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8.1 Introduction

Essentially, inventory management concerns the process of deciding on 1) how
often to review stocks, 2) when to replenish stocks, and 3) how much to re-
plenish. This basic focus of inventory management persists in the presence
of item returns that can be recovered and then used for servicing demand.
However. the details and complexities with which the three basic decisions
manifest themselves can, and usually do, differ greatly due to the presence of
recoverable-item flows. This, and the practical relevance of inventory manage-
ment with recoverables, warrants the development of inventory theory that
explicitly includes flows of recoverable items.

A first categorization lists the foundations of the differences between
recoverable-item inventory management (RIIM) and traditional inventory
management under three headings.

e Multiple sourcing. When items can be recovered, requirements of items
can be met from multiple sources: the source(s) with newly manufactured
or ordered items and the source(s) with recovered items. This extends the
three basic decisions with a fourth one: 4) where to replenish from. Added
complexities arise since the source of recoverables is capacitated: at any
point in time the number of items available from recovery is limited. The
sources may not only differ in item-availability, but also in per unit price
and supply reliability.
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e Absence of monotonicity. Return streams are often difficult to control. This
means that between regular reviews and replenishments, inventories can go
up because of product returns even when inventory levels are sufficiently
high to maintain a targeted service level. Therefore (heuristic) analysis
based on observation of the inventory just prior to the epochs that a re-
plenishment is due may be highly inaccurate. A further consequence of
the loss of monotonicity is that the total inventory in the system is not
bounded from above, unless an appropriate disposal policy is implemented.

o Unreliable sources. The added complexity of multiple sourcing is frequently
compounded by the circumstance that sources of recovered items are un-
reliable concerning availability, as the item returns may be uncertain both
n timing and quality, and thus in suitability for recovery.

This chapter gives an overview of the different approaches that have been
presented in the scientific literature to account for the above peculiarities
of stochastic inventory control for product recovery. Before discussing the
literature i more detail, we first present two examples from practice, each
representing a different planning problem.

Case A: Commercial Returns at a Mail-order Company

A large mail-order company in Western Europe (see Mostard and Teunter.
2002) faces a difficult inventory problem for their fashion products. Lead times
are long, so well before the selling season starts a replenishment order is
placed to accommodate the demand for the whole season. Return rates are
usually around 40%, but can be as high as 75%. Therefore, returns really
need to be taken into account when determining the order size. To obtain
more accurate demand forecasts, preview catalogs are sent out to a selected
group of customers. On the basis of customer orders placed in response to the
preview mailing, another replenishment order is placed just before the start of
the selling season. Additionally, an (expensive) emergency order can be placed
some three weeks into the season that makes use of the (limited) information
regarding sales and returns during this beginning of the season. At the end of
the season, shortages result in lost sales and overages in obsolete products that
have to be disposed of. Since fashion products are highly seasonal, sales and
return volume forecasts are very crude. Since the last opportunity to order is
just three weeks after the season’s start, there is little opportunity to adapt
to realized demand.

Case B: Product Remanufacturing at Volkswagen

Car parts that have failed during operation on the road, varying from injection
pumps to complete engines, are collected by Volkswagen via the car dealers
(see Van der Laan, 1997). These parts are subsequently remanufactured by a
third party and eventually resold as spare parts for approximately half of the
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Fig. 8.1. Autonomous recovery

price of newly manufactured parts. Due to normal fluctuations in both demand
and supply, and due to a lack of control of the return stream, there may be
periods in which the number of collected car parts does not match the number
of demands. Then. in times of supply shortage, new parts are ordered from the
Volkswagen factories, or, in times of supply overage, recoverable products are
disposed of. Lead times for production and remanufacturing may differ. As is
the case here. it occurs often that it is this interaction between the supply of
new and remanufactured products that makes inventory control more difficult
than traditional, single-source inventory control.

Case A admits only a limited number of replenishment decisions, whereas Case
B asks for recurrent replenishment decisions. Moreover, in the mail-order com-
pany case, returns can be recovered with little management intervention. In
the Volkswagen case, the company can pursue an active recovery strategy in-
volving the batching and timing of remanufacturing. This distinction, between
cases in which returned items can be made serviceable with little control and
cases where management pursues an active recovery policy also seems reflected
in the status of the theory of models for these cases. The first type of cases,
to which we will refer as the cases of autonomous recovery, seems to be more
amenable to analysis than the second type of cases, to which we will refer as
the cases of managed recovery. Note that the cases of autonomous recovery do
away with the need for answering the fourth basic question: where to replenish
from?

So. the autonomous recovery cases are often those situations in which
recoverable products only need to undergo minor operations, such as cleaning
and repackaging. These operations are relatively cheap so that it 1s not really
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Fig. 8.2. Managed recovery

necessary to delay these operations until actually needed: upon return. items
are i1mmediately prepared for reuse and there is no further decision-making
involved, hence the provision ‘autonomous’. For example, commercial returns
are often in very good condition and many of them can be reused directly
without much recovery.

As Case B shows, the remanufacture of end-of-life returns calls for exten-
sive recovery operations. The costs involved with these value-adding opera-
tions may be such that it is more economical to stock the returns until they are
really needed. Thus, cash outflows are postponed and there is less risk of loss
of investment due to obsolescence. In this case, decision-making on recovery
operations occurs on a continuous basis, hence the provision ‘managed’.

Since in the managed recovery cases one recovers items when deemed nec-
essary, these cases are also referred to as pull strategies for inventory. In this
vein, the autonomous cases are referred to as push strategies. Sometimes re-
covery management 1s extended with disposal management. An appropriate
disposal policy attempts to bound the total inventory in the system. In prac-
tice, this is primarily relevant when the return rate is close to or in excess of
the demand rate.

Models for inventory management can be further categorized on several
dimensions. Below, we will discuss several of these dimensions and discuss the
relationship to the dichotomy ‘autonomous-managed’.
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8.1.1 Problem and Model Dimensions
Nodes and Flows

Inventory systems often consist of multiple stocking points or facilities con-
nected by flows. The structure of the open network consisting of facilities
(nodes) and Hows (arcs) to a large extent determines the difficulty of the
analysis. Divergent (or distribution) systems, are more intricate than serial or
convergent (assembly) systems. In divergent systems, the added complication
stems from the occurrence of an allocation decision in case of scarcity of items.
("This is reminiscent of the ‘where’ question above.) In the case of managed
recovery, we automatically find ourselves in a situation with multiple stocking
points: there is (at least) a stocking point for the recoverable items and a
stocking point for the serviceable items. Adding to this situation economies of
scale in the form of set-up costs for both recovery and new production brings
the analysis into a domain equally complex as that of multi-level inventory
management with fixed costs. As, in general, no rigorous results on the opti-
mality of policies in the latter situation are known, it is no surprise that the
same holds for the case of managed recovery. Even if fixed recovery costs are
absent. the situation already seems to be so complex that one needs to resort
to heuristics to find inventory strategies (see Section 8.3).

The case of autonomous recovery seems to be best understood. This is es-
pecially true in the case of an inventory system consisting of just one inventory
facility from which demand is served (see Section 8.2).

The Model of Time

In the literature, there is a clear distinction between a discrete modelling ap-
proach and a continuous modelling approach of time. However, the choice for
the time model seems mostly to rest on pragmatic grounds. Use of a contin-
uous time model sometimes presents advantages in computational issues. For
example, the continuous time approach seems to be more flexible with respect
to cost structure and lead time assumptions. So when it comes to numerical
analysis, as will be the case for managed returns, continuous time models are
more suitable. Section 8.3.2 reports on a general framework tor carrying out
numerical analysis in a continuous-time setting.

Costs

As far as costs modelling is concerned, the literature on inventory theory with
recoverables recognizes the same costs structures as traditional inventory the-
ory. So, besides linear inventory related costs and variable costs of operation,
some models consider fixed production and/or recovery costs and some do
not. The discussion on how to set the holding cost parameters in recovery
models is less straightforward than in traditional single source models, but
this discussion is left to Chapter 11.
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Decisions

Also in the domain of decision modelling, the inventory theory with recover-
ables follows largely traditional inventory theory. So most models incorporate
the opportunity to release (re-)manufacturing or replenishment orders. There
1s one additional decision, though, that is sometimes considered in inventory
theory with recoverables (and not in traditional inventory theory). This ad-
ditional decision is the disposal decision.

The distinction between autonomous and managed recovery (or push and
pull strategy) seems to be the most fundamental modelling choice in inven-
tory theory including recoverable returns. To honor this, the following two
sections of this chapter follow this dichotomy. Note that the distinction is
fundamentally based on a choice related to the way models deal with the
issue of multiple sourcing,.

8.2 Autonomous Recovery

In the case of commercial returns, often only minor actions like inspection
or cleaning suffice to render the returned products suitable for direct reuse.
This section deals with the situation that no separate stocking facilities of
returned products are necessary. If more complex processing is needed and /or
the decision maker has the option to delay these activities, then we are in the
case of managed recovery. That is the theme of Section 8.3.

The discussion will be restricted to the situation that the inventory system
consists of only one stock facility serving end demand. The evaluation of base
stock policies (in the absence of fixed costs) for autonomous product returns
1 a series or assembly system can be found in the working papers DeCroix
and Zipkin (2002a) and DeCroix and Zipkin (2002b), the discussion of which
1s outside the scope of this chapter.

