92.9 2.0 (-9.8 to 13.5) 9.4 1.7 (0.4- 7.3) 
176-240 106 50.0 44 90.9 5.5 

Disease spedjications 
Number diseased vessels 

none 88 90.9 
one 71 39.4 
two 74 58.1 18.7 (2.7 to 34.7)t 
three 62 77.4 38.0 (22.6 to 53.4)t 

Sens, sensitivity; Spec, specificity; CI, confidence interval; LR, likelihood ratio; SBP, systolic blood pressure; - , reference category 
t Determinant of sensitivity 

* Deterntinant of specificity 
§ Exact 95 % CI of the odds ratio (95 % CI of the RD could not be assessed because there were 0 observations in one cell) 

1

9 
II Methodology could not be applied to an infinite likelihood ratio ~ , A few values were missing ~ 

~ .... 



Table 2.1.3 Logistic regression coefficients and odds ratios for the independent determinants of sensitivity and specificity of the heart 
rate adjusted ST depression for the three models comprising patient history + physical examination, patient history + physical 
examination, additional exercise test results, and additional disease specifications. 

Determinant 

Intercept 

Male 

Baseline SBP (mmHg) 

Expected workload (Watt) 

Cholesterol level (mmolll) 

SBP peak exercise (mmHg) 

Relative workload 30%-90% 

Multi vessel diseaset 

." To be continued 

B 

1.43 

2.03 

-0.015 

-0.013 

0.21 

Patient history 

Sensitivity (n=202) Specificity (n = 88) 

OR 95% CI B OR 95% CI 

3.56 

7.61 (2.48-23.34) -1.69 0.18 (0.02-1.42) 

0.99 (0.97- 1.00) 

0.99 (0.97- 1.00) 

1.20 (1.01- 1.50) 

t-< 

~~ 
=>. 

~ 
,~ 

~ 
":; 
.g 
" ::t 
~. 
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Table 2.1.3 Continued. 

Patient history + physical examination + Patient history + physical 
exercise test examination + exercise test + 

disease specifications 

Sensitivity (n=194) Specificity (n = 88) Sensitivity (n= 194) 

Determinant B OR 95% CI B OR 95% CI B OR 95% CI 

Intercept 1.61 3.83 1.34 

Male 2.03 7.61 (2.35-24.68) 1.10 3.00 (1.17-2.82) 

Baseline SBP (mmHg) -0.011 0.99 (0.97- 1.01) -0.006 0.99 (0.97-1.01) 

Expected workload (Watt) -0.012 0.99 (0.98- 1.00) -0.009 0.99 (0.98-1.01) 

Cholesterol level (mmoUl) 0.18 1.20 (0.97- 1.49) 0.12 1.13 (0.91-1.03) 

SBP peak exercise (mmHg) -0.018 0.98 (0.97- 0.99) -0.018 0.98 (0.97-0.99) 

Relative workload 30%-90% 1.03 2.80 (1.30- 6.02) -2.07 0.13 (0.02-1.07) 0.97 2.64 (1.25-5.56). 

Multi vessel diseaset 0.94 2.56 (1.31-4.98) 

B. regression coefficient; OR. odds ratio; CI, confidence interval; SBP. systolic blood pressure; - • variable was not an independent 
determinant 
t Coded as 1 for two or three diseased vessels to 0 for one diseased vessel 

I~ 

Q 
.§ 
~ 
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characteristics of the patient profile. Logistic models including the independent 

determinants of sensitivity and specificity can be used to estimate these parameters for 

a specific patient subgroup. Given the second models of table 2.1.3, for example, the 

sensitivity, specificity and LR in men with expected workload 180 Watt, cholesterol 

level 8.0 llllllolll, SBP at baseline 70 mmHg, SBP at peak exercise ISO mmHg, and 

relative workload 90 percent or lower would be 61.8 percent, 85.6 percent and 4.3, 

respectively, whereas in women with these same values the parameters would be 31.4 

percent, 97.9 percent and 15.0, respectively. 

For some determinants there were missing values. However, the number of 

missing values was very low and they were rather equally distributed across the 

positive and negative exercise test responders. Also, there were no reasons to believe 

that they were selected from a particular category of the determinant. Therefore, we 

believe that tlJese missing values have not affected the resuits. 

Because sensitivity and specificity usually vary in opposite directions, the LR is 

thought to be more stable than sensitivity and specificity. This study showed that the 

LR similarly differs across patient subgroups of a certain popUlation. Owing to the 

small number of patients without CAD and a positive test result, we cannot draw a 

definite conclusion regarding variability of specificity and likelillOod ratio, although 

these appear as unstable as sensitivity for our data. Patient history, physical 

examination, test results and disease severity are complex and mutually dependent 

factors that collectively determine sensitivity, specificity and LR of the exercise test." 

Many patient characteristics, e.g. sex and cholesterol level, are associated with the 

development, presence and severity of CAD. The severity of CAD determines the 

probability of a finding a positive (or negative) exercise test result. Hence, patient 

characteristics also determine the sensitivity (or specificity) of exercise testing, 

although this becomes less relevant if adjusted for disease severity. Because in clinical 

diagnosis we never know the underlying disease severity, knowledge of the 

determinants that can be measured is important. A single level of test parameters for 

the exercise test that applies to all patient subgroups of the population cannot be found 

and should not be sought. 

Several previous reports have demonstrated variability of sensitivity and specificity 

across different patient populations. This finding has been related to "selection bias" or 

"spectrum bias", i.e. selective referral by characteristics (symptomatology or test 

results) previously documented in the patients.'-'o It is generally well appreciated that 
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test parameters are not directly applicable to other populations, because patient 

populations differ in the spectrum of disease manifestations, and sensitivity and 

specificity vary for different groups across this spectrum. 21
.
24

,34.35 Nevertheless, given a 

certain population sensitivity, specificity and the LR are usually still presented as 

pertaining to that domain regardless of the clinical spectrum witllin that domain. 36•37 

Our findings show that even lVithill a certain patient population the exercise test 

parameters may vary substantially across specific categories according to the 

characteristics of that category. As Diamond commented before36
•
38

, this variability 

could still reflect selective referral of positive test responders to disease verification 

(angiography), although the variations across disease specifications remain hard to 

explain. Diamond and others showed that just as the predictive value of a test varies 

owing to variations in the prevalence of disease, test parameters vary across patient 

subgroups due to variations in the overall frequency of positive test responses in these 

patient subgroups, i.e. the frequency in all patients who underwent the test. 9.14.19.36.38,39 

They proposed ways to adjust for selective referral by positive test results given tile 

overall frequency of positive test responses per patient subgroup. After such 

adjustment the remaining variation in sensitivity and specificity would partly be 

reduced to a predictable pattern of variation. 38 In our view, however, the fact remains 

that the sensitivity, specificity and LR vary across patient subgroups, whether or not 

this variation is due to the variation in overall test responses. Instead of evaluating 

determinants of sensitivity and specificity in a certain verified sample as we have done 

in our study, one could as well study determinants of the overall frequency of a certain 

test result in the total. tested population to conclude that there are substantial variations 

in the test parameters across patient subgroups. Note that there is a true sensitivity, 

specificity and LR for each homogeneous subgroup. Patient populations, however, are 

always heterogeneous with respect to diagnostic characteristics. We have shown that 

these characteristics are mutually dependent issues. Hence, a proper definition of these 

homogene subgroups is difficult if not impossible, even within a certain selected 

population. As heterogeneity of patient populations pertains to most diseases stability 

of diagnostic test parameters acroSS that population can generally not be assumed. 

Diagnosis is rarely based on one single characteristic or test whereas all involved 

characteristics are potentially correlated. For a proper interpretation of a particular test 

all other modifying factors should be considered in clinical diagnosis. Although this is 

indeed what happens in the mind of the physician, the mutual dependencies may be 
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very complex and hardly distinguishable. In the application of Bayes' theorem to 

estimate individual probabilities from more than one diagnostic factor, each factor or 

determinant is considered as a different diagnostic "test" with its sensitivity, specificity 

and LR. This study, however, has demonstrated that a single level of these parameters 

does not exist in a common diagnostic setting because of mutual dependencies. 

Different patient subgroups may have different parameters per diagnostic determinant 

and the number of these subgroups can be very high. To arrive at a diagnosis in an 

individual patient using Bayes' theorem the physician needs to know the test 

parameters of the corresponding patient subgroup, which are hardly ever known. 

Therefore, the application of Bayes' theorem to estimate diagnostic probabilities for 

several diagnostic determinants simultaneously has serious limitations. Such estimation 

is nevertheless possible using a multi variable prevalence function as derived by logistic 

regression analysis. 4043 This equation can estimate the probability of the presence of 

disease given other relevant diagnostic determinants that could possibly modify this 

probability. This logistic regression model makes no use of sensitivity, specificity or 

LR. Therefore, these concepts are not required for diagnosis. It should be appreciated 

that this does not omit Bayesian thinking in diagnosis. A basic principle of clinical 

practice is that the interpretation of new information depends on a priori beliefs. 

Diagnosis, accordingly, is a consecutive decision making process. Information from 

each diagnostic test is added to the prior information in order to decide whether to 

initiate treatment or to prolonge testing. This decision should be guided by careful 

judgement of diagnostic probabilities preferably estimated by multivariable logistic 

regression models instead of using Bayes' theorem. Various models may be 

constructed and extended in accordance with the diagnostic work-up in practice. 

In conclusion, single values for sensitivity, specificity and LR of a test do not 

exist, and therefore the commonly proposed use of Bayes' theorem has major 

limitations in the assessment of diagnostic probabilities. Test parameters, however, are 

still extensively published in the literature as characteristics (properties) of the 

discriminative power of a test to subscribe it's diagnostic relevance, and are advocated 

for use in clinical diagnosis. The use of prevalence functions provides an alternative 

that lacks the limitations inherent to conventional test parameters. This indicates a 

valuable approach in diagnostic research. 
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Introduction 

Diagnostic research commonly evaluates whether a test discriminates between the 

presence and absence of a particular disease, as determined by a reference standard. 

This research approach has been referred to as 'diagnostic accuracy' or 'test 

evaluation' studies.'" These studies tend to be conducted in a patient population 

selected for their disease status rather than on the clinical problem and usually follow a 

univariable approach. The latter implies that the test is evaluated in isolation without 

reference to the clinical context in which the test is applied and its results interpreted. 

Data obtained from patient history, physical examination and other diagnostic tests 

before the test at issue would be applied, are neglected. Hence, the true clinical value 

of the diagnostic information provided by the test may be less since the other available 

data may already provide such information. 6 The diagnostic accuracy of the (single) 

test is usually expressed by measures such as sensitivity, specificity, likelihood ratio 

(LR) and the area under tlle receiver operating characteristic (ROC) curve. These 

measures are in this paper referred to as test parameters. In practice, diagnosis 

amounts to an estimation of the probability of the presence of disease given all 

diagnostic variables (symptoms, signs and test results) documented in a patient 

presenting with a particular clinical problem. A test is almost invariably part of a set 

of diagnostic variables. A diagnosis is rarely based on one single variable or test and 

therefore is a multivariable concern per se. In this respect, clinical practice and 

diagnostic research frequently do not cohere. The question rises whether diagnostic 

accuracy studies, when they follow a univariable approach, provide meaningful 

information in diagnostic test evaluation. 

This paper addresses the limitations of an univariable approach in the evaluation of 

diagnostic tests which is illustrated by data from a study on the diagnosis of pulmonary 

embolism. 

Patients and methods 

Patients 

Data were used from consecutive patients admitted with clinically suspected pulmonary 

embolism to the Academic Medical Centre and the Slotervaart Hospital in Amsterdam, 
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The Netherlands.',12 Because pulmonary embolism is a life tllreatening disease, a 

proper diagnosis in these patients is vital. To this aim, patient history (e.g. age, 

dyspnoea, gender, previous deep venous thrombosis), physical examination (e.g. 

wheezing, pleural rub, body temperature), blood gas analysis (arterial oxygen pressure, 

PaO,) , chest X-ray, leg ultrasonography (to detect the presence of deep leg venous 

thrombosis), and perfusion and ventilation lung scan results were subsequently 

obtained. Pulmonary embolism was considered absent (no treatment initiated) or 

present (treatment initiated) in case of a normal or high probability result of the 

ventilation-perfusion lung scan, respectively. In 186 of the 452 referred patients with 

an intermediate non-high probability scan result, pulmonary angiography was used to 

determine the presence of pulmonary embolism. In 40 patients pulmonary angiography 

could not be performed because of medical reasons such as manifest heart failure, 

severe pulmonary hypertension or poor clinical conditions. In another six patients the 

angiogram was non-interpretable. Data on the remaining 140 patients, of which 38 had 

angiographically proven pulmonary embolism (prevalence = 28 percent), were used in 

the current analysis. Pulmonary angiograms were evaluated without knowledge of the 

other diagnostic information. 

The X-tllOrax was considered abnormal, i.e. possible presence of pulmonary 

embolism, if it showed a raised diaphragm, pleural effusion, atelectasis, consolidation 

or signs of heart failure. The leg ultrasound was considered abnormal, i.e. deep leg 

venous thrombosis was considered present, if the femoral vein andlor popliteal vein 

were noncompressible. 

Data analysis 

Data analysis was performed with standard software packages (SAS Institute Inc., Cary 

release 6-10). The aim of the present study was to compare the results of an 

univariable evaluation of diagnostic tests with multivariable evaluation of the tests in 

their appropriate work-up phase in the diagnostic process. For each diagnostic variable 

we first estimated the sensitivity, specificity, LR of a "positive" [sensitivity/(l

specificity)) and "negative" [(l-sensitivity)/specificity) test result, and the positive and 

negative predictive value which, defined as the presence of pulmonary embolism given 

a "positive" and flnegativel! testresult respectively. To this aim, continuous or 

categorical variables were dichotomised at a clinically relevant cut-off value. The 
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values of the variable that were indicative for the presence of pulmonary embolism 

were defined as the "positive result" as opposed to the "negative result". A LR of the 

positive (LR +) and negative (LR-) testresult equal to unity indicates that the particular 

value of the variable does not discriminate between presence and absence of pulmonary 

embolism, whereas a high LR + and low LR- indicates its presence and absence 

respectively. For continuous indicators the area under the ROC curve (ROC area) was 

calculated using a non-parametric approach. 13 The association of each indicator with 

the presence of disease was estimated by logistic modelling. Continuous variables were 

entered into the model without categorisation if a linear relation was plausible. 

In a previous study we have described the derivation of a clinical decision rule for 

the diagnosis of pulmonary embolism in non-high probability patients using findings on 

perfusion lung scintigraphY, history and physical examination. I' From this analysis, the 

five independent determinants for the diagnosis of pulmonary embolism were the 

presence of multiple defects on perfusion lung scanning, new or recently worsened 

cough, previous deep venous thrombosis, body temperature above 37° Celsius, and the 

absence of wheezing. Using multivariable logistic regression analysis, and in 

concordance with the sequence of the diagnostic work-up in practice, we separately 

included PaO" chest X-ray and leg ultrasonography to the model including the five 

independent predictors obtained from the perfusion iung scan, patient history and 

physical examination. I' The objective was to evaluate their independent or added value 

in the diagnosis of pulmonary embolism in patients with a non-high probability 

ventilation/perfusion lung scan result. Subsequently, combinations of the three 

diagnostic procedures added to the initial model were evaluated. This again conforms 

with the usual diagnostic work-up (blood parameters and chest X-ray are generally 

obtained prior to leg ultrasound). The ROC area and its standard error13 were used to 

compare the diagnostic information content or the discriminative value of all models. 

The correlation between the models was taken into account because they were based 

on the same cases. I4 In the multivariable analyses, 30 subjects who had missing values 

were excluded. 

Several authors have suggested to evaluate (differences in) diagnostic test 

performance across clinically different subgroupS.IS.11 Therefore, we applied the 

diagnostic models (regarded as an overall test) to patient subsets as defined by the 

number of defects on the initial perfusion lung scan (multiple or single defects). Per 

subset, the mean predicted probability of the different diagnostic models was 
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compared. This analysis provided a kind of validation study to evaluate the average 

performance of the models in different patient subsets. 

Results 

Table 2.2.1 shows the results of univariable analysis. Given a prevalence or prior 

probability of 0.28, from all history and physical findings the predictive value was 

relatively high for tile presence of previous deep venous thrombosis (0.45), pleural rub 

(0.41) and a new or recently worsened cough (0.39). Their positive likelihood ratio 

was also relatively high (2.2, 1.8 and 1.7, respectively) although tile corresponding 

negative likelihood ratio was close to one. These likelihood ratios were associated with 

very different sensitivities (13, 29 and 45 percent, respectively) and specificities (94, 

84 and 74 percent, respectively). In view of the prevalence of 0.28, tile negative 

predictive value was relatively low for multiple perfusion defects (0.17), heart 

frequency of 95 or higher (0.19) and absence of wheezing (0.07). The latter also had a 

low likelihood ratio of the negative result, i.e. presence of wheezing. For all other 

history and physical findings both predictive values were not markedly higher or lower 

than the prevalence, and both likelillOod ratios were close to one. Here too, the 

likelihood ratios were associated with very different sensitivities and specificities. 

The positive predictive value, positive likelihood ratio and specificity (although the 

latter was based on only four patients) of leg ultrasound were markedly higher 

compared to these same parameters of chest X-ray and PaO, (table 2.2.1). However, 

chest X-ray had a much higher sensitivity compared to the other two tests and a much 

lower negative predictive value (0.19) compared to PaO, (0.27) but not compared to 

leg ultrasound (0.21). For any of the continuous variables the ROC area was low, and 

close to a completely non-informative test with a ROC area of 0.50. Using univariable 

logistic modelling, cough, wheezing, body temperature, PaO" X-thorax and ultrasound 

were all significantly associated with pulmonary embolism (p-value < 0.05). 

In multivariable analysis, the ROC area (figure 2.2.1) of the diagnostic model 

including the independent determinants of perfusion lung scintigraphy, patient history 

and physical examination was 0.79 (table 2.2.2). Excluding variables from this model 

significantly decreased the ROC area. The ROC area marginally increased to 0.81 

after addition of PaO, (figure 2.2.1), and significantly increased after addition of chest 

X-ray and leg ultrasound to 0.84 and 0.83, respectively (figure 2.2.2). The diagnostic 
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Table 2.2.1 Univariable association of diagnostic variables and pulmonary embolism, expressed 
as sensitivity. specificity, likelihood ratio of positive (LR +) and negative (LRR) result. area under 
receiver operating characteristic (ROC) curve (for continuous indicators), positive predictive value 
(PV +, probability of presence of disease given a positive result) and negative predictive value 
(PV -, probability of presence of disease given a negative result), 

PE No PE 
(n~38) (n~ 102) 

n Sens n Spec LR+ LR- ROC PV+ PV-
Diagnostic variables (%) (%) area 

Perjusion IUllg scali 

Multiple defects on perfusion scan 30 83 73 28 1.2 0.6 0.29 0.17 

Segmental defects on perfusion scan 22 61 57 44 1.1 0.9 0.28 0.24 

Patient history+physica{ erominotioJl 

Age > 70 years 12 32 34 67 1.0 1.0 0.50 0.26 0.28 

Gender (% male) 20 53 48 47 1.0 1.0 0.29 0.25 

Cough, new or recently worsened 17 45 27 74 1.7 0.7 0.39 0.22 

Previous DVT 5 !3 6 94 2.2 0.9 0.45 0.26 

Malignancy 8 21 28 73 0.8 1.1 0.22 0.29 

Days of immobilization> 1 dayt 8 22 32 68 0.7 1.1 0.55 0.20 0.29 

Absence of wheezing 36 95 77 25 1.3 0.2 0.32 0,07 

Body temperature> 37° Celsius 23 61 41 60 1.0 1.0 0.36 0.33 

Pleural rub 11 29 16 84 1.8 0.8 0.41 0.24 

Signs ofDVT 4 11 10 90 1.1 1.0 0.29 0.27 

Respiratory frequency ~ 20 breaths/mint 21 60 49 51 1.2 0.8 0.58 0.30 0.22 

Heart frequency ~ 95 beals/mint 22 67 52 48 1.3 0.7 0.52 0.30 0.19 

Additional tests 

PaOl 2: 80 mmHgt 13 37 24 71 1.3 0.9 0.59 0.35 0.27 

Abnormal chest X-ray 34 89 68 67 2.7 0.2 0.33 0.19 

Abnormal leg ultrasoundt 10 29 4 96 7.3 0.7 0.71 0.21 

PE, pulmonary embolism; n, number of patients with the diagnostic test result; sens, sensitivity; 
Spec, specificity; DVT, deep venous thrombosis; min, minute; Pa021 arterial oxygen pressure. 
t A few values were missing. 
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Table 2.2.2 Results of the multivariable logistic regression analysis for three different 
diagnostic models to assess the presence of pulmonary embolism in 110 patients with a nonMhigh 
probability ventilation-perfusion scan result. 

