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In this paper we consider the two-machine flow shop problem
with varying machine speeds. We present an algorithm which
determines the optimal permutations for all machine speeds in
O (n log n) time, where n is the number of jobs. To achieve this
bound on the running time, the algorithm employs an elemen-
tary dominance relation.

The flow shop problem with controllable machine speeds
has been introduced by Ishii et al.”®! For the case of two
machines and n jobs they proposed an algorithm which
determines the optimal permutations for all machine speeds
in O(n* log n) time. The corresponding problem with fixed
machine speeds is solved in O(n log n) time by the well-
known algorithm of Johnson."! In this paper we show that
the problem with controllable machine speeds can also be
solved in O(n log n) time. To achieve this bound we intro-
duce the notion of dominance and the related notion of po-
tentially critical job, a generalization of the well-known critical
job. Priority queues like 2-3 trees are used in the implemen-
tation of the algorithm to support operations like searching,
deleting and adding elements in O(log n) time.

Besides the two-machine flow shop problem, other sched-
uling environments with controllable machine speeds have
been considered in the literature. Van Vliet'”! presents a
linear time algorithm for the two-machine open shop prob-
lem, and Strusevich!® gives an O(n®) algorithm for the two-
machine flow shop problem with no-wait in process. All the
above mentioned papers deal with two-machine environ-
ments. If more machines are considered the simple flow
shop problem with fixed machine speeds is already NP-
hard. Van Vliet!®! derives some worst-case bounds for a class
of approximation algorithms for the m-machine flow shop
problem with variable machine speeds.

In Section 1 we describe the two-machine flow shop prob-
lem with fixed machine speeds, and Johnson’s O(n log n)
algorithm for this problem. Furthermore, a dominance rela-
tion is introduced and some of its properties are derived. In
Section 2 we describe an algorithm to determine the optimal
makespan as a function of the speed of one machine. This
algorithm makes use of a special set of jobs, the so-called
potentially critical jobs. Some properties of this set of jobs are

derived at the beginning of Section 2. Finally, we discuss
how the algorithm can be implemented to run in O(n log n)
time. Section 3 contains some concluding remarks.

1. The Two-Machine Flow Shop Probiem
In the standard two-machine flow shop problem, two ma-
chines, M; and M,, have to process n jobs. Each job i €
{1, ..., n} has a non-negative processing time 4, on M; and
a non-negative processing time b, on M,. The processing of
job i on M, can only start when its processing on M, is
finished; see Figure 1. Finally, the jobs should be processed
without preemption on both machines.

The objective is to minimize the makespan C,,,, ie., the
completion time of the last job on M,. An optimal strategy to
solve the two-machine flow shop problem is due to Johnson.™!

Johnson’s Algorithm

Partition the job set into two sets L, and L,, where L, := {ilg
< b} and L, := {ila, = b}. Order the jobs in L, according to
non-decreasing processing times on M;. Order the jobs in L,
according to non-increasing processing times on M,. The
optimal job sequence consists of the jobs in L; as ordered
above first, and the jobs in L, as ordered above second. This
order is maintained on both machines. A schedule like this,
where the order of the jobs on all machines is the same, is
called a permutation schedule.

A simple exchange argument proves the optimality of
Johnson'’s rule. The complexity of the algorithm is O(n log n):
partitioning the jobs in L, and L, requires O(n) time; sorting
the jobs in L; and in L, requires O(n log n) time.

Throughout this paper we will assume that all processing
times are positive, because the general problem can be re-
duced in O(n) time to this special case, as follows. If an
instance contains jobs that have operations with zero pro-
cessing times, we solve the smaller problem, where these
jobs are deleted. Afterwards, the jobs with zero processing
time on machine M, are added at the beginning of the
optimal ordering, and the jobs with zero processing time on
machine M, are added at the end of the optimal ordering.
This ensures an optimal solution for the original problem as
can be concluded from the algorithm of Johnson.
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Figure 1. The two-machine flow-shop.

The Critical Job

Let 7 be a permutation that defines a sequence of the jobs,
i.e., m(i) is the position of job i in the schedule defined by .
For a job i we define

2

k m(k)=m(1)

A7(0, i) =

2

k w(k)y=m(n)

ap and B"(i,n+1)= b;.