8.2.1 Naive Netting

The naive way of dealing with product returns is the so-called ‘netting on av-
erages . In this approach, one does not take the returns process into account
explicitly. Instead, one assumes that returns are deducted from future demand
thus cancelling out part of that demand. The remainder of the expected de-
mand 1s treated with traditional methods for single source inventory control.
In principle, this method works and yields fair results in case of small return
rates (see Van der Laan et al., 1996a)) or high correlation between demands
and returns. However, for high return rates and low correlation between de-
mand and returns, the result can be way off the correct one. The reason for
this is that netting on averages blatantly ignores the additional variability
that is introduced by the return process. The method correctly reduces the
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Fig. 8.3. Split inventory model

average demand with the expected returns, but deals incorrectly with the
variability of the processes.

8.2.2 Sophisticated Netting: Split Inventory

Naive netting reduces the problem under returns to the problem without
returns at the cost of inaccuracy. Perhaps surprisingly, we can do much better
by using a netting of the processes and yet cast the problem in one with
only non-negative demand. For ease of exposition let us assume that time is
discrete. Demand in period 7 is written as D(7) and returns in period 7 as
R(7). Let X(7) be the supply of products from the production facility. Thus.
the inventory balance equation for the facility’s inventory at the end of period
7, I(7) reads

I{m) =d(7= W)FX(m)=1(D{7) =R(7))

We now split the inventory /(7) into two components, V(7) and W (7), the
sum of which will give back the inventory, through the recursion

{ V(r) = V(r—1)+ X(1) = Z(7) s
W(r)=W((r—-1)+ Z(1) — (D(1) — R(1)) '
where

Z(1) =max{0,D(7) — R(t) — W(r - 1)} (8.2)

and the initial condition (Vy, Wy) = (1p,0). The meaning of these recursive
equations is best illustrated through Figure 8.3.

The figure shows that the inventory system is divided into two subsystems:
a front-end system and a back-end system. It illustrates that (8.1) serves as
the balance equation for the front-end system with inventory level W and the
balance equation for the back-end system with inventory level V. Expression
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(8.2) shows that Z(7) is determined such that if the joint effect of demands
(D(7)) and returns (/(7)) would make the inventory in the front-end system.
W, negative, then Z(7) balances that inventory such that it becomes precisely
zero. There is no restriction on the back-end system, so that its inventory
V' may become negative. The process Z will be referred to as the censored
demand, the demand ‘cleaned up’ for returns.

Three observations now demonstrate the value of the inventory splitting.

1. The front-end system’s behavior is independent of the replenishment pol-
icy, that is, the inventory pattern of the front-end system is independent of
the external supply X. The recursion W (7)) = W(r—1)+ Z(7) — (D(7) —
R(7)) = max{0, W (7 — 1) — (D(7) — R(7))} shows that its dynamics are
in fact a random walk on a discrete halt-line with random step size R — D.

2. The flow Z is independent of production input X. The recursion Z(7) =
max{0, D(7) — R(7) — W (7 — 1)} tells us that Z measures the virtual
undershoot when the random walk hits the end point of the half-line at 0.
In short, the front-end system’s behavior, inclusive of its input Z. can be
described independently of the replenishment How X, that is, it can be
described and analyzed independently of the replenishment policy. The
only system aftected by the inventory policy is the back-end system.

3. The back-end system’s behavior is that of a traditional inventory system:
it faces non-negative demand (represented by Z) and has the opportunity
to replenish through the How X.

Before turning to applications of the inventory splitting framework we
make two remarks.

Remark 1. Not only are the behaviors of the processes interesting but so are
the costs involved. Suppose the inventory related costs take the form G(7).
How do such costs translate into the model with split inventory? In particular,
how can we translate these costs into costs for the back-end system, especially
the inventory V', which still needs to be optimized? In the case in which the
processes are stationary the answer is simple. Introduce the cost function H
as

H(T_-‘) — E(I-‘l-'|v)(G('“ + IV))

where Eyy . 1s the expectation with respect to (W |v), that is, with respect
to the equilibrium of the process W conditioned on V' = v.

Remark 2. Clearly, the inventory splitting can be used to transform the deter-
ministic lot-sizing problem with time-varying signed demand (Wagner-Whitin
problem with signed demand) into one with only nonnegative demand. Such
use of the splitting was made in Kelle and Silver (1989a).

8.2.3 Single-decision Models

In this section, we discuss situations in which a single replenishment decision
needs to be taken. This problem occurs in two typical cases. In the case of
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Fig. 8.4. Cumulative orders, net sales, and returns for a constant demand and
return rate

fashion products (see Case A in the introduction of this chapter), one needs
to determine the initial order quantity before the start of the selling season.
Another case is the final order problem, where a manufacturer makes a final
production run for his parts/finished products, because he switches over, or
already has switched over, to new models. In both cases, the selling period
Is known in advance. These cases seem similar to the ‘news-vendor’ problem.
but there is a major difference: product returns. Because of the returns, the
filled customer orders (transactions) differ from the customer orders filled and
not returned by the customer (net sales).

The operation of a single-decision inventory system with returns is ex-
plained through Figure 8.4, in which cumulative flows of orders, net sales,
and returns are depicted. In Figure 8.4, the solid black line represents the cu-
mulative demand, which attains its maximum value at the end of the selling
period, denoted by 7'

Suppose one replenishes by ordering (or producing) ¢, units at the begin-
ning of the period over which demand needs to be met. This quantity covers
demand until epoch 7(Q),). If it were not for recoveries, any demand beyond
this epoch would be lost. The total net sales from the initial quantity @), are
(1 —v)Q, at time 7((,). Here v is the return fraction: the fraction of sales
that is returned. The surface between cumulative demand and cumulative net
sales represents the cumulative returns of the initial order. The maximum
value of these returns is u@,.

The returns, so it is assumed, may be used to satisty further demand
occurring after 7((,) and thus can be used to increase (net) sales. In practical
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situations, there is a time lag between the time of placement of a customer
order and, in case of returns, the time the returned product re-enters the
serviceable inventory. This delay is denoted by A and includes collection and
recovery (inspection, packing, minor repair, etc.) times, if necessary. So, the
returns become available with a time lag A with respect to the customer orders
from which they are returned (see serviceable returns in figure 8.4). We assume
that there is a fixed time 7" beyond which sales of the product stop. Returns
that become serviceable after time 7' cannot be used to satisty demand but
might be channelled to other (re)use.

The fraction of the returns that can be used to satisty new orders is denoted
by A&. To estimate Ak, we have to study the net demand rate, which is the
difference of the demand and return rate. Moreover, (first-time) returns will
be available until time 7((¢),) + A, but useful only until time 7'. In general, the
value of & will depend on

the dependence on time of the demand rate,
the length of the delay A.

the length of the sales period 7',

and the initial order @),

and will be difhcult to uncover. However, under the assumptions that 1)
the demand rate is constant (as displayed in the figure), 2) the return rate is
constant, and 3) products are only returned once, the figure above illustrates
that inding & i1s not difficult. The upshot is that

max{0,7 — \}

if < Ny S
k=< mmn{0./d T} | 9 ¢
1 b i e 59 Ve (‘f;"'.

where d = % 1s the demand rate.

Calculation of the Optimal Initial Order Quantity Given k

Now assume that the fraction of returns that can (potentially) be used to
service demand is a given value £ (independent of the initial order). The sub-
sequent analysis will correspond closely to that of the ‘news-vendor’ problem.
We therefore briefly set forth this analysis first. The following symbols are
used.

Replenishment (@) Demand (D)

Sales (V)

Base tlow
Salvage (A) Shortage (W)

Base flow (F)

Fig. 8.5. ‘News-vendor’ problem
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symbol quantity per unit revenue (symbol)

D (external) demand —

@ initial order or replenishment —Cp
(decision variable)

W shortage (or underage) —Cp

A salvage (or overage) W

V sales or number of units sold v
(transactions)

F base flow, number of units actually in- —

put into the market (sales)

As in the previous subsection, demand, as it manifests itself in customer orders
and denoted by D, i1s a stochastic variable. Sales are customer orders that have
been filled. The objective 1s to set ,, W, A, and V consistently, such that
expected revenue is maximized. Consistency between the variables implies
that the How diagram in Figure 8.5 must be valid.

The solution for @, is @}, where @} is determined from

Prob(D < Q%) = —2 1708
V= Wi Ch
(see e.g. Silver et al., 1998, p. 387). Of course, the unit costs coefficients
appearing in the optimal value for the initial replenishment are related to
the flows as given in the figure through the table that introduces them. Now
consider the case that includes returns. Returns are a fixed fraction ~v of sales.
The determination of the optimal initial order quantity, which maximizes the
total system profit, depends on the collection and recovery strategy and on
the costs involved in all the activities.
Several collection and recovery strategies can be distinguished. The fol-
lowing paragraphs discuss some of these in detail.

Full Recovery and Unlimited Reuse

Suppose that all returns that are suitable for re-use are recovered (tull recov-
ery). The following additional symbols are used to model the situation.

symbol quantity per unit revenue (symbol)
U number of items returned —Cr — U
R number of returned items used for sat- -
isfying demand
A’ number of items salvaged after return W
Z censored demand s
(2 censored shortage ‘

. . s , K . .
Furthermore, assume that there is no limit? on the number of times a unit
can be returned and recovered (unlimited reuse). In the analysis, we assume

? Also assume that the fraction of returns that is actually used for satistying demand
is k irrespective of the number of times items return.
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Fig. 8.6. Split model for full recovery and unlimited returns

that demand can be modeled as a continuous variable and can also be filled
‘continuously’, that is, in non-integer quantities.