Diagnostic model Patient history + Patient history + Patient history + 
physical physical physical 

examination examination + examination + 
PaO, + X-thorax Pa02 + X-thorax 

+ leg ultrasound 

Determinants OR 95% CI OR 95% CI OR 95% CI 

History + physical examination 

Multiple defects on perfusion scan 3.6 1.0- 13.5 5.9 1.4- 26.1 7.3 1.5- 34.5 

Cough, new or recently worsened 2.4 0.9- 6.3 2.4 0.8- 6.9 2.1 0.7- 6.6 

Previous deep venous thrombosis 13.8 1.4-133.5 23.6 2.2-253.4 13.2 1.1-155.0 

Body temperature above 37°C 3.0 1.1- 8.2 3.4 1.1- 10.3 4.9 1.4- 17.0 

Wheezing 0.Q3 0.00-0.43 0.03 0.00·0.49 0.Q3 0.00-0.06 

Additional diagllostic procedures 

Abnormal chest X-ray 1.0 1.0- 1.1 1.0 1.0- 1.1 

PaO, (per mmHg) 9.5 1.8- 49.7 9.2 1.5- 55.9 

Abnormal leg ultrasound 9.0 1.4- 55.2 

OR, odds ratio; Pa02, arterial oxygen pressure; CI, confidence interval; °C, degrees Celsius. 

model with a combined addition of PaO, plus X-ray to the history and physical 

findings (table 2.2.2) had a ROC area of 0.86. Addition of leg ultrasound to this 

previous model (table 2.2.2) increased, though not significantly, the ROC area to 0.88. 

In both diagnostic models, the three tests were associated with the presence of 

pulmonary embolism although the 95 percent confidence intervals of the odds ratios 

were wide. Other combinations of the additional procedures, such as leg 

ultrasonography and chest X-ray only, did not result in a higher diagnostic accuracy. 

Application of the derived diagnostic models to different patient subsets showed 

that in the four diseased patients with single defects on the perfusion scan, the patient 

history and physical examination correctly increased the prior probability of the 
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presence of pulmonary embolism from 0.16 (4/25) to 0.21 (table 2.2.3). Similarly, in 

diseased patients with multiple defects, the prior increased from 0.32 (27/85) to 0.49. 

Addition of chest X-ray plus PaO, further increased the mean probability of disease. 

However, this increase was minimal in patients with single perfusion defects. 

Figure 2.2.1 The empirical receiver operating characteristic curves of the diagnostic model 
including patient history and physical examination (multiple defects on perfusion scan, presence of 
cough, previous deep venous thrombosis, body temperature higher than 37° Celsius and 
wheezing), and the same model with additional arterial O2 pressure (Pa02). 

1 

o 

-·_·· .. History+physicat: AUC=O.79 (SE=O.OI) 
·--·--History+physicat+Pao,: AUC-O.81 (SE-O.Ol) 

25 0 75 1 0 

1-Specificity (%) 

AUC = area under the curve; SE = standard error. 
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Figure 2.2.2 The empirical receiver operating characteristic curves of the diagnostic models 
including patient history and physical examination (multiple defects on perfusion scan, presence of 
cough, previous deep venous thrombosis, body temperature higher than 3JO Celsius, wheezing) 
with additional an abnormal X-thorax, and with additional an abnormal leg ultrasound. 

10 

75 

) 

25 

............ History+physical+ultrasound: AUC=O.83 (SE=O.OI) 
---History+physical+X·thorax AUC=O.84 (SE=O.OI) 

25 0 75 100 

I-Specificity (%) 

AUC = area under the curve; SE = standard error. 

In non-diseased patients with single perfusion defects the addition of chest X-ray plus 

PaO, to the patient history and physical examination correctly. though marginally. 

decreased the prior probability from 0.16 to 0.14 whereas in non-diseased patients with 

multiple defects they substantially decreased the prior from 0.32 to 0.20. In both 



Table 2.2.3 Mean estimated probability of the presence of pulmonary embolism for patients with and without pulmonary embolism per 
categoty of number of segment defects on the ventilation scan, estimated by the diagnostic models of Table 2.2.2. 

Patients with pulmonary embolism (n=35) Patients without pulmonary embolism (n = 89) 

n Patient history Patient history Patient history n Patient history Patient history Patient history 
+ physical + physical + physical + physical + physical + physical 

examination examination examination examination examination examination 
Perfusion + PaO, + PaO, + PaO, + PaO, 
segment + X-thorax + X-thorax + X-thorax + X-thorax 
defect + ultrasound + ultrasound 

Single 4 0.21 0.24 0.27 21 0.15 0.14 0.14 

Multiple 27 0.49 0.58 0.60 58 0.24 0.20 0.19 

n. number of patients; Pa02• arterial oxygen pressure. 

.... 
'" 

Q 
.§ 
~ 
!'> 
tv 



Hazards of ullivariable approach ill diagllostic studies 47 

patient groups, leg ultrasound could neither substantially increase nor decrease the 

mean probability. 

Discussion 

Clinical diagnosis is a stepwise process of obtaining information. In subsequent phases 

diagnostic factors are documented. Commonly, all these factors combined are judged 

to arrive at a diagnosis which guides treatment. In the present study we therefore 

constructed a multivariable diagnostic model per work-up phase such that each factor 

could be evaluated in its clinical perspective and its added value relative to prior 

information could be judged. 

The independent diagnostic determinants of the presence pulmonary embolism 

were not simply the variables with highest values of test parameters as estimated from 

univariable analyses. For example, if one of Ule three tests (paO" X-thorax or leg 

ultrasound) should be selected based on the univariable approach only, we probably 

would have chosen leg ultrasound based on the high positive predictive value and 

likelihood ratio of the positive test result. However, when the three tests were 

compared in their clinical perspective, I.e. when added to prior information obtained 

from patient history and physical examination, the three ROC areas did not 

substantially change which suggests similar diagnostic performance. Moreover, neither 

in the total patient group nor in the two subgroups leg ultrasound could add diagnostic 

information to that provided by combined PaO" chest X-ray, history, and physical 

examination. Another example of a misleading clinical potential suggested by single 

test parameters is that multiple scan defects was an independent predictor for the 

presence of pulmonary embolism but with a low positive predictive value, positive 

likelihood ratio and specificity. These parameters were high for pleural rub which, 

however, appeared to be redundant in the diagnostic process. Similarly, PaO, and 

respiratory frequency had the same ROC area though Ute latter was no determinant of 

the presence or absence of pulmonary embolism and did, therefore, not contribute to 

Ule diagnosis. These findings as well as the varying added value of PaO, plus chest X

ray across patient subgroups, suggest that the clinical relevance of arterial oxygen 

pressure, chest X-ray and leg ultrasound is determined by other diagnostic. 

characteristics. 
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For certain diagnostic variables there were some missing values. This, will not 

have biased the results as the missing values were equally distributed among the 

patients with and without pulmonary embolism. However, for PaD, there were in total 

22 missing values, with twice as many among patients without pulmonary embolism. 

We, therefore, excluded the PaD, test and repeated the multivariable analyses for chest 

X-ray and leg ultrasound now based on 130 patients. Although the odds ratios of the 

determinants showed some changes, the inferences from their 95% confidence intervals 

were the same and so were the ROC areas of the multivariable models. 

Although the present analysis is based on limited data, we conclude that patient 

history, physical examination and other test results are mutually dependent components 

in clinical diagnosis, i.e. they provide to some extent the same diagnostic 

information.1'.18." For example in our study, previous deep venous thrombosis and 

advanced age are associated with the presence (and probably also with the severity) of 

pulmonary embolism. Accordingly, the disease presence (and severity) determines the 

presence of various symptoms and signs such as cough, multiple perfusion defects, 

higher arterial oxygen pressure and abnormal X-thorax or leg ultrasound. Therefore, if 

a disease is commonly diagnosed using more than one test, the clinical relevance of 

these tests can hardly be judged from univariable measures of association. Although 

such measures do provide information in a qualitative sense, a 'threshold of diagnostic 

relevance' cannot be given and will be very arbitrary. If a diagnosis is set by one test, 

however, the single test parameters can be used to indicate the test's diagnostic 

potential because mutual dependencies are not applicable. This particularly occurs in 

screening, in which the early detection of disease irrespective of other clinical 

characteristics is concerned. We believe that any diagnostic test for a disease outside 

the realm of screening should be evaluated in its (clinical) context in order to validly 

assess the added value to information that is recorded regardless. 6
." This can be 

realised by multivariable logistic modelling."'" Studies comparing two or more tests 

that are applied at the same time in the diagnostic work-up in order to replace one test 

by another for efficiency purposes should be conducted in the clinical context as well. 

In such studies also the difference in added diagnostic information, or in case of equal 

effectiveness, the difference in costs or burden to the patient, is clinically relevant. 

,Diagnostic accuracy or test evaluation studies, in which a test is evaluated in isolation 

should be interpreted with caution as they may give a misleading view of its clinical 

potential. 6.17,29 It should be realised that in any diagnostic study the mutual 
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dependencies are ignored when considering the results of the reference test (in our 

example pulmonary angiography). 

General standards for (clinical) diagnostic research are needed. Various 

investigators have proposed a phased approach which resembles the established 

methodologic standards for evaluation of therapeutic strategies.'·5.' Although 

controversy remains, they propose that if initial diagnostic accuracy studies yield 

satisfactory test parameters subsequently the test's contribution to the existent 

diagnostic arsenal in a clinical context should be evaluated, a so-called clinical study. ,. 

5.7.' For reasons mentioned before, we believe that tlle phased approach appropriate for 

clinical trials on treatment efficacy does not simply apply to diagnostic research. 

Moreover, diagnostic accuracy studies which mimic a trial Phase One and Two 

approach (comparing diseased and non-diseased patients as selected on tile true disease 

status) are of very limited value as in such studies the sensitivity, likelihood ratio of a 

positive test result, ROC area and predictive value tend to be overestimated owing to 

selection on clinical profile and positive test results."·25.30." Perhaps only in the case of 

a completely new test on which no diagnostic information is yet available or the 

application of an existing test in a completely new clinical context, an initial diagnostic 

accuracy study (preferably on patients selected on their true disease status) is useful for 

efficiency reasons. If the test cannot discriminate between the presence and absence of 

disease the evaluation process could be terminated. 7.' 

Diagnostic research is of great importance and is still in its early phase of 

development compared to treatment efficacy research. Diagnostic research should 

provide results that are meaningful to clinical practice. We conclude that parameters 

such as the sensitivity, specificity, likelihood ratios, ROC area, and predictive value, 

of single diagnostic tests have limited value. A multivariable logistic regression 

approach is required to evaluate the independent contribution of each indicator and to 

construct a diagnostic model. 
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Introduction 

To make a diagnosis is not an aim in itself. A diagnosis is relevant in so far as it 

directs treatment and, therefore, the prognosis of a patient presenting with a particular 

problem. I In clinical diagnosis, the probability of the presence of disease, the 

availability of additional diagnostic tests and treatment, their risks and benefits, and the 

severity of the prognosis of the disease when untreated, are imbedded into a complex 

decision process.'" Most diagnostic studies in applied medical research, however, 

evaluate the value of diagnostic tests in isolation, rather than in relation to their 

potential clinical implication for therapeutic decisions. The area under the ROC curve 

has become the most popular measure of diagnostic accuracy.'-s The ROC area, 

derived either parametrically"to or non-parametricallyll-13, is considered to provide a 

measure of the overall diagnostic value of the test. It includes the entire range of test 

results. It is also common practice to compare the overall diagnostic value of two or 

more {semi)quantitative tests by statistical comparison of their ROC areas.'·I'-17 This, 

however, may lead to erroneous conclusions in instances where the two ROC curves 

cross or otherwise have very different shapes.I' Moreover, a medical decision in 

practice commonly reflects a dichotomy (to treat or not to treat), or a trichotomy if a 

subsequent diagnostic test is available (to treat, not to treat or further diagnostic 

testing). As a consequence, a physician usually operates only at specific parts of the 

entire range of test results. Several authors have addressed this problem and proposed 

statistical methods to focus on selected parts of the ROC area, e.g. at fixed sensitivities 

or specificities.s.12.17-19 However, little attention has been paid to how to choose these 

parts. 

In this paper we show how evaluation of diagnostic tests irrespective of the clinical 

application, in particular using overall ROC areas, may give a misleading indication of 

their clinical relevance. This is done by contrasting this approach with an alternative 

approach to evaluate diagnostic tests with direct reference to the clinical or therapeutic 

consequences. Such an approach which applies the basic principles of medical decision 

making'O-", has been described by various authors.'·7.,I.,,-28 

Example: Patients and ROC analysis 
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Data were used from cOlIBecutive patients with clinically suspected pulmonary 

embolism who were referred to the Academic Medical Centre and the Slotervaart 

Hospital in Amsterdam, The Netherlands, as described previously."·30 Pulmonary 

embolism is a lifethreatening disease. Large emboli may cause immediate death. If 

patients surviving the initial embolism remain untreated, between 18 and 26 percent 

may die of recurrent embolism."·32 The present treatment policy aims to prevent 

recurrent embolism, and consists of intravenous heparin followed by three to six 

months of oral anticoagulant therapy, with a risk of serious side effects such as fatal 

haemorrhage.33 Therapeutic decisiollB in the study subjects were based on a negative 

(do not treat) or high-probability (treat) result of the ventilation-perfusion lung scan. 

However, 186 of the 452 referred patients had an intermediate non-high probability 

scan result, and a pulmonary embolism could not be confIrmed or excluded. In these 

patients, patient history, physical examination, routine laboratory tests and pulmonary 

angiography (reference standard) were obtained prospectively. The pulmonary 

angiogram was evaluated without knowledge of any other diagnostic information. In 

this way, the independent contribution of all documented variables to the prediction of 

presence or absence of pulmonary embolism could be evaluated. In 40 patients 

puhnonary angiography could not be performed because of medical reasollB such as 

manifest heart failure, severe pulmonary hypertension or poor clinical conditions. In 

another six patients the angiogram was non-interpretable. Of the remaining 140 

patients, 38 patients had an angiographically proven pulmonary embolism ('prevalence' 

27 percent). 

Using multivariable logistic regression modelling, we constructed various models 

with different combinations of diagnostic indicators or tests to predict the presence of 

pulmonary embolism. The diagnostic information content or the discriminative value of 

the models was compared by their ROC curves. Here, the multivariable logistic 

regression model is considered as an overall diagnostic test. By entering the observed 

value of the diagnostic indicators in the logistic function the probability of the presence 

of a pulmonary embolism was estimated for each patient. Such estimated or post test 

probability is a probabilistic transformation of the original observed values of the 

diagnostic indicators in the model. Estimated probabilities can range from 0 to 1 with 

o indicating defInitive absence of pulmonary embolism and 1 defInitive presence. The 

area under the ROC curve and its standard error were estimated using a non

parametric approach." The ROC areas of the diagnostic models were compared taking 
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into account the correlation between the models as they were based on the same 

subjects. 14 The diagnostic models were evaluated on goodness of fit by grouping the 

patients in ten subgroups according to predicted risk, each subgroup containing an 

approximately equal number of patients. Per subgroup, the mean of the individual 

predicted risks was compared with the observed risk using the Hosmer & Lemeshow 

test statistic." The purpose of this paper is not to report the best discriminating 

diagnostic model for pulmonary embolism in patients with a non-high probability 

ventilation-perfusion lung scan, but to demonstrate some pitfalls of conventional 

diagnostic test (model) comparisons if the clinical context is disregarded. Therefore, 

we present three illustrative models which would not necessarily be the models of 

choice for diagnosis of pulmonary embolism, but are selected in order to show the 

linutations of the use of the ROC area. The models were based on the same 113 

patients (27 subjects were excluded due to nUssing values) of whom 32 had a 

pulmonary embolism. 

Figure 2.3.1 shows the empirical ROC curves of a model that includes the 

presence of fever (body temperature higher than 37° Celsius), cough and the 

haemoglobin level in mmolll (modell, ROC area = 0.71), and a model including the 

number of days WiOl symptoms, the number of days of immobilisation, the presence of 

wheezing and the presence of leg paresis (model 2, ROC area = 0.70). The overall 

ROC areas, i.e. the area over the entire range of predicted probabilities, were not 

significantly different (p-value = 0.68) suggesting no difference in diagnostic 

performance. However, the graph shows crossing ROC curves of the models with 

different performances in the lower left and upp'er right part of the graph. Figure 2.3.2 

shows the ROC curve of model 1 and a third model including arterial oxygen pressure 

(mm Hg) and respiratory frequency (model 3, ROC area = 0.61). The ROC areas 

were significantly different (p-value < 0.001), suggesting that model 1 has better 

diagnostic properties than model 3. The difference in ROC area was mainly due to the 

divergence in the middle part of the curves. The Hosmer & Lemeshow test was far 

from significant (01 = 0.05) for all three models which indicates good fit (data not 

shown). 

As usually is the case, only specific parts of the ROC curve are clinically 

relevant.'·'·'·l2·"·I8·l9·2l·26." Inference about diagnostic performance of the three models 

becomes different when the clinically relevant parts of the ROC curves are considered. 

This will be evaluated and illustrated below. 
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Figure 2.3.1 The empirical receiver operating characteristic curve of diagnostic model 1 (body 
temperature higher than 37 0 Celsius, presence of cough and haemoglobin level in mmal/I) and 
diagnostic model 2 (days of symptoms, days of immobilisation. presence of wheezing and presence 
of leg paresis). The consequences of the three treatment threshold probabilities of pulmonary 
embolism as estimated from the logistic models are indicated in the figure; 0.33 (B), 0.17 (0) and 
0.09 (.). 
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Methodology: Threshold concept in diagnostic test evalnation 

To set a diagnosis in clinical practice is to estimate the probability of the presence of 

disease by the results of diagnostic tests added to the previously obtained information 
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(e.g. patient history and physical examination) in order to decide whether treatment 

should be initiated or not. Before performing any diagnostic test at all, the prior 

probability for a patient to have the disease of interest is estimated by the prevalence 

of the disease in that patient population. 

Figure 2.3.2 As figure 2.3.1, except that diagnostic model 2 is replaced with diagnostic model 3 
(arterial oxygen pressure in mm Hg and respiratory frequency). The consequences of the three 
treatment threshold probabilities of pulmonary embolism as estimated from the logistic models are 
indicated in the fignre; 0.33 (.), 0.17 (e) and 0.09 ( ... ). 
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By obtaining diagnostic information the ultimate aim is to update this prior probability 

into a posterior probability of I or O. Because this is usually not feasible, the physician 

endeavours to increase or decrease the prior probability to justify initiation or 

withholding of treatment, respectively. To initiate. treatment the. disease must be 

present with a sufficiently high probability, i.e. the diagnostic probability must exceed 

a certain tllfeshold. The acceptable proportion of misclassifications on disease status 

(false positive and negative diagnosis) and the corresponding risks and benefits of 

erroneously starting and withholding treatment determine these operating probability 

thresholds of disease presence.20.23.27.28 Physicians intuitively apply these thresholds 

and, thus, implicitly specify the particular range of test results or posterior 

probabilities that is relevant to clinical decision making. A proper defmition and use of 

these thresholds in diagnostic test evaluation may, therefore, facilitate evaluation of the 

tests in their clinical perspective. 

To reflect clinical practice, we applied the threshold concept of Pauker and 

Kasirer'° in analogy to the method described by DeNeef and Kent" for evaluation of 

quantitative diagnostic tests or models. Although this is not necessary, for the sake of 

simplicity we assume that there are no additional diagnostic tests, and that the 

objective is to treat or not to treat. The threshold probability above which treatment 

should be initiated, depends on the disease status and the consequences of treating and 

not treating. Let Cd+.t. denote the consequences (in terms of risks, costs, loss of life 

time, or, more general, loss of utility) of not treating a patient who has the disease. 