T

For the computation of C7,,,, the makespan of the schedule
defined by , it is convenient to introduce the notion of a
critical job. A job i is called critical with respect to w if
A™(0, i) + B7(i, n + 1) is maximum among all jobs. If i is
a critical job, then the makespan of the schedule defined
by m is (cf. Monma and Rinnooy Kan!)

Cra=A"0,i)+B™(i,n+1)
=max{A™(0, j) + B"(j, n + 1)}.
/

T
max

The minimum makespan C,_,, equals the minimum of C
over all permutations 7, i.e.,

Cmax = min max{A™(0, j) + B"(j, n + 1)}.
L

A permutation for which the minimum makespan is at-
tained is called an optimal permutation.

Example
i 1 23 4 5 6
a 2 4 6 4 4 5
b, 3 57 4 3 2
L, =1{1,2 3}, L, = {4, 5, 6). An optimal schedule is shown in
Figure 2.

In the example job 3 is the critical job and C
Gy + a5 + by + by + by + b, = 28.

=a +

max

Dominance

The concept of a critical job can be generalized using the
more elementary concept of dominance. For a pair of jobs i
and j, where i precedes j in the ordering defined by m, i.e,
7(i) < 7(j), we define

)y

k w(n)<m(k)y=n(y)

A7(i, j) =

2

k w()=m(k)<w(y)

Consider two jobs i and j with (i) < m(j). Job i is said to
dominate job j with respect to 7 if A™(i, j) < B™(i, j); if
A™(i, j) = B™(i, j), then j is said to dominate i. If i dominates
each job in a set S, then i ig said to dominate S.

The following propositions give two important properties
of the dominance relation. The first proposition describes a
structural property, and the second proposition relates the
dominance concept to critical jobs.

ay and B"(i, ]) = bk'

Proposition 1 (transitivity): Let i, j, k € {1, ..., n}. If i
dominates j and j dominates k, then i dominates k.

Proof: The relative order of m(i), 7(j) and = (k) defines six
cases. We only prove the cases m(i) < m(j) < m(k) and =(j) <
w(k) < 7(i). The other cases can be proved analogously.

Case 1: 7(i) < w(j) < m(k).

Thus, A™(j, j) < B™(j, j) and A™(j, k) < B7(j, k). Now A™(i, k) =
A", j) + A™(, k) < B™(i, j) + B™(j, k) = B"(i, k). Therefore, i
dominates k.

Case 2: 7(j) < mw(k) < n(i).

Thus, A™(j, i) = B™(j, i) and A™(j, k) < B™(j, k). Now A™(k, i) =
A™(j, i) — A"(j, k) = B"(j, i) — B"(j, k) = B"(k, i). Therefore, i
dominates k. ®

By transitivity, the dominance relation defines a linear
ordering on the jobs. Thus, there exists a job that dominates
all others. The following proposition shows the importance
of this job.

Proposition 2: If a job dominates all other jobs, then it is a critical
job.

Proof: Let i dominate all other jobs. We have to prove that
A™(0, i) + B"(i, n + 1) = A™(0, j) + B"(j, n + 1) for an
arbitrary j # i.

Case 1: 7(i) < @(j): A™(i, j) < B™(i, j).

A™(0, i) + B™(, n + 1) > A™(0, i) + A™(, j) — B(, j) +
B™(i, n + 1) = A™(0, j) + B"(j, n + 1).

Case 2: (i) > m(j): A™(j, i) = B™(j, i).

A™(0, i) + B™(, n + 1) = A™(0, i) — A"(, i) + B"(, i) +
B™(i,n+1) = A™0,j) + B"G,n +1). =

2. Varying the Speed of M,

In this section we assume that only the speed of M, may
change. Let 2, denote the processing time of job i on M, when
this machine runs at its “normal speed.” Varying the speed
of M; causes all processing times on M, to change by the
same factor, i.e., the processing time of job i becomes aa, for
some « > 0. The optimal permutation depends, of course, on
the value of . Let C,,, (@) denote the makespan of the
optimal permutation with respect to «. Hence,

Cax(@) = min max{aA™(0, i) + B"(i, n + 1)}.

