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e develop an algorithm that solves the constant capacities economic lot-sizing problem
with concave production costs and linear holding costs in O(T?) time. The algorithm is
based on the standard dynamic programming approach which requires the computation of the
minimal costs for all possible subplans of the production plan. Instead of computing these costs
in a straightforward manner, we use structural properties of optimal subplans to arrive at a
more efficient implementation. Qur algorithm improves upon the O(T?) running time of an

earlier algorithm.
(Economic Lot-sizing; Complexity)

1. Introduction

In the single-item capacitated economic lot-sizing prob-
lem there is demand for a single item in T consecutive
periods. The demand in a certain period may be satis-
fied by production 1n that period or from inventory that
has been produced in earlier periods. It is assumed that
there is no inventory at the beginning of period 1 and
that no inventory should be left at the end of period T.
Furthermore, capacity constramnts on the production
levels have to be taken into account. The total costs as-
sociated with a production plan depend on the produc-
tion and inventory levels. A fixed set-up cost is incurred
in a certain period whenever production takes place. In
addition, there are production costs, which are a func-
tion of the production level. Finally, there are holding
costs, which are a function of the inventory level at the
end of the period. The objective is to find a feasible pro-
duction plan that minimizes total costs.

In most models that have been studied in the litera-
ture, the cost functions are assumed to be concave or
linear. Under these assumptions, many uncapacitated
models are polynomially solvable. For instance, 1if all
cost functions are linear, then the uncapacitated version
of the above problem is solvable in O(T log T) time (cf.
Aggarwal and Park 1993, Federgruen and Tzur 1991,

142  MANAGEMENT SCIENCE/Vol. 42, No. 1, January 1996

and Wagelmans et al. 1992). Polynomial algorithms also
exist for many other uncapacitated lot-sizing problems
with linear costs (cf Aggarwal and Park 1993 and Van
Hoesel et al. 1994). The uncapacitated problem with
concave production and holding costs 1s solvable in
O(T?) time (cf. Veinott 1963).

For capacitated problems the situation 1s quite differ-
ent. Florian et al. (1980) and Bitran and Yanasse (1982)
have shown that the single item capacitated economic
lot-sizing problem is NP-hard, even in many special
cases. Bitran and Yanasse also designed a classification
scheme for capacitated lot-sizing problems with linear
production and holding costs They use the four field
notation a/f3/v /6, where a, 3, v, and 6 represent the
set-up cost, unit holding cost, unit production cost, and
capacity type, respectively. Each of the parameters a, 3,
and y can take on one of the values G, C, ND, NI, or Z
G means that the parameter follows an arbitrary pattern
over time, whereas C, ND, NI, and Z indicate constant,
nondecreasing, nonincreasing, and zero parameter val-
ues, respectively. é can take on the values G, C, ND, or
NI; in case there are no capacity restrictions, the fourth
field is omitted.

A very successful DP approach to solve the most gen-
eral problem, G/G/G/G, has recently been proposed
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by Chen et al. (1994). We also refer to that paper for a
discussion of other work on NIP-hard versions of the
capacitated economic lot-sizing problem.

With respect to polynomially solvable special cases of
the capacitated economic lot-sizing problem, the follow-
ing results are known. Bitran and Yanasse showed that
ND/Z/ND/NIand C/Z/C/G can be solved in O(T),
respectively, O(T log T) time. Chung and Lin gave an
O(T?) algorithm for NI/G/NI/ND and an O(T*) algo-
rithm for G/G/G/C was presented by Florian and
Klemn (1971). The latter algorithm also solves the more
general constant capacity problem in which the cost
functions are concave instead of linear. Pochet and Wol-
sey (1993) consider the related problem in which mul-
tiple batches of equal capacity are available, each re-
quiring a set-up cost. They solve this problem in O(T")
time

In this paper we will show that when the production
costs are concave and the holding costs are linear, 1t 15
possible to solve the economic lot-sizing problem with
constant capacities n O(T") time Hence, for this case
we improve upon the Florian-Klein algorithm