Let Cd+.t+, Cd •• t+ and Cd •• t. be defined analogously. If P denotes the patient specific 

probability of the disease, tlle expected consequences when the patient is not treated 

are P*Cd+.t. + (I-P)*Cd .• t .. If the patient is treated the expected consequences are 

P*Cd+.t+ + (I-P)*Cd •• t+. The treatment probability threshold (PT) is the probability (of 

the presence of disease) for which the net risks of treatment and no treatment are 

equal. Pauker and Kasirer showed that this can be written as20: 

p = 
T 

I + 

I 

Cd+,t_ - Cd+,t+ 

Cd _. t + - Cd _. t _ 

(I) 

A posterior probability of disease presence greater than PT indicates treatment. PT 

reflects the balance between the net "risk" or "cost" of not treating a case with the 

disease (Cd+.t. - Cd +.t+) and the net "risk" of treating a patient without the disease 
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(Cd •• ,+ - Cd_.,.)." For example, a ratio of net "risks" of 10 means that it is 10 times 

worse to withhold treatment in a diseased patient than to treat a non-diseased patient. 

More formally, the ratio of net "risks" is: 

Cd+,t_ - Cd .. ,I+ 

Cd_,f+ - Cd_. t_ 

(2) 

Because the terms (Cd+.,+ - Cd+.,.) and (Cd_.,_ - Cd_.,+) reflect the net "beneficial" and net 

"deleterious" effects of the treatment, respectively, the ratio in equation 2 has been 
referred to as the Ubenefitslll"costsn ratio. 20,2S,')S,36 

Given a particular treatment threshold PT and diagnostic test or strategy, the net 

benefits and risks of subsequent decisions as based on the test when applying that 

threshold can be estimated. This can be expressed by one parameter, referred to as the 

expected value20 or expected utility"'" of the diagnostic test. In this paper we will use 

the term expected risks (ER) in analogy with the above definitions of net risks of 

treatment and no treatment. The ER of any diagnostic test is equal to: 

ER = 1T * ERd _ + (1-1T) * ERd _ (3) 

where 1T is the prevalence of the disease, and ER.+ and ERd_ are the expected risks for 

a patient with and without the disease, respectively. This is equivalent to: 

ER = 1T * [Cd,.,_ * (I-sensitivity) + Cd,." * sensitivity] + (4) 
(1-1T) * [Cd _.,. * (I-specificity) + Cd _.,_ * specificity] 

The sensitivity and specificity of the test can be calculated by estimating the probability 

of the presence of disease from each observed test result using a logistic model and 

dichotomising the range of estimated probabilities at the treatment threshold. An 

estimated probability greater and lower than PT is defined as a positive and negative 

test result, respectively. 

If there are two diagnostic tests of which the better one has to be selected, the 

difference in their expected risks, d(ER), at a particular treatment threshold should be 

compared. This d(ER) can be written as: 
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d(ER) = 11" * (Cd •. I _ - Cd •. ,.) * (sensitivityJ -sensitivity2) + 

(1-11") * (Cd_.H -Cd_.IJ * (specijicityJ-specijicity2) 

For comparison of the two diagnostic tests the following index can be used: 
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(5) 

(sellSitivityJ-sensitivity2) + (1-11") * (Cd_. ,• -Cd_.,J * (specijicityJ-specijicity2) (6) 
11" (Cd+,t_ -Cd+,tJ 

Substituting equation 1 into equation 6 we obtain: 

(sensitivityJ-sensitivity2) + (1-11") * ~ * (specijicityJ-specijicity2) (7) 
11" (I-Pr) 

Expression 5 and 6 provide an index for comparison of the diagnostic performance of 

two tests. The index is a kind of weighted comparison ONc) of the sensitivity 

difference and specificity difference of two tests because it takes into account tile 

relative risks of false positive and negative diagnosis as well as the prevalence of 

disease. If we differs from zero the two tests perform differently at the particular 

treatment threshold or ratio of net "risks". A positive sign is in favour of test 1 

whereas a negative sign favours test 2. Since bOtll tests are based on the same patients 

the standard error of paired proportions can be used to estimate the standard error of 

we. Appendix 1 provides a simple method to calculate tllis standard error. 

Example: application of the treatment threshold concept 

We applied the above methodology to our example study on diagnosis of pulmonary 

embolism in order to compare the performance of the three previously constructed 

diagnostic models. Without explicit definition of the four parameters in equation 2, we 

arbitrarily defined three ratios of net "risks" at 10, 5 and 2. The corresponding 

treatment thresholds are 0.09,0.17 and 0.33, respectively. Under the presumption that 

the diagnostic models fitted the data correctly, we dichotontised the range of post 

"test" probabilities of the models at each of these threshold and estimated the 

corresponding sensitivity, specificity and 95% confidence intervals (table 2.3.1). The 

points on the ROe curve corresponding to the three posterior probability thresholds are 

marked in figure 2.3.1 and 2.3.2. Table 2.3.1 and the two figures show that at each 

threshold the sensitivity and specificity differed to various extents for all three models. 



Table 2.3.1 The sensitivity (%), specificity (%), weighted comparison (WC) of the sensitivity and specificity, and their 95% confidence 
intervals of the three models dichotomised at the treatment threshold of 0.09, 0.17 and 0.33. 

Threshold 0.09 0.17 0.33 

Sensitivity Specificity WC' Sensitivity Speeificity WC Sensitivity Specificity WC 

Modell 97 6 76 41 47 85 
(92;100) ( 1;11) (62; 90) (31;51) (31;63) (82;94) 

Model 2 92 28 -D.02 92 35 -D.12 13 88 0.30 
(83;100) (20;37) (-0.12;0.08) (83;100) (26;45) (-0.30;0.06) ( 2;24) (82;94) (0.07;0.50) 

Model 3 87 22 0.06 79 30 0.05 32 86 0.14 
(76; 98) (14;30) (-D.06;0.18) (66; 92) (21;39) (-D. 15;0.25) (17;47) (80;92) (-0.10;0.39) 

* For each treatment threshold, the weighted comparison of model 1 and 2, and model 1 and 3 is presented. Note that a positive we favors 
model 1 and a negative we favors model 2 or 3, respectively. 
Model I includes; body temperature higher than 37° Celsius, presence of cough and haemoglobin level (mmolll). 
Model 2 includes: days symptoms. days immobilization, presence of wheezing, presence of leg paresis. 
Model 3 includes; arterial oxygen pressure, respiratory frequency. 
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We compared the models at each treatment threshold using the above derived 

index, we, and its standard error. The 95% confidence intervals of we are presented 

(table 3.2.1). When using the treatment threshold of 0.09, the specificity of model 2 

was 22 % higher compared to model I, whereas its sensitivity was 5 % lower. Because 

the balance of "net risks" was 10 to I, i.e. the loss in sensitivity was much more 

important than the gain in specificity, model 2 did not perform better Olan model 1 

using the above method (We = -0.02). A similar result was found in the comparison 

of model I with model 3. At the treatment threshold of 0.17 (ratio of 5 to 1) model 2 

had a 16% higher sensitivity and a 6% lower specificity than model I with a weighted 

difference of -0.12 favouring model 2, although the index had a wide confidence 

interval. However, if the ratio of "net risks" were to be 2 (treatment threshold = 

0.33), model 1 performed much better than model 2 (We = 0.30 in favour of model 

1). Both findings are in accordance with the crossing ROe curves (figure 2.3.1) which 

indicated a similar change in model performance at the two treatment thresholds, 

whereas the overall Roe areas did not differ. Model 1 and model 3 performed 

similarly at the treatment threshold of 0.17 (We = 0.05) whereas they did differ at the 

threshold of 0.33 (We = 0.14 in favour of model 1). This also corresponded to the 

graphical ROe curve presentations (figure 2.3.2). 

It should be noted that the key message of table 3.2.1 is the model comparison 

using the index we. The 95 % confidence intervals are only presented for a proper 

presentation of the data; with a somewhat larger sample of the patient population the 

comparison of model 1 and 2 with a we of -0.12 might be significant in favour of 

model 2. 

Discussion 

We have illustrated that statistical inference on Ole overall Roe area may not reflect 

the clinical relevance of diagnostic tests or models. A graph may help to reveal this 

discrepancy. The clinical relevance of a diagnostic test is very much determined by the 

risks of the misclassifications on disease status and by the prevalence. Application of 

this knowledge to diagnostic test evaluation may result in different preferences of 

diagnostic tests compared to when Ole ROe area method is used. To achieve this, we 

applied principles suggested in previous studies.'·'·21."." These studies all proposed in 

some way to take into account the risks and benefits of subsequent treatment decisions. 
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We used the treatment threshold concept" to define a range of diagnostic 

probabilities of the presence (and absence) of disease that is relevant to patient 

management rather than focusing on fixed proportions of the sensitivity or 1-

specificityl2 and compared the difference in sensitivity and specificity at the treatment 

threshold rather than comparing partial ROC areas. I
'.

19 The plausible range is defined 

irrespective of the tests and the tests should not necessarily be compared at the same 

sensitivity, specificity or partial area.' We illustrated a simple method to compare, 

simultaneously, the difference in sensitivity and specificity of two tests (models) given 

a particular treatment threshold and the 'prevalence' using logistic regression analysis, 

and to estinlate the standard error of this difference. The method may better reflect the 

difference in test performance as suggested by the graphical ROC presentations, than 

the statistical comparison of the ROC area. 

It should be appreciated that application of the threshold concept to diagnostic test 

evaluation applies to situations where the ratio of "net risks" or, more general, the 

benefits/costs ratio can reasonably well be defined. This definition could be based on 

experience of practising physicians or on general medical knowledge derived from 

clinical trials and studies on cost-effectiveness."-39 In addition to the clinical benefits 

and risks, economic aspects may also be considered in determining the probability 

threshold. However, a sensitivity analysis at different thresholds, like we did in our 

example, remains useful to evaluate whether the choice of the diagnostic test or model 

changes. Such analyses may also be performed for different prevalences. Methods to 

evaluate diagnostic tests in situations where these risk and benefits can not be 

adequately balanced have been described elsewhere.2.' 

Ideally, diagnostic accuracy is measured independent of the prevalence of the 

disease.'" However, as the (clinical) performance of a diagnostic test may depend on 

various factors including the prevalence of the disease40 , we believe it is more 

appropriate to consider the prevalence in the test evaluation and to pay special attention 

to the generalisability of study results. It should also be appreciated that different 

treatment options may have different probability thresholds, depending on their 

respective benefits/costs ratio. Furthermore, if there are additional diagnostic tests 

available the category in which the probability is too low to initiate treatment can be 

further classified in a category of intermediate probability and a category of low 

probability. In the intermediate category additional tests (in our example a pulmonary 

angiogram) may be indicated. The lower category, definitive absence of the disease 
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results in discontinuation of diagnostic work-up. In such setting two probability 

thresholds may be defined." The estimation of the weighted comparison of sensitivity 

and specificity and its standard error remains essentially unchanged but requires further 

research. 

Evaluation of diagnostic tests without regard of their clinical application may 

compromise the relevance of the results for medical practice. Recently the importance 

has been emphasised to conduct diagnostic research within the relevant clinical 

setting.41
"13 This suggests more pragmatic diagnostic research taking into account their 

clinical implications. The aim of diagnostic testing is to minimise the uncertainty about 

the presence or absence of disease in order to reduce the risks of an improper 

treatment decision. A diagnostic test is clinically relevant if it contributes to this 

decision"", although there are situations in which the physician applies a diagnostic 

test only for the sake of knowing what the patient's condition is." In order to agree 

with practice we believe that benefits and risks of the treatment(s), the untreated 

prognosis and, if available, of the additional diagnostic tests, should also be considered 

in diagnostic research or test evaluation. As Pauker and Kassirer stated in 1980"; 'The 

necessity for making such assumptions (about the relative values of benefits and risks 

of treatment) explicit should be viewed as a strength and not as a weakness of this 

analytic approach: certainiy comparisons of this nature must underlie all clinical 

decisions, ". 
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Appendix 

To evaluate whether two diagnostic tests perform differently at a particular treatment 

threshold, a confidence interval around the weighted comparison (!NC) of their 

sensitivities and specificities can be estimated. Formally, WC is: 

(sensitivityJ-sensitivity2) + (1-1T) * ~ * (specijicityJ-specijicity2). (A.I) 
1T (I-PT) 

The odds for the prevalence 1T and for the treatment threshold PT are both independent 

of the test and will be regarded as constants, though it should be noted that the odds 

for the prevalence also has a confidence interval. Because both sensitivities and 

specificities are based on the same diseased and non-diseased patients, respectively, the 

standard error (SE) of WC equals 

V[ SE(sensitivityJ -sensitivity2)' + C' * SE(specijicityJ -specijicity2)' J. (A.2) 

This standard error can easily be computed: 

Fit a suitable model (in tlle present application, a logistic model) for each test. Let P 

be the estimated probability of the presence of disease by test 1 (PI) and test 2 (P2). 

Subsequently, P ;" PT is defined as a positive test result (+) and P < PT as a negative 

test result (-). Compute difference D as follows: 

D = 1 if PI = + and P2 = -
D = -1 if PI = - and P2 = + 
D = 0 if PI = P2. 

Given the diseased patients, the mean and the standard error of D represent the 

difference and the standard error of the difference in sensitivity of the two tests. Given 

the non-diseased patients, the mean and the standard error of D represent the 

difference and the standard error of the difference in specificity of tlle two tests. 

Substituting both standard errors into equation A.2 provides the standard error of the 

weighted comparison WC (equation A.I). 
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Introduction 

Diagnosis in patients with clinically suspected embolism is a difficult task. Leaving a 

pulmonary embolism untreated may be fatal in approximately 20% of the patients l
.', 

whereas the current treatment strategy (intravenous heparin followed by three to six 

months of anticoagulantia) may cause fatal haemorrhage. 3 Therefore, an immediate and 

proper diagnosis in these patients is required. The diagnostic work-up in patients with 

clinically suspected pulmonary embolism consists successively patient history, physical 

examination, blood gas analysis and chest X-ray. When the results of this work-up 

remains suggestive for pulmonary embolism perfusion lung scintigraphy and, in the 

case of an abnormal perfusion scan, ventilation lung scanning are performed.4-7 

However, even though this diagnostic sequence is common practice in many hospitals 

the added or independent value of the separate tests to previously obtained diagnostic 

information has not been investigated. 

This study evaluates the independent diagnostic value of patient history, physical 

examination, arterial blood gas values and chest X-ray in the diagnosis of pulmonary 

embolism, using multivariable diagnostic (logistic regression) models. Subsequently, 

the added value of perfusion lung scan results is evaluated. 

Patients and Methods 

Patients 

The study population comprised 451 consecutive patients with clinically suspected 

pulmonary embolism who were referred to the Academic Medical Centre and the 

Slotervaart Hospital in Amsterdam, The Netherlands, between April 1991 and October 

1993.'·8.9 To set a diagnosis in these patients, the history (e.g. age, dyspnoea, previous 

deep venous thrombosis (DVT) and recent surgery), physical examination (e.g. fever, 

pleural rub and respiratory frequency), blood gas values (partial pressure of oxygen 

and carbon dioxide in arterial blood, PaO, and PaCO,), chest radiograph, perfusion 

and ventilation scan results were obtained. Generally, a normal perfusion scan is 

considered as evidence for the absence of pulmonary embolism (no treatment 

indication)4.1O, and a segmental or larger perfusion defect in combination with a normal 

ventilation scan, i.e. a high probability ventilation-perfusion scan result for its 
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presence.4•1I." These angiographically controlled studies have shown that more than 

90% of the high-probability patients has pulmonary embolism. Therefore, treatment is 

commonly initiated in these patients. In the current study, patients with an 

inconclusive, i.e. a non-high probability ventilation-perfusion scan underwent 

pulmonary angiography to determine the presence of pulmonary embolism. 

Accordingly, in this study, pulmonary embolism was considered present by a an 

abnormal angiogram or a high probability ventilation-perfusion scan and absent by a 

normal angiogram or normal ventilation-perfusion scan. The two lung scans and the 

angiograms were independently evaluated WitllOut knowledge of any other diagnostic 

information. The chest X-ray was considered abnormal if it showed an elevated 

hemidiaphragm, a small pleural effusion, atelectasis or parenchymal abnormalities 

(consolidation). After the recording of the patient history, physical examination, 

routine laboratory and chest X-ray, but before lung scanning, the same physician was 

asked to score the patient's probability of having pulmonary embolism as low « 
10%), medium low (10% to 50%), medium high (50% to 90%) or high (> 90%). 

Analysis 

Data analysis was performed with standard software packages (SAS Institute Inc., Cary 

release 6-10). Differences and 95% confidence intervals (CI) in frequencies or mean 

values of all diagnostic variables among patients with and without pulmonary embolism 

were calculated. In accordance with the sequence of diagnostic work-up in clinical 

practice, we initially included all potential and clinically relevant diagnostic 

determinants obtained from tIle patient history in a multivariable logistic regression 

model. The diagnostic information content or the discriminative value of various 

reduced models was compared with the overall model using the area under the 

Receiver Operating Characteristic (ROC) curve. The ROC area and its standard error 

were estimated using the non-parametric approach. 14 In the model comparisons, the 

correlation between models was taken into account because they were based on the 

same subjects. 15 This model reduction was done to obtain the most efficient diagnostic 

model, i.e. tlle model with a minimum of determinants that did not have a significantly 

lower ROC area than the overall model. The same approach was applied to all physical 

examination findings after they were added to the most efficient "patient history 

model". This allowed to evaluate whether data from physical examination had 
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independent diagnostic value, i.e. added to the patient history which is always obtained 

first, and if so which physical findings determine this incremental diagnostic value. 

Similarly, findings of the blood gas analysis, chest X-ray and lung perfusion scan were 

consecutively added to each previous model, to evaluate their incremental value in the 

diagnosis of pulmonary embolism. All continuous variables were included into the 

models uncategorised if a linear relation was plausible. 

The reliability of the diagnostic models was evaluated by grouping the patients in 

ten subgroups according to predicted risk, each subgroup containing an approximately 

equal number of patients. Per subgroup, the mean of the individual predicted risks was 

compared with the observed risk using the Hosmer & Lemeshow test statistic. 16 

Several authors have suggested to evaluate (differences in) diagnostic test performance 

across clinically different patient subsets. 17
." Therefore, we applied the models to the 

four patient subgroups with increasing clinical probability of pulmonary embolism as 

estimated by the patient's physician before lung scanning. Per subgroup, we compared 

the mean predicted probabilities of the diagnostic models. This provided both a kind of 

validation study of the different models in different patient subsets and a possibility to 

compare the physician's estimated probability with the observed probability and 

predicted probability of pulmonary embolism. 

Results 

Of the 451 patients, 126 (28%) had a normal, 132 (29%) a high-probability, 186 

(41 %) a non-high probability ventilation-perfusion scan and in 7 (2%) patients these 

tests were not performed due to the finding of an abnormal test for deep vein

thrombosis. In 40 of the 186 patients with a non-high probability scan, pulmonary 

angiography could not be performed because of medical reasons such as manifest heart 

failure, severe pulmonary hypertension or poor clinical conditions. In another six 

patients the angiogram was non·interpretable. Of the remaining 140 patients, 38 

patients (27%) had an angiographically proven pulmonary embolism. In total, 398 

patients were suitable for analyses of which 170 were considered to have pulmonary 

embolism (overall prevalence: 43%). 

Of patient history and physical examination, age, days of immobilisation, presence 

of malignancy, surgery within past 3 months, circulatory collapse, dyspnoea, previous 

deep venous thrombosis, leg paresis, signs of deep venous thrombosis, pleural rub, 
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Table 3.1.1 Association between various patient characteristics and the presence of pulmonary 
embolism among 398 patients suspected of pulmonary embolism. 