We follow the route outlined above, using the split inventory® model. How-
ever, we have to be a little precise in distinguishing demand from sales, so the
splitting requires some extra structure. Also, making returns reuseable re-
quires some processing. Consequently, the part of the model involving returns
requires somewhat more care than in the standard case. The ultimate model
takes the form as sketched in Figure 8.6.

We first discuss the flows. The auxiliary flows Z and (2 are virtual. We
can thus manipulate their values at will as long as consistency with the How
diagram is maintained. Several relationships exist between the recovered flow
(R), the censored demand flow (Z), the sales ow (V'), the demand flow (D),
and the shortage flow (W). For example,

U=V " F4+ R4+W=1D - V' ="B)'=W:
R=Fkl "2 A" =11~k =(1=k)7V
Now
1
77— R=F=D-W-R=V-R=(1-ky)V=(1-ky)(D-W) = ‘_S(D_Hr)
[
where [ = l_lk,}. There is logically no other constraint than Z — 2 = F
that needa to be imposed on the auxiliary Hows. However, we choose to put
A= F and (2 = "; Second, we turn to costs. A priori the auxiliary flows

carried no costs or revenues. We now put a cost of 3G per unit on the flow
(2 while making the unit costs of W zero at the same time. Then the costs of

operating the system remain unaltered. What is the revenue per unit of How
of F' that exits the back-end system?” As F = ]‘5 we can impute a unit costs

of [ times the revenue of a unit of V' while putting the revenue of V' to zero
without altering the costs. So the question becomes: what is the revenue of

® The notion of ‘inventory’ is somewhat spurious in this context, as there are no
factual items held at the end of the period.
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Fig. 8.7. The emulation of the return model: cost and revenue allocation

a unit of V7 A unit of flow V implies v units of returns, (1 — k)7v units of
salvage after returns (A’), and vk units of recovered items. So a unit of V's
revenue is v — (¢, +v)y + w(1 — k).

Now note that the back-end system (see Figure 8.6) is just a standard
mnews-vendor’ system with the flow F' playing the role of sales in the model
without returns. So we in fact need to analyze a standard ‘news-vendor’ model
with demand and costs per unit (boxed values) as given in Figure 8.7.
Finding the optimal value for (), is now easy. Just apply the unit cost substi-
tution rules v « f(v—(c,+v)y+w(1—=k))y, cp «— Bep and ¢, — ¢,. Accounting
for the factor 4 in the demand, the standard ‘news-vendor’ solution now gives

the rule: set Q, = Q7 where Q7 is determined from

D
.
2 5%

_ = e Fuly+wll —k)y) = FPe
~ Bv = (cr +v)y+w(l —k)y) —w+ Be
(v +ep—w)B+w-—cp

T (ﬂf_i_cb_w)b) = @(ﬁ)ﬁ

Prob(

Qp)

where v’ = (1 —v)v + v(w — ¢;.).
Full Recovery and One-time Re-use

Under one-time reuse, returns can only be reused once. Once more, we employ
the split inventory model (see Figure 8.8).

From one-time recovery, we obtain U = ~F. From this it follows that
R = kU = kv F. The flow conditions s(ee Figure 8.8) then further yield

7/ —R=F=D-W-R=V-R=V —kyF
and so V = (1 + kv)F = ['F, where we define 3’ as 3 = 1 + kv. We require
ONZ~ ) =0 F=V=D-W

Once more we have some latitude in setting values for Z, the censored
demand, and {2, the censored shortage. We choose to set Z = B—Q and {2 = %
We now determine costs per unit of Z and {2 which turn the return model
into an equivalent standard ‘news-vendor’ problem. Put
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a cost of 3¢y, to each unit of {2 (and a cost of zero to W)
e and a revenue of /jf'“ = i3 J‘J.f")'(_'cr = 'f') i (ﬁ!‘}' =~ i-}!!\ﬂ))bﬁ) — I,f'__'}r(f’ + A}(_(r =

v) + (1 — k)yw) to each unit of F' (as each unit of F implies 4’ units of

sales, 3’y units of returns, 4’k units of recovery, and 'y — 3k~ units of
salvage after return).

L 3

The result for determining the optimal value, Q 5y of the initial replenish-
ment can now be written down using the result for the standard ‘news-vendor’
problem as

B'(v+v(—cr —v)+ (1 — k)w) —c, + Bcs

Bo+7(—cr —v) + (1 - k)yw) —w + Fles

(V' +cp —w)F +w — 3
(v 4+ cp — w)f

Prob(

D :
FSQ,,):

|

=6(8")

with as before v = (1 — y)v + y(w — ¢,.). Note that 1 + kv is the expansion
to first order in kv of l—lkw' The case where items can be reused precisely n

times (and where the system is operated with a full-recovery strategy) then
allows that one can apply the foregoing end result for obt aining the optimal
initial order by substituting 3 «— 1+ ky + (kv)% + --- + (k)™

Other Cases

Vlachos and Dekker (2000) have studied many more variants of the single de-
cision problem under returns. Additions are fixed costs for recovery operations
and the option to recover only a fraction of the returns suitable for recovery.
A tree listing the variants analyzed is given in Figure 8.9.

The first branch (B1) of the tree corresponds to the first model examined.
while the second model refers to branch B2.1. Branches B2.2 and B2.3 assume
that the recovery cost is significant. The difference between them is that in the
first one (partial recovery) this cost is paid for every returned item we reuse,
while in the second (full recovery) this cost is paid for all returns whether

U=y = A1+kp F

A' = (1+ky-K)y F
Back end system

- |R=kyF
| Oy VA | D
base flow F OL&H{Y) F
A C) | W

Fig. 8.8. Split model for full recovery and one-time reuse
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we reuse them or not. Finally, the recovery of returned products may incur
a fixed cost paid per period (e.g., the cost of leasing a packing machine to
repack returns). So in partial and full recovery options we have another branch
in the tree, which includes (alternatives B2.2.2 and B2.3.2) a fixed recovery
cost or not (alternatives B2.2.1 and B2.3.1). The expected profits and the
optimality conditions for the other alternative models are presented in Vlachos
and Dekker (2000).

A Numerical Example

Figure 8.10 depicts the effect of the return fraction v and the recovery
fraction k to the optimal order guantity and the expected profit for a
specific numerical example. The collection and recovery costs are assumed
negligible. So, the model allowing re-use only once is used. The other cost

parameters are v = 15, ¢g = 2, ¢, = 7, and w = 5.

The lines for v = 0.0 represent the optimal order quantity and the ex-
pected profit of the classical ‘news-vendor’ problem (without returns).
We observe that as the return fraction () or the recovery fraction (k)
increase, the effect on @7 and its corresponding expected profit is almost
linear. These dependencies also prove the statement that the classical
‘news-vendor’ optimal quantity is far from optimal when the return rates
are high.

Future research directions on single period inventory models include dynamic
estimation of expected demand and serviceable returns (quick response) using
data from the beginning of the period. This research can be combined with
an improved inventory control system for single-period products with returns
that includes a second order during the selling period.

[n the foregoing models, the ratio between sales (V') and net supply (F) is
given by a number 3: V' = JF. For the model with unlimited reuse, Mostard
and Teunter (2002) go beyond this situation by assuming that each time an

B1: Sell in the secondary market

B2.1: No recovery
B2.2.1: No hxed cost
B2.2: Partial recovery
B2.2.2: Fixed cost
B2: Reuse
B2.3.1: No hxed cost
B2.3: Full recovery
B2.3.2: Fixed cost

Fig. 8.9. Alternative models for single decision cases with returns
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Optimal order quantity

Q0

Fig. 8.10. Effect of return fraction v and recovery fraction k& on optimal order
quantity ), and corresponding expected profit

item 1s sold it has probability of v of being returned, and that each item
returned has a probability of & of being reused. The number of times an
item 1s returned is then geometrically distributed with parameter 1 — k~:
Prob(# return times = ) = (1 — kv)(ky)*. So the return flow (R) can be
modeled as R = y:f_l I'; where the integer variables {I;} are independent
and each i1s geometrically distributed with parameter 1 — kv. Evidently, for

any i, E(R) = E(F)E(IL};) = E(F) 1_"_‘:17 and so from V = F' 4 R one obtains

E(V) = o2 = BE(F) with 8 = ;= as before.

However, knowledge of the value taken by F' no longer suffices to determine
the values taken by the number of returns (U/), the number salvaged after
return (A’), the number reused (R), or the number of sales (V). Nonetheless.
one readily verifies that each unit of F' creates an expected revenue of (v +
Y(—cr —v)+ (1 — k)yw).

Now define’ the censored demand (Z) and the censored shortage (f2)
through the equations

VA (2
Z+ZF£:D and !2+ZF’:IV

=1 1=1

Note that Z > (2 (as D > W). For model consistency, one requires Z — {2 =
F=D-W-R,ie., Z—-=D—-W — R. However,

Z {2
Z—Q+R+W—D=D—ZI}—I-*If’+ZFI-+R+IfIf’—D

1=1 =

" The equations may not result in integer values for Z and 2. In that case, some
rounding is necessary. F.e. Z = min{z|z+)_7_, I'; > D} which has the advantage
that Z is a stopping time for (I7).
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VA
:R—* Z F,:O

So Z and {2 are defined consistently. For any i, E({2) + E(2)E([;) = E(W)
and from this it follows E(§2) = (1—kv)E(W) as E(I};) = IEL' Now attribute
to each unit of flow of §2 a cost of {=4— (and put the unit costs of W to zero).
Then, as costs were linear in W, the average costs analysis remains the same.