This paper is organized as follows. In §2 we introduce
some notation. Section 3 contains a description of a
greedy algorithm for solving a basic subproblem In §4
the actual algorithm is described Section 5 contains con-
clusions and some remarks

2. Preliminaries
We will use the following notation.

T: the length of the planning honzon;

C. the production capacity in each period

Furthermore, for each period t € {1, . , T}

d,: the demand in ¢;

x,: the production level in t;

I;: the inventory level at the end of t (I, = 0);

fi the set-up cost 1n ¢,

f;: the unut holding cost in t; and

p:(x,): the production costs in t, a concave function
of x,.

The cumulative demand of a set of consecutive peri-
ods (s, ..., t} (1 = s <t = T) will be denoted by d ,
=2 .4,

Without loss of generality we may assume:

(a) For each period t: 4, = C If this 1s not the case,
we can move the excess demand 1n f to the preceding
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pericd t — 1 without changing the set of feasible solu-
tions

(b) The unit holding costs are all equal to zero. If this
is not the case, then an equivalent problem is obtained
by omuitting the holding costs and redefining the pro-
duction costs as p,(x,) = p,(x,) + £/, h,x, (cf. Wagelmans
et al 1992) Note that we can achieve this only when
the original holding costs are linear.

For riotational convenience, we let ¢f(f) denote the
cost of producing at full capacity in period ¢, i.e., cf(t)
:f! t p.‘(c) (tefl, . ,ThH.

We call production in a period t fractional if 1t is be-
tween 0 and C, i.e., 0 < x, < C. Florian and Klein (1971)
have shown that there exists an optimal schedule such
that between any pair of fractional production periods
there 1s at least one period with zero inventory This
property is often referred to as the fractional production
property. It also holds in case of general capacities. For
any teasible solution, we define a subplan (t,, ;) (1 = ¢,
= t, = T) as a set of consecutive periods, starting with
f, and ending with £,, such that at most one period has
fractional production and I,,., = I, = 0. (Note that our
definition of subplan is more general than the usual def-
mnition 1 which inventories of intermediate periods ¢,

.., 1> - T are required to be strictly positive.) It follows
from the fractional production property that we need to
consider only feasible solutions that can be subdivided
into subplans. This suggests an approach in which we
first determine optimal solutions for all subplans and
then choose the best combination of subplans which
constitute a complete solution In the next section we
present an algorithm for finding an optimal solution for
a given subplan

3. Greedy Algorithm

Consider a fixed subplan (¢, t,) for which we want to
find a minimum cost solution In case d,,,, = KC for
some integer K, any feasible solution has only full pro-
duction periods, namely exactly K. Hence, finding a
minimum cost solution for the subplan boils down to
determining in which K periods full production should
take place In case cumulative demand is not a multiple
of C,1e,1f d, ;. = f + KC for some integer K and f such
that ) < f < C, then any feasible solution has K full
production periods and a fractional period in which the
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Table 1 Data of Example

T 1 2 3 4 5 6 7
d. 0 4 2 1 4 5 2
f 4 7 5 8 7 7 5
p- 3 1 0 1 2 1 1
cf(r) 19 12 5 13 17 12 10

production level equals f. Suppose that we fix the frac-
tional production period, then the problem is again to
determine an optimal set of full production periods. In
the remainder of this paper we will focus on the case in
which the subplan contains a fractional period, because
this problem is clearly at least as hard as the problem
without a fractional period.

We can restrict the fractional production f to periods
t with d,,, = f, since fractional production in later peri-
ods will lead to positive ending inventory 1n period t,,
contradicting the definition of a subplan. Therefore, we
define #,., to be the latest period t such that d,,, = f.
Similarly, there 1s an earliest possible fractional period.
If d,,, > (t — 1)C + f, then the periods t; through t must
be full capacity production periods. Therefore, we de-
fine t,, as the first period t for which 4, , = (t — 1)C
+ f.

