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Abstract 

This paper compares classical expected utility with the more general rank-dependent 

utility models. It shows that the difference between the sure-thing principle for preferences 
of expected utility and its comonotonic generalization in rank-dependent utility provides the 

exact demarcation between expected utility and rank-dependent models. 
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1. Introduction 

The comonotonic sure-thing principle is a necessary condition for rank-depen- 
dent utility. This paper shows, for all presently existing axiomatized versions of 
rank-dependent utility, that they reduce to expected utility if and only if the 
comonotonic sure-thing principle can be strengthened to the sure-thing principle in 
full force. What may be more surprising than the result itself, to most readers, is 
that the proof is not elementary, but rather complicated, and depends on the 
structural conditions of the axiomatization of rank-dependent utility that is adopted. 
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What may be most surprising, is that the result does not hold true for rank-depen- 
dent utility in general. This will be demonstrated by an example based on 

techniques from qualitative probability theory. Therefore, the above clause ‘for all 

presently existing axiomatized versions’ is essential. The example also illustrates 

some pitfalls in the empirical interpretation of axiomatizations. 

The result of this paper can be interpreted as follows for all presently existing 

versions of rank-dependent utility: the generalization of rank-dependent utility 

theories in comparison with expected utility lies precisely in the relaxation of the 

sure-thing principle to the comonotonic sure-thing principle. That is, the difference 

between the comonotonic sure-thing principle and the sure-thing principle is the 
critical empirical demarcation between rank-dependent utility and expected utility. 

The result of this paper has been used in an experiment by Wakker et al. (1994) 

to critically test the generalization that rank-dependent utility provides in compari- 

son with expected utility. The test was done for the context of risk with given 

probabilities. The findings of the experiment are negative, i.e. they suggest that the 

rank-dependent utility model in general does not provide an empirical improve- 
ment over expected utility, and that specified forms of rank-dependent utility must 

be found that better capture psychological processes in human decision making. A 

test for the context of uncertainty is being prepared (Fennema and Wakker, 1995). 
Finally, it is emphasized that the sure-thing principle and its comonotonic 

weakening serve to distinguish between expected utility and rank-dependent 

utility, but do not have an identical role in distinguishing between these models 
and other models. Thus, it is well-known that the sure-thing principle in isolation 

does not characterize expected utility. Chew and Wakker (1993) characterize the 

comonotonic sure-thing principle and show that it does not imply rank-dependent 

utility. 

2. Definitions and the main result 

(S, Z) denotes the state space endowed with a sigma-algebra. Elements of 2 
are events. (F’, A) is the outcome space endowed with a sigma-algebra. 9 

denotes the set of (simple) gambles, i.e. measurable functions from S to ‘8 that 

take only finitely many values. The term gamble is chosen here instead of ‘act’ to 
emphasize that the results of this paper hold as well for decision under risk as for 
decision under uncertainty (these models are defined below). 

The theorems of this paper, when formulated only for the set 9 of simple 
gambles, immediately imply the same results for larger sets, hence the analysis is 
restricted to simple gambles. By 2 we denote a binary, ‘preference,’ relation on 
ST. We assume throughout that 2 is a weak order, i.e. it is complete (for all 
gambles f, g, fk g or g &f) and transitive. Notations + , s , + , and N are as 
usual. 2 is triuial if f& g for all f, g. Preferences on ‘8 are derived from 
preferences over constant gambles and are denoted by the same symbols. An event 
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is null w.r.t. a set E CF of gambles if all gambles f, g E E that agree outside 

the event, are indifferent. The opposite of null is non-null. If E = 9 then <on E’ 
is usually omitted. 