Under all the above unit costs alterations, for convenience summarized in

the following list.

o v fBv+y(—c—v)+(1—-k)yw)
@ Gt _ L ~ — Bﬂb'a

the back-end system now is a model driven by the censored demand Z. Tem-
porarily discounting for the dependence of Z on (), this leads to the following
condition that determines the optimal initial replenishment, @7,

B(v + y(—¢r —v) + (1 — k)yw) — cp + Ocs
Prob(Z < Q*) = * ’ — O(3).
obld = &) B(v +y(—¢cr —v) + (1 — k)yw) —w + [ )

which was previously obtained by Mostard and Teunter (2002).

8.2.4 Multi-period Model

Consider a single inventory facility that carries a single product. Time 1s
segmented into periods. Demand for the product is random with demand in
different periods identically and independently distributed (i.i.d.). The facility
receives product returns, as well. These product returns in different periods
are i.i.d. and independent of demand also. Demand that cannot be met 1s
backlogged. Upon return, products are available for servicing demand after L,
periods. The average of returns per period is smaller than the average demand
per period. The difference is furnished by a supplier external to the system
considered. To this end, the inventory facility places replenishment orders
at the supplier. These orders are delivered with a lead time of L, periods.
Replenishment orders can be placed at the beginning of each period. The
decision maker has to determine whether and how much is reordered. Disposal
is disallowed. Per unit of product per unit of time, the cost for backlogging
demand is ¢, and per unit of product per unit of time the inventory carrying
cost is hs. The cost per replenishment order is K. As the reader will note,
apart from the returns, the model described is the classical inventory model
under backlogging.

The analysis of this model lends itself almost immediately as an application ot
the split inventory model. The one thing that needs some careful consideration
1s the issue of lead times.
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The State Space

In classical stochastic inventory theory, where unmet demand is backlogged.
the model just described is best studied on the state space defined by the
mventory position. Here, the use of the inventory position avoids the need
for dealing explicitly with lead time (lead time is absorbed in the cost func-
tion). However, the presence of returns slightly complicates matters, as we
now have to deal with two (possibly different) lead times. The state of the
system summarizes all the information relevant to the decision at hand. The
sequence of events in a period is: 1) arrival of products (returns + ordered)
in the serviceable inventory, 2) ordering, and 3) meeting demand and returns.
Demand that cannot be met is backlogged. Disposal is disallowed. The state
of the system at time period 7 is given by a triple (1,,(7),Y (7), Z(7)) where

[,,(7) is a scalar representing the net stock at the end of Period 7.

5 Sile F g 7 r; r "y r. Te 3

Y(7) is an Ly-tuple (Y, _1(7), Yz —2(7), -, Yo(7)) WllE‘.IE- Y;(7) is the
amount reordered, in period 7 4+ j — L,, due to arrive in period
T 4+ 7, and

Z(7) is an L.-tuple (Zr, _1(7), Zr,—2(7), -, Zo(7)) where Z;(7) is the
amount of returned items becoming available for serving demand
In period T + 3.

Introduce the inventory position /_(7) at the beginning of period 7 before
any events as

L]J_‘l L-;—l
[_(1)=L,(t—1)+ Z Yi(7) + Z Z;i(7)
1= 7=0

After product arrivals and reordering, the inventory position is I, (1) =
[_(7)+ Yy, (7) where Y (7) is the replenishment order placed in period 7.
The dynamics are given by the equation

Ly D)= ()= DA+ 1)+ 24 (7)

where D;(7) is the demand during Period 7 + j. The net stock I, can be
computed from the inventory position as

Lig—1
In(t+Lp—1)=1_(r)— )  Do(r +j)+Us,,r,(7) (D)
j=0
with
Lp—1 Ly—1



8 Stochastic Inventory Control for Product Recovery Management 199

- RS 3 Ly—Ly—1 :
Now assume L, < L,. Then, clearly, Ur, (1) = > 2, Zp (T + 7).

Equally important, in terms of distributions, we have for the dynamics

i

L (74 1) =T d@hikXp, (@)D,

where Y7, (7) is the amount ordered, and D is distributed as D — Z where
demands are distributed as D and returns as Z. That is, I is driven, apart
from the quantity reordered, by a stream of independent stochastic variables
with distribution D, the outcomes of which are unknown at Period 7. Note
that D can be interpreted as a signed demand., i.e., as a demand that assumes
both positive and negative values. The structure of the dynamics of the in-
ventory position in the basic model. therefore, is the same as that in the stan-
dard model except that the demand now is signed. Furthermore, for purpose
of performance calculation, we can use (4 ). Indeed, note that the quantity

ij‘i;l Do(T + 3) — U, 1, (7) is independent of I_(7) (still for L, < L)

The conclusion is that we can consider the system as being a zero-lead-
time system subject to signed demand. To this system, we can apply the full
strength of the split-inventory technique. When giving explicit results, the
following assumes that L, = L, = 0. However, from the remarks above it will
be clear that the analysis can be carried through analogously for any L, < L,,.

Below. results are given for the case of optimizing the expected cost per period.
8

Analysis and Results

The analysis and results are discussed in detail by Fleischmann and Kuik
(2003). One peculiarity is that for the equilibrium process of (V,W) the
two component processes V. and W become independent in the long run:
(W|V = v) = W where (V, W) is the equilibrium process. For the stationary
case. the cost function for inventory related costs (see Subsection 8.3) takes
the simple form

H(v) = Ew(G(v + W))

for the inventory in the back-end facility. Somewhat more detailed, the fol-
lowing conclusions hold.

1. An (s, S) inventory policy is optimal for the basic model.

2. The V and W equilibrium processes are independent. The process V' can
be described through the inventory position process corresponding to an
s. S policy for a facility subject to nonnegative demand distributed 1.1.d.
in periods with distribution

Z e Z (?f’—m for £ =0
£>0 m >0

(Probability demand = k) = = jl_
Z Mok 4 forik = 1

£>0
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Here, m = (m)¢=0.1.... 1s the invariant distribution for W and (f,- =
Prob(D = 1). Note that as W is independent of (s, S) so is .

3. The costs of the basic model coincide with the costs of the (s, S) process
mventory position process described by V' with state-dependent period
costs given by H. Note that H (i) is the expected cost of a cycle on the
half line, incurred by a random walk described by the W-process, starting

and ending in the position 0 and with costs in position ¢ given as G(i+ /).

The three statements together imply that the optimization of the basic model
can, at least in principle, be carried out through the processes V' and W as an
optimization problem for a classic inventory model. This conclusion continues
to hold for the case L, > L.. > 0.

All of the above results immediately carry over to the case of a model in
continuous time under continuous review with the obvious modifications (see
Fleischmann et al., 2002). The discrete time case is analyzed in more detail
in Fleischmann and Kuik (2003).

Remark. The split inventory introduces a front-end facility and a back-end
facility. The analysis just reported will carry through in case the back-end
system itself is an inventory system consisting of multiple facilities. Thus the
analysis, in principle, carries through in case of an assembly system with au-
tonomous returns only at the end-item level (see DeCroix and Zipkin, 2002a).

Heuristics

Several heuristics have been developed for the multi-period model when fixed
production costs are disregarded. Simpson (1970) considers a discrete time.
periodic review model with a review cycle of m periods. During each period 7
there is stochastic demand D(7) with mean pp and variance 0%, and stochas-
tic recovery output R(7) with mean pp and variance o%. Every m periods,
a production order is placed with stochastic lead time L, such that the in-
ventory position 1s raised to .S,. Demand that cannot be fulfilled immediately

: ; - T+m+ L, o . "
is backordered. Define the random variable Y = > """\ "" D(i) — R(1), i.e.

Y is the net demand during a review cycle plus a (random) replenishment
lead time. The mean and variance of Y are py = (m + pp )(up — pr) and
oy = (m+pr,) (0% +0%)+ (up — pr)?o7 . Under a service objective, i.e. the
fraction of demand not backordered should be larger than k, it can be shown

that the optimal value of S, is the solution to

§
/ (¥ — Sp)g(y)d(y) = (1 — k)mup. (8.3)

where g(.) is the density of net demand Y. If service is enforced through a
penalty cost (¢, per unit backordered) than the optimal S, is the solution to
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mh

/ g(y)d(y) =
J S

- .’1

Ch

with h. the serviceable holding cost per unit on stock per period.

A continuous time variant of Simpson’s model was recently put forward by
Mahadevan et al. (2002). Here, the production lead time, L, 1s a fixed con-
stant and all returned products are initially stocked. As soon as a review epoch
occurs. all returns in stock are recovered (fixed lead time L,) and transferred
to serviceable inventory (see Figure 8.11).