Suppose the fractional period is fixed to t € {tmm, . - .,
tmax! and let P(t) denote the corresponding problem of
determining optimal full production periods. We intro-
duce a function A(r) (r € {#, ..., t,}) which denotes
the minimum number of full production periods in
{t, ..., 7} in any feasible solution of P(f):

]

for T <t,

A solution of P(t) is feasible if and only if for any =
€ {t, ..., t;} the number of full production periods in
{t:, ..., T} is at least A(7). The function A is integral
and monotonically nondecreasing for the periods
{t., ..., t — 1} and {¢t, ..., t,}). Moreover, A(t — 1)
= A(t) + 1. Note that A can take on the values {0, ..., K}.
Define for allk € {1, . . ., K} the period w; as the earliest
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period 7 for which A(7) = k holds. The following 1s
obvious

FEASIBILITY CONDITION. A production schedule is
feasible, i.e, I, = Oforall T € {t,, ..., t,}, 1f and only if
for every period w, (1 = k = K), there are at least k
production periods in {t, .. ., w;}.

This period wy is called a choice period because it forces
us to choose a kth full production period in the set
{1,.. , wit. We choose this production period as spec-
ified below.

GREEDY ALGORITHM. Start with the production plan
in which only the frachional production takes place in
period t. This period 1s not available for full production.
The K full production periods are chosen as follows.
Consider the choice periods w, k € {1, ..., K}, in in-
creasing order. The cheapest available period 7 in the
set {t;, ..., wl is chosen as production period, i.e., cf(7)
is minimal among the available periods 7 € {t,, ..., uy}.
If necessary, break ties by choosing the earliest period.

ExaMPLE. We consider subplan (1, 7). The capacity
C 1s five units. The cumulative demand is 18, and there-
fore K = 3 and f = 3. The other data are given in Table
1, where p, denotes the unit production costs in period
T, i.e., production costs are linear.

Let period 4 be the fractional period, i.e., x, = 3. Then
the calculations of the greedy algorithm are shown in
Table 2.

The choice periods are 2, 3, and 6. In this example,
the full production periods coincide with the choice pe-
riods. However, this is not the case in general, as can be
seen by swapping the cost structure of periods 1 and 2.
This would leave the choice periods unchanged, but pe-
riod 1 would be chosen as a full production period in-
stead of period 2. Finally, we note that the total cost of
this planis 12 + 5 4+ (8 + 3 * 1) + 12 = 40.

Table 2 Results of Greedy Algorithm

T 1 2 3 4 5 6 7
d, 0 4 6
d.,—f 4 8 13 15
A(7) 1 2 3 3
choice n y y n n y n
full prod n y y n n y n
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The definition of choice period w, ensures that the kth
full production period is chosen from a set of available
periods which 1s as large as possible. The greedy aspect
of the algorithm 1s that among all these available per-
ods the cheapest one 1s chosen. Clearly, the greedy so-
lution 1s feasible. Its optimahty 15 proved next.

Let us first define an ordering on the feasible solutions
of P(t). Consider two feasible production plans S and
5" and the first full production period in which they
differ If that period 1s earlier in S than 1t 1s in S’, then
solution S 1s called lexicographically earlier than solution
S’ Note that the number of full production periods ts
equal to K mn both solutions.

LEMMA 1. The greedy algorithm constructs the lexico-
graphically earliest optimal production plan for P(t).

PROOF Let S be the lexicographically earhest opti-
mal solution. Suppose it 1s not equal to the solution S,
created by the greedy algorithm

Let w;, .., wy be the choice periods for the greedy
algorithm, and let 7, . . ., 7« be the respective full pro-
duction periods chosen by the greedy algorithm. Let k
be the smallest index such that 7, 1s not in 5. There 1s a
period 7" in {t), . ., wy! that is a production period in
S but not 1n 5, because otherwise S would have less
than k production periods in {t,, ..., w,}, violating the
feasibility condition.