Diagnostic variables 

Patiellf history 

Age (years) 

Sex (% male) 

Days of inmlObilization 

Malignancy (%) 

Surgery within past 3 months (%) 

Family history of thrombosis (%) 

Collapse (%) 

Dyspnoea (%) 

Previous DVT (%) 

Previous embolism (%) 

Palpitations (%) 

Physical examination 
Body mass index (kg/m') 

Leg paresis (%) 

Signs of DVT (%) 

Pleural rub (%) 

Body temperature> 37 ·C (%) 

Respiratory frequency (breaths/min) 
Heart rate (beats/min) 

Additiollal tests 
Arterial 0, pressure (mm Hg) 

Arterial CO, pressure (mm Hg) 

Abnormal chest X-ray (%) 

Perfusion scan 
nonnal (%) 

subsegmental defect (%) 

segmental or larger defect (%) 

Pulmonary 
embolism 

present 
(N~170) 

59.4* 

45 

o (0-7)t 

30 

28 

9 

13 

18 

11 

8 

18 

24.6* 

8 

12 

20 

46 

21* 

95* 

73.8* 

35.5* 

51 

10 

89 

Pulmonary 
embolism 

absent 
(N~228) 

52.9* 

42 

o (0-3)t 

19 

16 

II 

4 
30 

5 

7 

16 

24.6* 

4 

7 

13 

39 

19* 
91* 

74.6* 

36.0* 

32 

54 

20 

26 

n, number of patients; DVT. deep venous thrombosis; min, minute. 
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body temperature above 37"C, respiratory frequency, and heart rate showed substantial 

differences for patients with and without pulmonary embolism (table 3.1.1). PaO, en 

PaCO, were equally distributed in both patient groups. 156 patients (39%) had an 

abnormal chest X-ray of which 86 (55%), 70 (45%), 43 (28%) and 21 (13%) had a 

small pleural effusion, consolidation, an elevated hemidiaphragm or atelectasis, 

respectively. The percentage of abnormal X-rays was 19% (95% CI: 9%-29%) higher 

in patients with pulmonary embolism as compared to those without. 129 (33 %) patients 

had a normal perfusion lung scan, 61 (15%) a subsegmental defect and 208 (52%) a 

segmental or larger defect. Subsegmental defects were much more prevalent in patients 

without pulmonary embolism. Segmental or larger defects were more frequent (63%, 

95% CI: 56%-70%) in patients with pulmonary embolism. 

The multivariable analysis was based on 360 patients. 38 patients were excluded 

due to missing values. The overall diagnostic model including all relevant variables of 

patient history had a ROC area of 0.69. A reduced model including age, surgery 

within past 3 months, previous deep venous thrombosis, dyspnoea, collapse and 

malignancy (table 3.1.2) had a ROC area of 0.68 (figure 3.1.1). Further exclusions, as 

well as other combinations of patient history factors, significantly decreased the ROC 

area. Therefore, malignancy remained in the model although the 95 % CI of the odds 

ratio just included 1.0. Addition of all relevant physical examination fmdings to the 

previous, i.e. the most efficient patient history model significantly increased the ROC 

area from 0.68 to 0.72. However, excluding all physical findings except pleural rub, 

signs of deep venous thrombosis and respiratory frequency from this model yielded 

also a ROC area of 0.72 (figure 3.1.1). These three factors were the only physical 

fmdings that predicted the presence of disease independently from patient history, 

although pleural rub was borderline significant (p-value = 0.09). In this model all 

history findings remained independent predictors as well (table 3.1.2). Addition of the 

two blood gas parameters to the previous reduced model including history plus 

physical findings did not increase the ROC area (figure 3.1.1) and both had no 

independent association with pulmonary embolism. The odds ratios (OR) of PaO, and 

PaCO, were 1.0 (95% CI: 0.99-1.01) and 1.0 (95% CI: 0.96-1.03), respectively. 

Although an abnormal chest X-ray, when added to the patient history and physical 

examination, showed an independent relation with pulmonary embolism (OR = 2.3, 

table 3.1.2), the increase in ROC area was low (from 0.72 to 0.74, figure 3.1.2). 

Addition of the perfusion scan result (included as a dichotomous variable with no or 
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Table 3.1.2 Results of the multi variable logistic regression analysis for four diagnostic models 
including patient history, additional physical examination, additional chest X-ray and additional 
perfusion scan results, to assess the presence of pulmonary embolism in 360 patients suspected of 
pulmonary embolism. 

Diagnostic model Historyl History + History + History + 
Physical2 Physical + Physical + 

Chest X-ray' Chest X-ray + 
Perfusion 

scan4 

Determinants OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) 

Patient history 

Age (10 years) 1.1 (1.0-1.3) 1.1 (1.0- 1.3) 1.1 (1.0- 1.3) 1.0 (0.9- 1.2) 

Surgery within past 3 months 2.0 (1.2-3.5) 1.9 (1.1- 3.4) 1.8 (1.0- 3.1) 1.4 (0.7- 2.8) 

Previous DVT 2.8 (1.1-6.7) 2.5 (1.0- 6.2) 2.6 (1.0- 6.6) 2.6 (0.9- 7.4) 

Dyspnoea 0.5 (0.3-0.9) 0.6 (0.3- 1.0) 0.6 (0.3- 1.0) 0.9 (0.4- 1.8) 

Collapse 3.7 (1.5-9.4) 3.9 (1.6-10.0) 4.9 (1.9-12.8) 3.7 (1.2-11.4) 

Malignancy 1.4 (0.9-2.4) 1.4 (0.8- 2.4) 1.3 (0.8- 2.2) 1.0 (0.5- 1.9) 

Physical examination 

Pleural rub 1.7 (0.9- 3.2) 1.3 (0.7- 2.5) 1.0 (0.5- 2.2) 

Signs ofDVT 2.1 (1.0- 4.5) 2.2 (1.0- 4.8) 1.8 (0.7- 4.4) 

Respiratory frequency 1.3 (1.0- 1.7) 1.2 (0.9- 1.6) 1.3 (0.9- 1.7) 
(10 breaths/min) 

Additional tests 

Abnormal chest X-ray 2.3 (1.4- 3.8) 1.5 (0.8- 2.6) 

Segmental or larger 18.2 (9.5-34.9) 

OR, odds ratio; CI, confidence interval; DVT, deep venous thrombosis; min, minute. 
I Baseline odds = 0.5; 2 Baseline odds = 0.2; ) Baseline odds = 0.2; 4 Baseline odds = O.OS. 
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Figure 3.1.1 The empirical receiver operating characteristic curves of the diagnostic model 
including patient history. the model including patient history and physical examination, and the 
model including patient history, physical examination and arterial O2 pressure (PaO~. 
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subsegmental perfusion defect as the reference category) to the most efficient history

physical-chest X-ray model increased the ROCarea from 0.74 to 0.86 (figure 3.1.2). 

In this model, the perfusion scan was a very strong independent determinant (OR = 

18.2) of the presence of pulmonary embolism. The odds ratio of chest X-ray and 
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various history and physical fiudings substantially decreased (table 3.1.2). After 

exclusion of chest X-ray findings, the ROC area remained 0.86. The Hosmer & 

Lemeshow test was far from significant for each model which indicates well fitted 

models (data not shown). 

Figure 3.1.2 The empirical receiver operating characteristic curves of diagnostic model 
including patient history. physical examination and X~thorax, and the diagnostic model including 
patient history, physical examination, X-thorax and perfusion lung scan. 
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Table 3.1.3 Mean estimated probability of the presence of pulmonary embolism by the three derived diagnostic models 
including patient history and physical examination (table 3.1.2), additional chest X-ray (table 3), and additional perfusion scan 
(table 3) for all patients with and without emboly and for four patient risk groups as defined by the patient's physician prior to 
the ventilation-perfusion lung scanning. 

Patients with pulmonary embolism Patients without pulmonary embolism 

n PH+PE PH+PE+ PH + PE + n PH + PE PH + PE + PH + PE + 
Risk chest X-ray perfusion scan chest X-ray perfusion scan 

Low 3 0.50 0.50 0.72 24 0.24 0.24 0.20 

Medium low 50 0.47 0.51 0.61 120 0.34 0.33 0.21 

Medium high 72 0.49 0.50 0.65 60 0.43 0.42 0.34 

High 23 0.54 0.59 0.72 8 0.39 0.35 0.23 

Total 148 0.49 0.51 0.65 212 0.36 0.35 0.24 

n = number of patients; PH = patient history; PE = physical examination. 

Rl 

Q 
.§ 
~ 

"" '-
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Table 3.1.3. shows the results of application of three diagnostic models to the total 

patient group on which the models were based, and to different subgroups. The 

prevalence, or prior probability, of pulmonary embolism was 41 % (148/360). On 

average this prior could correctly be increased and decreased by patient history and 

physical examination, in patients with and without pulmonary embolism, respectively. 

In accordance with previous multivariable analyses, addition of chest X-ray did not 

increase or decrease the mean probability of disease, in contrast to addition of 

perfusion scan results. Subgroup analysis yielded similar results. In patients with a low 

« 10%), medium low (10%-50%), medium high (51 %-90%) and high probability (> 

90%) as estimated by their physician before lung scanning, tile observed prevalences 

were 11 % (3/27), 29% (50/120), 55% (72/132) and 74% (23/31), respectively. In the 

diseased subjects of each subgroup with exception of the high risk group, the 

respective priors were correctly increased by addition of perfusion scan results. In the 

non-diseased subjects the reverse was found: only in the high, medium high and 

medium low risk group the perfusion scan findings correctly decreased the prior 

probabilities, 

Discussion 

This study examined the value of patient history and the added value of physical 

examination, arterial blood gas analysis, chest radiography and perfusion scintigraphy, 

in the diagnosis of pulmonary embolism, according to the usual order in which these 

data become available in clinical practice. This was done by systematically 

constructing and extending multivariable diagnostic models. We found that the 

independent predictors obtained from patient history (age, recent surgery, previous 

deep venous thrombosis, dyspnoea, collapse) and physical examination (pleural rub, 

signs of deep venous thrombosis, respiratory frequency) contribute to the confirmation 

or exclusion of the presence of pulmonary embolism. Given this information from 

patient history and physical examination, blood gas measurement has no added 

diagnostic value and the added value of chest radiography is limited. 

Our results suggest that in the assessment of the presence or absence of pulmonary 

embolism, patient history and physical examination comprised all diagnostic 

information to be obtained from the arterial blood gas and to a large extent the 

information from the chest radiograph. Moreover, addition of the perfusion scan 
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results makes the chest radiograph redundant to determine the presence or absence of 

pulmonary embolism. As both blood gas and chest radiography measurements are 

more or less burdening for the patient and expensive, refraining from these 

examinations may increase the efficiency in diagnosis of pulmonary embolism. 

However, chest radiography may be of help in the assessment of other lung diseases 

when pulmonary embolism is excluded. Furthermore, it should be recognised that after 

the addition of perfusion scan results, history and physical rmdings such as age, 

dyspnoea, malignancy, pleural rub and respiratory frequency also contribute much less 

to the diagnosis of pulmonary embolism. Patient history and physical examination are, 

however, always obtained, these should obviously not be disregarded in the diagnostic 

work-up. 

The results of this study regarding the predictors of pulmonary embolism agree 

with results from earlier studies.20·24 However, in previous studies the value of the 

above diagnostic variables or tests was examined in isolation or in a univariable sense, 

without reference to diagnostic information already available. In agreement with 

previous reports, the present study shows a univariable association of immobilisation, 

tachycardia and radiographic abnormalities with the presence of pulmonary embolism 

whereas an association independent from other history and physical findings could not 

be found. This is probably due to a mutual dependency with these other stronger 

predictors. For example, the diagnostic information of innnobilisation may largely 

overlap with the information of recent surgery. With respect to blood gas values the 

results of this study are different from some other studies"·16, which is most likely 

explained by the difference in study design and because we used an independent 

analysis of the blood gas values. 

The subgroup analyses in the present study suggested that the added diagnostic 

value of the perfusion lung scan for confirming pulmonary embolism was most 

profound in patients with low, medium low or medium high risk and its added value 

for excluding the disease in high, medium high and medium low risk patients. 

Although this may clinically be expected, i.e. the potential of the perfusion scan to 

increase or decrease the prior will be less if the prior is already high or low, it should 

be realised that the groups and therefore the corresponding priors were based on the 

risk estimated the physician before lung scanning. In the low and medium low risk 

group, the physician's estimated risk agreed with the true prevalence of pulmonary 

embolism but in the medium high and high risk group the physician tended to 
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overestimate the disease probability, particularly in the high risk group. Nevertlleless, 

the overall added value of the perfusion scan as found in the present study is in 

accordance with earlier findings.'·'·,·12.l3 The large contribution of the perfusion scan in 

our study can be explained by the fact that a normal perfusion scan and a high 

probability ventilation-perfusion scan result define the final diagnosis of pulmonary 

embolism. This definition of the presence and absence of pulmonary embolism, 

however, accords to prevailing clinical practice. Currently, patients with a normal 

perfusion scan are considered to be free of pulmonary embolism (not treated) and a 

patient with high-probability ventilation-perfusion scan is directly treated with 

anticoagulants without further diagnostic evaluation. Our pragmatic disease definition 

may also partly explain the high prevalence in this study (43 %) as compared to 

previous studies with prevalences of approximately 30% .'.12 The present study included 

relatively more high-probability patients which also may account for a higher 

prevalence. We believe that the high prevalence has not influenced the observations 

and conclusions. Moreover, variables which are theoretically associated with the 

presence of pulmonary embolism have a bigger chance to be detected if the prevalence 

is high. Therefore, the limited diagnostic value of arterial blood gas values and chest 

radiography in establishing or excluding pulmonary embolism when prior information 

is available remains. 

The model including history, physical examination and chest X-ray could not 

distinguish between the different risk groups as well as the physician. The physician 

may have used more information for the risk estimation than was included in the 

model. Future studies may evaluate the effects of a more prudent interpretation of 

patient history and physical examination on the physician's assessment of tlle (prior) 

probability of presence of pulmonary embolism. 

In conclusion, we have shown that efficiency in establishing the diagnosis of 

patients with suspected pulmonary embolism may increase if the sequence of the 

diagnostic work-up is evaluated. Doing so, blood gas analysis and chest radiography 

may become redundant to the patient history and physical examination in a strategy 

aimed at diagnosing or excluding pulmonary embolism. 
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The present study evaluates whetller continuous ST-monitoring characteristics are 

associated with tlte enzymatic infarct size and left ventricular ejection fraction (L YEF) in 

patients witll acute myocardial infarction. Both measures of disease severity (infarct size 

and L YEF) were studied as quantitative rather than as dichotomous parameters. 

Accordingly, we used linear regression analysis to quantify the above associations. This 

analysis should be regarded as an initial approach to evaluate the value of the continuous 

ECG-monitoring test for prediction of the myocardial infarct size and left ventricular 

function. However, to evaluate its true value from a diagnostic (and prognostic) 

perspective in order to guide subsequent treatment decisions, a certain threshold on the 

disease parameters must be defined. As this is still a ratl\er ambiguous issue in the medical 

literature, this was not attempted in the present study. Analysis of the data using 

diagnostic (logistic) modelling has therefore not yet been attempted. Further research and 

determination of clinically relevant cut-off levels is required to direct such an evaluation. 
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Introduction 

Infarct size is a major determinant of the prognosis of patients with an acute myocardial 

infarction. I Early reperfusion (within a feW hours) and sustained patency of the occluded 

artery by thrombolytic therapy limits infarct size and, thereby, preserves left ventricular 

function and improves survival. 2·' Infarct size and left ventricular function are associated 

with the extend and duration of the myocardial ischaemia. Continuous monitoring of the 

ST -segment is a readily available, non-invasive method for assessment of myocardial 

ischaemia and the occurrence of early reperfusion and reocclusion(s).'·ll Hence, this 

technique may well provide diagnostic information of both infarct size and residual left 

ventricular function at the early stages of myocardial infarction. 

The ECG monitoring substudy of the GUSTO-I trialll.l' offers an unique opportunity 

to verify these relations. The GUSTO-I trial was designed to compare new thrombolytic 

strategies with standard thrombolytic regimens in the treatment of acute myocardial 

infarction.' The present study evaluates whether the extend and duration of myocardial 

ischaemia as measured by continuous ST-monitoring are associated with infarct size and 

left ventricular (LV) function in patients with acute myocardial infarction treated with 

thrombolytic therapy. Subsequently, the added value of continuous ST-monitoring to other 

patient characteristics for assessment of infarct size and LV function is evaluated. 

Patients and Methods 

Patiellfs 

The multicenter GUSTO ECG-monitoring substudyll.l' included patients from the GUSTO 

angiographic substudy' and patients enrolled in the non-invasive part of the main study', 

as described previously. In brief, patients were eligible for GUSTO if they had chest pain 

lasting at least 20 minutes, up to 6 hours after symptoms onset and ST segment elevation 

at 60 milliseconds after the J-point (1+60 msec) ;" 0.1 mV in two or inore limb leads, 

or ST J+60 msec ;" 0.2 mV in two or more precordial leads.' After informed consent, 

patients were randomized to one of four thrombolytic regimens: 1) streptokinase with 

subcutaneous heparin 2) streptokinase with intravenous heparin 3) accelerated alteplase 

(tPA) with intravenous heparin 4) combination with tPA, streptokinase and intravenous 

heparin. Ail patients received aspirin. In 10 out of 15 hospitals participating in the ECG 
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monitoring substudy in Europe, patients were also enrolled in the angiographic substudy 

and were randomly assigned to coronary angiography at 90 minutes, 180 minutes, 24 

hours or one week after start of thrombolytic therapy.7 Patients assigned to 90 minutes 

angiography also underwent follow-up angiography one week later. The study design and 

technical considerations of the EeG-monitoring substudy13.14 and the enzyme substudy!' 

have been published recently. 

Figure 3.2.1 Example of an overall STMtrend (= ST~segment changes over time) obtained from 
continuous ST~segment monitoring, The ST-trend characteristics (see text) evaluated in the present 
study to predict infarct size and left ventricular function can be obtained from the figure. 
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Admis EeG = EeG on admission; peak = peak ST-level; 50% = moment of 50% ST-reduction 
from the preceding peak ST-level; Rl and R2 are two recurrent ischemic episodes; p.V = micro volt; 
the grey zones reflect the estimated area under the ST-trend. 
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The current analysis included only patients from the ECG-monitoring substudy, who were 

monitored by a vector-derived 12-lead ECG recording system (MIDA 1000, Ortivns 

Medical, Tiiby, Sweden), and in whom either infarct size or left ventricular function were 

determined. 13 

Enzymatic infarct size 

Enzymatic infarct size was defined as the cumulative release of alpha hydroxy butyrate 

dehydrogenase (HBDH) activity per litre of plasma over 72 hours since the onset of 

symptoms, indicated as Q(72). The Q(72) value was divided by the normal HBDH content 

of human myocardium determined with the same assay, that is, 123 U per gram net 

weight, to obtain infarct size in gram-equivalents of myocardium per liter of plasma. 15 

Left vellfricuiar ejection fraction 

Left ventricular ejection fraction (LVEF) was measured from left ventricular angiograms 

by experienced angiographers without knowledge of previous obtained information from 

patient history, physical examination, electrocardiography and enzymatic infarct size.' For 

123 patients the LVEF measured at the one week angiogram was used. In 22 patients this 

one week L VEF measurement was missing and the 90 minutes angiographic measurement 

was used instead. Since the ejection fraction did not change significantly between 90 

minutes and one week after treatment initiation', tlns seemed justified. 

Continuous ST-segmelll monitoring 

Continuous ST-segment monitoring was performed for at least 18 hours from start of 

thrombolytic therapy. For each patient, the single lead with the most extensive ST 

elevation at J+60 msec was used to produce an overall ST-trend.13.14 Potential ST-trend 

characteristics (figure 3.2.1) that were thought to be associated with enzymatic infarct size 

and LVEF were: 

1. Peak ST level (Indicator of the extend of the ischaemia). 

2. time (in nlinutes) to 50% ST-recovery from the preceding peak ST level since start of 

thrombolytic therapy (indicator of the time of reperfusion). 
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3. the area under the ST-trend curve from the onset of ST-monitoring to the moment of 

50% ST-recovery (combined indicator of the extend of the ischemic area and the duration 

of coronary occlusion). The ST -area was estimated using the trapezoidal rule, by 

integration of the ST -trend until the zero ST -level (figure 3.2.1) and expressed in millivolt 

times minutes (mV.min). It reflected both the extend of the ST-elevation and the duration 

of the time to 50% ST-recovery. 

4. the number of recurrent ischemic episodes following the 50% ST-recovery, defmed as 

ST reelevation of ;" 100 p.V developed within a 10 minute period and lasting ;" 60 

seconds (indicator of stability or rather instability of reperfusion). 