One of the heuristics developed for this model approximates the stockout
probability 7, = m + L, time units from the current review epoch, 7 and the
stockout probability at 7 + T}, which is the time at which the last recovery
batch (if any) arrives in the interval [7,7 + T},). The number of recovery
batches, N, that arrive during time T, equals [L,/m| if recovery batches
always arrive before manufacturing batches in a review cycle or [ L,/m|-1 if
recovery batches always arrive after manufacturing batches. Hence, 17 = (N —
1)m + L,. Assuming that demands and returns follow independent Poisson
processes, the net demand during time 75, Y, has mean py, = d1}, — ulNm
and variance O‘E-ﬂ = dT, + uNm. Similarly, the net demand during time fies
Y., has mean puy. = d7;, — u(N — 1)m and variance af} = dT, + u(N — 1)m.
The optimal value of S, then follows from

mh .

Ch

/ gp(y) + gr-(y)d(y) =

¥
L e I.I'

where g,(.) and g¢,(.) are the densities ot Y, and Y, respectively. In this par-
ticular push policy, the replenishment order is split into a production portion

Recoverable
mventory

Serviceable
[nventory S p

position

time =P

m

Fig. 8.11. A periodic review with order-up-to level 5p.
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and a recovery portion. An interesting side effect is that it pays off to have
different lead times for production and recovery so that the incoming service-
able products are more spread out over time. Therefore, increasing one of the
lead times may decrease optimal costs.

The only difference between the policies of Simpson (‘continuous’ recovery)
and Mahadevan et al. (periodic recovery) is the way that product returns
are handled. Simpson’s policy benefits customer service at the price of higher
serviceable holding costs, while the policy of Mahadevan et al. delays recovery
expenses at the cost of customer service. If recovery is expensive, the latter
may be more attractive.

Muckstadt and Isaac (1981) adapted the standard (s, Q) policy to account
tor a situation with fixed costs for production, K,. As soon as the inventory
position of serviceable items (net serviceable inventory plus everything on or-
der plus all product returns in the recovery facility) drops to s, a production
batch of size @ is ordered and will be delivered after a fixed lead time By
The recovery facility operates under a one-for-one push policy, and recovery
lead times are stochastic. Since the demand and return processes are Poisson
streams, the inventory position can be modelled as a Markov chain. The solu-
tion procedure is based on the approximation that the net inventory follows
a normal distribution and on the assumption that the output of the recovery
shop is a Poisson process. The advantage of this procedure is that it results
in simple expressions from which one can deduct the optimal values of s and
() very easily. Its disadvantage is that it may not be a very accurate proce-
dure, especially for high return rates (see Van der Laan et al. 1996a ). A more
accurate procedure was developed by van der Laan et al. (1996a). Instead of
approximating the distribution of net inventory, the authors approximate the
net demand demand during time 7, Y, using a Brownian motion with drift
and variance equal to gy = (d — u)7 and rrf-T = (d + u)7 respectively. The
optimal reorder quantity, QQF, can be approximated by

>

p’

2K (d — u)
h

Qp =

and the optimal reorder point. s, 1s the solution to

[ [ () () o
Y, 7T )AYyYyaT = 0.4
e g(y; 7)dy Q: B T

(adapted from van der Laan et al., 1996a) where g(y: 7) is the density of Y.
Here it is assumed that the output of the recovery process is a Poisson stream.
The backorder penalty ¢, is per product per time unit. If the backorder penalty
Is Just per product, Equation (8.4) reduces to
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Under a service objective (at least a fraction k of total demand should be
fulfilled immediately), we deduct a similar expression as Equation (8.3) so
that s7 approximately is the solution to

/ (y — sp)g9(y; Lp)dy = (1 — k)@, .

i-‘lj

One of the results of this section is that the standard (s, ) policy is opti-
mal as long as the recovery process is autonomous and its lead time is shorter
than the production lead time. In the original formulation by Muckstadt and
[saac. the recovery facility is modelled as a queuing system with (in)finite
capacity and stochastic recovery times. The total lead time, i.e. waiting plus
processing time, can be well above L, especially if the system load i1s high,
implying that the (s, Q) policy combined with autonomous recovery is not nec-
essarily optimal. However, a main drawback of the above heuristic approaches
is that they are hard to adapt to managed recovery. The issue of managed
recovery is studied in the next section.

8.3 Managed Recovery (or Pull Strategies)

In contrast with situations of direct reuse as discussed in the previous section,
Section 8.2. value-added recovery involves more elaborate (re)processing. In
this case. the throughput times of returned items can be substantial and
varying. Moreover, variation and uncertainty of the quality of returns makes
it more difficult to predict reprocessing needs and add to the variability of
lead times. Typical products that are associated with value-added recovery
are products that have been used extensively and are returned /collected in
order to be restored to perfect working condition. Due to value-added and/or
fixed costs involved with the reprocessing, extra stocking points are needed
for managing the flows of returned products.

We begin the discussion on managed recovery by discussing some ot the
(limited) results on the structure of optimal policies.

8.3.1 Optimality Results for Linear-cost Models

The first results regarding optimal periodic review policies for recovery sys-
tems with two stocking points can be found in Simpson (1978), where a model
with no fixed costs for production, recovery, and disposal, and zero lead times
is considered. It is proven that the optimal periodic policy 1s determined by
three parameters: a produce-up-to level §5,, a recover-up-to level S, and a
dispose-down-to level U. Inderfurth (1997) has shown how the model has to
be adapted in cases of positive and equal lead times. Up to now, the optimal
policy for the general case of different lead times is not known. For the special
case that L, = L, + 1, the optimal policy turns out to be rather simple and
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has been given by Inderfurth (1997). In the following, we will describe the
model for the situation L, = L,, = L in more detail.

It 1s assumed that the inventories are reviewed periodically and that in
each period 7 it has to be decided how much to produce (p(7)), how much
to recover (r(7)) and how much to dispose of (w(7)). Demands in period 7
(d(7)) as well as returns (u(7)) are random variables, and the corresponding
probability density functions are denoted with ¢, 4 for the demands and ¢, ,,
for the returns.

The recovery system can then be described by two state variables. the
physical stock of recoverables I,, and the inventory position of serviceables
I, which is defined as the stock-on-hand of serviceables plus all outstanding
orders minus backorders. The inventory balance equation for the recoverables
1S glven as

I(t+1) =1,(7) —w(T) —r(7) + u(r), (8.5)

while the inventory balance equation for the serviceables is given as

Is(T+1) = I(7) +r(7) + p(7) — d(7). (8.6)

In Simpson, the optimal policy is determined with respect to the average
total relevant cost over a finite planning horizon 7. Thereby, production.
recovery, and disposal costs are assumed to be proportional to the number of
items, and holding and penalty costs are charged to the net inventory at the
end of each period. The cost parameters are denoted as follows.

h: unit holding cost for serviceable items
h,: unit holding cost for recoverable items
cp: unit backorder cost

¢, unit production cost

Cr: unit recovery cost

¢ unit disposal cost

Then the average cost for backorders and keeping serviceables in stock in
period 7 is given as a function of the inventory position Y, after the reorder

L

decisions (Y,(7) = Is(7) + p(7) + r(7)) as follows:

Y, 00
Ll Yalviss v /(YS — 2)or 1. p(2) dz + ¢ /(: — Y )or 1. p(2) dz; (8.7)
0 7

where ¢, 1 p denotes the density function of the cumulative demands in the
periods 7 — L,7 — L + 1,...,7. Further, we have to include the average cost
for stock keeping of recoverable items in period 7 which can be computed as
a function of the inventory position Y, of the recoverable inventory after the

reorder decisions (Y, (7) := I,(7) — w(7) — r(7)):
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OO

C:(Y5) =il / (Y, + 2)oru(2)dz = hy Y + hoElu(T)): (8.8)

— 00

Since the term h,E[u(7)] in (8.8) has no influence on the optimization, we
can neglect it in the sequel. In order to be able to formulate the problem as a
stochastic dynamic programming problem, we introduce the average relevant
cost f, for n remaining periods until the end of the planning horizon. This
function depends on two variables: the inventory position of the serviceable
inventory I, and the recoverable inventory I,,.

The functional equation of dynamic programming is obtained as follows

fU(IH*IH) =0 (89)

and for n > 1 as

G230 ] SR A [P a1 {Cpp +cpw + 7+ Lr_n(Is +p+T)

p, 7, w>0

b (F, = Bl 0% vyl — 10— -r)} (8.10)

where
+00 +0OC
H(a b):= / fr_1(a— 2,0+ y)on.d(z) pnuy) dz dy (8.11)
— 50 —00

with ¢, 4(2) denoting the density of d(T'—n) and ¢, ., (y) denoting the density
of u(T —n). Note that (8.9) and (8.10) also hold for non-identically distributed
correlated demands and returns.

An analysis of these equations leads to the structure of the optimal policy
(see for details Simpson, 1978). This so-called (Sp, Sr,U) policy (with 5p <
S. < U) is a straightforward extension of the simple (5,,U) policy which is
optimal if stocking of returns is disallowed. The optimal decisions in period T
in the case of two stocking points are determined by the three time-dependent
parameters S,(7), S-(7), and U(7) as follows.

[tems are only disposed of if there are too many in the system, but you
can never dispose of items already produced or remanufactured. This leads

tO:

WHT) = (min{fﬁ(?‘) + I,(7) — U(1), I“(T)})_I_, (8.12)

where ()t denotes the max{0,z}. Production is used if the total number of
items in the system is less than S,(7).
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;
p(7) = (Sp(r) = (I(7) + Lu(7)) (8.13)

Since there is only a limited number of recoverables available, the service-
able inventory position cannot always be increased to the recover-up-to level
S, (7) using recovery. leading to the following recovery decisions:

P ) = min {I”(T).. (5-(7) — f.q(?'))+}- (8.14)

For the application of such a control policy in practice, the policy param-
eters have to be computed.