W is a capacity if W: 2 --, [O,l], W(g) = 0, W(S) = 1, and A 3B j W(A) 2 
W(B). For a function cp: S + Iw, the Choquet integral of cp with respect to a 

capacity W is defined as 

A function V represents 2 if V: .Y -+ aB and f 2 g e V(f) 2 V(g). Rank-de- 
pendent utility (RDU) holds if there exist a capacity W and a utility function U: 
G?‘+ [w such that >- is represented by 

f * j-+w({ s~s: U(f(s)) >r})dr 

+j-_[W({sES: U(f(s))k~})-1] dr. (4 

The above value, the Choquet integral of U 0 f over S with respect to W,is the 

rank-dependent utility of f. Expected utility (EU) is the special case where W is 
additive. Under EU, 2 satisfies the sure-thing principle, i.e. f 2 g = f’ 2 g’ 
whenever S can be partitioned into events I and R such that f = g and f’ = g’ on 

I, and f=f’ and g=g’ on R. 
A set of gambles F is comonotonic if there do not exist f, g E F and states s, 

t such that f(s) + f(t) and g(s) <g(t). Under RDU, 2 satisfies the comono- 
tonic sure-thing principle, i.e. the sure-thing principle holds within comonotonic 

sets of gambles. 
Decision under risk is the special case where a probability measure P is given 

on (S, I: 1, and gambles that generate the same probability distribution over %? are 

indifferent. In the literature, gambles are then identified with the probability 

distributions over $3’ they generate. For the purpose of this paper it is more 

convenient to keep the notations with the state space also for decision under risk. 

The general case, where a probability measure P on 6, 2) need not be given, is 

called decision under uncertainty. Thus decision under risk is a special case of 
decision under uncertainty. Under common continuity assumptions, the sure-thing 

principle is equivalent to other formulations of ‘independence’ conditions in the 
context of risk. This has been elaborated in Fishburn and Wakker (1992). 

We assume without further mention that, for decision under risk, stochastic 
dominance holds, i.e. f 2 g whenever, for each (Y E g’, P( f( s) 2 a> 2 P( g(s) 2 
L-X). Wakker (19901 discussed in detail the relation between decision under risk and 
under uncertaint. It was proved there for decision under risk that, under RDU and 
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given stochastic dominance, there exists a nondecreasing function PC: [O,l] + [O,l] 
such that W = cp 0 P. The special case where cp is the identity function is EU. 

Some comments on terminology are in order. In the literature, the term 
Choquet expected utility is commonly used instead of rank-dependent utility for 
decision under uncertainty. The term rank-dependent utility is used for decision 
under risk. Although Choquet expected utility is the more general of the two, still 
the union of the theories is usually described as rank-dependent utility. This is 
similar to the convention, also adopted in this paper, of using the term expected 
utility to describe the union of subjective expected utility (expected-utility-for-un- 
certainty) and expected-utility-for-risk. This paper simply uses the terms rank-de- 
pendent utility and expected utility both for risk and for uncertainty. We are now 
ready to formulate, informally, the main result of this paper. 

Observation 1. Suppose that rank-dependent utility holds, in accordance with one 
of the presently existing axiomatizations. Then: 

(i) The comonotonic sure-thing principle holds. 
(ii) The sure-thing principle holds if and only if expected utility holds. 

In the following example an RDU model is presented in which the sure-thing 
principle is satisfied, but EU is still violated. The example demonstrates that the 
above observation is not trivial and that the restriction to any ‘presently existing 
axiomatization’ is essential. The example adapts a famous example of Kraft et al. 
(1959) from qualitative probability theory to the present decision context. The 
proofs described are also adaptations of proofs from Kraft et al. Section 5 
discusses empirical implications of the example. Examples that, like Example 2, 
show differences in axiomatizations between finite and infinite models, are 
presented in Krantz et al. (1971, Section 9.1) and Wakker (1988, Section 7) for the 
context of additive conjoint measurement. 