Consider the following cases.

(1) If cf(r") < cf(r}), then this contradicts the fact that
the greedy algorithm chooses the cheapest available
production period for w;.

(2) If cf(r") = cf(r;) and 7’ < 7,, then this contradicts
the fact that the greedy algorithm chooses the earliest
period among the cheapest available ones.

The feasibility condition is also satisfied by the solu-
tion created from S by replacing +' by 7, as a production
period Therefore, we can conclude the following.

(3) If cf(+") > cf(r.), then the solution S can be im-
proved.

(4) If cf(r") = ¢f(r) and 7' >~ 7,, then the solution
S 1s not the lexicographically earliest optimal solu-
tion.

Hence, the assumption that 7’ = 7, always
leads to a contradiction. We conclude that S, 1s equal
to S, the lexicographically earliest optimal solu-
tion. [
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When referring to the optimal solution in the remain-
der of this paper, we will mean the lexicographically
earhiest optimal solution.

By solving P(t) for all t € (tan, - ., tmax), We can
determune the optimal solution for subplan (¢, ;) In-
stead of solving each of these problems separately, we
propose an iterative algorithm in §4. This algorithm
computes not only the optimal solutions of the prob-
lems P(t) (t € [t .. ., tnax}), but also the optimal so-
lutions of the problems defined as follows. Let t € {¢,,,,,

-+, *max), then P(£)" is the problem of finding an opti-
mal schedule when f units become available in period ¢
completely for free, 1.e., without costing any money or ca-
pacity. Clearly, a feasible solution for this problem cor-
responds to a choice of K full production periods. The
only ditference with problem P(t) 1s that period t is now
also available for full production (at cost cf(#)). It 1s eas-
ily scen that an optimal solution of P(#)’ can be found
by applying the greedy algorithm. Note that the choice
pericds for P(t) and P(t)’ are i1dentical. Again, when
referring to the optimal solution of P(¢)’, we will mean
the solution constructed by the greedy algorithm. The
following properties play a key role 1in the algorithm.

LEMMA 2. Lett € {fn, . -+, hnax}. The optimal solutions
of P(i + 1)" and P(t)" differ with respect to the full produc-
tion pertods i at most one period. Moreover, if there is a
difference, then the optimal solution of P(t) 15 obtained from
the optimal solution of P(t + 1) by moving production from
aperiodmm{t,,. . thtoaperodm(t +1,..., t}.

PROOF. We will prove that the solutions produced
by the greedy algorithm in both problems differ in at
most one production period, as described in the lemma.

The problems P(f)" and P(t + 1)’ differ with respect
to function A only in period t.

A(t) = [%] in P(t+ + 1)’ and

Al) = [ic_“ﬁ] n P(t)’.

Thus, A(t) may be one unit less mn P(t)' than
P(t ~ 1)'. This gives a possible difference 1n the set of
choice periods, which can only occur if t 15 a choice pe-
rtod m P(t + 1)', say the kth. In that case, the kth choice
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period in P(#)’ may be a period u with t < u < wy,;.
All other choice periods are identical in both problems.

Clearly, because the first k — 1 choice periods are
identical, the first k — 1 production periods chosen by
the greedy algorithm will be the same for both prob-
lems. If all choice periods are identical in both problems,
or if the greedy algorithm chooses the same production
periods at t and u, then the optimal solutions do not
differ. Hence, we only have to examine the case where
the choices in ¢t and u differ, say 7' is chosen at t in
problem P(t + 1)’, and 7" is chosen at u in prob-
lem P(t)’.

By definition, 7’ is the cheapest available period in
{t;, . ., t}, and 7" is the cheapest available period in
{t;, ..., u}). Thus, 7 # 7' umplies 7" > t and cf(r")
< cf(r').

We show that in the remainder of the greedy algo-
rithm the number of different production periods for
both problems remains at most one, and that the differ-
ence is always as specified in the lemma.