5. the total duration of all recurrent ST-elevation episodes together (a measure of total 

duration of reischaemia). 

6. the sum of the area of all recurrent ST-elevation episodes, relative to the baseline ST

level (figure 3.2.1) before start of ST-reelevation (mV.min). This area reflected both the 

extend of ST reelevation and the duration of the recurrent ischemic episode(s). 

If the ST -elevation on the ECG on admission was the highest measured ST deviation, this 

was taken as the peak ST-Ievel. If the 50% ST-recovery had occurred before or at the 

start of monitoring, the time to 50% ST-recovery was the time interval between start of 

thrombolysis and start of monitoring. As a consequence, the area until 50% ST-recovery 

was estimated as zero. Similarly, if no recurrent ischemic episodes occurred, the number, 

total duration and sum of the area of these episodes was estimated as zero. 

It has been demonstrated that patient characteristics documented at admission, such 

as the presence of anterior infarction and the time between onset of symptoms and start 

of treatment, predict both infarct size as well as the limitation of infarct size by 

thrombolytic therapy.I.2,4.16.17.18 Therefore, we analyzed the value of ST -segment 

monitoring in the assessment of both outcomes, when added to determinants obtained from 

patient history (e.g. age, sex, previous MI and time from onset of symptoms to treatment 

initiation), physical examination (e.g. heart rate, Killip class), and findings on a 12-lead 

ECG recorded on admission like location of the infarct and the extend of ST-segment 

elevation. 

Statistical analysis 

Before start of the analyses it was appreciated that the sample size would not allow for 

detection of differences between infarct size or LVEF among the four GUSTO treatment 
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groups. In GUSTO, both initial (90 minutes) patency and survival were significantly better 

in patients treated with accelerated tPA.'·' Moreover, in this subgroup early coronary 

patency and infarct size measurements were almost identical in the two tPA groups." 

Accordingly, in the current analysis we decided to combine the two tPA groups (in 

deviation from the main GUSTO analysis) and to combine the two streptokinase regimens. 

Data analysis was performed with standard software packages (SAS Institute Inc., 

Cary, release 6-08). Frequencies and median values of LVEF, infarct size and all potential 

predictors were calculated. An univariable linear regression analysis was used to select 

the significant determinants of enzymatic infarct size and LVEF among all potential 

predictors. Multivariable linear regression analysis was used to evaluate the most 

important predictors of infarct size and LVEF from continuous ST-monitoring. 

Subsequently, the characteristics of patient history and physical examination which were 

clinically relevant and significantly related to infarct size in the univariable analysis were 

included in a multivariable linear regression model. To evaluate the added value of ST

monitoring to assess both outcomes, we included all ST-monitoring rrudings to this model. 

To adjust for the possible treatment effect on infarct size, the indicator for thrombolytic 

therapy was included in every model irrespective of its significance level. The same 

procedure was followed for prediction of LVEF. 

Results 

Of the 406 patients who were monitored by the vector-derived 12-lead ECG recording 

system in the GUSTO ECG-monitoring substudy, 46 were excluded either because the 

continuous ECG-monitoring was started more than 60 minutes after initiation of 

thrombolytic therapy or therapy was started more than six hours since onset of symptoms. 

Ninety one patients were excluded because of technical failures or missing ECG trend 

data." Thus, 269 patients had vector-derived 12-lead ECG recordings suitable for 

analyses. Table 3.2.1 shows the baseline characteristics of these patients which did not 

differ from the 41,021 patients in the main GUSTO-I trial.' Of the 269 patients that 

underwent ST-monitoring, 206 patients also participated in Ole enzyme substudy. The 

mean Q(72) of these patients was 4.7 g-eq/l. Of the 269 patients, 231 participated in the 

angiographic substudy of whom 214 patients underwent angiography with a mean L VEF 

of 58%. These 206 and 214 patients were used for prediction of infarct size and LVEF, 

respectively. In 155 patients both outcomes were measured. 
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Table 3.2.1 Median values and frequencies of the most important characteristics from patient 
history and physical examination (N ~ 269). 

age (year) 

females (%) 

Previous myocardial infarction (%) 

Previous angina (%) 

Heart rate (beats/minutes) 

Anterior infarct location (%) 

ST elevation on admission (millivolt) 

Time to treatment (hours) 

Alteplase therapy use' (%) 

Killip class JII or IV (%) 

N = Number; LV = left ventricular; g·eq = gram-equivalents. 
Numbers between parentheses are the 25th and 75th percentiles. 
* Either accelerated tPA or combined tPA and streptokinase. 

Median or % 

61 (52-69) 

o 
14 

47 

72 (60-81) 

42 

0.4 (0.2-0.6) 

169 (125-220) 

48 

1 

Table 3.2.2 shows the descriptive slatistics for the ST-segment monitoring 

characteristics. The median peak ST-Ievel and time to 50% ST-recovery were 0.5 mVand 

46 minutes, respectively. The area under the ST-trend until 50% ST-recovery ranged from 

0, i.e. ST-recovery before start monitoring (52 patients) to 246 mV.min with a median 

of 12 mV.min. Recurrent ischemic episodes were present in 97 patients (36%), 22 (8%) 

had more than 2 ischemic episodes of whom two patients had 14 and one patient had 40 

episodes. The total duration of all recurrent ischemic episodes ranged from 2 minutes to 

8 hours with a median of 16 minutes. The area under all recurrent ischemic episodes 

varied between 0.2 and 111 mV.min with a median of2 mV.min. 

Ullivariable allalysis 
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Table 3.2.2 Median values and frequencies of the characteristics of continuous ST -segment 
monitoring. 

ST-segment monitoring characteristics N Median or % 

Peak ST-Ievel (mV) 269 0.5 (0.3-0.7) 

Time to 50% ST-recovery (min) 269 46 (24-84) 

AUC until 50% ST-recovery (mV.min) 269 11 (1-28) 

Number ischemic episodes 269 

0(%) 172 64 

I (%) 61 23 

2 (%) 14 5 

3-40(%) 22 8 

Total duration of all reischemic episodes (min) 97 16 (7-44) 

AUC of all reischemic episodes (mV.min) 97 2 (1-8) 

N = Number; min = minutes; AUC = area under the ST-trend curve; mV = millivolt. 
Numbers between parentheses are the 25th and 75th percentiles. 

97 

Previous MI, previous angina, time to treatment, heart rate, infarct location, and ST 

elevation on admission were all associated with infarct size and (except time to treatment) 

LVEF (table 3.2.3). LVEF was also associated with age and sex. Although there was a 

small effect of tPA therapy (accelerated tPA or tPA in combination with streptokinase) 

on infarct size and LVEF, the 95% CI of the regression coefficients were very wide. 

Similar results were found, if accelerated tPA with heparin was compared to the three 

other regimens as was done in the main GUSTO trial. 6 

Both a higher peak ST-level, a longer duration to 50% ST-recovery and the 

combination of both as reflected by the area under the curve until 50% ST-recovery, 

showed a significantly larger infarct size and lower LVEF. If we excluded the 52 patients 

with an ST-recovery before start of ST-monitoring these associations did not change. The 

infarct size was 1.2 g-eqll higher and the LVEF 1.3% lower in patients with recurrent 

ischemic episodes though the 95 % CI of these differences were very wide. However, in 

patients with recurrent ischemic episodes, the infarct size and L VEF significantly 
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Table 3.2.3 Regression coefficients and 95 % confidence intervals (95% CI) of univariable linear 
regression models predicting enzymatic infarct size (Q(72) in g~eq/l) and left ventricular ejection 
fraction (LVEF in %). 

Q(72) (n~206) LVEF (n~214) 

coefficient coefficient 
(95% CI) (95% CI) 

Patient characteristics 

Age (per 10 years) 0.1 (-0.3; 0.5) -2(-4;0) 

Female ·0.2 (-1.3; 0.9) 5 (0; 10) 

Previous MI -1.2 (-2.5; 0.1) ·12 (-18;·6) 

Previous angina -1.1 (-2.0;·0.2) ·4(-8;0) 

Time to treatment (per hour) 0.3 (·0.1; 0.7) -0.2 (-27;27) 

Heart rate (per 10 beats/min) 0.3 (0.1; 0.5) -3 (- 4;-2) 

Anterior infarct 1.0 (0.1; 1.9) -10 (-14;·6) 

ST elevation on admission (per m V) 4.4 (2.8; 6.0) -7 (-14; 0) 

AUeplase therapy ·0.6 (-1.6; 0.6) 1 (- 3; 5) 

ST-mollitorillg characteristics 

Peak ST-level (per mY) 4.3 (2.8; 5.8) -6.9 (-14; 0) 

Time to 50% ST-recovery (per 30 minutes) 0.2 ( 0.0; 0.4) -0.9 (-1.7;-0.1) 

AUC until 50% ST-recovery (per 10 mV.min) 0.3 (0.1; 0.5) -0.8 (-1.4;-0.2) 

Presence of ischemic episodes 1.2 (0.3; 2.1) -1.3 (-5.5; 2.9) 

Number of reischemic episodes (per episode) 0.2 ( 0.0; 0.4) -1.4 (-2.8; 0) 

Total duration reischemic episodes (per 10 minutes) 0.1 ( 0.0; 0.2) -0.5 (-1.1; 0.1) 

AUC of all reischemic episodes (per 10 mV.min) 0.6 ( 0.1; 1.1) -2.0 (-4.2; 0.2) 

G-eq/l = gram-equivalents per liter; n= number; min = minutes; mV = millivolt; AUC = area 
under the ST -trend curve. 

increased and decreased, respectively, with a greater number of episodes, a longer total 
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duration of the episodes, and a greater area under the curve. Other variables derived from 

continuous ST -segment monitoring were not associated with either outcome. 

Multivariable analysis 

The peak ST-level, area until 50% ST-recovery and area under the recurrent ischemic 

episodes were the independent ST-trend predictors of infarct size (table 3.2.4). The area 

under the ST-trend till 50% ST-recovery was the only independent ST-trend predictor of 

LVEF (table 3.2.4). The number of episodes was stronger associated with infarct size and 

with LVEF than the total duration of the ischemic episodes. Compared to the number, the 

area under aU episodes was stronger associated with both outcomes (data not shown). 

Table 3.2.4 Mutually adjusted regression coefficients of the ST-monitoring factors predicting 
infarct size (Q(72) in g-eq/l) and left ventricular ejection fraction (LVEF in %). 

Peak ST-Ievel (per my) 

AUC until 50% ST-recovery (per 10 mV.min) 

AUC of reischemic episodes (per 10 mV.min) 

Q(72) 

3.8 (5.4;2.2)* 

0.1 (0.0;0.2) 

0.5 (0.1;0.9) 

LVEF 

-3.4 (-10.8;4.0) 

-0.8 (-1.4;-0.2) 

-2 (-5;1) 

G-eq/l = gram-equivalents per liter; AUC: area under the ST-trend curve; min = minutes; mV 
~ millivolt. 
* The numbers between parentheses is the 95 % confidence interval. 

Similar results were found after excluding the exceptional patient with 40 episodes. As 

more than two third of the patients had no ischemic episodes (corresponding area 

estimated as zero) which might had influenced the estimated regression coefficient, the 

two ST-trend areas were combined to a summed area. This area reflected the extend and 

duration of the total ischaemia in the patient in 24 hours and it was very strongly 

associated with both outcomes. These associations did not change after excluding the 

patients with 50% ST-recovery before start of ST-monitoring (figures 3.2.2 and 3.2.3). 

Time to treatment and ST elevation on admission were independent predictors of 

infarct size (model R' = 17%). After addition of aU ST -monitoring parameters, treatment 

delay, ST -elevation on admission and the total ischemic area were the independent 

predictors (model R' = 23%, table 3.2.5). Although both provided largely the same 
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information, ST -level on admission was stronger associated compared to peak ST -level. 

Excluding 15 patients who underwent early angioplasty which could have influenced the 

time to 50% ST-recovery, the occurrence of reischaemia and the infarct size, did not 

change the results. 

Previous MI, anterior MI location, heart rate and age were independent determinants 

of LVEF (model R' = 27%). These variables remained significant when tlle ST

monitoring characteristics were added to the model, of which total ischemic area under 

the ST-trend was the only independent predictor (model R' = 32%, table 3.2.6). 

Figure 3.2.2 Association of the total ischemic area (= area until 50% ST-recovery + area under 
all recurrent ischemic episodes) with infarct size (Q(72» for all patients of whom the moment of 50% 
ST -recovery occurred after start monitoring. 

20.-----------------------------------~ 
Q72 = 4.3 + 0.02 * total Ischemic area 

15 • • 
• 

l • 
• • 

,910 • 

~ a 

Total Ischemic area (mV.mln) 

G-eqll = gram-equivalents per liter; mV.min = millivolt times minutes. 
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Figure 3.2.3 Association of the total ischemic area (= area until 50% ST -recovery + area under 
all recurrent ischemic episodes) with left ventricular ejection fraction (LVEF) for all patients of whom 
the moment of 50% ST-recovery occurred after start monitoring. 
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Total Ischemic area (mV.mln) 

mV.min = millivolt times minutes. 

In this analysis, 22 patients had 90 minutes and 46 patients had 180 minutes angiography 

without a one week angiogram. Their L VEF was obtained long before the ST -monitoring 

was ended. Because this might confound the relationship between ST -trend analysis and 

L VEF a second analysis was performed without these patients. This did not change the 

results in the association with LVEF. Similarly, excluding the 15 patients who underwent 

early angioplasty did not change the results. 
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Table 3.2.5 Mutually adjusted regression coefficients of patient history. physical examination 
and continuous ST-monitoring, predicting infarct size (Q(72) in g-eq/l). 

Patient history + physical examination + ST -monitoring 

Intercept 

Alteplase 

Time to treatment (per hour) 

ST elevation on admission (per my) 

Total ischemic area (per 10 mV.minutes)t 

R' 

Q(72) 

1.7 

-0.9 (-2.0;0. I)' 

004 ( 0;0.8) 

4.6 ( 3.0;6.2) 

0.2 (0.1;0.3) 

23% 

G-eqll = gram-equivalents per liter; mY = millivolt; AUC = area under the ST-trend curve. 
* The numbers between parentheses give the 95 % confidence interval. 
t Sum of the area under the ST-trend until 50% ST-recovery and the area under all recurrent 

ischemic episodes. 

Discussion 

This analysis from GUSTO-I evaluated the association of continuous ST-monitoring 

characteristics and infarct size and left ventricular function in patients with acute 

myocardial infarction treated with thrombolytic therapy. The area under the ST -trend 

curve until 50% ST-recovery and the sum of the area under the recurrent ischemic 

episodes (or a combination of both) appeared to be predictors of infarct size and LVEF, 

independent from other patient characteristics. This supports the physiologic hypothesis 

that both the extend and duration of myocardial ischaemia (both included in the estimated 

area under the ST-trend curve) determine the myocardial damage and, thus, may predict 

the infarct size and ejection fraction. 

Because the true baseline of the ST-segment of the GUSTO patients, i.e. before the 

onset of myocardial ischaemia, was not known, the area to the moment of 50% ST

recovery was estimated relative to the zero ST -level. In addition, a subgroup analysis was 

done among patients with recurrent ischemic episodes in which both the area until 50% 

ST-recovery and the sum area of the ischemic episodes were estimated relative to a 

baseline ST-level. This baseline ST-level was estimated by the average of all baseline ST-
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Table 3.2.6 Mutually adjusted regression coefficients of patient history, physical examination 
and continuous ST-monitoring, predicting LVEF (in %), 

Patient history + physical examination + ST-monitoring 

Intercept 

Alteplase 

Previous MI 

Anterior location 

Age (per 10 years) 

Heart rate (per 10 beats/min) 

Total ischemic area (per 10 mV,minute)t 

R' 

LVEF 

91 

2(-2;6)* 

-12 (-17;-7) 

-8 (-12;-4) 

-2(-4;0) 

-2 (- 3;-1) 

-1.0 (-1.5;-0.5) 

32% 

LVEF = left ventricular ejection fraction; mY = millivolt; AUC = area under the ST-trend 
curve. 
* The numbers between parentheses give the 95 % confidence interval. 
t Sum of the area under the ST-trend until 50% ST-recovery and the area under all recurrent 

ischemic episodes. 

levels after 50% ST-recovery as measured prior to each reischemic episode. This 

restricted analysis provided similar results. 

The present study used objective ST-recovery criteria as suggested previously. 8·12 

These studies have demonstrated that ST-trend characteristics reflect patency of the 

infarct-related artery. Previous GUSTO-I analyses have shown that early patency of the 

infarct-related artery (within 90 minutes) by thrombolytic therapy reduces infarct size and 

improves left ventricular function and that 72% to 74% of the patients were patent (TIMI 

score 2 and 3) within 90 minutes.',I3,1S Similarly, in our study, 75% of the patients have 

50% ST-recovery within 84 minutes. Therefore, the present study also supports the 

hypothesis that ST-monitoring characteristics reflect coronary patency. Furthermore, the 

present study can be regarded as an addition to the early analyses of GUSTO-I data in 

which simplified criteria for ST-recovery (the presence or absence of 50% ST-recovery 

and ST-reelevations) were evaluated to predict patency of the infarct-related artery. 13 We 

studied whether the extend, speed, (in)stability and duration of ST-recovery and, 
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therefore, of reperfusion, provide information about (the thrombolytic effect on) infarct 

size and left ventricular function, directly. To our knowledge, this has not been evaluated 

before. Combining the results of the previous" and the present study, it is obvious that 

continuous BCG monitoring may diagnose patient subgroups without apparent reperfusion 

which, presumably, develop a larger infarct size and worse left ventricular function. These 

subgroups may benefit from additional therapy. Hence, tlle clinical relevance of ST

monitoring directs to the tailoring of thrombolytic therapy. '.19 
The limitations of the GUSTO-I BCG monitoring substudy as described previously" 

also apply to the present study. First, the participating centers in GUSTO-I were relatively 

inexperienced in applying continuous BCG monitoring systems in the setting of acute 

myocardial infarction. This could partly be the reason why more than hundred patients 

had to be excluded because of a delayed start of recording, missing trend data or technical 

failures. Since these reasons for the missing and uninterpretable data were unlikely to be 

related to infarct size or ejection fraction, and neither to the potentially observable ST

monitoring result, we believe that it will not have biased our results. Second, for patients 

randomized to the angio group of 90 and 180 minutes, the BCG recordings had gaps in 

the ST -trend data during the procedure in the angiography room. As changes of vessel 

status as well as in the BCG may occur rapidly, the ST -segment could have changed 

during that period, e.g. peak ST-level, 50% ST-recovery or recurrent ischaemia could 

have occurred. The ST-trend data during that period had to be extrapolated from the slope 

of ST-trend data before and after the angiography procedure. This may have resulted in 

less accurate estimates of the areas under the ST-trend. The same applies to situations 

when the recording system had to be disconnected during transportation from the coronary 

care unit to the angiography room. Also, the influence of the time intervals between start 

of thrombolytic treatment and start of ST-monitoring, and between onset of symptoms and 

treatment initiation on the ST -monitoring characteristics as discussed in that study apply 

in a similar way to the present study. 

With respect to determinants of infarct size and ejection fraction other than ST -trend 

characteristics, our findings are in agreement with previous large studies. '.2.4.16·18 These 

studies also have found that ejection fraction is lower in older patients, with anterior 

infarction and previous myocardial infarction and infarct size is larger if treatment delay 

is longer and if ST-elevation on admission is higher. As compared to these large studies, 

the relatively small number of patients is the most plausible reason for not fmding a 

significant association between, for example, infarct location and previous myocardial 



ST-fJ'elld characteristics to predict illfarct size alld L VEF 105 

infarction with infarct size, and treatment delay and ST-elevation on admission with 

ejection fraction. 