Example 2. Suppose S = Is,, . . . , ss} and g = {O,l}. Gambles are denoted as 
fivetuples of O’s and l’s, e.g. (l,O,O,l,l) assigns 1 to sr, sq, and s,, and 0 to s2 
and sg. RDU is assumed to hold with U the identity function and the capacity W 
defined as follows: W(g) = 0, W(s,) = l/31, W(s,) = 2/31, W(s,) = 3/31, 
W(s,, s2) = 4/31, W(s,, SJ = 5/31, w(s,) = 6/31, w(s,, SJ = 7/31, W(s,, 
sj) = 8/31, W(s,) = 9/31, WCs,, sq, SJ = 10/31, w(s,, s,) = 11/31, w(s,, 
r4) = 12/31, WC+ ss> = 13/31, WCs,, s2, s4) = 14/31, W(s,, ss> = H/31, 
W(sI, s3, s4) = 16/31, W(s3, s5) = 17/31, W(s,, s3, s4) = 18/31, W(s,, s2, 
s5)= 19/31, WCs,, s3, s5)= 20/31, W(s4, ss)= 21/31, WCs,, s2, sg, s,> = 
22/31, W(sI, s4, s5) = 23/31, WCs,, s3, s,) = 24/31, WCs,, s2, s3, s5) = 25/31, 
W(s,, s4, sg) = 26/31, W(s3, s4, ss> = 27/31, WCs,, s2, s4, s5) = 28/31, W(sI, 

s39 s4, s5) = 29/31, WCs,, s3, s4, s5) = 30/31, W(S) = 1. 
It will be obvious that W is a capacity, and RDU implies the comonotonic 

sure-thing principle. Also, the sure-thing principle holds but, unfortunately, I am 
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not aware of an elementary proof. The only proof that I can provide is by simply 

verifying all cases. The principle is as follows: first one drops from the preferences 
implied by the above assumptions all gambles that assign outcome 1 to sr, so that 

only the gambles remain that assign outcome 0 to s,. The ordering between those 
remaining gambles is not affected if everywhere the outcome 0 for state s1 is 

replaced by outcome 1. Thus, it follows that preferences are not affected if a 

common outcome for the first state is replaced by another common outcome. The 
same thing is similarly demonstrated for the other four states. Finally, if a 

preference is not affected by replacing any single common outcome, then, by 

repeated replacements, preference is not affected by replacing any number of 
common outcomes by other common outcomes. That is, the sure-thing principle 

holds. 

Next, I demonstrate that no EU representation exists. Suppose such a represen- 
tation would exist, with additive probability measure P. The utility can always be 

taken as above. It can be seen that Savage’s P4 condition (guaranteeing existence 

of a ‘more-likely-than’ relation) is satisfied in this example, as well as the 

‘tradeoff consistency’ axiom that was used in Wakker and Tversky (1993) to 

axiomatize expected utility. But a contradiction can still be derived for EU as 

follows. Consider the following four preferences: (l,O,l,O,O) < (O,O,O,l,O), 

(l,O,O,l,O) < (O,l,l,O,O), (O,O,l,l,O) + (l,O,O,O,l), (0 IO 0 1) X (1,0,1,1,01. , 9 9 9 
Under EU, the EU values of the gambles should satisfy the corresponding 

inequalities. However, the EU values of the left four gambles sum to the same as 

the EU values of the right four acts, i.e. both sums are 2 PCs, 1 + P(s,) + 2 PCs,) 

+ 2P(s,) + P(s,). This gives a contradiction. 

We conclude that in this example RDU holds, along with the sure-thing 
principle (and also Savage’s P4), but no EU representation exists. 0 

The above example considered a finite structure. In all presently existing 

derivations of RDU, infinite structures have been used, with a continuity assump- 

tion that either concerns the outcome space or the state space. The next two 

sections prove Observation 1 for those two cases. 

A sign-dependent generalization of RDU was considered by Starmer and 

Sugden (19891, Lute and Fishbum (19911, Tversky and Kahneman (19921, and 
Wakker and Tversky (1993). In these sign-dependent generalizations, the comono- 

tonic sure-thing principle still holds true. It can be proved that strengthening the 

axiom to the sure-thing principle implies a special case of these theories that was 
called ‘sign-dependent expected utility’ in Wakker and Tversky (1993). In words, 

the theory entails that a person can adopt different capacities for gains than for 
losses, only now these capacities must both be additive. Wakker and Tversky 
(1993) pointed out that this theory does not seem to be of interest, i.e. sign-depen- 
dence does not seem to be of interest when the capacities must be additive. 
Therefore, I do not elaborate on the claims of this paragraph. 
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3. The utility range contains an interval 

This section formalizes and proves Observation 1 for the case where the 

outcome space satisfies a richness condition. It suffices that the range of utility 
contains an interval. The following theorem is the generic result. 