As argued before, the choice periods after u are equal
for both problems. Let those periods be wy.4, ..., Wk,
and consider the production period chosen at w;.;.

(a) Suppose that 7' is the period chosen at w;,; in
problem P(t)’. Because 7’ is the cheapest available pe-
riod up to wy,, in P(t)’, it follows that 7" is the cheapest
available period up to wy.; in P(t + 1)'. Clearly, from
Wi+, on the partial solutions are equal again.

(b) Suppose 7 # 7’ is the period chosen at wy, in
problem P(t)'. 7 is the cheapest available period up to
Wi .1, and therefore 7 > ¢ (since 7’ is the cheapest avail-
able period up to t). Moreover, in P(t + 1)’ it is also the
cheapest available period, unless 7" is cheaper. How-
ever, which of these periods is chosen does not matter.
In both cases the difference with respect to the partial
solution of P(t)' remains one period, either 7 or 7%, and
both are later than t.

If (a) occurs, then it follows immediately that the full
production periods of the optimal solutions of P(#)’ and
P(t + 1)’ are equal. If (b) occurs, the above argument
can be repeated for the later choice periods wy.,, ...,
wy, and the lemma is proved. [

If t 1s not chosen as a full production period in the
optimal solution of P(t)’, then it is clearly optimal
to take the same full production periods as in the
solution of P(#). In case the optimal solutions are not

146

equal, we have the following result, which can be
proved using arguments similar to those in the proof
of Lemma 2.

LEMMA 3. Let t € {fyun, - - -, tmax! @nd suppose that t is
a full production period m the optimal solution of P(t)’. Then
the optimal solution of P(t) differs from the optimal solution
of P(t)' only 1n the fact that the full production in t 15 real-
located

4. Global Algorithm

The global algorithm for solving the lot-sizing problem
consists of two phases. In the first phase we find the
optimal solutions for the subplans. In the second phase
these solutions are used to determine an optimal solu-
tion of the overall problem.

Phase 1: Find the mimimum cost for all subplans
), 1=t =t =T.

Phase 2: Find, in the directed graph with vertices
{0,..., T)and arcs (t; — 1, &), 1 = t; = t, = T, the
shortest path from vertex 0 to vertex T, where the length
of arc (; — 1, t,) is equal to the minimum cost of sub-
plan (t;, £,)

Except for vertex 0, the vertices on the shortest path
found in Phase 2 correspond to the last periods of the
subplans which constitute an optimal production plan.
Given the cost of each subplan, the second phase can be
implemented in O(T?) time, since the graph is acyclic
and the number of arcs is O(T?) Thus, Phase 2 is not
the bottleneck of the algorithm. We will therefore focus
on Phase 1. By considering all possible fractional pro-
duction periods and using the greedy algorithm, a min-
imum cost solution for a given subplan can be found in
O(T?) time. Because there are O(T?) possible subplans,
this implies an O(T*) algorithm for Phase 1. We will
give improvements that lead to an O(T?) implementa-
tion.

4.1, Iterative Algorithm for Phase 1
We show that the minimum cost of each subplan (¢, ¢,)
(1 =t =t, = T) can be calculated in O(T) amortized
time. The algorithm consists of the following steps for
each subplan.

Let fnn. fmax and the optimization problems P(t)’ and
P(t) (t € {tmun, - - -, Emax}) e as defined in the previous
section
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INITIALIZATION. Compute the optimal solution of
P(ty.)". This solution is also optimal for P(#,,,.).

ITERATIONS. For ¢t from t,., — 1 down to t,, do

Step 1 Determine the optimal solution of P(¢)’ from
the optimal solution of P(t + 1)’

Step 2. Determine the optimal solution of P(t) from
the optimal solution of P(t)’.