Omitting the time dependence from the notation, the policy parameters
Sy, Sr, and U > 0 can be determined by solving the following equations.

L8, ) £ o H{S.0) = —¢, (8.15)
L'(S,) + 8iH(S,,U = S,) = ¢y, — ¢, (8.16)
H(S.. U = 8.) = cy —h, (8.17)

where 0 H and 0> H denote the partial derivative of H with respect to the
first and second argument respectively. If there exists no solution of (8.17),
(8.16) with U — S, > 0, one needs to solve (8.16) for S, with U = §;..

8.3.2 An Exact Modelling Approach

Using the modelling approach of the previous section, it is hard to find, for
each period. the optimal policy parameters in the presence of fixed produc-
tion and recovery costs. This makes it difficult to generalize those results to
situations in which batching is necessary. A continuous time, continuous re-
view setting enables one to formulate various inventory control strategies that
extend those considered in Section 8.3.1 and that can be optimized and ana-
lyzed making use of the theory of Markov Chains. Additionally, this setting
facilitates the modelling of stochastic lead times.

Van der Laan et al. (1999b) developed an exact procedure that enables one
to study a variety of push and pull policies under fairly general conditions,
such as stochastic lead times and Markovian return and demand Hows. The
modelling framework for a system with two stocking points, one for recoverable
imventory and one for serviceable inventory, is characterized as follows.

e The demand and return processes are stochastic and may be modelled
by any Markovian arrival process. The two may even be dependent, but
this requires extra state variables to model the number of products in the
market (see, for example, Bayindir et al., 2003: Nakashima et al., 2002:;
Yuan and Cheung, 1998) and/or the time that they have spent there.
Although it is common practice to assume simple (compound) Poisson
arrivals, an alternative could be to use Coxian-2 arrival processes. These
enable one to do a three-moment fit of an arbitrary arrival process. so that
a better description of reality can be achieved.
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The production process has unlimited capacity. The production costs con-
sist of a variable cost per item and a fixed cost per order. The production
lead time L, is a discrete random variable, bounded by some L7** < 0.
In principle, the recovery process can be any queuing system with Marko-
vian transitions. Alternatively, the recovery process can be modelled as
2 ‘black box’ with lead time L,.. a discrete random variable bounded by
some LM% < oo. The recovery costs consist of a variable cost per item
and a fixed cost per batch.

If disposals are allowed, the disposal process depends on the control policy
employed. Next to a variable component, disposal costs may also include
a fixed cost per batch.

The inventory position may be defined in various ways (see the discussion
in section 8.3). The only restriction is that its transitions are Markovian,
For instance. the inventory position may be the net inventory plus all
outstanding production orders plus some subset of recoverable products
that are currently in the system. As an example, product returns may
enter inventory position upon arrival (the arrival process is Markovian) or
as soon as some control policy triggers them to be released to the recovery
facility. Necessarily, such policies only work on Markovian processes such
as the inventory position itself or the stock of recoverables. As we have
seen, the optimal policy structure is only known for some very special
cases. so in general we have to rely on heuristic policies.

Although the framework does not pose any restriction on the holding cost
parameters, it is reasonable to assume that the recoverable holding cost
h, is smaller than the serviceable holding cost hs. Moreover, to come to a
meaningful performance measure, its numeric values should have a direct
relation with the variable costs of production, recovery, and disposal. There
is quite some controversy, though, with respect to the correct valuation of
holding cost parameters in a reverse logistics setting, but this discussion
is left to Chapter 11.

Customer service is modelled in terms of backorder costs, either per prod-
uct or per product per time umt.

All system parameters are stationary, 1.e. do not change over time.

The calculation of the average on-hand serviceable inventory and the average
backorder position is difficult since the transitions of the net inventory, IoA7),
are usually not Markovian. However, depending on the assumptions with re-
spect to the recovery lead time, we can deduct a handy relation between the
net inventory and inventory position I¢(7) from which we can calculate the
long-run distribution of 7,,(7). Define

W (7) as the number of recoverables that are included in the inventory
position at time 7, but that have not yet been recovered,

O(1, — ) as the output of the recovery process the interval (7, 72|,

- D(71; — 1) as the demand in the interval (71, 72|,
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- R(7,72) as the number of recoverable products that enter the imventory
position in the interval (71, 72| and subsequently enter serviceable inven-
tory at or before time 7, and

- P(71,72) as the number of products that are ordered at the production
facility in the interval (71, 73] and subsequently enter serviceable inventory
at or before time 7.

Then we have the following cases.

Case 1: Markovian recovery lead times

In(7) = Is(t — L") — W(7) + O(1 — Let 5l =dEm— Lon sy «(8:1B)

Case 2a: Discrete recovery lead times bounded by L < '

Io(7) = L(T = LT*®) + R(r — L™ 7) — D(7 — L™=, 1) (8.19)

Case 2b: Discrete recovery lead times bounded by Dl B i

In(7) = L(r = LP**) 4 P(r = L™, 7) — D(+ — L™=, 7 (8.20)

Relation (8.18) is a generalization of the relation given in Muckstadt and Isaac
(1981), whereas Relations (8.19) and (8.20) are taken from van der Laan et
al. (1999b). The long-run distribution of I,,(7) can be ( numerically) found by
analyzing long-run and transient behavior of an appropriate Markov chain.
For details, we refer to van der Laan (1997). The long-run distribution of net
inventory suffices to calculate the long-run expectation of on-hand inventory
and the backorder position. All other relevant entities can be obtained from
the Markov Chain analysis.

Although the above framework is very general in theory, it suffers from
the curse of dimensionality. The state space grows exponentially with the
production and recovery lead time and the capacity of the stocking points.
Therefore, optimization may be very time consuming and running time grows
exponentially in the number of decision variables. The reader should keep 1n
mind, however, that this framework is meant to assess the performance of a
wide variety of recovery policies in an ezact way rather than using approxi-
mations. It is not meant as a fast optimization algorithm nor as an efficient
numerical recipe. In the case of very large state spaces. simulation. although
less accurate, may be an alternative.
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Fig. 8.12. The (s,,Sp,Q~,U) PUSH disposal policy.

Push and Pull Policies

The heuristic control policies that have appeared in the literature are all
natural extensions of the classical (s, S) policies and may be classified as either
push or pull: while production orders are controlled by an (s,,5,) policy,
recovery batches are either pushed through the recovery facility or pulled only
when they are really needed.

Figures 8.12 and 8.13 give a graphic representation of some of the variants
(for details see van der Laan and Salomon, 1997) that can be analyzed with
the framework outlined above. With the (s,, S,. @,,U) PUSH disposal policy.
remanufacturing starts whenever (), recoverable products are in stock. A pro-
duction order is placed to increase the serviceable inventory position to 5, as
soon as the serviceable inventory position drops to or below the level s,,. Prod-
ucts are disposed of upon arrival as soon as the inventory position exceeds
the level U. With the (sp, Sp, S, 57, U) PULL disposal policy, recovery starts
as soon as the serviceable inventory position is at or below s,, and suthicient
recoverable inventory exists to increase the serviceable inventory position to
S... A production order is placed to increase the serviceable inventory position
to S, as soon as the serviceable inventory position drops to or below the level
sp. Products are disposed of upon arrival as soon as the inventory position
exceeds the level U. Note that s, should never exceed s, since otherwise the
recovery option would be redundant.

In the above examples, the inventory position is defined as the net service-
able inventory plus all outstanding recovery and production orders. For that
case. van der laan et al. (1999a) show that an increase in the recovery lead time
or an increase in production lead time variability may lead to lower optimal
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Fig. 8.13. The (sp, Sy, sr, Sr,U) PULL disposal policy

costs. It appears that this is due to the sub-optimality of the control policies.
Inderfurth and Van der Laan (2001) show that the PUSH-disposal policy is
easily improved upon by adjusting the recovery lead time in an appropriate
way or by using different information sets for the production, recovery, and
disposal decisions. The sub-optimality of the PULL-disposal policy is mainly
due to the restriction on the recovery order level (s, > Sp). 1I the recovery
lead time is much smaller than the production lead time. s, will overprotect
for recovery lead times. Increasing the recovery lead time then leads to better
policy performance. The above effects are further illustrated in Teunter et al.
(2002) for push and pull policies without the disposal option.

[t the recovery lead time is smaller than the production lead time. one
could base the production decision on the sum of the serviceable mventory
position and the recoverable stock, while the recovery decision could be based
on the serviceable inventory position only. If the recovery lead time is longer.
one should base both the production and recovery decisions on the serviceable
inventory position only. Such policies are easily modelled within the above
framework and therefore can be analyzed analytically.

Actually, only orders with a certain remaining service time should be in-
cluded in the serviceable inventory position (see also the discussion in Section
8.3.3). Such an inventory position, however, is not a Markov process, so our
framework cannot be used. In the case that L, < L,, Teunter et al. (2002)
investigate a policy in which the production decision is based on all the in-
ventory in the system, while the recovery decision is based on the serviceable
iInventory position (serviceables on hand, plus outstanding orders), which in-
cludes only those production orders with remaining lead time smaller than
L, (see Figure 8.14). It is shown by simulation that this policy outperforms
simple push and pull policies that are based on just one inventory position.
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Fig. 8.14. A schematic representation of the double-PULL policy

The drawback of this policy is that it cannot be modelled as a Markov Chain

and is therefore difficult to analyze exactly.