Theorem 3. Suppose that there is a partition of the state space with at least three 
non-null events, and that U(g) contains a nondegenerate interval. Suppose that 
rank-dependent utility holds. Then the comonotonic sure-thing principle holds. 
Expected utility holds if and only if the sure-thing principle holds. 

Proof. It is obvious that the comonotonic sure-thing principle holds and that EU 

implies the sure-thing principle. Hence, we assume the sure-thing principle and 

derive EU. The result is first proved for a finite state space {sl,. . . , s,J. Let 

I c U(g) be a nondegenerate interval. Consider the set ST’ of functions from S to 

I and the binary relation 2 ’ on 9’ induced by 2 on 9. If different gambles g, 

h from F induce the same function U 0 g = U 0 f = f’ E F’, then g and h are 

indifferent, so 2 ’ is well-defined. For simplicity of notation we omit primes and 

call the functions ‘gambles’. Thus we have, in fact, reduced the problem to the 
case where %? = I and utility is linear. 

The preference relation is a weak order that is continuous, i.e. for each gamble 

f the sets {g:g 2 f) and {g:g s f} are closed. Also, there are at least three 

non-null states. Hence the sure-thing principle implies that there exists a represen- 

tation of the form f + Cy= II$(xj> with all Vj’s continuous and unique up to scale 
and location (Debreu, 1960). 

Now consider the ‘comonotonic cone’ K = {f E F: f(s,> I . . . < f(s,)}. If a 

state sj is non-null within this cone then, by the RDU representation, 2 is strictly 

increasing with respect to the jth coordinate, so that y is strictly increasing. If a 

state sj is null within this cone, then L$ must be constant. This shows that a state is 

non-null if and only if it is non-null within K. Hence K has at least three non-null 

states. 

By the uniqueness result in Wakker (1993a, Theorem 3.2) the additive repre- 
sentations provided by RDU and by <I$);= 1 differ only by scale and location. 

(Note here that the values of extreme arguments described in Wakker’s, 1993a, 

theorem can be set equal to the RDU values.) This shows that each l$ is affine and 
can be taken as pi X identity. Thus the representation f H &‘!! 1 l$(xj) provides 
an expected utility representation on 9, which is a particular form of RDU. By 
standard uniqueness results for RDU (see, for instance, Wakker, 1989a, or 1989b, 
Chapter VI) the capacity in an RDU representation is unique. Therefore, the 
capacity W is the same as the additive probability measure of the expected utility 
representation f c) CY, ,Vi(xj), and the RDU representation is necessarily an EU 
representation. 

The result for general state spaces now follows by restriction to finite partitions. 
q 
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Remark 4. Theorem 3 can be extended to the ‘algebraic setup,’ where the range of 
utility does not necessarily contain an interval, but satisfies the following solvabil- 
ity condition: if gamble f is identical to gamble h except for one nonnull event, 
and f 2 g 2 h, then the outcomes of f conditional on the nonnull event can be 
replaced by one outcome such that indifference with g results. 

Proof Instead of the theorem of Debreu (1960) .that was invoked in the above 
proof, now Theorem 6.13 of Krantz et al. (1971) is used; instead of Wakker 
(1993a, Theorem 3.2), now Wakker (1991a, Theorem 3 and Corollary 6) is used; 
and instead of Wakker (1989a,b), Wakker (1991b, Theorem 5) is used. (Here the 
values of extreme arguments can be set equal to the RDU values.) 0 

Theorem 3 can be applied, for the context of decision under uncertainty, to 
Schmeidler (1989) ’ and Wakker (1989a,b, Chapter VI, 1993~). The result of 
Remark 4 can be applied to Wakker (1991b), Nakamura (1990, 19921, and Chew 
and Karni (1994). 