ExaMPLE (continued) Consider again the subplan
(1, 7) with C = 5, f = 3, K = 3 and the data 1n Table 1.
Note that ¢, = 1 and t,... = 6. Table 3 shows 1n the
second column the choice periods for varying fractional
periods t. The optimal full production periods for P(t)’
and P(t) are shown in the third and fourth column, re-
spectively. The last column gives the optimal value of
P(t). Hence, in the example, 1t is optimal to have the
fractional production in period 4 and full production in
the periods 2, 3, and 6

The row for t = 6 corresponds to the inihalization of
the iterative algorithm. The other rows correspond to
the iterations. For each of these rows, first the solution
in the third column 1s computed from the solution im-
mediately above it. Then this solution 1s used to com-
pute the solution in the fourth column. Note that
Lemma 2 1s reflected by the fact that the difference be-
tween two consecutive rows in the third column 1s at
most one period. Furthermore, the third and fourth col-
umns differ on the same row in at most one period This
reflects Lemma 3. On the other hand, as can be seen 1n
this example, in the fourth column the difference be-
tween two consecutive rows may be two periods This
1s exactly why we introduced the problems P(t)’. In-
stead of trying to derive an optimal solution of P(¢) di-
rectly from an optimal solution of P(¢t + 1), which may
be complicated, we perform two relatively simple steps
involving P(t + 1)’ and P(t)".

We now show how the initialization and the itera-
tions can be implemented in Iinear amortized time

4.2. Implementation of Initialization

The initiahzation can be carried out simultaneously for
all subplans (¢, t,) with t, fixedand t. € {t,, ..., T} by
using the following lemma.

LEMMA 4. Letl =t = t, =T — 1. Consider the optimal
solutions for subplans (t;, ;) and (t;, t» + 1), where the
fractional periods are the last production periods. Then the
set of full production periods n the solution for subplan
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Table 3 Optimal Solutions for Varying Fractional Periods

t Choice At P(i) Cost
6 2 3 5 2 3 5 2 3 5 44
5 2 3 6 2 3 6 2 3 6 42
4 2 3 6 2 3 6 2 3 6 40
3 2 4 6 2 3 6 2 4 6 42
2 ? 4 6 2 3 6 1 3 6 46
1 ¢ 4 6 2 3 6 2 3 6 42

(t,, t2) is a subset of the set of full production periods in the
solution for subplan (t,, t, + 1).

PrOOF. This follows from the fact that the choice pe-
riods for the smaller subplan are a subset of the set of
chowce periods of the larger subplan. If d,,, < kC
= d, ,,+: for some k, then one extra production period
is chosen in the larger subplan. [

From Lemma 4, 1t follows that performing the initial-
1zation for all subplans with first period ¢, has a total
running time that 1s of the same order as the running
time of the initialization for subplan (t,, T) only. The
latter can easily be implemented in O(T?) time. Hence,
the overall algorithm takes O(T”) in the initialization
step.

4.3. Implementation of Iterations

The iterations are implemented for each subplan (t, t.)
separately. Suppose that the optimal solutions of prob-
lems P(t + 1)', ..., P(tm.)’ and the related optimal so-
lutions of P(t + 1), ..., P(t,.,,) have been computed.

Step1  To compute the optimal solution of P(#)’ from
the optimal solution of P(t + 1)’, we first move the f
units from t + 1 to t, while keeping all full production
periods the same. The effect is that I, increases by f units.
Recall that the capacity in period t remains C in P(f)’.
From Lemma 2, it follows that there is at most one pe-
riod in {t,, .., t} from which we have to move produc-
tiontoaperiodin {t +1,..., t;}.

Let the following data be available:

Period u, the earhiest period in {t, . . ., £} such that I,
< C, note that I, = 0.

Forallv € {t, ..., ul: 6, the earliest cheapest avail-
able period in {t, ..., v}

Penod s, the latest period in {t;, ..
< C, by definition I, ., = 0.