In conclusion, the area under the ST-trend till 50% ST-recovery and the (sum of the) 

area of recurrent ischemic episode(s), which reflect both the extend and duration of 

myocardial ischaemia, independently predict infarct size and left ventricular function, 

rather than the peak ST-Ievel, time to 50% ST-recovery, the number and duration of 

recurrent ischemic episodes. 
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Introduction 

Before patients are selected for a therapeutic trial they have to fulfil all inclusion and 

exclusion criteria. Most of these criteria reflect the treatment indication whereas some 

are derived from logistic or ethical reasons. If immediate treatment is not required, 

measuring the inclusion and exclusion criteria can be extended over a certain period of 

time during which patients are repeatedly examined at certain time intervals. This 

results in a stepwise exclusion process which is called the qualification or selection 

period,l In this paper, consecutive examinations are referred to as I!visits", A selection 
period comprising several visits rather than examining all criteria at once may be 

favourable for several reasons. First, to obtain an adequate assessment of certain 

characteristics. For example, blood pressure and serum cholesterol level'" require 

more than one measurement at different times because of within person variability and 

regression towards the mean. ,." Second, a selection period may be important if no 

historical or medical data of the participants are available which may occur in trials 

conducted by investigators who are not the treating physicians. Third, spreading 

measurements over consecutive visits starting with the simple and non-burdening ones 

at an initial visit and continuing with the more expensive and invasive examinations at 

a later stage, may reduce the costs. Measuring all eligibility criteria at the very first 

visit may also result in more patient refusal. 

This paper describes an approach for optimising the efficiency of a selection 

period in randomised trials, i.e. to obtain a maximum of randomisations with a 

minimum of examinations. The principles are illustrated using data from the selection 

period of a large trial on the efficacy of a cholesterol lowering drug. 12 

Theory 

In a selection period, No potential participants enter the first visit at which n, subjects 

are excluded and N, (= No-n,) subjects are invited for the second visit. Similarly, of 

the N, participants reaching visit two, n, will be excluded and N" subjects will be 

examined at the third visit. This stepwise selection process continues until 

randomisation (R) and NR subjects are included into the trial. The costs to randomise 

one subject can simply be estimated. If k (1 ,; k ,; R) is the number of visits passed 

by a subject and C are the measurement costs per visit, then E'.~, C, are the total costs 
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for tIlis subject. The mean costs per subject, c, is obtained by taking the average of 

this calculation over all subjects. The proportion randomised, p, is estimated by the 

number randomised divided by the total number that initially entered the selection 

period (NRINO)' The mean costs per randomisation is calculated by c/p and its standard 

error can be estimated using the delta method", based on the standard error of c and p 

and their correlation. 

Prediction of exclusion at a later visit using information obtained at previous visits 

means that the subject will be excluded before the exclusion criterion is actually 

measured. This will decrease costs if the prediction is correct and will increase costs if 

the prediction is incorrect. In this predictive context, the outcome is defIned as 

"excluded or not at a later visit by a certain criterion". The relative number excluded 

by a certain criterion, determines whether the criterion can serve as an outcome. 

Prediction of criteria with low exclusion frequencies will not generally lead to 

substantial increases in efficiency. Given a selected outcome, all variables measured at 

visits preceding the visit of the outcome are potential predictors. 

Suppose a prediction model that is fIt after visit i to predict exclusion by criterion 

E at visit k (k > i), and is applied to the (initial) selection period. The new selection 

strategy would be to withdraw each subject at visit i with an estimated probability of 

exclusion above a chosen cut-off value (the subject is called "positive"). Positive 

subjects contribute to the saving of the costs of all measurements between visit i and 

visit k. However, false positive predictions also lead to potential reduction in the 

number of randonllsations. They could have been randomised unless they were 

excluded before visit k, by other criteria at visit k or by criteria measured between 

visit k and randomisation. The mean costs per randomisation in the new strategy, 

c'/p', can be estimated in the same way as described above for the null situation, i.e. 

the initial strategy of the selection period without using the prediction model. If c/p -

c'/p' is signifIcantly higher than zero, the new strategy is preferable. The standard 

error of this difference can be computed by the delta method, based on the standard 

errors of c, p, c·, p. and their correlations. 13 

Illustration 

Desigll 
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The theory above was evaluated using interim data from the selection period of the 

Rotterdam Cardiovascular Risk Intervention trial (ROCARI). I2 ROCARI was designed 

as a randomised, placebo-controlled, primary prevention study to evaluate the effect of 

a cholesterol-lowering drug (simvastatin) on fatal and non-fatal atherosclerotic 

coronary heart diseases (CHD) in 9,000 men, aged between 40 and 70 years. All 

participants had primary hypercholesterolemia without clinical evidence of CHD. 

Subjects from the Dutch city of Rotterdam and suburbs entered the selection period 

either by general practitioner referral or tlrrough a direct mail procedure. The selection 

period comprised a stepwise exclusion process over five consecutive visits at one 

month intervals (Figure 3.3.1). Participants could refuse further participation at any 

time. 

At the first visit, subjects were eligible for further screening if their serum total 

cholesterol level was 6.5 mmolll or over and if they satisfied additional criteria 

checked by a short questionnaire on medical and family history. At the second visit, 

serum total cholesterol and high density lipid cholesterol (HDL) levels were measured. 

There were no criteria to proceed to the third visit during which the latter two 

measurements were repeated. Total cholesterol and HDL at visit two were averaged 

with the values measured at visit t1rree. At visit three, triglycerides and other serum 

measurements were performed. If the mean total cholesterol level was in the range of 

6.0-8.5 mmolll, the mean HDL level below 1.40 mmolll, the triglyceride level below 

3.5 mmolll and the other biochemical values were in the normal range, participants 

were invited for the fourth visit. After the subjects satisfied a large number of criteria 

at the fourtll visit and gave written informed consent, they entered a placebo run-in 

phase. At visit five, after satisfying a fmal evaluation of all criteria, the subjects were 

randomised on a 1: 1 basis to either simvastatin or placebo. At time of the analysis 

30,372 subjects had entered the selection period at visit one and over 1,100 had been 

randomised. The present analysis is based on data of a cohort of 6,544 men that 

completed the selection period, unless they were excluded before they could be 

randomised. 

Methods 

For the present analysis, criteria leading to the exclusion of 50 subjects or over were 

selected as outcomes. Given a selected outcome on a particular visit, we constructed 
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multivariable logistic regression models including all variables obtained from previous 

visits using data of tile ftrst 2,200 subjects that entered the ROCARI selection period 

(referred to as the derivation set). l4 Continuous variables were included as continuous 

terms only if a linear relation was plausible. The multivariable models were 

constructed in concordance with the chronological order in which data became 

available during the selection period. The initial model comprised all variables that 

were measured at visit one. Model reduction was based on clinical relevance and 

significance level. We compared the information content of various reduced models 

with the initial model using the area under the Receiver Operating Characteristic curve 

(ROC area) and its standard error; both were estimated using the non-parametric 

approach. IS•l6 

Figure 3.3.1 Flow chart of the five visits of the ROCARI selection period (see text). 

visit 1 

visit 2 

visit 3 

visit 4 

visit 5 

I 
Slmvastatin Placebo 

no previous CVD 
TC,6.5mmolJl 

6.0 s: mean TO s; 8.5 mmoljl 
mean HDL , 1.40 mmoln 
TO , 3.5 mmoln 

compliant 

CVD = cardiovascular diseases; HDL = high density lipid cholesterol; TC = total cholesterol; 
TG = triglycerides. Mean TC and mean HDL are the average TC and HDL levels of the 
measurements at visit 2 and 3. 
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Model reduction was done to obtain an efficient model, i.e. the model with a minimum 

number of determinants that did not have a significantly lower ROC area than the 

initial model. Subsequently, for each patient the probability of being excluded by the 

outcome was estimated by the fitted model. We estimated the costs per randomisation 

for nine equidistant cut-off values on the scale of estinmted probabilities. The costs per 

randomisation described an optimum curve over all cut-off values because the number 

of true and false predicted exclusions decreased unequally with increasing cut-off 

value. Consequently, the difference in costs per randomisation between tlle initial and 

the new selection strategy which uses the prediction model also described an optimum 

curve over all cut-off values. This optimum corresponded to the most efficient 

probability threshold of the model. When the optimum was lower than zero, the 

outcome could not efficiently be predicted and the model was rejected. 

The same approach was applied to all variables measured at the second visit after 

they were added to the fitted model from visit one. This yielded the fitted model of 

visit two. This procedure was chronologically pursued for each subsequent visit until 

the visit on which the outcome itself was determined. The entire approach was applied 

to all selected outcomes. 

We applied the optimum probability thresholds of the fitted "visit-models" to data 

of 4,344 subjects that subsequently entered the selection period. The difference in costs 

per randomisation between the initial and the new selection strategy with application of 

the prediction model was estimated. 

Results 

Table 3.3.1 shows the number of patients screened and excluded per visit for the 

cohort of 6,544 men. From table 3.3.1 the following exclusion criteria were selected 

as an outcome at visit three: mean HDL of 1.40 mmolll or higher (high HDL), mean 

total cholesterol lower than 6.00 mmolll (low TC), mean total cholesterol higher than 

8.50 mmol/l (high TC) and fasting triglycerides of 3.50 mmol/l or higher (high TG). 

Because the total number excluded at visit four and five of ROCARI was still too small 

at the time of analysis, no single criterion was selected for these visits. Willingness to 

give informed consent at visit four was not selected because association with previous 

data was unlikely. 
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Table 3.3.1 The number examined and excluded on the main exclusion criteria per visit for a 
cohort of 6.544 men that could have completed the selection period of ROCARI. 

visit 1 visit 2 visit 3 visit 4 visit 5 

Measurement costs per visit (US $) 90 63 126 207 144 

Number examined 6544 2378 2186 1261 1087 

Number proceeding to next visit 2378 2186 1261 1087 985 

Number excluded" 4166 152 925 174 102 

TC < 6.5 mmolll 3722 7 0 1 

Mean TC(2+3) < 6.00 nunolll (low TC) 215 

Mean TC(2 + 3) > 8.50 mmolll (high TC) 78 

Mean HDL(2+3) ;, 1.40 mmolll (high HDL) 366 

Fasting triglycecides ;, 3.5 nunolll (high TO) 167 2 

No informed consent 79 

Tablet non-compliance during run-in 3 30 

Clinical evidence previous CVD 183 30 23 38 22 

Use other lipid lowering drugs 130 20 6 

Non-lipids out of range 14 7 21 

Unable or refusal for further participation 233 128 105 34 13 

Sum of 15 other criteria 65 6 137 32 38 

TC = Total cholesterol; CVD = Cardiovascular diseases; TO = Triglycecides. 
• The sum of number excluded per criterion exceeds the number excluded per visit due to the 

possibility of more than one reason for exclusion per participant. 

For each selected outcome table 3.3.2 shows the ROC area of the initial and 

corresponding reduced model of visit one and two. The reduced model of visit one to 

predict high HDL included body mass index and age. The reduced model of visit one 

to predict low TC included total cholesterol level and smoking history. To predict high 

TC this model included total cholesterol level, smoking history and the presence of an 

elevated cholesterol in the past. These determinants also remained in the reduced 



Table 3.3.2 Area under the ROC curve of the initial and reduced prediction model per visit for the four selected outcomes at visit three 
based on data obtained from the derivation set (N ~2,2oo). 

Visit I Visit 2 

Outcome Ntot Nexcl Initial model Reduced model Initial model Reduced model 

HighHDL 721 98 0.65 (0.58-0.72)· 0.63 (0.57-0.70) 0.98 (0.97-0.99) 0.98 (0.97-0.99) 

LowTC 721 68 0.73 (0.64-0.82) 0.71 (0.62-0.80) 0.95 (0.91-1.00) 0.95 (0.91-0.99) 

High TC 721 31 0.92 (0.83-1.00) 0.90 (0.78-1.00) 0.97 (0.89-1.00) 0.96 (0.88-1.00) 

High TG 721 57 0.73 (0.63-0.83) 0.69 (0.58-0.80) 0.76 (0.66-0.86) 0.76 (0.66-0.86) 

Ntot:::;: Total number on which the models were based (i.e. the number by whom the outcome was measured); Nexcl = Number 
excluded by the outcome; TC ~ Total cholesterol; TG ~ Triglycerides. 
* Numbers within parentheses is the 95 % confidence interval. 
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model of visit one to predict high TO. However, only exclusion by high TC could 

adequately be predicted at visit one (ROC area of the reduced model was 0.90). The 

ROC area of the initial model at visit two for prediction of high HDL, low TC, and 

high TC was 0.98, 0.95 and 0.97, respectively. This initial model included the 

corresponding reduced model of visit one plus the total cholesterol level and HDL 

level measured at visit two. However, to predict high HDL the reduced model with 

HDL level measured at visit two only, had the same ROC area as the initial model. 

Similarly, exclusion by low TC as well as by high TC could equally be predicted by 

the model including total cholesterol level measured at visit two only. 

In ROCARI, the costs per randomisation in the initial selection strategy were US $ 

1,444. Figure 3.3.2 shows the distribution of the difference in costs per randomisation 

between the initial selection strategy and after application of a new strategy. This new 

strategy used the reduced model derived at visit two to predict exclusion by high HDL 

at visit three. The optimum was between 0.8 and 0.95 and defined at 0.9. Excluding 

everyone with an estimated probability higher than 0.9 would save more than US $ 30 

per randomisation. For probability thresholds above 0.9, the number of true predicted 

exclusions decreased more than the number of false predicted exclusions, resulting in a 

lower difference in costs per randomisation. This also occurred for probability 

thresholds lower than 0.9. Here, the number of false predicted exclusions increased 

more compared to the number of true predicted exclusions. For thresholds below 0.4, 

the loss of randomisations by the false predictions even outweighed the saved costs 

from true predictions. The result was an increase of costs per randomisation. 

The fitted model of visit one to predict high HDL could not decrease the costs per 

randomisation. For the prediction of exclusion by low TC, the optimum probability 

threshold of the reduced model at visit one and two was 0.4 and 0.7, respectively, 

whereas for the prediction of high TC these thresholds were 0.6 and 0.5, respectively. 

Although the ROC areas of the two fitted models to predict triglyceride levels of 3.50 

or higher were not extremely low (table 3.3.2), the costs per randomisation could not 

be decreased for either model. 

The reduced models of visit two to predict high HDL, low TC, and high TC 

comprised just one determinant. For high HDL this was the HDL level measured at 

visit two whereas for low TC and high TC this was the total cholesterol level 

measured at visit two. Therefore, the estimated probability thresholds of these reduced 

models could directly be presented as a HDL level or as total cholesterol levels, 
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respectively. For example, to withdraw everyone with blood HDL levels over 1,48 

mmolll at visit two was similar to applying the derived model and using the probability 

threshold of 0.9 (figure 3.3.2). For the prediction of low TC and high TC, the total 

cholesterol levels of visit two could analogously be defined at 5.5 or lower and 8.8 or 

higher, respectively. 

Figure 3.3.2 Distribution of the difference in costs per randomisation (in US $) between the 
initial selection strategy and the new strategy, over 10 cut-off values on the scale of estimated 
probabilities of the reduced model at visit two to predict exclusion by mean HDL ;;::: 1.40 mmolll 
at visit three. Analysis based on data obtained from the derivation set (N =2,200). 
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Table 3.3.3 summarizes the results after application of the optimum thresholds of 

the selected models to the 4,344 patients that subsequently entered the ROCARI 

selection period. The last column shows the saved costs over the remaining 8,657 
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Table 3.3.3 Estimated difference in costs per randomization and total saved costs, 
expressed in US $, if the reduced models of table 5.2 were applied to the ROCARI selection 
period, based on data of 4,344 men. 

Outcome 
Reduced model 

lllgh lllOL 

Model2: ;" 0.9 

LowTC 

Modell: ;" 0.4 

Model2: ;" 0.7 

lllgh TC 

Modell: ;" 0.6 

Model2 : ;" 0.5 

All optimal 
thresholds 

Excluded by 
the outcome· 

186 

3 

83 

5 

36 

333 

TC = Total cholesterol 
• True predicted exclusions 
f False predicted exclusions 

Not excl-
uded by the 

outcomet 

9 

0 

13 

3 

7 

26 

Costs per Difference Total saved 
randomizati (95% Cl)' costs' (95% 

on new Cl)(US $ x 
strategy 1000) 

1414 30 (20;40) 260 (173;346) 

1442 1 (-1; 3) 9 ( -9; 26) 

1427 17 (11;23) 147 ( 95;199) 

1443 1 (-3; 5) 9 (-26; 43) 

1435 9 ( 5;13) 78 ( 43;113) 

1392 52 (39;65) 450 (338;563) 

* Difference in costs per randomization compared with the initial selection strategy 
, Difference * 8,657. 

randomisations (343 of the first 2,200 patients were already randomised). Using the 

threshold of tile fitted model of visit two to predict high HDL at visit three could save 

about US $ 260,000. Using the model of visit one to predict low TC and excluding 

everyone with a probability of 0.4 or higher would save about US $ 9,000. However, 

these savings were not significantly different from zero. Application of the reduced 

visit two model would save over US $ 147,000. Application of reduced model one and 
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two to predict low TC would save US $ 9,000 and US $ 78,000, respectively. As 

some participants were excluded by more than one outcome, the total saved costs could 

not be derived by simply adding the saved costs of the above five selected models. 

However, combined application of the five models suggested that over US $ 450,000 

could be saved over the remaining ROCARI selection period. 

Discussion 

We have proposed an approach to increase the efficiency of the selection period of a 

clinical trial by predicting exclusion at subsequent visits using data obtained at earlier 

visits. If five prediction models were simultaneously applied to the selection period of 

ROCARI, the costs per randomisation would decrease by US $ 52 and the total 

screening costs by at least US $ 450,000. Models to predict subsequent exclusions in a 

selection period can be derived from a pilot study or from interim analyses during 

patient recruitment. 

Large trials like ROCARI12 or the recently started Women's Health Initiative trial 17 

as well as smaller trials with multiple expensive or invasive measurements to 

determine eligibility" tend to apply a selection period. Such trials are, therefore, likely 

to benefit from the above approach. In the last decade primary prevention trials have 

received much attention in the literature with a particular emphasis on the reduction of 

risk for cardiovascular disease. Consequently, the required size of such trials and the 

number to be screened tend to be very large. The associated high costs could affect 

their feasibility. 5.19 Application of the proposed method could improve the financial 

feasibility of primary prevention trials. However, to achieve maximum benefit, the 

approach should be applied as early as possible in the selection period, preferably 

based on data obtained from a pilot study. Prediction models derived from a pilot 

study can be applied to the actual selection period only if the measurements of 

determinants and outcome considered in the models have not been changed or moved 

to another visit. Clearly, the more data acquired during the selection period the better 

the model can be refined and adjusted. This will further enhance their precision and 

benefits. Derivation or adjustment of the prediction models from interim analysis 

whilst the selection period is in progress may result in a shift of the distribution of the 

characteristics at baseline (randomisation). The extent to which this occurs only 

depends on the falsely predicted exclusion of subjects that would indeed be randomised 
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if the prediction model were not applied. Since the comparison remains based on 

random allocation this will not affect the internal validity. We also believe that this 

will not affect the generalis ability of the trial results because generalisability will be 

determined by the eventual distribution of the baseline characteristics. A shift in the 

distributions at baseline, due to interim application of the prediction models, did not 

occur in the ROCARI example (table 3.3.4). This is due to Ole relatively few false 

predictions. 

Table 3.3.4 Characteristics at randomization in the initial situation and after application of the 
five prediction models (table 5.3), based on data of the cohort of 6,544 men that could have 
completed the selection period. 

Characteristic 

Age (years) 

Mean total cholesterol level (mmolll) 

Mean HDL level (mmol/l) 

Triglyceride level (mnlol/l) 

LDL level (mmol/l) 

Diastolic blood pressure (mm Hg) 

Systolic blood pressure (mm Hg) 

Body mass index (kg/m') 

• Number of patients randomized 

Initial situation without 
application of the prediction 

models 
(N~985') 

Mean 

52.3 (7.4)' 

6.9 (0.6) 

1.1 (0.2) 

2.0 (0.7) 

4.9 (0.6) 

86 (11) 

135 (18) 

26.5 (2.9) 

t Number between parentheses is the standard deviation 

New situation with 
application of the 
prediction models 

(N~948') 

Mean 

52.4 (7.4) 

6.9 (0.6) 

1.1 (0.2) 

2.0 (0.7) 

4.9 (0.6) 

86 (11) 

135 (18) 

26.5 (2.9) 

In ROCARI, removal of all variables except one from the initial model at visit two 

resulted in the same savings compared to the initial model. The multivariable models 

did not, therefore, yield additional information to (univariable) application of a single 

determinant-threshold. This may be different in other trials. 
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In the prediction of subsequent exclusions, the true positive predictions directly 

decrease the costs per randomisation. The false positive predictions are a loss of 

potential randomisations. As this loss means that an extra number has to be screened in 

order to obtain the required number of patients in the trial, the false predictions 

indirectly increase the costs per randomisation. However, the decrease in costs per 

randomisation over probability thresholds of a prediction model follows an optimum 

curve (Figure 3.3.2). Therefore, thresholds with either a small number of false 

positives or a large number of true positives do not correspond to a major decrease in 

costs per randomisation per se. Furthermore, an upper limit for the number of false 

positive predictions may exist. This depends on the trial. In trials for which 

participants are hard to fInd because the source population is limited, loss of potential 

randomisations becomes more serious. In such situations, one may prefer a smaller 

number of false positive exclusions above a higher efficiency. If patients are not hard 

to fInd probability thresholds with the highest efficiency are favoured. In our example, 

the source population which included all male inhabitants of Rotterdam and 

surrounding communities, was large enough. 