All characterizations for decision under risk known to the author, with the 
exception of Nakamura (1992), imply that the range of the utility function is an 
interval; Nakamura (1992) assumes solvability. Thus, the above result can be 
applied to the mentioned works. They can also be derived from Theorem 6 below. 
Alternatively, as pointed out above, the sure-thing principle implies the mixture- 
independence condition under common continuity conditions (Fishburn and 
Wakker, 1992). Then EU follows immediately from classical results. Thus, for 
risk, the result below can be obtained by elementary means. For completeness 
sake, and to clarify the empirical demarcation between EU and RDU, we have 
nevertheless incorporated the case of risk in the corollary below. The main 
motivation for this analysis is not the mathematical results by themselves, but 
rather the demonstration of what is at the heart of the rank-dependent generaliza- 
tion of EU, and thus how the rank-dependent generalization can be appreciated 
and tested. 

Corollary 5. Rank-dependent utility with the sure-thing principle reduces to 

expected utility, in the following works. 

Decision under uncertainty: Schmeidler (1989); Wakker (1989a, b, 1991 b, 

1993~); Nakamura (1990, 1992); Chateauneuf (1991); Chew and Karni (1994). 

Decision under risk: Quiggin (1982); Yaari (1987); Allais (1988); Chew 

(1989); Segal (1989, 1990, 1993a,b); Chew and Epstein (1989); Wakker (1991 b, 

1993c, 1994); Chateauneuf (1990, 1991); and Nakamura (1990, 1992). 

’ Schmeidler (1989) assumes that outcomes are probability distributions over prizes. These can be 

mixed and so can their utility values, implying that the utility range is an interval. 
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Quiggin (1982) was supplemented in Quiggin and Wakker (1994); Segal(1989) 

was criticized in Wakker (1993b) and corrected in Segal (1993a); Chew and 

Epstein (1989) was supplemented in Chew et al. (1993). The rank-dependent 

theory developed in Lute (1988) deviates in many respects from the classical 
paradigm. For one thing, it explicitly involves higher-order gambles and a joint 

receipt operation on gambles. When the theory is modified to fit into the paradigm 

of this paper, i.e. when attention is restricted to first-order gambles, then the result 

of Remark 4 can be invoked, because Lute uses solvability axioms as technical 

conditions. Similarly, the above result can be applied to the multi-stage setups of 

Segal (1990, 1993b). 

4. Richness of the events 

Savage (1954) derived his expected utility model by imposing a richness 
assumption on the state space. His result was adapted to RDU by Gilboa (1987). 

For decision under risk, where all probabilities are assumed available, the richness 

condition for the state space adopted below is satisfied for RDU as soon as the 
probability transformation function is continuous. This holds for all contributions 

in the literature, except Wakker (1994) and Nakamura (1992). The latter were 

dealt with in Corollary 5 above. The richness condition requires that the capacity 
be solvable, i.e. for every A c C and every p between W(A) and W(C) there 

exists A c B c C such that W(B) = p. (This condition was introduced by Gilboa, 

1987, who used the term ‘convex-ranged’.) 

Theorem 6. Suppose that rank-dependent utility holds, with W solvable. Then the 

comonotonic sure-thing principle holds. W can be taken additive if and only if 2 

satisfies the sure-thing principle. 

Proof. Suppose that the sure-thing principle holds. We derive additivity of W. 

(The other implications in the theorem are straightforward.) We only use RDU on 

the simple gambles. If %’ contains only one indifference class then U is constant, 

2 is trivial, and so is the theorem. 
If g contains exactly two indifference classes, then we are in fact dealing with 

comparative probability theory. That is, we define 2 over events by A 2 B 

whenever a gamble assigning a better outcome to A and a worse outcome to S\A 
is weakly preferred to the same gamble with B instead of A. This ordering of 
events is represented by the capacity W, hence Savage’s P4 axiom (consistency of 
this ordering of events) follows. The sure-thing principle is Savage’s P2 condition. 
From the sure-thing principle it follows that an event is null if and only if it is null 
within each maximal comonotonic set, and now Savage’s P3 (monotonicity in 
outcomes) is easily derived from RDU. P5 (nontriviality) follows from the 
existence of two nonindifferent outcomes and P6 (fineness of events), finally, 
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follows from solvability. We have established all conditions that were used in 