., t} such that I _,
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Table 4 Situation for { = 5 Table 5 Optimal Solution of P(5)'

T 1 2 3 4 5 6 7 T 1 2 3 4 5 6 7
¢f(r) 19 12 5 13 17 12 10 cf(r) 19 12 5 13 17 12 10
prod n y y n y n n prod n y y n n y n
[A 0 1 4 3 7 2 0 /, 0 1 4 3 2 2 0
6. 1 1 1 4 4 6 b, 1 1 1 4 4
Y- 5

Forallr € (s, ..., t}: vy, the most expensive produc-
tion period in (s, . ., r}.

Note that moving production from a certain period
to a later period reduces the inventory of the original
production period and that of each intermediate period
by C. Hence, feasibility conditions restrict us to moving
production from a period in {s, ..., t} to a period in
{t +1,. ., ul. We will perform this move only if the
resulting plan really 1s cheaper, 1.e., if cf(y,} > cf(4,).
Note that if this holds then 8, > t; otherwise this
move would already have been profitable in problem
P(t+1)".

Suppose we actually move production from v, to §,.
Then we update u by setting 1t equal to ¢. To see that
this is correct, note that, if production 1s moved, then I,
< C + f, because otherwise the move would have been
feasible (and profitable) in P(¢ + 1)’. Moreover, if cf(vy,)
< cf(dy), or if cf(y,) = cf(6;) and y, < §,, then we set &,
=y, for 7 € [y, ..., t}. We do not need the values of s
and v, (r € {s, ..., t]) in Step 2. Therefore, these values
are not updated between Steps 1 and 2 of the same pe-
riod t

ExaMPLE (continued). Consider the iteration for ¢
= 5. The full production periods in the optimal solution
of P(6)’ are 2, 3, and 5. Table 4 shows the situation just
after moving the f units to period 5. We see that u = 6,
because, starting at period 5, 1t is the earliest period with
an inventory level below C = 5. Similarly, the latest pe-
riod before period 5 with an inventory level less than C
18 period 4. Therefore, s = 5.

Because cf(5) > cf(6), we move production from pe-
riod 5 to period 6. The updated situation is shown in
Table 5. We now have u = ¢t = 5. Because cf(5) > cf(4),
the value of 65 does not change.

Step 2. If t is not a full production period 1n the op-
timal solution of P(t)’, then the optimal solution of P(#)
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follows immediately. Otherwise, we use Lemma 3 to
compute the optimal solution of P(f) from the optimal
solution of P(t)’, i.e, we only move the production of
C units from period ¢ to another period. Due to feasi-
bility restrictions the latter period must be chosen in
{t:, ..., ul.Clearly, 1t 1s optimal to take the cheapest one
available, ie, é,.

EXAMPLE (continued) Table 6 shows the situation at
the beginning of Step 2 1n the iteration for t = 3, 1.e, the
optimal solution of P(3)" Note that u = 5. Because pe-
riod 3 is a production period, we replace it by period 45
= 4 to obtain the optimal solution of P(3).

UPDATING THE DATA IN SUCCESSIVE ITERATIONS.
Consider the 1teration for period t — 1. Starting with the
optimal solution of P(t)’, we first move the f units from
t to t — 1. This increases the inventory of period t — 1
by f units We update u correctly by setting it equal to
t—1ifl,_, <C.

It can easily be verified that, unless t — 1 < s, there
1s no need to update s if production has not been moved
in Step 1 of the preceding iteration. Furthermore, we
have the following result.

LEMMA 5. Suppose that i Step 1 of the iteration for
period t, production 1s moved from a pertod in (s, ..., t} to
a pertod m {t +1,..., u}. Then it 15 not necessary to check

Table 6 Situation for t = 3

T 1 2 3 4 5 6 7
cf(r) 19 12 5 13 17 12 10
prod n y y n n y n
/. 0 1 7 6 2 2 0
6, 1 1 1 4 4
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whether production should be moved in Step 1 of the itera-
tions for pertods {s, ..t — 1}