One can easily verify (cf. Ishii et al.®l) that C__, () is
continuous, piecewise linear and monotonically non-de-
creasing in a. However, in general, C_.,, (a) is neither con-
vex nor concave. Ishii et al. describe an O(n* log n) algorithm
to determine all breakpoints of C,,. (a). Their analysis
implies that the number of breakpoints is O(n?), and they
show that the breakpoints can be used to determine optimal
machine speeds with respect to a general class of cost func-
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Figure 2.

tions. In this paper we derive an algorithm that determines
the breakpoints of C,,,, («) for all positive values of a in O(n
log n) time. It is not difficult to see that breakpoints only
occur at values of « for which the permutation or the critical
job changes. Our analysis implies that the number of break-
points is O(n). To obtain this time bound we introduce a set
of jobs, the so-called potentially critical jobs, that contains
the critical job as one of its elements. The improvement in
the running time is achieved by using the fact that changes
in the set of potentially critical jobs are limited and can be
maintained easily during the algorithm.

In Subsection 2.1 we introduce the notion of potentially
critical jobs, and we derive some results on the changes that
may occur in the set of these jobs. Subsection 2.2 contains a
description of the algorithm, which will be proven to be
correct in Subsection 2.3. Finally, in Subsection 2.4, we dis-
cuss implementation issues.

2.1. Potentially Critical Jobs
In order to be able to determine the makespan of a schedule
it is sufficient to find a critical job, or more precisely, the job
that dominates all other jobs. This job may vary for different
speed factors. For that reason, we introduce the set of poten-
tially critical jobs. This set consists of those jobs that dominate
all their successors with respect to a given permutation =,
and a given value of a. It is denoted by P7. By convention,
the last job in a sequence, i.e., the job i with m(i) = n, is
potentially critical.

The following lemma characterizes P7. For notational con-
venience, we define i, = 0 and 7(0) = 0.

Lemma 3: Consider a set of jobs iy, i,, . . ., ig such that m(i,) <
w(i,,)forr=1,..., R —1,and (i) = n. P} = {i}, i ...,
i} if and only if the following dominance relations hold with
respect to w and «.

(P1) i, dominates i, forr=1,...,R - 1;
(P2) i, dominates {i|m(i,_,) < w(i) < w(i,)} forr=1,..., R

Proof: The fact that condition (P1) is necessary follows
from the definition of P7 as the set of jobs that dominate all
their successors. To prove necessity of (P2), suppose it does
not hold for some r. Let j with 7(i,_,) < =(j) < =(i,) be the
latest job in the permutation 7 that is not dominated by i,.
From the transitivity of the dominance relation it follows
that j dominates all its successors. This is a contradiction to
the fact that j does not belong to Py.

Sufficiency of the conditions (P1) and (P2) follows by
induction from the transitivity property. Let {i}, i,, ..., ig} be
a set of jobs that satisfies (P1) and (P2), such that m(iz) = n.

A schedule.

By definition, ig is potentially critical. Moreover, because of
(P2), the jobs between i _, and iy are not potentially critical.
Next suppose that {i,,,, ..., iz} are the potentially critical
jobs after i, in the sequence defined by . Then, by induction
and (P2), job i, , dominates all the jobs after i,. Thus, by (P1)
and transitivity, i, dominates all its successors. Finally, the
jobs between i,_, and i, are dominated by i, since (P2) holds.
Thus, these jobs are not potentially critical. ®

Note that if PT = {i,, i5, . . ., ig}, then ig is the last job in the
sequence determined by m, i.e., m(izx) = n. Moreover, using
transitivity one can easily show that 7; dominates all other
jobs. Hence, i, is a critical job.

Of course, when « varies, the set PZ may change. How-
ever, as will be shown in the lemmas below, these changes
are limited. For a fixed permutation 7 and each pair of jobs
i and j with m(i) < m(j), we define &™(i, j) = B™(i, j)/ A" (i, j).
This is the switching point for the dominance relation be-
tween i and j, as the following lemma shows.