Savage (1954) to obtain an additive personal probability to represent the compara- 
tive probability relation over events (for that, his P7 axiom was not used). 2 

Assigning a utility of one to the highest outcome indifference class and a utility of 
zero to the lowest indifference class, now gives an EU representation for prefer- 

ences over gambles. 

In the remainder of the proof we assume that there are at least three nonindif- 
ferent outcomes, say (Y > p + y. Only these three outcomes will be used in the 

derivation of additivity of W. Say U( (Y) = 1, U( p) = 0, U(y) = - r for some 

r> 0. For simplicity of notation, outcomes are identified with utilities. 

For additivity of W we must show that the ‘decision weight’ that an event B 

contributes to a disjoint event A, i.e. W( A U B) - W(A), is independent of A, so 

is identical to W(B): 

W(AUB)-W(A)=W(B). (3) 

We use notations such as (S\B + p, B + a) to denote the gamble that assigns 

outcome LY to event B and p to event S\B. Furthermore we use the notation 
A(C, 0) = W(C U 0) - W(D); implicit in this notation is that C and D are 

disjoint. A(C, D) is the decision weight of event C in the rank-dependent formula 
if event D yields better outcomes than event C and event S\(C U D) yields 

worse outcomes. For the proof of Eq. (3) we distinguish a number of exhaustive 
(not mutually exclusive) cases. 

Case 1. W(B) = 0 or A(B, A) = 0 or W(A) = 0 or h(A, B) = 0. 

Because of symmetry in A and B, we need only consider the cases W(B) = 0 

and A(B, A)=O. W(B)=0 if and only if (S\B-+P, B + a)-(S\B -+p, 

B + p). The ind’ff 1 erence holds, by the sure-thing principle, if and only if 

(s\(A’uB) jp, B+cx, A’++(S\(A’UB)+p, 

B-+/3, A’+a), 

for all A’ disjoint from B. Equivalent to this indifference is the equality 

A( B, A’) = 0, (4) 

for all A’ disjoint from B. By the sure-thing principle, the above indifference 

holds for all A’ disjoint from B if and only if it holds for some, instead of all, A’ 

disjoint from B. That is equivalent to Eq. (4) for some, instead of all, A’ disjoint 
from B. 

Summarizing, if W(B) = 0, then Eq. (4) holds for all A’ disjoint from B, in 
particular for A, hence W( A U B) - W(A) = 0. Conversely, if W( A U B) - 

* For some minor mathematical corrections, see Wakker (1981) 
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W(A) = 0, then (4) holds for A’ =A, which is equivalent to W(B) = 0. Eq. (3) 
has been established for Case 1. 

Case 2. W(B) = 1 or A(B, A) = 1 or W(A) = 1 or A(A, B) = 1. 

Because of symmetry in A and B, we need only consider the cases W(B) = 1 
or A(B, A) = 1. Using the result as already established, the following statements 
are equivalent: W(B) = 1, A(S\B, B) = 0, W(S\B) = 0, W(A’) = 0 for all A’ 

disjoint from B, A(B, A’) = 1 for all A’ disjoint from B, A(B, A’) = 1 for some 
A’ disjoint from B. Here the last two statements at first imply that W(A’) = 0, next 
that W(A’ U B) = W(B), etc. 

Case3. W(AUB)<l. 

We derive the following, seemingly stronger, analogue of Eq. (3). 

A(@ C) = W(D), 

for all subsets C, D of A U B that are disjoint. 

(5) 

Case 3a. W(D) I (1 - W(A U B))T, i.e. W(A U B) I 1 - W(D)/T. 