PROOF. Suppose that a full production period 1s
moved in Step 1 of the iteration for t from a period 1n
{s, . ,t}toaperiod after ¢. Note that this move reduces
the inventory of t to a level below C Suppose that the
lemma 1s false and there are periods n (s, i — 1}
for which 1t 1s profitable to move a full production pe-
riod m Step 1. Consider the first iteration for which this
happens and let 7 be the corresponding period A prot-
itable move with respect to 7 consists ot moving full
production from a period in {5, , 7} to a pertod after
7, but not later than t. This move would also have been
a feasible and profitable one with respect to the solution
given at the start of the iteration for t. As this was the
optimal solution of P(t + 1)’, we have derived a con-
tradiction Hence, the lemma holds [

This lemma justifies that, after a move has been per-
formed in Step 1, we do not perform this step until we
reach the iteration for s — 1 Therefore, updating s 1s
done correctly as follows At the beginning of the ater-
ation for t ~ 1 we check whether t — 1 < s If this s the
case, then we determine the new value of s and we com-
pute the periods vy, forall r € {s, ,t— 1}

Figure 1 summarizes how the data are mitialized and
updated

Let us now turn to the complexity of the 1terations.
We show that to compute and update the data during
the 1terations, each period 1s considered not more than
a constant number of times. This implies the desired
result that the iterations for a given subplan require in
total O(T) time

Initally, for t = f,,.«, we have u = t,,,, and the in1tial
values of 6, are computed for all v € [t,, ..., u} simul-
taneously by considering v in increasing order. The 1mu-
tial value of s is determined by considering the periods
in decreasing order, from ¢, onward, until the first
peniod with inventory level less than C 1s found The
values of y, forr € {s, . ., t,.x} are computed by con-
sidering the elementsin {s, . ,t,..} inincreasing order.

Updating u1s done by checking I, < C for each f dur-
ing the algorithm. Updating .. is done only 1f a move 15
performed 1n Step 1. In that case, we update the value
for the periods {y,, . ., t}, where y, = 5 Step 1 will be
performed again only for t < s, and thus the mentioned
values will not be updated for a second time

MANAGEMENT SCIENCE/Vol 42, No 1, January 1996

Figure 1 Overview of Algorithm

Initialization

solve P(t + 1)

U = by compute o, (vE L, .. , u})
determine s; compute v, (r € {s, ., tna))
moved ='no’

lterations
for t = .. - 1 downto t,, do
take solution of P(t + 1)’; move funits from ¢ + 1to ¢
if4 - Cthenu.= t
if t < sthen
determine s; compute v, (re{s, . , )
moved ='ng’
if moved="no’ then (Step 1)
move production if profitable — solution of A(t)’
if production is moved then

moved -'yes’
u="1
update & (r € {y, ., t})

perform Step 2

Each time s 1s determined we move in decreasing or-
der from ¢ to the first period for which the starting in-
ventory 1s less than C This step will not be repeated for
any t = s, so the check takes place for each period at
most once. Finally, we compute y, forr € {s, .., t} just
after s has been determined, by considering the ele-
ments in {s, ., t} in increasing order Again, each pe-
riod will only be considered once

5. Concluding Remarks
We have presented an O(T") dynamic programming al-
gorithm for solving the economic lot-sizing problem
with constant capacities, concave production costs and
linear holding costs Our algorithm 1s an improvement
over the algorithm of Florian and Klem by a factor T.
However, the latter algorithm also solves the more gen-
eral problem in which the holding costs are concave.
For our approach the linearity of the holding costs
seems essential It allows us to formulate an equivalent
problem without holding costs, for which it is easy to
compute the change 1n costs when a full production pe-
riod 15 moved.

The improvement in runmng time of our algorithm
1s based on the 1dea that for a given subplan many
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similar subproblems have to be solved The algorithm
exploits the fact that the optimal solutions to these prob-
lems are partially equal. The only possible way in which
a further improvement could be achieved seems to be
the exploitation of relations concerning the positioning
of optimal fractional periods in closely related subplans.
Until now, we have not been able to identify such re-
lations.

' The authors would Iike to thank two anonymous referees and an
associate editor of Management Science for their comments on an earher
draft of this paper
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