Lemma 4: Consider a permutation . If i and j are two jobs such
that (i) < w(j), then

i dominates j for « < a"(i, j),
and
j dominates i for a = a(i, j).

Proof: This follows immediately from the definition of
dominance: j dominates i if and only if ®A"(i, j) = B"(,j). ™

This lemma shows that, for a fixed permutation #, and
two values of @, say o, and a, (a; < a,), the set of potentially
critical jobs for @ = a; contains the set of potentially critical
jobs for @ = a,. The following lemma describes at which
values of a the set of potentially critical jobs changes and
how it changes.

Lemma 5: Let 7 be a fixed permutation. Let the set of potentially
critical jobs with respect to a, be Py = {iy, iy, ..., g} Let ap 1=
min{a™(,, i,,1) |r €11, ..., R — 1} and let Q = {i,|a"(i,, i,,1)
= o). Then P] = P7 for all @ € (e, o), and PZ, = PENQ.

Proof: The first part is easily verified using Lemma 4: (P1)
and (P2) continue to hold for @ € [a;, a,), since the domi-
nance relations of the jobs mentioned in (P1) and (P2) do not
change.

It remains to prove that P7 = P7\Q. From Lemma 4, it
follows that P, C P7 . Furthermore, by definition, the jobs in
Q are not potentially critical for a,, i.e., Q N P7, = &. Hence,
we only need to show that the jobs in PZ\Q are in PZ,.
Suppose this is not the case and let i, be the largest indexed
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job that belongs to P7\Q, but not to P7,. Note that i, # ig,
because i = n trivially belongs to P7 . We have a™(i,, i, ,1) >
a,, or equivalently, a,A™(i,, i5.1) < B(is i541)-

Among the jobs in P} with index higher than s, let 7, be
the one with the smallest index. Note that i, is well-defined,
because iz € P7. Also note that, by its choice, i, dominates
each job i with 7(i,) < m(i) < 7(i,).

We are going to prove that i; dominates i,. Using transi-
tivity this implies that i, dominates all its successors. Hence,
i, is potentially critical, which is a contradiction.

If t = s + 1, then it follows from Lemma 4 and a”(i,, i)
> a, that the statement holds. So suppose t > s + 1, then all
potentially critical jobs between s and ¢ are in Q. Therefore,
a™(i, i..,) = a, for all s < r < . This implies a,A"(i, , 4, i;) =
B™(i, ., 1;)- We now have

A" (i iy 1 1) + ATl 4 1, 1) < B7(is i 1) + B 1, 1)

Hence, i; dominates i,.
Concluding, we have that P7 = P7\Q. =

In the remainder of this subsection we present results
concerning the effect of changes of the permutation 7 on the
set of potentially critical jobs.

We view each change of position of a job as a deletion of
that job from a certain position and the subsequent insertion
of that job into another position. We will analyze these two
parts (deletion and insertion) separately. However, the fol-
lowing lemma is relevant for both parts.

Lemma 6: Consider a job k and let « be such that b, = aa,. Let
7 and  be permutations of {1, ..., k— 1, k+1,...,n}and
{1,2, ..., n}, respectively, such that 7 differs from m only in the
omission of k. Let i and j be two jobs not equal to k. Then the
dominance relations of i and j with respect to the two permutations
are equal.

Proof: Consider an arbitrary pair i, j # k with m(i) < 7(j).
If job k is not between i and j in permutation , then clearly
A™(i, j) = A™(i, j) and B7(i, j) = B™(i, j), and the statement holds.
So suppose (i) < (k) < m(j). We show that the values a™(j, j)
— aand a”(i, j) — a have the same sign, which is equivalent to
the statement in the lemma. Using ag, = b;, we obtain

a’(i, j) = o
1 . ..
W(—ij)[B"(l, i) — aA™(i, §)

ﬁ(l )[B (1, j) + by — a( AT, f) + ap)]
Aﬂ(l ])[B (i, j) — aA™(i, j)]
AT, ), -
AT ])[a G, ) — al.

Since both A™(j, j) and A™(i, j) are positive, the claim follows.
L]

The lemma below refers to the deletion step.