By solvability we can take E such that S\E 1 (A U B) and W(S\E) = 1 - 
W(D)/T, i.e. W(D) = (1 - W(S\E)h= ACE, S\Eh. Write R: = S\(C U D U 
E). Substitution of RDU gives 

(E-, --7,C+O, R+O, D+l)-0. 

By the sure-thing principle also 

(6) 

(E-, -7, R+O,.D+l,C+l)=(E+O, R+O, D-,O,C+l). 

(7) 

The last indifference implies, by RDU, that A(D, C) = ACE, S\Eh. The latter is 
equal to W(D) as we saw above, hence (5) follows. 

The following lemma serves as a preparation for Case 3b. 

Lemma 7. Zf A(D, C> I (1 - W(A U B))T, then (5) holds. 

Proof. The inequality in the lemma can be rewritten as W(A U B) I 1 - 
A(D, C)/T. By solvability, E can be found such that S\E 3 (A U B) and 
W(S\E) = 1 - A(D, C)/T, i.e. A(D, C) = (1 - W(S\E)h. This implies the 
indifference in (7) and thus, by the sure-thing principle, (6). This implies again 
W(D) = (1 - W(S\ E)h = A(D, Cl, so that (5) follows. 0 
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Case 36. W(D) > (1 - WA U B)lr 

Now D can, by repeated application of solvability, be partitioned as D, 

U . . . U D,,, where for each j, h(Dj, D, U . . . U Dj- 1) I: (1 - W(A UB)h. Here, 
we use positivity of the right-hand side, which is guaranteed in Case 3. By Lemma 

7, h(D,, D, U . . . U Dj _ , ) = W( 0,) for each j, hence W( Dj> I (1 - W( A U B)h 
for each j. Consequently, by Case 3a we can apply (5) to Dj to. establish the 

second and third equalities in W(D) = CT= , A( Dj, D, U . . . U Djm 1> = 

I;=,W(D,)=C;=, h(D,, CUD, U . . . UD,_,)=h(D, C). Again (5)follows. 

For Case 3, (5) has been proved, and thus (3). 

The extension of Case 3 to the case in which W(A U B) = 1 is nontrivial. One 

can establish W(A U B) I W(A) + W(B) by limit-taking. This will, however, not 

be used below. 

The following lemma, a sort of dual to Case 3, serves as preparation for Case 4. 

Lemma 8. Zf W(A) > 0, then A(B, A) = MB, S\B). 

Proof. It will be shown, seemingly stronger, that 

A(D, AUC) =A(D, S\D), 

for all disjoint C, D c S\A. 

(8) 

Case (a). A(D, A U C> I W(A)/T. 

By solvability we can take E CA with A( D, A U C)T = W(E). Set R: = S\ 

(AUCUD). Then 

(R+ -7, D-t -T,C-+O, A\E+O, Ed) 

-(R+ -7, D+O,C+O, A/E-,0, E-,0). 

By the sure-thing principle we get 

(9) 

(D-, -7, R-tO,C+O, A\E+O, E-,1) 

-(D-+0, R-+O,C-+O, A\E+O, E+O). (10) 

This implies A( D, S\D)T = W(E). Now (8) follows. 

As a preparation for Case(b) in the proof of Lemma 8, we derive a sort of dual 

of Case (a): 

A(D, S\D) I W( A)/T=’ (8) holds. (I11 

Here, by solvability, we can take an event E CA such that W(E) = A( D, 

S\D)T. Then (10) holds, and, by the sure-thing principle, (91. Hence MD, A U 
C)T = W(E) = MD, S\D)r holds true. Now (81, thus (111, follows. 



224 P. Wakker/Journul of Mathematical Economics 25 (1996) 213-227 

Case (Id. A(D, A U C) > W(A)/T. 