Besides the /lumber of true and false positives which is a result of the strength of 

the association between the prediction model and the exclusion to be predicted, several 

other factors also determine the impact of the model on the efficiency of the selection 

period. These are briefly discussed. First, the chronological position of the visit from 

which the model is obtained as well as the costs of the subsequent visits determine the 

extent to which true predictions decrease the costs per randomisation. The earlier the 

visit at which the predietion model is obtained and the higher the costs of its following 

visits, the more measurement costs will be saved. Second, the chronological place of 

the visit at which the outcome to be predicted is measured determines to what extent 

the false positive predictions increase the costs per randomisation. Obviously, if the 

outcome is measured late in the selection period fewer visits are left before 

randomisation takes place. Hence, the false positive predictions are more likely to be a 

loss of randomisations because the probability to become excluded after the outcome 

becomes low. This may also increase the costs per randomisation. 

However, a stepwise exclusion process with relatively expensive measurements 

and low exclusion probabilities at later visits is commonly chosen in the selection 

period regardless. The proposed approach should, tllerefore, focus on the strength of 
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the association between the prediction model and the outcome, while the outcome 

should be predicted as early as possible. 

The efficiency may be further increased if the observed value of the predictors are 

entered in the derived models immediately at the moment of measurement. The patient 

could directly be withdrawn. Consequently, the costs of the remaining measurements 

of that particular visit could be saved and the subject would be spared the remaining 

measurements as well. Besides prediction of subsequent exclusions, the proposed 

method may also be used to decide on transfers of eligibility criteria with high 

exclusion rates to earlier visits and criteria with low exclusion rates to later visits, or 

an adjustment of eligibility criteria. This may further increase efficiency. However, 

interim adjustment of eligibility criteria may affect the homogeneity of the study 

population. Depending on the extent to which the adjustment causes a shift in the 

distribution of the baseline characteristics, this may have consequences for the 

generalisability. Nevertheless, the generalisability will anyway be determined by the 

eventual distribution of baseline characteristics. 

In conclusion, data obtained early in a selection period of a clinical trial may be 

used to predict subsequent exclusions. This may increase efficiency of the patient 

recruitment. All trials which make use of a selection period to recruit the eligible 

participants can benefit from the proposed strategy. In view of the limitations and 

recommendations discussed, additional research could refine this method to further 

enhance efficiency. 
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A central theme in this thesis is the need to take the context of clinical practice into 

account in diagnostic research or test evaluation. When disregarded this may lead to 

erroneous conclusions about the clinical relevance of a test. Limitations of prevailing 

concepts in diagnostic studies have been evaluated and various methods for 

improvement suggested. The aim of the thesis is to narrow the gap between diagnostic 

problems in clinical practice and results from diagnostic studies. 

In this final chapter the major differences between diagnostic practice and 

diagnostic research (studies), and inferences from our findings are discussed. For tltis 

purpose, we will first review principles of diagnostic practice and research. Secondly, 

implications of the proposed principles of diagnostic research are discussed from a 

clinical perspective. Finally, remaining (theoretical) issues that require attention in 

future diagnostic research are mentioned. 

Principles of diagnosis in clinical practice 

In the practice of medicine, diagnosis is not an aim in itself. It is relevant in so far as 

it directs treatment and helps to predict prognosis of a patient presenting with a 

particular problem. I Although there may be a number of possible underlying states of 

healtll which could have caused the patient's problem, in the diagnostic work-up a 

physician commortly addresses a particular disease, i.e. the target disease. 2•3 Which of 

the potential diseases is dermed as the target disease is usually determined by the 

severity of that disease or by the probability that it may be present. A diagnosis often 

reflects a dichotomy in which the aim is to assess the probability of the presence or 

absence of the target disease, in order to initiate treatment or not. To this aim, a 

physician describes the patient profile by obtaining diagnostic information from the 

patient. As much diagnostic information is obtained as needed to consider the target 

disease present or absent with a sufficient degree of confidence. The fundamental 

purpose of diagnostic testing is to reduce uncertainty about the presence or absence of 

the disease in order to reduce the risks of an improper treatment decision. The 

diagnostic information is obtained in a stepwise manner and after each step 'intuitively 

expressed into a probability of the presence of disease. A physician "estimates" a 

probability of the presence of disease using information from the patient history and 

physical examination and, if necessary, adds information from other diagnostic tests. 

To set a diagnosis is a multivariable concern per se in which the diagnostic probability 
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is consecutively updated until a therapeutic decision can be made or otherwise 

sufficient prognostic knowledge is available. This decision is also determined by the 

costs (or risks) of the diagnostic procedures itself and by the costs of possible 

misclassification of disease status. In clinical practice, estimation of diagnostic 

probabilities and specification of the costs and benefits of subsequent therapeutic 

actions are implicitly integrated into a complex decision process.' 

In summary: 

1. To set a diagnosis is a phased, multivariable process in which the probability of 

the presence of disease is continuously updated when new diagnostic information is 

added to the patient profile. This process is continued until a treatment decision 

can be made. 

2. The decision on patient treatment (including "no" treatment) is determined by the 

diagnostic probability and the costs and benefits of subsequent clinical action. 

Principles of diagnostic research 

Diagnostic research is inherently descriptive: its only motive is to improve prediction 

of the presence or absence of disease in order to guide therapeutic decisions. The 

principles of a diagnostic study may consequently be summarized according to well 

known concepts in epidemiologic research. 

Aim The aim of diagnostic research is to evaluate what diagnostic information is 

relevant and contributes to the estimation of diagnostic probabilities to the extent that 

they direct treatment decisions. In other words, to estimate diagnostic probabilities 

with sufficient precision as necessary, and with minimum patient burden and 

measurement costs. The amount of necessary diagnostic information on the one hand 

and the patient burden and measurement costs on the other hand must be balanced. 

Considerations of efficiency motivate diagnostic research. The objective is to define 

the most efficient diagnostic function. A diagnostic function describes the prevalence of 

a particular disease as a joint function of its (diagnostic) determinants. 

Study population The patients are selected on the presence of a certain problem or 

indication. The indication to set a diagnosis defines the clinical domain of a study as 

well as the target disease. 

Determinants and treatment Given the clinical domain and the target disease, potential 

diagnostic determinants and possible treatment (with their corresponding risks and 
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benefits) can be defined. All potential diagnostic determinants are documented. The 

presence of disease must be independently, without knowledge of other diagnostic 

information, determined by a reference standard. 

Analysis In clinical diagnosis, information is usually obtained in a sequence of steps. In 

various phases, for example in patient history, physical examination, and blood and 

imaging testing, numerous diagnostic variables are documented. It is of clinical 

relevance to know whether the information on a certain variable, e.g. the result of a 

particular test, contributes to the diagnosis given the information that is obtained in 

previous phases: the added value of the diagnostic variable is at interest. For two 

variables that are documented at the same point in the clinical work-up, the difference 

in added diagnostic information is of relevance or, in case of equal informativeness, 

the difference in costs or burden to the patient. Diagnostic studies should evaluate each 

variable or test within its phase in the clinical work-up. The chronological order by 

which tile value of diagnostic variables are documented determines their hierarchy in 

the analysis. To evaluate the added value of a particular variable, adjust for complex 

mutual dependencies with other variables and validly estinlate diagnostic probabilities, 

data must be analysed by multivariable logistic regression modelling.4•5 Per phase, the 

independent contribution of (the information on) a variable to the prediction of the 

presence of disease can be evaluated. Per phase, the most efficient diagnostic model or 

function can be constructed. If it is possible to defme the risks and benefits of 

subsequent therapeutic decisions"', or the ratio of tile net risk of missing a diseased 

patient to the net risk of treating a non-diseased patient"to, the independent contribution 

of (the information on) each variable to patient management and prognosis can also be 

evaluated. 11 

Application in diagnostic research 

Diagnostic studies are undertaken for a number of reasons; to evaluate the value of 

current practice in a particular diagnostic problem, to obtain an optimal use of the 

existing diagnostic arsenal by eliminating (redundant, expensive or invasive) tests, to 

add a new test to the available diagnostic arsenal, to use an existing test for a new 

clinical indication, or to replace an existing test by a newer one. 3 Also, when a new 

treatment with its corresponding risks and benefits becomes available, it may be 

necessary to study again the diagnostic value of existing tests. For diagnostic testing to 
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have clinical relevance it should contribute to treatment decisions 11; new treatments 

may alter the value of particular diagnostic tests. We believe that application of the 

proposed research principles in any of the above diagnostic studies promotes the 

clinical relevance of their resuIts. For some of the purposes mentioned this has been 

illustrated in the thesis. Chapter 2.2 and 3.1 describe studies which address diagnosis 

in patients with a particular problem in order to select the relevant determinants of the 

presence of disease from a scala of routinely documented diagnostic variables. 

Although each diagnostic variable or test may provide information it is likely that, in 

certain patient groups, some diagnostic tests are partly or completely redundant to 

previous information, as for example obtained from patient history and physical 

examination. Moreover, as diagnostic tests may be burdening for the patient, time 

consuming, expensive and even may produce adverse effects, it is important to restrict 

tile diagnostic process to the relevant procedures only. Similarly, in studies which 

investigate the value of a new test for a particular clinical problem (chapter 3.2) tile 

added diagnostic information is at issue, or, in case of equal informativeness with 

existing tests, the difference in costs or burden to the patient. 

The principles of diagnostic research can be applied to all clinical settings in which 

the aim is to predict the presence or absence of a particular state (of health). In chapter 

3.3 we have shown that prediction of patient characteristics which determine the 

inclusion or exclusion in a clinical trial using previously obtained data, may 

substantially improve the efficiency of the patient selection for clinical trials. In this 

context, the inclusion and exclusion criteria are used to set the diagnosis "eligible for 

the trial II • 

Prevailing diagnostic research 

The large majority of studies on diagnostic tests has followed an approach in which the 

value of a single test to discriminate between the presence and absence of a particular 

disease is evaluated without reference to its clinical context or to therapeutic 

consequences. Study resuIts are usually expressed by sensitivity, specificity, or the 

area under the ROC-curve (ROC area) and should be interpreted with caution. This is 

only partly because the test parameters are conditional on the presence or absence of 

disease, whereas diagnostic practice starts from the presence of symptoms and signs. 

After all, starting from "reverse" probabilities as sensitivity and specificity, Bayes' 
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theorem may be used to estimate the direct diagnostic probability. 2.9 Single test 

parameters may be deceptive because of their variation according to various clinical 

and non-clinical patient characteristics. As illustrated in chapter 2.1, this is because 

results obtained from diagnostic tests and many other patient characteristics are 

mutually dependent and provide to some extent overlapping information. In fact, rather 

than "the" sensitivity and specificity of a test for patient subgroups different 

sensitivities, specificities and ROC areas of a particular test may apply. However, 

these subgroup specific test parameters are no objects of general medical knowledge.5 

When attempting to estimate a diagnostic probability in an individual patient it is 

unclear which value of test parameters should be used in Bayes' theorem. Therefore, 

the published sensitivity, specificity and ROC area of a test should be interpreted with 

caution as they may not directly speak on the clinical relevance of tlle test (chapter 

2.2). 

Missing values 

In studies on the evaluation of diagnostic tests, data on test results or on the presence 

or absence of disease may be missing or uninterpretable. Excluding such data from the 

analyses may bias the estimates of sensitivity and specificity.12.13 However, if tlle 

missing or uninterpretable test results are equally distributed among the diseased and 

non-diseased patients and if it is unlikely that the cause of such results is related to the 

potentially observable test result, it will probably not affect (inferences on) the 

diagnostic value of the test. Similarly, if the missing data on the disease status are 

equally distributed across the spectrum of test results and if it is unlikely that the 

reason for missing the data is related to the true disease status, it will not affect the 

study results. In diagnostic studies, information on missing data is often lacking but its 

potential impact on the study results can and should be discussed. 

Screening 

Research on screening tests regards a particular case of diagnostic studies. Typically, a 

screening test provides information to assess the probability of presence of a particular 

disease in its early, developing stage. Other patient information is neglected except 

perhaps for a particular age range and gender. A chronological hierarchy of variables 
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and the added value of the test is not at issue. Therefore, the test result distributions 

among diseased and non-diseased patients or parameters like the ROC area, sensitivity 

and specificity do not have the limitations they have for clinical diagnosis and may be 

used to indicate the test's screening value or to compare screening tests. If a subject is 

referred for further diagllostic work-up because of a positive screening test result, 

however, aspects of conditionality start to play a role. Consequently, the independent 

or added value of diagnostic tests become important. 

Generalisability and validation 

This thesis aims to narrow the gap between diagnosis in clinical practice and the design 

and methods of analysis in diagnostic studies. However, we have concentrated on the 

need to consider the context of clinical practice in diagnostic studies rather than on the 

application of results from diagnostic studies in clinical practice. With the latter we 

refer to the implementation of a diagnostic function, often simplified to a prediction 

rule, into practice. 14
-16 Such implementation requires adequate validation of the derived 

diagnostic function. A particular diagnostic function can discriminate well between the 

presence and absence of the disease in the study population but may be unreliable 

elsewhere. 17•18 When constructing a diagnostic function all available variables that 

modify the disease probability estimation and satisfy other efficiency considerations 

regarding measurement costs and patient burden are included. Population differences in 

these variables will not affect generalisability and will not reduce performance of the 

function. Problems, however, may arise due to population differences in variables that 

are unknown or removed from the function during its derivation and interact with the 

variables included. Therefore, before application in clinical practice, diagnostic 

functions should be tested in other patient populations selected from the same clinical 

domain as for which the function was derived. The split sample metllOd, as we have 

applied in chapter 3.3, is an alternative, less demanding method to validate a 

prediction model. 

Another problem that may arise with the application of a (validated) diagnostic 

function in practice is that a particular diagnostic test can not be performed or is not 

available. One way to handle tllis problem is to use the (presumed) mean test result for 

the corresponding patient subgroup. This mean can be obtained from the literature. 

However, this kind of data is hardly reported in diagnostic studies. Another way to 
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handle the problem is to apply the diagnostic function minus the particular test. To tIlis 

aim, diagnostic studies should report all subsequent diagnostic functions according to 

the chronological phases of the diagnostic work-up. This enables physicians to select 

the diagnostic function(s) that can be applied to their clinical setting. 

The "gold" standard 

The extent to which results from diagnostic procedures have an impact on the objective 

or subjective course of the disease (clinical outcome), such as reduction in morbidity 

or mortality, decrease in time to recovery, improved quality of life or an improved 

cost-effectiveness, reflect the eventual clinical value of a diagnostic procedure. I1
•
19 

Ideally, diagnostic studies evaluate the test's ability to influence, albeit indirectly, 

clinical outcomes. Because such studies often require a much more extensive follow

up, diagnostic tests are usually evaluated using a so-called "gold standard" which is 

supposed to represent tile diagnostic "truth", i.e. the true presence or absence of 

disease. Since any definition of truth may lead to rather philosophical discussions, it 

should be appreciated that the standard test does not have to be "24 carat" gold. Any 

test that is applied in practice to exclusively and ultimately direct patient management, 

can serve as a gold standard test in diagnostic studies. The operational "truth" of 

clinical practice offers a sufficient reference standard for diagnostic research. In this 

context, the term "reference test" would be more appropriate. Evaluation of a 

diagnostic model or test to a reference test instead of a gold standard will generally 

yield lower limits of the sensitivity, specificity and predictive value of the model. This 

is due to misclassification on true disease status by the reference test. When a better 

reference test comes available the value of these parameters will generally increase. 

Therefore, in diagnostic problems which lack a ("24 carat") gold standard the value of 

diagnostic parameters should be regarded as temporary. Also note that theoretically the 

interpretation of these parameters is different as they do not reflect the true presence 

and absence of disease anymore. 

The theoretical considerations of diagnostic research as outlined in this thesis 

apply to clinical problems for which a reference test or gold standard is available. In 

these instances, judgement on the diagnostic "truth" by the reference test or gold 

standard must be performed independently from the information provided by the 

diagnostic variables that are to be studied. 7•20 For clinical problems which lack such 
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operational, independent, reference test or gold standard, the truth can better be 

expressed in terms of clinical outcome. Although this may be more difficult to achieve, 

in terms of time and efforts, it may yield more relevant and valid information for 

practice.' 

Randomised trials in diagnostic research 

To empirically evaluate the impact of the results of any (new or investigational) 

diagnostic procedure on clinical outcomes, randomisation is required to prevent 

confounding by indication.20
-
23 There are several randomised trial designs possible in 

which the moment of randomisation may vary. Probably the most efficient design is to 

independently perform both the conventional diagnostic procedure and the new 

diagnostic test on each patient. Two diagnostic conclusions are obtained: one 

conclusion based on information without and one based on information with the new 

test. Only the patients with different diagnostic conclusions that would lead to a 

different treatment strategy (including no treatment) need to be randomised. 

Irrespective of the diagnostic information obtained, randomisation takes place between 

either the treatment choice according to the conventional procedure or the treatment 

choice according to the new procedure. At the end of the trial we may define specific 

patient subgroups according to their diagnostic information that benefit or not from a 

particular treatment. Additionally, this design allows for detection of differences in 

treatment effects according to similar diagnostic profiles. However, this design is only 

ethical if the combined information of the conventional and new procedures does not 

result in a much better classification of disease presence as compared to the individual 

tests, and if both treatment strategies allow for randomisation. 

If it is not ethical to randomise between the two treatment strategies, a more 

pragmatic approach would be to randomise the patients to one of the two (or more) 

combined diagnostic and therapeutic strategies. In the reference group patients are 

subjected to the conventional diagnostic procedure and the subsequent treatment as 

directed by the obtained information. In the study group patients are subjected to the 

new or investigational diagnostic procedure and the subsequent treatment as directed 

by the obtained information. Note tllat this treatment can be the same as in the 

reference group. In both arms, the diagnostic procedures and tllCrapy are evaluated in 

combination. Although Witll this design the effect of the test may not be distinguished 
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from the treatment effect, an improved prognosis of the disease in the intervention arm 

gives evidence that the new procedure provides better guidance for treatment. 

However, this design requires prior knowledge about the therapeutic information 

provided by the new test, i.e. the test results that indicate or contra-indicate the 

treatment. 

In both designs the investigational test should be carried out in addition to 

diagnostic variables that are employed regardless, e.g. patient history and physical 

examination. Both designs allow for a valid comparison of the investigational test to a 

particular test, to a combination of tests, and to evaluate the added value of the new 

test to the conventional test. However, in the pragmatic approach one has to choose 

beforehand two (or more) particular diagnostic strategies to be compared whereas the 

former, more explanatory approach, allows for evaluating all possible combinations of 

diagnostic variables, i.e. a diagnostic function, in order to select the most sufficient 

one. Another advantage of the fIrst design is that it gains in efficiency due to the 

paired observations and the exclusion of patients with similar diagnostic conclusions 

that would initiate the same therapy. However, if there is little prior knowledge about 

. tile tIlerapeutic information provided by the new test, all patients may still need to be 

randomised between possible treatment strategies. 