Lemma 7: Consider a job k and let a = by/a,. Let & and m be
permutationsof {1, ..., k— 1L k+1,...,njand (1,2,...,n},
respectively, such that 7 differs from  only in the omission of k,

and w(k) # n. Let | be the successor of k in m, i.e.,, m(l) = m(k) +
1, and suppose that a, < a;. Then P} = PMk).

Proof: Let PZ = {iy, iy, ..., iz} with 7(i,) < 7(i,,,) forr =
1,..., R — 1. First, suppose that k ¢ P7. Then, by Lemma 6,
the relations (P1) and (P2) are satisfied for alli, (r = 1, ...,
R) and P7 = P7.

Now suppose that k € P7, and let t be such that k = i,.
Because m(k) # n it follows that # < R. By Lemma 6, it holds
for each pair of jobs that the dominance relation with respect
to 7 is the same as the dominance relation with respect to .
The only relations to be validated are that i,, ; dominates the
jobs in I = {i|m(i,_,) < m(i) < 7 (k)) with respect to 7. If that
is the case, then (P2) holds for 7,,, and thus P2\{k} contains
exactly the potentially critical jobs with respect to #, i.e., P7.

From a, < g, it follows that | dominates each job i € [,
because A7(i, I) = A™(i, k) and B7(i, ) = B™(i, k). The desired
result now follows, since either i,.; = I or i,,, dominates !
with respect to 7, and dominance is transitive. ®

For insertion we have the following lemma.

Lemma 8: Consider a job k and let o be such that b, = aa,. Let
7 and w be permutations of {1, ..., k— 1L, k+1,..., n} and
(1,2, ..., n}, respectively, such that 7 differs from i only in the
omission of k, and (k) # 1. Let | be the predecessor of k in , i.e.,
w(ly = m(k) — 1 and suppose that b, < b;. Then PJ is either P[, or
P U (k).

Proof: Let PT = {iy, i,, ..., i} with w(i,) < 7(i,,,) for r =
1,..., R — 1. Note that | dominates k, since aa, = b, < b,. If
7(k) = n, then i, = I. Hence, iz dominates k with respect to
7. It follows from Lemma 3, Lemma 6, and the transitivity
property that PZ U {k} is the set of potentially critical jobs
with respect to m, i.e., P.

Now suppose that i, € P7 is such that {i|n(i,_,) < a(k) <
m(i,)}. If i, dominates k with respect to m, then it follows
again from Lemma 3, Lemma 6, and the transitivity property
that P7 = PZ,

If k dominates i,, then we claim that PT = PZ U {k}. Since
I dominates k, we have that I dominates i, with respect to .
Because of Lemma 6 we have that ! also dominates i, with
respect to 7. Hence, using (k) # 1, wehavel =i, _, and u >
1. Furthermore, the set {i|m(i,_,) < (i) < m(k)} contains only
k. Using (P1) and (P2) it can easily be verified that PT = P7
U k). =

Note that the lemmas in this subsection do not assume
anything about optimality of the respective permutations
and Tr.

The results above will be used in Subsection 2.3, where we
prove the correctness of our algorithm, which is described in
the next subsection.

2.2. Description of the Algorithm
We assume that the jobs are numbered such that

b,
— =
aq

b2 bn
=...=—.
a, a,
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Moreover, let the permutations p and ¢ be such that

o) S Ap) S - - Sy,

and if a ) = 4,y then p() < p(f + 1) G E (1, ..., n — 1});

b‘,ﬂ} = ba(Z) N, bo(,,),

and if b, = by then o) <o(f + 1) GE(L, ..., n — 1))

Note that this amounts to sorting the numbers b,/4, 4, and
b, and breaking ties properly, which takes O(r log n) time.
As a result of the numbering of the jobs, for any given a, the
sets L; and L, are, respectively, {1,..., k}and {k + 1,..., n},
where k is such that b,/a, > & = b, /4, ,. The ordering in
L, and L, can be deduced from p and o, respectively. In the
sequel, when referring to the optimal permutation, we will
mean this particular permutation.

In our algorithm, we let a increase from a suitable small
value to a suitable large value. Along the way, we keep track
of the optimal permutation and the corresponding set of
potentially critical jobs.