8.3.3 Heuristics

In the case of models with managed recovery, the difference with traditional
inventory theory goes beyond signed demand. Inventory control now explicitly
needs to deal with recovery flows. The source of returned items is unreliable
and limited. This makes its control particularly difficult. In traditional inven-
tory theory, one also has to deal with unreliability since supplying mventory
facilities might be out of stock. Also in that case, unless special structures
i1 costs and the inventory network exist, one has to resort to rules of thumb
or heuristics to find reasonably good solutions. Frequently one finds heuris-

tics and approximations based on the notion of eftective echelon inventory
position.

[ ot us first introduce the relevant definitions and concepts. We will do
this with an assembly network structure in mind (or special cases thereotf.
such as series systems or a single location). The installation net stock of a
facility is defined as its on-hand minus its backlog. The installation imventory
position of a facility is its net stock plus the number of products on order
(with its supplier). The nominal echelon stock of a facility is its installation
echelon stock plus the installation echelon stock position of all its downstream
facilities. In multi-echelon systems, the nominal echelon stock position has no
simple relation to the net stock (shifted by a lead time and up to demand
during a period of lead-time length), yet in other models this is one of the
primary reasons for introducing the concept of inventory position. To restore




212 van der Laan et al.

the simple relationship, traditional inventory management introduces the con-
cept of eftective echelon inventory position (see Chen and Zheng, 1994); Van
Houtum et al., 1996); and Diks et al., 1996). The effective echelon inventory
position of an installation is defined as all stock in transit to the installation
plus its on-hand stock plus all stock in transit to or on-hand at downstream
installations minus the backlog at its end-stock points. Inventory theory with
recoveries follows this line of modelling by extending the concept of effective
echelon stock policies by including the stock locations for returns.

In the following, we discuss heuristics based on estimating implied costs
after a first period, thus essentially reducing the multi-period problem to a
news-vendor’ type problem.

As mentioned in Section 8.3.1, the optimal periodic policy is only known
for special cases of lead time pairs, i.e. for the equal lead time case. For the
general different lead time case, the optimal policy is expected to be very
complex because the dimension of the state space necessary to describe the
recovery system accurately is quite large. Therefore, for this situation several
heuristics are developed. But also for the equal lead time case it is reasonable
to use heuristics since the exact computation of the optimal policy parameters
using Equations (8.15), (8.16), and (8.17) can be very time consuming.

Equal Lead Times

Kiesmiiller and Scherer (2002) provide two computational approximation
schemes to determine nearly optimal policy parameters Sp, 9y, and U. One is
based on an approximation of the value-function in the dynamic programming
problem (8.10) and leads to excellent results. They obtain in their numerical
study an average relative deviation of the average cost of 0.1% and a maximum
relative deviation of less than 2%. The other approximation uses a common
decomposition technique which is based on a deterministic model and safety
stocks. This approach leads to the shortest computation time but also to less
accurate policy parameters. The same numerical examples lead to an average
relative deviation of the average cost of about 3% and a maximum relative de-
viation of 10%. Especially in the case of large return rates and large standard
deviations for the demands and returns, the first approximation outperforms
the latter substantially:.

Kiesmiiller and Scherer also illustrate that the computation of the policy
parameter U can be numerically ill-conditioned when U has hardly any influ-
ence on the costs. This is always the case when disposal of items does not play
a significant role in the optimal policy. A detailed simulation study by Teunter
and Vlachos (2002) shows that in stationary models this is almost always the
case. Therefore, an (5,5, ) policy, where S, denotes the produce-up-to-level
and 5, the recover-up-to-level is a near-optimal policy for a stationary situa-
tiomn.

For such an (5,,S5,) policy, simple ‘news-vendor’ type formulas for the
computation of the parameters can be found in Kiesmiiller and Minner (2002).
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In order to derive these formulas, overage and underage costs are estimated
depending on whether it is decided upon the production or the recovery quan-
tity.

First we show how a formula for the recover-up-to-level S,- can be derived.
Any underage of a single unit will result in a backorder penalty c;, assuming
that the backorder will only last for a single period. In addition, another
recoverable unit could have been remanufactured in the past without affecting
serviceable holding costs. Therefore, the cost for each unit short is given by
c. = ¢, + hy. The overage cost for the recovery of one unit too many equals
the difference of serviceable and recoverable holding cost ¢, = hg — h,,. Using
¢. and ¢,. S, is determined from the marginal ‘news-vendor’ approach such
that the probability that cumulative demand within the next L + 1 periods
(the sum of the lead time and the review period) does not exceed S; is equal
to the fraction of underage and overage plus underage cost per unit and unit
of time

Ch h*u

FL+1(SI*) —=

(8.21)

(_'b = i ]2:.:

with F; ., denoting the cumulative distribution function of the demands in
L + 1 periods.

For the produce-up-to-level, the underage cost simply equals the unit back-
order cost per unit of time (c; = ¢). Producing one unit too much leads to
serviceable holding costs hs and might also influence future recovery decisions.
Then. the recovery of a unit has to be postponed for some time. This time 2
can be approximated with a random variable which is distributed according to
a geometric distribution with probability Fy_.(0). Thereby, Fy_,(0) denotes
the probability that the net demands d — u are smaller than zero. Therefore,
the overage costs can be estimated as follows:

= . ; Fd—u(o)
co=hs+hy Y i Fa-u(0)’ (1= Fau(0)) = by + huz— AT

1=1

This leads to the following equation for the determination of the produce-
up-to-level:

Ch

FL-{-l(SP) = AR (1)) (823)

(}E] + ]1'5 + }1“ _I_F{I—I.I (G)

The accuracy of these formulas has been tested in a detailed simulation
study (see Kiesmiiller and Minner, 2002) and reveals excellent results.

Different Lead Times

Now we drop the assumption of equal lead times. Although many authors do
not distinguish between the situation with recovery lead time being longer
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than the manufacturing lead time and the reverse situation. we believe this
to be necessary because the control problems are different. In the following,
we will provide an approach for the control of a hybrid stochastic produc-
tion/recovery system with different lead times which can also be found in
Kiesmuller (2002). Since we assume a linear cost model and stationary de-
mands and returns, it seems to be reasonable to extend the (S,,S,) policy
mentioned above to the situation with different lead times. In the following, we
assume that the processes for demands and returns are identically distributed
i each period.

Long Recovery Lead Time

In case of a long recovery lead time, the system is quite easy to control. For
moderate return rates, it is reasonable to push all returns into the recovery
process while the faster production supply mode takes care of the items that
remain to be produced. Only in the case of large return rates and large lead
time differences may some problems occur, if there are low demands in subse-
quent periods. Then it may happen that more items than required are in the
recovery process and there is no more chance for adaptation using the faster
supply mode.

In order to use an (5, S,) policy to control the system, we have to know
which information should be used for the decisions. Some authors (for ex-
ample, Gotzel and Inderfurth, 2002, or Inderfurth and van der Laan, 2001)
suggest using one inventory position for both the recovery and the produc-
tion decision. In the context of dual supplier models, this approach would be
called a single index policy. Another possibility is to aggregate information
n two different variables, which we also call inventory positions (dual index
policies). In Kiesmiiller (2002), it is shown that the dual index policies out-
perform the single index policies for recovery systems, especially for large lead
time differences. The approach is described in the following.

For the recovery decision, the inventory position 7,,(7) in period 7 includes
the current serviceable net-stock plus all outstanding production and recovery
orders, including the production order placed at time 7

i L
L@ o= Lal7) <k Zp(r — 1) + Z r(r —1) . (8.24)
i=0 i=1

T'he information which is used for the production decision is aggregated
in the second inventory position /. Since the production decision in period
7 influences the stock-on-hand in period 7 + L,, we assume that it is only
necessary to consider the outstanding production and recovery orders which
arrive in the periods 7,7+ 1,...,7+ L,. This leads to the following definition
of I.:
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L= L
I(7) = In(m) + Y plr—i)+ ) _r(r — (Lp = Lp+1)). (8.25)
i=1 i=0
Based on these inventory positions the following decisions rules are obtained:
p(1) = (Sp — I(7))™" (8.26)
and
plr) = mind Lu{a), (S — IT,,_(T))+}. (8.27)

In Kiesmiiller (2002) it is shown by simulation that such an (5, S;) policy
outperforms a similar policy where the decisions are only based on one inven-
tory position because less safety stock is needed. With increasing lead time
differences. the cost improvements are increasing and they are much larger
than can be obtained with the policy improvement procedure proposed in
Inderfurth and van der Laan (2001).

For the policy given by (8.24), (8.25), (8.26), and (8.27), simple formulas
exist for the computation of nearly optimal policy parameters (see Kiesmuller
and Minner, 2002). Estimating overage and underage costs and using ‘news-
vendor’ type formulas leads to the following two equations for the determina-
tion of near optimal policy parameters:

1 (.*J + II'H
Fr 1 (Se) = —— (8.28)
C'h }LF
and
' Ch -
Ky +1(8p) = PR (8.29)

l“b + h‘-r + hJ“ I—Jl;‘;f—-u(“)

Long Production Lead Time

In the case of a long production lead time compared to the recovery lead time,
the control situation is much more difficult. Due to the longer production lead
time. we have to include information with respect to future incoming returns
in the production decision. Thus, in this case, the control problem is more
complicated.