Now D can, by repeated application of solvability, be partitioned as D, 

U . . . UD,, where for each j, A(Dj, A U C U D, U . . . U Dj_I) I W(A)/T; here 
we use positivity of W(A), which is assumed in this lemma. We can apply Case 
(a) to Dj (in the role of D) and C U D, U . . . U Dj_ 1 (in the role of C), to obtain 
A(Dj, AUCUD,U... U Dj_ 1) = A(Dj, S\Dj> for each Dj. This implies that 
the antecedent of (11) holds for each Dj. Consequently, we can apply (8) to each 
Dj(andCUD,U... UDj_i orS\(AUD,U... U Dj>, respectively, in the role 
of C) to establish the second and third equality in MD, A U C) = CT= 1 A(Dj, A 

uCUD, U . . . U Dj_ 1) = C~= 1 A(Dj, S\Dj) = ~~ 1 A(Dj, S\(D, U . . . u Dj>> 
= A(D, S\D). This completes the proof of Lemma 8. Cl 

Case 4. W(A U I?) = 1,O < W(B) < 1, and 0 < W(A) < 1. 

By solvability we may assume that A can be partitioned into A,, A,, both with 
positive W value. We get W(B) = A@, A,) = A(B, S\B) = A(B, A): the first 
equality follows from Case 3 because W( A,) > 0 which, by Case 1, implies 
A( A,, B U A,) > 0 and hence W( B U A,) < 1. The second and third equality 
follow from Lemma 8 because W( A, ) and W(A) are positive. 

This completes the proof of (3), and thus of Theorem 6. 0 

Under a natural assumption, the above result applies also to the derivation of 
RDU in Sarin and Wakker (1992, Theorem 3.1). They assume that a subset of 
gambles is available on which Savage’s (1954) EU axioms are satisfied. The 
events that are used to generate those gambles are called ‘unambiguous’ and are, 
for example, generated by a roulette wheel. Then, by a cumulative dominance 
axiom, the representation is extended to an RDU representation over all gambles. 
It is natural to assume that the unambiguous event set is sufficiently rich to imply, 
for all disjoint (possibly ambiguous) events A, C, and p such that W(A) < /3 < 

W( A U C), the existence of an unambiguous event B such that W( A U (C 17 B)) 

= J3. This condition implies solvability and thus Theorem 6 can be invoked. 
Theorem 6 cannot be invoked for the more general approach suggested in Sarin 
and Wakker’s Remark 3.3 where the set of conceivable events is no longer 
assumed to be closed under intersection-taking. This shows once more that a 
richness assumption is essential for Theorem 3 and that the theorem is not 
elementary. 

5. Conclusion and discussion 

It has been proved that the critical empirical distinction between expected 
utility and its rank-dependent generalizations is provided by the distinction be- 
tween the sure-thing principle and its comonotonic weakening. This at least holds 
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true for all presently existing axiomatizations. We have also seen that the 
continuity assumptions, used in those axiomatizations, are essential, and an 
example has shown that the result does not hold in general. 

I finally discuss an implication of the above results for the empirical interpreta- 
tion of structural assumptions such as continuity. Arguments in favor of continuity 
assumptions have been advanced in the literature (Savage, 1954, p. 77). Arrow 
(1971, p. 48) writes, on a ‘Monotone Continuity’ axiom that imposes continuity 
on the state space: ‘The assumption of Monotone Continuity seems, I believe 
correctly, to be the harmless simplification almost inevitable in the formalization 
of any real-life problem.’ The example has, however, demonstrated a limitation to 
the empirical meaning of the conventional axiomatizations that adopt continuity 
assumptions. Let me explain the point in more detail: a person who would gather 
the data as described in the example and who would not be aware of the 
limitations of the continuity axioms, might erroneously believe that the data must 
conform to expected utility. After all, the sure-thing principle, and actually all of 
Savage’s (1954) intuitive axioms, as well as the intuitive expected utility axioms 
of Wakker and Tversky (1993), are satisfied. In addition, continuity conditions can 
never be falsified by finite data. Still, as we have demonstrated, expected utility 
cannot hold in the example. Apparently, while the intuitive axioms are not violated 
by the data and can be preserved in extensions to infinite models, and also the 
continuity axioms are not violated by the data and can also be preserved in 
extensions to infinite models, it is impossible to extend the data to an infinite 
model in which the intuitive and continuity axioms are jointly satisfied. 
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