The range [in, ¥max] Of interesting values of a is

o

For values of & smaller than a,;, the optimal permutation is
p,since L, = {1,..., n} and L, = &. Moreover, each job
dominates its successor, and therefore P?, = {p(1), ..., p(n)}
and p(1) is the critical job. For values of « larger than a,,,,
the optimal permutationis o, L, = @, L, = {1, ..., n} and
P2 = {o(n)). Thus, PZ contains only the last job in the
permutation o.

’ n{bx} maxx=l,
, n{al}l mint=1,

min,= 1,
max;-,

Initialization and Stopping Criterion
We start with « equal to a,,,,. Then we increase a gradually
until a,,,, is reached.

The main part of the algorithm consists of a sequence of
iterative steps. At the beginning of such a step we know, for
the current value of a, the optimal permutation and the
corresponding set P] of potentially critical jobs. In the iter-
ative step we increase a to the smallest value for which the
optimal permutation or P changes, and we update the
optimal permutation and P7. This updating process may
consist of several minor iterations. For example, this is the
case when several jobs are deleted from L, and subsequently
inserted into L, at the same value of a. Such simultaneous
“jumps” are handled sequentially. In each minor iteration
one job jumps and we update the perinutation and PZ.
Hence, only at the end of the iterative step we obtain the
optimal permutation.

When referring to P, A(, j), B(i, j) or a(i, j) in the descrip-
tion below, i.e., when we drop the superscript indicating the
permutation and the subscript denoting a, these values refer
to the current permutation and the current . Furthermore,
P denotes the current set of potentially critical jobs, which is
always assumed to consist of iy, i,, ..., ig, such that =(i,_,)
< m(i,) forr =2, ..., R, where 7 is the current permutation.
For convenience, we let S, denote the set {ijm(i,_,) < (i) <
(i)} (r = 1, ..., R). This set contains the jobs that are
scheduled between i,_; and i, where i,_; is not in S,
whereas i, does belong to the set.

Iterative Step

Let 7 denote the optimal permutation with respect to the
current value of a. Let k be maximal such that b,/a, > a.
Thus, L; ={1,...,kland L, = {k + 1, ..., n}. Increase « to

min{g—:, min{e(i, i,,)]r=1,...,R— 1}}‘
Forallr € {1,..., R — 1} for which a = af(i,, i,,,) delete i,
from P and merge the sets S, and S, ;.

Move all jobs j with @ = b,/a, from L, to L,. We will
describe this step in detail for k. If k is not the only job that
has to be moved, the step should be repeated for the other
jobs in order of decreasing index. Job k is added to L, at the
position where it precedes exactly those jobs I € L, with b, < b,.

Denote the permutation after k is moved from L, to L, by
7. Note that it may happen that k moves from L, to L,
without actually changing its position in the permutation,
i.e, m(k) = 7'(k). In that case P remains unchanged. Other-
wise, we first delete k from the permutation 7 and then
reinsert it at its new position.

First phase: k is deleted from the permutation o

Lett € {1, ..., R} be such that k € §,.

If k # i, then we only delete k from the set S,.

If k = i, then k is deleted from both S, and P; if t < R, the
sets S\{k} and S, are merged;

if k = 1,, then i, becomes the critical job.

Second phase: k is reinserted into the permutation 7

If #'(k) = n, then we only add k to P.

Otherwise, suppose that 7'(i,,_,) < 7' (k) < ' (i,) for some
u €{l,..., R}. If i, dominates k, then we only add k to S,;
if k dominates i, then the set S, U (k} is split into two sets:

{il7' (iuzy) < 7' (i) < w' (K)}
and

{ilw' (k) < 7' (i) < ='(i,)},
and k is added to P.