As an heuristic, we again suggest using an (S5,,S,) policy based on two
inventory positions. For the definition, we use the same principle as above: for
the decision with the longer lead time include all outstanding orders in the
inventory position and for the decision with the shorter lead time include only
the orders which will arrive until the new released order comes in. Therefore,
for the production decision the following inventory position is used:

I

L,
) = 1) L) = Zp(’r — 1) + Z r(t —1) . (8.30)

=1 1=1
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For the recovery decision, we use

L, L,

In(7) == In(7) + ) _p(r — (Lp— Ly +4)) + Y r(T —1i) . (8.31)

1=0 1=1

Using (8.30) and (8.31) for the decisions (8.26) and (8.27) leads again
to a much better cost performance compared to a policy with one inventory
position, although both policies lead to nearly the same system-wide stock-
on-hand. The reason for the cost reduction is the partition of the system-wide
stock-on-hand in the two stocking points. The policy presented above keeps
returned items in the recoverable inventory as long as possible while in the
other case most of the items are pushed in the serviceable inventory (see for
details Kiesmiller, 2002). Further, the lead-time paradox, decreasing average
cost with increasing recovery lead time, cannot be observed for the policy
defined by (8.26), (8.27), (8.30), and (8.31).

A mnearly optimal recover-up-to-level can be obtained by

Ch T h'u -
Fr.4+1(5r) = _ (8.32)
Ghi=t h.,_,-
and a-produce-up-to-level by
Ch ety
Fa(Sp) = , (8.33)

f h'.ﬁ'Fd—u (0) |

(:b Il“ 1“Frf-—-u(u)

Thereby, Fa denotes the cumulative distribution function of 3";7 d(7 4 i) —

Y L ulr ).

Extensions

As illustrated above, information plays an important role when deciding about
production and recovery. Many problems arise when there is not much infor-
mation available about returns. On the other hand. additional information
can be quite valuable. For the situation when product returns are dependent
on the demands, which holds, for example, in the case of rented or leased
products, a discussion can be found in Kiesmiiller and van der Laan (2001).
There it is assumed that the number of returns in a period 7 depends on the
number of demands in a previous period 7 — £, where ¢ is some fixed number
of periods. If the probability that an item can be recovered is assumed to be
known, then the number of returns can be estimated using this probability
and the information about the known demands. Using this estimation for SYS-
tem control, it is shown that costs can be reduced compared to the situation
where the dependency is ignored. Further it is illustrated that the variance
of the inventory processes is reduced. Toktay et al. (2000) come to a similar
conclusion. They take a queueing model approach and explicitly model the
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dependence relation between the demands and returns to investigate the value
of return information (see Chapter 3 in this book for further details).

In the models discussed up to now, it is assumed that there is only one
option to recover the returned products. But in many situations an old prod-
uct can be reused in different ways, each yielding different costs and profits. A
model with multiple recovery options, one disposal option, but no additional
production facility is investigated in Inderfurth et al. (2001). Here the problem
is to allocate the limited amount of recoverable products to the different re-
covery options. The structure of the optimal policy is extremely complicated,
due to the inherent allocation problem in the case of scarce recoverables. But
under a linear allocation rule, a fairly simple near-optimal policy exists which
1s characterized by a single dispose-down-to-level and a specific recover-up-to-
level for each reuse option.

The research presented in this section is dealing with remanufactured prod-
ucts which are assumed to be as good as new. In Inderfurth (2002), a model
is introduced which assumes that remanufactured products differ significantly
from new ones and that higher-value new products are oftered to the customer
if there is a stock-out of remanufactured products. For a single-product, single-
period problem with stochastic demands and returns and positive lead times,
the optimal policy is determined. It is given by produce-up-to and recover-up-
to order functions (of the on-hand serviceable inventories) for manufacturing
and remanufacturing.

Other Approaches

A special case of an (5, S, ) policy is examined in Tagaras and Vlachos (2001)
and Vlachos and Tagaras (2001). These publications refer to an inventory sys-
tem with two replenishment modes (corresponding to production and recov-
ery), one of which may act as an emergency supply channel which can deliver
on short notice. An approximate cost model is provided which can be easily
optimized with respect to the decision parameters. This model is used as the
basis for an heuristic algorithm, which leads to solutions that are very close
to the exact optimal solutions determined through simulation.

8.4 Discussion and Outlook

Inventory control for product recovery is very much different from traditional
inventory control due to the highly variable and uncertain nature of the extra
resource: product returns. The development of specialized inventory models
is essential to analyze and understand the complicated dynamics of stochastic
inventory control for product recovery. So far this chapter mainly dealt with
modeling aspects of stochastic inventory control for product recovery man-
agement. Below we list some of the managerial implications of the modeling
efforts.
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Autonomous versus managed recovery

Specialized techniques should simultaneously determine trigger levels and
quantities for production, recovery, and disposal operations given the char-
acteristics of its specific environment, such as procurement lead time, the
form of the product life cycle, and seasonal influences. In this context, we dis-
tinguished between autonomous recovery and managed recovery. Autonomous
recovery (or push recovery) mainly relates to those situations in which minor
operations against limited costs suffice for successful recovery and reuse. Man-
aged recovery (or pull recovery) is appropriate if recovery operations are more
costly and/or setup costs are present so that it is better to stock recoverables
until they are really needed.

Split inventory analysis

In the case of autonomous recovery with only one stocking point (for service-
ables) present, the inventory process can be cleverly split into two components:
the back system and the front system. The front system depends on the de-
mand and the return process, but is independent of the production orders.
The front end can be interpreted as a modified demand process that acts
on the back system. In this way, the inventory system can be viewed as a
standard single-source system with demand process that takes on positive as
well as negative values. In Subsections 8.2.3 and 8.2.4, we showed how this
modelling framework applies to both single-period and multi-period decision
problems. The managerial implication for the mail-order company of Case A
1s that in principle it could use standard techniques to calculate the initial
order sizes. Finding the correct cost parameters, however, requires a thorough
understanding of the underlying model, so this still could be quite problem-
atic.

Naive netting versus sophisticated netting

The ‘sophisticated netting’ of the demand process that is used in the split in-
ventory technique is very much unlike ‘naive netting’ through which a part of
the expected demand rate is cancelled with the expected return rate. The re-
sulting demand process is then input for traditional inventory control models.
This is a very simple approach that unfortunately renders a very poor per-
formance, unless return rates are very low. The variance that is introduced
by the return process is completely ignored, while the variance of the demand
process 1s moved away from its real value. It is therefore not recommended to
use nalve netting in practice unless return rates are very small.

Lead-time effects

In the case that managed recovery is more appropriate, things are more com-
plicated, since we have to take into account non-zero recovery lead times
and/or fixed setup costs for the recovery process. Only for very specific situ-
ations (no setup costs, fixed production lead time equals fixed recovery lead
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time) do we know the optimal structure of the inventory policy. In other
cases, we have to rely on heuristics. Without fixed setup costs and neglect-
ing disposals one can, as an approximation, reduce the multi-period decision
problem to a single-period decision problem that is basically the standard
mnews-vendor’ problem. Crucial for a good policy is that the recovery decision
and the production decision be based on different inventory positions that
include different information sets.

Inventory systems that do include fixed recovery costs have mainly been
modelled in continuous time rather than discrete time. An exact modeling
framework, using the theory of Markov chains, for analyzing a wide variety
of (heuristic) push and pull inventory policies was presented in Section 8.3.2.
[t can be shown that the cost performance of pull policies dominate the per-
formance of push policies for most relevant values of the cost parameters. In
practice, a push policy could still be preferred though, since it is easier to
implement and its performance could be reasonable in the case of long and/or
highly variable recovery lead times. Disposal policies are of importance only
when return rates are close to or exceeding demand rates or products are very
slow-moving.

Value of information

A crucial assumption of most available models to ensure tractability is that
product returns are independent of product demands. In reality, though, there
1s always some dependency relation between product demands and returns.
Knowledge about this dependency relation enables more sophisticated fore-
casts with respect to timing and quantity of product returns. If good forecasts
are available these could be incorporated in the inventory policy and well im-
prove system performance. The issue of forecasting and its impact on inventory
management is studied in Chapter 3 of this book.

From a modelling perspective, it is sometimes convenient to assume that
the time in market is negative exponentially distributed. This way it 1s suf-
ficient to keep track of the total number of products in the market, rather
than all individual products. In de Brito and Dekker (2003), it is shown by
company data analysis that this assumption is not always according to real
behavior. More research is needed to assess the impact of wrongly assuming
exponential lags.

From the massive growth of the literature on inventory control for product
recovery we may conclude that at least the scientific community believes that
this field is worth studying. Due to the complexity of these systems, how-
ever, attention has been limited to single-product, single-component models,
while a remanufacturing company like Volkswagen (dis)assembles and recov-
ers thousands of components. At the same time, there seems to be a lack
of communication between academics and practitioners, considering the very
limited amount of empirical studies that have been conducted up to now.



220 van der Laan et al.

More case studies will undoubtedly help in bridging the gap between theory
and practice.