A major advantage of the randomised trial in diagnostic research is that the ability 

of a diagnostic procedure to correctly predict tile presence of the disease (given the 

availability of a reference test), to direct patient management as well as to modulate 

clinical outcomes, can be evaluated validly and simultaneously. However, randomised 

trials are expensive and can logistically be complex. Therefore, they have rarely been 

conducted in diagnostic research. Emphasis remains on studies on prediction of the 

disease presence. 19
•
2I

·" Accordingly, tllis thesis has focused on the principles of 

diagnostic research in predicting a patient's health status. It should be appreciated that 

if an indicator does not contribute to this prediction it is unlikely that it will affect 

treatment decisions or clinical outcome. Similarly, if the (added) diagnostic information 

of a new test with respect to patient burden and costs is not superior to existing 

procedures, a trial to evaluate clinical outcome is irrelevant. Alternatively, a test may 

improve prediction of the presence of disease without affecting subsequent therapeutic 

consequences. In chapter 4, we explored an approach which allows to obtain 

information on the test's ability to improve prediction of disease presence and to affect 

treatment decisions without the need for a randomised trial. This approach evaluates 
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diagnostic tests with application of the treatment probability thresholds as defined by 

the costs and benefits of the treatment. 6·' If on average the test results increase or 

decrease the prior probability of disease presence above or below this threshold, the 

test may affect therapeutic actions. If previous trials have proven that the treatment at 

issue is efficacious, or that its witltholding prevents harmful effects in certain patients, 

the beneficial effect of the test on clinical outcome may be considered as established 

and, in fact, be estimated. 21 

Future diagnostic research 

In this thesis principles of diagnostic research have been discussed. It was 

demonstrated that application of these principles may improve the clinical relevance of 

diagnostic study results. Accordingly, future studies on diagnostic probability 

estimation should apply these concepts. We have also explored an approach to evaluate 

a test's ability to affect treatment decisions. This provides an indirect method to obtain 

knowledge about the test's contribution to improve clinical outcome, which reflects its 

true value for medical practice. The current view is that the latter can only validly be 

studied in a randomised study. It is of interest to further develop study methods that 

provide knowledge on the true clinical value of a test without the need of a randomised 

trial. Theoretical improvements as attempted in this thesis for studies on prediction of 

disease presence, should receive particular attention in future diagnostic research. 

Commonly in diagnostic research estimation of the probability of the presence of a 

particular disease, i.e. the target disease, forms the Objective. However, there may be 

several underlying "diseases" that potentially caused the problem and these differential 

diagnoses will always be considered by a physician. This thesis has focused on 

diagnostic models which describe the relation of one or more determinants to the 

presence or absence of the target disease. In these diagnostic models the prevalence of 

alternative diseases was not considered. The availability of (statistical) methods to 

simultaneously evaluate the relation of diagnostic determinants to the prevalence of 

several diagnoses or outcomes would further increase clinical relevance of diagnostic 

studies. Polychotomous logistic modelling may provide an appropriate tool. It should 

be realised, however, that such studies require larger study populations as the number 

of diagnostic categories increases. 
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This thesis has attempted to provide a framework for diagnostic research. A 

sufficient methodologic and statistical basis for this kind of clinical epidemiologic 

research is still lacking. Future studies should improve the theoretical basis of 

diagnostic research and solve remaining problems such as those raised in the 

discussion. As diagnosis forms the basis of clinical medicine, would it not be time to 

know how to evaluate diagnostic tests properly, just as we have come to learn how to 

validly study efficacy of treatment? 
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Diagnosis forms the basis for patient care. Diagnosis is not an aim in itself but is 

relevant in as far as it directs treatment and indicates the prognosis of a patient. 

Diagnosis amounts to an estimation of tlle probability of the presence of a disease in 

view of all diagnostic information (patient history, physical examination and test 

results) in order to decide whether treatment should be initiated or not. A diagnosis is 

rarely based on one single variable or test and therefore is a multivariable concern per 

se. However, most diagnostic research or studies in which diagnostic tests are 

evaluated still follow a univariable approach. This means that a test is evaluated in 

isolation without explicit regard to the clinical context in which the test will be applied. 

In this respect, clinical practice and diagnostic studies frequently do not cohere. The 

medical literature has paid too little attention to these principles of diagnostic research. 

This thesis endeavours to outline the principles of diagnostic research in order to 

improve its clinical relevance. The general aim is to narrow the gap between 

diagnostic problems in clinical practice and resuIts from diagnostic studies. 

Chapter 2 explores limitations of prevailing methods and concepts in diagnostic 

studies and describes some alternative approaches. In chapter 2.1 the relevance of the 

conventional diagnostic test parameters such as sensitivity, specificity and likelihood 

ratio (LR) in clinical diagnosis is evaluated. Using diagnostic data of 295 patients 

suspected of coronary artery disease (CAD) who all underwent coronary angiography 

(reference standard) it was shown that these parameters of the exercise test 

substantially varied according to patient characteristics obtained from patient history, 

physical examination and measures of disease severity. As each patient population 

tends to be heterogeneous with respect to patient characteristics, we propose that no 

single level can be given of these parameters of any diagnostic test that is adequate for 

all patient subgroups. Therefore, clinical use of tllese parameters as a basis for 

calculating diagnostic probabilities in individual patients, even when using Bayes' 

theorem, has serious limitations .. Such probabilities can validly be estimated using 

muItivariable logistic regression models. 

Chapter 2.2 illustrates the hazards of a univariable approach in the evaluation of 

diagnostic tests with respect to their clinical application. In 140 patients suspected of 

pulmonary embolism who already had an inconclusive (intermediate) ventilation

perfusion lung scan result we evaluated the diagnostic value of leg ultrasound, chest X

ray and arterial oxygen pressure. In univariable analyses the positive predictive value, 

LR and specificity of leg ultrasound was markedly higher than of arterial oxygen 



140 Chapter 5 

pressure and chest X-ray whereas the latter had a substantially higher sensitivity. 

However, in multivariable logistic regression models we found that arterial oxygen 

pressure had no added value to patient history plus physical examination and the added 

value of chest X-ray and leg ultrasound was similar. As these tests are always 

performed after findings from patient history and physical examination are available, it 

is this added value that marks clinically relevant information. Accordingly, it was 

concluded that diagnostic parameters of a single test may not be indicative for its 

clinical potential. A 'threshold of diagnostic relevance' for these parameters can hardly 

be given. Therefore, diagnostic studies should follow a multivariable logistic 

regression approach and studies which evaluate the diagnostic accuracy of a test in a 

univariable way should be interpreted with caution. 

The performance of diagnostic tests and (multivariable) diagnostic models is often 

compared using die area under Receiver Operating Characteristic (ROC) curves. In 

chapter 2.3 we contrast this approach with a more direct method that takes into 

account therapeutic consequences of a diagnosis. Diagnostic data obtained from dIe 

same 140 patients as described in chapter 2.2 were used for an illustrative example. 

We showed that two diagnostic models with the same ROC area may perform very 

differently when costs (or risks) and benefits of subsequent decisions are considered. 

Two other models had substantially different ROC areas but performed similarly taking 

into account their therapeutic consequences. Comparison of diagnostic tests simply 

using the ROC areas may lead to erroneous conclusions about therapeutic utility. It 

would be more appropriate when the test's clinical implications are also considered in 

diagnostic test evaluation. This is feasible by explicit definition and application of a 

treatment threshold which is proposed in this study. 

Chapter 3 describes three diagnostic studies in which the theoretical considerations 

of chapter 2 are taken into account. Among 451 patients suspected of pulmonary 

embolism, chapter 3.1 evaluates the diagnostic value of patient history and the added 

value of physical examination, arterial blood gas values, chest radiography and 

perfusion scintigraphy, according to the chronological order in which data comes 

available in practice. This was done by systematically constructing and extending 

multivariable diagnostic models. We found that independent predictors obtained from 

patient history (age, recent surgery, previous deep venous thrombosis, dyspnoea, 

collapse) and physical examination (pleural rub, signs of deep venous thrombosis, 

breath frequency) contribute to the confirmation or exclusion of presence of pulmonary 
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embolism. Given this diagnostic information, blood gas values and chest radiography 

provide limited additional information. When prior knowledge is regarded these tests 

are redundant to assess the presence of pulmonary embolism in terms of diagnostic 

efficiency (improvement of disease prediction, burden to the patient and measurement 

costs). The added value of perfusion lung scanning, however, was substantial. 

Chapter 3.2 describes a study on continuous ST -monitoring testing, which 

measures the extent and duration of myocardial ischaemia, to predict the enzymatic 

infarct size and left ventricular function in patients with acute myocardial infarction. 

This was studied among 269 patients who received thrombolytic therapy and were 

enrolled in the ECG monitoring substudy of GUSTO-I. Using linear regression 

models, we showed that the area under the ST-trend until 50% ST-recovery and the 

total area under the recurrent ischemic episodes, are predictors of the enzymatic infarct 

size and left ventricular function, independent from other patient characteristics, e.g. 

age and infarct location. This supports the clinical application of ST-segment 

monitoring tests to provide (diagnostic) information about the cardiac condition of 

patients with acute myocardial infarction. ST-monitoring tests may, therefore, guide 

tile physician to tailor thrombolytic therapy. Further research is necessary to evaluate 

their true (independent) value to physicians and to show whether they truly lead to 

better therapeutic interventions and prognosis. 

To determine eligibility for a (randomised) clinical trial, measuring the inclusion 

and exclusion criteria can be extended over a period of time. During this period, 

known as the selection period, a patient is repeatedly examined at certain time intervals 

before the patient is randomised at the end of the period. In fact, the selection period 

is performed in order to set the diagnosis "eligible for the trial". Chapter 3.3 describes 

a study in which we applied the research principles as outlined in previous chapters to 

increase the efficiency of the selection period of a large primary prevention trial on the 

efficacy of a cholesterol lowering drug. We showed that data obtained at early 

examinations in the selection period could predict subsequent exclusions. In tile 

example, application of only a few multivariable prediction models to the selection 

period would already decrease the total costs per randomisation by US $ 450,000 

compared to the situation without using the models. Data obtained in a pilot study as 

well as data obtained in the beginning of a prolonged selection period may be used to 

construct predictive algorithms in large randomised trials or in trials Witll extensive, 

invasive or expensive selection measurements. 
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In chapter 4 the implications of the proposed principles are discussed from a 

clinical perspective. The thesis has attempted to construct a framework of methods for 

studies to evaluate the contribution of diagnostic determinants to the estimation of 

disease probabilities. It was demonstrated that application of these methods may 

improve clinical relevance. Accordingly, in future studies these concepts should be 

considered. We have also explored an approach to evaluate a test's ability to affect 

treatment decisions. This provides an indirect method to obtain knowledge about the 

test's contribution to improve clinical outcome, which reflects its true value for 

medical practice. The current view is that the latter can only validly be studied in a 

randomised study. It is important to further develop study methods that provide 

knowledge on the true clinical value of a test without the need of randomised trials. 

Theoretical improvements as attempted in this thesis for studies on prediction of 

disease presence, should receive particular attention in future diagnostic research. 
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Diagnostiek is geen doel op zichzelf maar verschaft belangrijke informatie over de 

therapeutische (contra-)indicaties en prognose van de patient. Het stellen van een 

diagnose is het schatten van de kans op aanwezigheid van een bepaalde ziekte op basis 

van alle beschikbare diagnostische informatie (anamnese, lichamelijk onderzoek en 

testresultaten) teneinde een therapeutische beslissing te kunnen nemen. Een klinische 

diagnose is zelden gebaseerd op een eukele diagnostische indicator of test. Elke 

indicator maakt deel uit van een scala van indicatoren; diagnostiek is per defmitie 

multifactorieel. Echter, onderzoekingen waarin een diagnostische test wordt 

geevalueerd hebben tot op heden vaak een univariabele benadering gevolgd. Dit 

betekent dat de test afzonderlijk wordt onderzocht zonder expliciet rekening te houden 

met de klinische context waarin die uiteindelijk wordt toegepast. Op dit punt 

verschillen de praktijk van de diagnostiek en het wetenschappelijk onderzoek dus 

aamnerkelijk. Dit proefschrift bespreekt onderzoeksmethoden die de klinische 

relevantie van diagnostische studies kunnen vergroten en wellicht de discrepantie 

tussen de praktische diagnostiek en de resultaten van diagnostische studies verkleinen. 

Hoofdstuk 2 richt zich op de theoretische en methodologische aspecten van 

diagnostische studies. Hoofdstuk 2.1 evalueert de klinische relevantie van de 

conventionele diagnostische testparameters zoals sensitiviteit, specificiteit en likelihood 

ratio (LR). Dit is geillustreerd met gebruikmaking van diagnostische gegevens van 295 

patienten met mogelijk coronair vaatlijden. De waarde van genoemde parameters van 

de fietsproef bleken sterk afhaukelijk te zijn van andere patientkarakteristieken zoals 

geslacht, cholesterol gehalte en ernst van de ziekte. Omdat vrijwel iedere 

patientenpopulatie heterogeen is in dergelijke karakteristieken werd geconcludeerd dat 

een bepaalde waarde voor deze diagnostische parameters voor geen eukele test bestaat. 

Voor iedere patientensubgroep geldt mogelijk een andere waarde. De klinische 

toepassing van de testparameters voor een valide schatting van individuele 

diagnostische kansen met behulp van de regel van Bayes is daarom beperkt. Dergelijke 

kansschatting is wei mogelijk met behulp van multivariabele logistische 

regressiemodellen. 

Hoofdstuk 2.2 beschrijft de gevaren van een univariabele benadering in de 

evaluatie van diagnostische tests met betrekking tot hun klinische relevantie. Bij 140 

patienten met een mogelijke longembolie en een twijfelachtig resultaat op de ventilatie

perfusie longscan, vergeleken we de diagnostische waarde van drie verschillende tests: 

echografie van de benen, arteriele zuurstofdruk en de thoraxfoto. Vit univariabele 
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analyses bleek dat zowel de predictieve waarde en LR van de positieve testuitslag als 

de specificiteit van de been-echografie veel hoger was dan van de andere twee tests, 

terwijl de thoraxfoto een veel hogere sensitiviteit en lagere LR van de negatieve 

testuitslag had. Multivariabele logistische regressiemodellen lieten echter zien dat de 

arteriele zuurstofdruk geen additionele informatie aan de anamnese en het lichamelijk 

onderzoek gaf terwijl de additionele informatie van de thoraxfoto en been-echografie 

gelijk was. Aangezien aile drie de testen in praktijk worden toegepast na anamnese en 

lichamelijk onderzoek is juist deze toegevoegde waarde van klinisch belang. De 

diagnostische parameters, ofwel de diagnostische informatie, van een test afzonderlijk 

zegt niet zonder meer iets over de klinische relevantie van de test. Diagnostische 

studies dienen bij voorkeur een multivariabele benadering te volgen en studies waarin 

testen afzonderlijk zijn onderzocht dienen met voorzichtigheid ge1nterpreteerd te 

worden. 
Hoofdstuk 2.3 vergelijkt de methode van Receiver Operating Characteristic (ROC) 

curves voor de evaluatie van diagnostische testen en (mulitvariabele) diagnostische 

modellen met een alternatieve methode die rekening houdt met de therapeutische 

consequenties van een diagnose. Dit wordt geillustreerd aan de hand van diagnostische 

data van dezelfde 140 patienten als beschreven in hoofdstuk 2.2. De diagnostische 

betekenis van twee multivariabele modellen welke eenzelfde oppervlakte onder de 

ROC curve hadden, leek te verschillen wanneer de kosten en baten van de 

therapeutische beslissing in overweging werd genomen. Twee andere diagnostische 

modellen hadden daarentegen zeer verschillende ROC curves maar waren van 

vergelijkbare diagnostische betekenis op basis van hun therapeutische consequenties. 

Vergelijking van diagnostische testen op basis van ROC curves aileen kan leiden tot 

verkeerde conclusies over klinische relevantie. Het is van groot belang om de 

therapeutische implicaties van de testen mee te nemen in diagnostisch onderzoek. Dit 

is, zoals aangetoond in deze studie, mogelijk middels expliciete definitie en toepassing 

van de therapeutische beslisdrempel. 

Hoofdstuk 3 beschrijft drie onderzoekingen waarin de theoretische concepten uit 

hoofdstuk twee zijn toegepast. In hoofdstuk 3.1 is bij 451 patienten met een mogelijke 

longembolie de diagnostische waarde van anamnese en de toegevoegde waarde van 

respectievelijk lichamelijk onderzoek, arteriele zuurstofdruk, thoraxfoto en de perfusie 

longscan onderzocht. In chronologie overeenstemmend met de klinische praktijk, 

werden hiertoe systematisch multivariabele diagnostische modellen ontwikkeld. 
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Verscheidene anamnestische variabelen (o.a. leeftijd, recente operatie en 

kortademigheid) en gegevens van het lichamelijk onderzoek (o.a. pleura wrijven, 

tekenen van diep veneuze trombose en ademhalingsfrequentie) voorspelden 

redelijkerwijs de aan- of afwezigheid van een longembolie. De toegevoegde 

diagnostische waarde van de arteriele zuurstofdruk en thoraxfoto was zeer beperkt. In 

het kader van diagnostische efficiency (zo goed mogelijk de ziekte voorspellen met 

acceptabele kosten en lasten voor de patient) lijken voor dit doel beide testen 

overbodig. De toegevoegde diagnostische waarde van de perfusie longscan was wei 

substantieel. 

. Hoofdstuk 3.2 beschrijft een studie naar de relatie tussen continue ST

monitoringskarakteristieken, welke een maat zijn voor de mate en duur van coronaire 

ischaemie, en de enzymatische infarct grootte en linker ventrikelfunctie bij patienten 

met een acuut myocard infarct. Dit werd onderzocht bij 269 patienten die behandeld 

werden met trombolytica en deelnamen aan de ECG-substudie van de GUSTO-I trial. 

Met behulp van lineaire regressiemodellen werd aangetoond dat zowel het oppervlak 

onder de ST-trend tot aan het moment van 50% ST-herstel als het totale oppervlak 

onder recidiverende ischaemische episodes, onafhankelijke predictoren van de infarct 

grootte en de ejectiefractie waren. Dit verband bleef bestaan na correctie voor andere 

patientkarakteristieken zoals leeftijd en infarct locatie. Deze resu!taten ondersteunen de 

klinische toepassing van continue ST-monitoringstesten voor het verschaffen van 

(diagnostische) informatie over de cardiale toestand van patienten met een acuut 

myocard infarct. Dientengevolge is ST -monitoring wellicht van waarde voor het 

coordineren van de trombolyse. 

De in- en exclusie criteria voor een clinical trial worden in plaats van gelijktijdig 

op een patientbezoek ook vaak verspreid gemeten over een bepaalde tijdsperiode. 

Tijdens deze zogenoemde "selectieperiode" worden de patienten herhaaldelijk gemeten 

op achtereenvolgende bezoeken om hun geschiktheid voor de trial te bepalen. In een 

selectieperiode wordt in feite de diagnose "geschikt voor het onderzoek" gesteld. 

Hoofdstuk 3.3 laat zien dat de bovenbeschreven theoretische aspecten van 

diagnostische studies tevens gebruikt kunnen worden om de efficiency van een 

selectieperiode te optimaliseren. Data van de selectieperiode (5 patientbezoeken), van 

een grootschalige, primaire preventie trial naar de effectiviteit van een 

cholesterolverlagend middel zijn gebruikt ter illustratie. We hebben laten zien dat met 

behulp van gegevens op de eerste twee patientbezoeken bepaalde exclusies op latere 
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bezoeken voorspeld konden worden. Toepassing 

predictiemodellen op deze selectieperiode zou in totaal 

Chapter 6 

van vijf ontwikkelde 

gemiddeld US $ 450,000 

kunnen besparen. We concludeerden dat data verkregen uit een pilotstudie ofwel 

initiole data uit een voortdurende selectieperiode gebruikt kunnen worden om 

efficiency verhogende predictiemodellen te construeren. Dit geldt zowel voor 

grootschalige trials (zoals in het voorbeeld) als voor kleinere trials waarbij erg 

invasieve of dure procedures in de selectieperiode worden toegepast. 

Hoofdstuk 4 beschrijft zowel de klinische implicaties van de onderzochte methoden 

alsmede hun algemene toepassingsmogelijkheden in diagnostische studies. Vervolgens 

wordt speciaal aandacht besteed aan de generaliseerbaarheid van studieresultaten, de 

"gouden standaard" en de gerandomiseerde trial in diagnostisch onderzoek. Tenslotte 

worden suggesties gedaan voor vervolgonderzoek met betrekking tot de diagnostische 

theorie en praktijk. 
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