Everytime the set of potentially critical jobs changes, cer-
tain values have to be updated.

o If k # i, leaves S, then A(i,_,, i,) and B(i,_,, i,) are de-
creased by a4, and b,, respectively.

e If k # i, enters S,, then A(i,_,, i,) and B(i,_,, i,) are
increased by 4, and b,, respectively.

e If i, leaves S, then the sets S, and S, are merged, and
Ally_ 1, 1p11) 1= All—q, 1) + Aiq) — a, and B(i;_q, iy4q) 1=
B(i;—q, 1) + B(it/ i) — bx,-

¢ If k enters S,, and k dominates i,, then S, is partitioned
into the two sets {i|7'(i,_;) < #'(i) < #'(k)} and {i|7' (k) <
7' (i) < «'(i,)}. Thus, A(i,_4, k), B(i,_y, k), A(k, i,,) and B(k,
i,) should be calculated.

e If i), the critical job, changes or if job k jumps from a
position before i, to a position after i, then the values A(0,
i) and B(i;, n + 1) must be calculated; this update is
needed to keep track of the value of C,_, (o).
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Note that in each case a constant number of the values
A(i, j) and B(i, j) must be (re)calculated. How these calcula-
tions are implemented efficiently will be shown in Subsec-
tion 2.4.

2.3. Comrectness of the Algorithm

It is obvious that at the end of an iterative step we obtain, for
the increased value of a, the optimal permutation. Hence,
we only have to show that the set of potentially critical jobs
is updated correctly. First note that if the optimal permuta-
tion does not change in the iterative step, then it follows
from Lemma 5 that P is correctly updated. Now suppose
that the optimal permutation does change. It is important to
note that, if necessary, P is first updated with respect to the
old optimal permutation . From that point on the permu-
tation will change several times, depending on how many
jobs jump from L, to L,. Each jump results in the deletion of
a job from the permutation followed by the insertion of that
job into the permutation. After each of these changes, we
update P with respect to the permutation at hand. Using
Lemmas 7 and 8, we are now going to prove that these
updates are correct.

Suppose the permutation changes from 7 to 7' because
job k jumps from L, to L,. Hence, b, = ag, and #'(k) > (k).
Each of the two phases (deletion and insertion) will be
analyzed separately. Therefore, in addition to 7 and 7' we
will also consider the permutation 7 that results from 7 after
deleting k.

First phase: Deletion of k from the permutation 7.

Note that (k) # n, because ='(k) > m(k). Hence, the correct-
ness follows from Lemma 7 if we can show that 2, < g,
where [ is the immediate successor of k in . If | € L,, then
this follows from the definition of L,. If | € L,, then [ is the
first job in L, and k is the last job in L,. Since #'(k) > m(k), it
follows that b, < b,. Moreover, since | € L, we have b, < ag,
and thus ag, = b, < b, < aa, This implies a, < a,.

Second phase: Insertion of k into the permutation 7.
Because #'(k) > m(k), it holds that #'(k) # 1. Therefore,
correctness follows from Lemma 8 if we can show that b, <
b, where [ is the immediate predecessor of kin #'. If | € L,
then b, > b,, otherwise k is inserted into L, before . If | € L,,
then it is the last job in L, (since k € L,). It follows that
m(k) < m(l) since ' # m, and therefore a, < 4,. Since ! € L,,
we also have ag, < b,. If at least one of these inequalities is
strict, then the desired result follows, since ag, = b,. Other-
wise, we have 4, = 4, and aa, = b,. Because of the definition
of the permutation p and the fact that k preceded I in L,, the
first equality implies k < I. However, jobs that jump at the
same value of « are handled in order of decreasing index.
Hence, k > 1, a contradiction.

From the analysis above we conclude that P is updated
correctly every time the permutation changes. It follows that
at the end of the iterative step, we obtain the set of poten-
tially critical jobs corresponding to the new optimal permu-
tation.

We will now turn to the issue of implementing the algo-
rithm efficiently.

2.4. Complexity and Data Structures

As mentioned before, every iterative step consists of one or
several minor iterations. In each minor iteration either one
job is deleted from P while the permutation remains the
same, or one job jumps from L, to L, and P is updated
accordingly. We have seen that |P| can only increase if the
permutation changes. Moreover, in a certain minor iteration
only the job that jumps from L, to L, may be added to P.
Hence, 2|L,| + |P| decreases by at least one in every minor
iteration. Since 2|L,| + |P| < 3n at the beginning of the
algorithm, the total number of minor iterations is bounded
by 3n.

The data structures are chosen such that the amount of
work per minor iteration is O(log n). From the previous
description of the algorithm, the reader can check that the
following operations must be performed a constant number
of times per minor iteration.

a) Calculate A(i, j) and B(, j) for given i and j.

b) Calculate «f3, j) for given i and j.

c) For a given job k find i,_,, i, € P such that =(i,_,) <
w(k) < =(i,).

d) Add ajob to P or delete a job from P.

e) Find i, € P\{i;}, with r minimal, such that a(i,_,, 7,) is
minimal.

We keep track of the current permutation by storing it
implicitly in two 2-3 trees T; and T,. This data structure
supports the operations SEARCH, ADD and DELETE in
O(log n) time, n being the number of leaves (cf. [1]). The trees
T, and T, facilitate the execution of (a) and (b) as follows.
Both trees contain # leaves, numbered 1 to 1, and each node
has two labels. When i € L,, the first label of the leaf
numbered p(i) in T, is equal to a,. The first labels of the other
leaves in T} are 0. Intermediate nodes in T, have a first label
equal to the sum of the first labels of the leaves in the subtree
rooted at the node. Analogously, a leaf o(i) in T, has first
label a, when i € L,, otherwise the label is 0. With these
labels the value A(j, k) can be calculated in O(log n) time for
givenj and k. Thus, A(i,, i, ) for i, € P\{iz} can be calculated
within this time bound. The B(j, k) values can be calculated
analogously by storing the values b, in the same trees, using
the second labels of the nodes. Therefore, the value a(,, i, ;)
can be calculated in O(log n) time for any given i, and 7, ;.
Finally, updating T, and T,, when a given job k jumps from
L, to L,, is easily seen to take O(log n) time also.

The data structures used for the execution of (c), (d) and
(e) are as follows. Consider the pairs (i,, a(i,, i,,,)) for i, € P.
We define three 2-3 trees which contain these pairs as their
leaves. One 2-3 tree is used to store the pairs ordered ac-
cording to the values a(i,, i,.,). A second tree contains the
pairs for which i, € L, N P, ordered according to a,, the
processing times on M;. Analogously, the third tree contains
the pairs for which i, € L, N P, ordered according to b,, the
processing times on M,. This suffices to perform (c), (d) and
(e) in O(log n) time.
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The following theorem states our main result.

Theorem 9: The breakpoints of the piece-wise linear function
Crnax (@) (a € (0, ®)) can be determined in O(n log n) time.

3. Concluding Remarks

In Section 2 the speed of M, was fixed. We may introduce a
speed factor 8 for this machine as well. The problem is then
to minimize a function f(a, B, C,...). However, C_..(a, B)
has the same shape for any fixed 8 as follows from the
formula

Cinaxla, B) = B{min max{8A"(0, i) + B"(i, n + 1)}},

where 8 = a/p. Intuitively this is clear: speeding up both
machines by the same factor reduces C,,,, by the same
factor. Ishii et al.’! show that this property can be used to
find the optimal speeds for cost functions of the form

—_ 1 2 2
f((:maxl Uy, -02) - wlcgnax + wZUlll + w3vg

wy, Wy, w3>0, g1,92=1.

The complexity of the algorithm to determine optimal
speeds and the corresponding optimal schedule with respect
to this class of objective functions has now been reduced to
the same complexity as Johnson’s algorithm. Sorting is an
essential part of Johnson’s algorithm. In fact, it can be shown
that any algorithm that solves the two-machine flow shop
correctly in O(f(n)) time, is capable of sorting numbers in
O(f(n)) time. Therefore, in any comparison-based model, one
may not hope for any improvement on the running time of
the algorithm.

A similar result has been proved by Van Vliet” for the
two-machine open shop scheduling problem. For the no-
wait flow shop the complexity gap lies between n log n and
n°. The O(n log n) time bound for the original problem is
proved by Gilmore et al.,’) whereas the time bound for the
problem with speed-up of machines is given by Struse-

vich.') There is evidence that the gap between the running
times of the constant speed problem and the variable speed
problem can be reduced. However, it is an open problem
whether the gap can be closed.
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