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Abstract 

This paper examines risk transmission and migration among six US measures of credit and 

market risk during the full period 2004-2011 period and the 2009-2011 recovery subperiod, with 

a focus on four sectors related to the highly volatile oil price. There are more long-run 

equilibrium risk relationships and short-run causal relationships among the four oil-related Credit 

Default Swaps (CDS) indexes, the (expected equity volatility) VIX index and the (swaption 

expected volatility) SMOVE index for the full period than for the recovery subperiod.  The auto 

sector CDS spread is the most error-correcting in the long run and also leads in the risk discovery 

process in the short run. On the other hand, the CDS spread of the highly regulated, natural 

monopoly utility sector does not error correct. The four oil-related CDS spread indexes are 

responsive to VIX in the short- and long-run, while no index is sensitive to SMOVE which, in 

turn, unilaterally assembles risk migration from VIX. The 2007-2008 Great Recession seems to 

have led to “localization” and less migration of credit and market risk in the oil-related sectors. 

 

 

JEL:  C13, C22, G1, G12, Q40.  

 

Keywords: Risk, Sectoral CDS, VIX, SMOVE, MOVE, Adjustments. 
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1. Introduction 

Oil ranks among the most volatile non-agricultural commodities, particularly in recent 

years. Its price dropped from $147/barrel in July 2008 to $32/barrel in March 2009, and then 

climbed to more than $100/barrel in the first quarter of 2011. Although the oil price is a 

major source of instability in the world economy, it is not a measure of credit risk, fear or a 

gauge of future economic health in the oil exploration and production sectors, related sectors 

such as the natural gas, utility, chemicals and auto sectors, or the stock and bond markets. 

Credit Default Swaps (CDS) for these oil and oil-related sectors measure expected credit risk, 

fear, greed and the future economic health of these sectors, which is relevant information that 

the oil price may measure.1 On the other hand, indexes such as VIX and SMOVE measure of 

market risk in the form of expected volatility in the equity, bond and swap options markets. 

These market risks carry systematic risk that can affect sector CDS risks, among others.  It 

assembles risk information on events related to more than the stock market. In fact, VIX 

increased by more than 30% in the week that followed the magnitude 9.0 Great Eastern Japan 

Earthquake on March 11, 2011 

A CDS index is a highly liquid, standardized credit security that trades at a very small 

bid-ask spread. Oil-related CDSs can be efficient in processing information on evolving risks 

in the oil and oil-related sectors, and probably the rest of the economy (see Norden and 

Weber, 2004; Greatrex, 2008, among others). The magnitude of the oil and oil-related sector 

credit spreads gauges the default risk exposure of the firms that comprise these sectors.  A 

                                                            
      1 Oil VIX, which measures risk and fear in the oil sector, is still in its infancy and its data series are presently 
inadequate for quantitative analysis like ours. Still, equity and bond VIXs should have some bearing on the oil VIX. 
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widening of a CDS spread in response to certain oil or credit events indicates an increase in 

the level of credit risk in the pertinent sectors, while a narrowing in the spread reveals a 

decrease in the credit risk.  

The market for CDSs is enormous. The notional values outstanding surveyed by ISDA 

ballooned from $918.81 billion at the end of 2001 to $62.173 trillion by the end of 2007, 

before falling to $30.428 trillion by the end of 2008.2  The market value is more than two 

trillion. The composition in the USA of the notional value outstanding in 2008 is $15.5 

trillion, which is equal to the size of US GDP, but is greater than the national debt and the 

$11 trillion home mortgage market, of which only $1 trillion is the subprime part. As swaps 

have proliferated so rapidly, experts argue that a hiccup in this market could set off a chain 

reaction of losses in financial institutions, making it even more difficult for borrowers to 

obtain loans that facilitate economic activity.3 

Other measures of risk are VIX and MOVE/SMOVE, which have inverse relationships 

with the stock, bond and mortgage markets. These measures may relate to credit risk gauged 

by CDS indexes, which include liquidity and default components of the real sectors. The 

volatility index (VIX) is an index which measures expectations of volatility of the S&P 500 

index over one month. Higher values of this volatility index suggest that investors expect the 

value of the S&P 500 index to fluctuate wildly - up, down, or both - in the next thirty days.  

The VIX index is also known as the “fear” index in the stock market as a high value reflects 

                                                            

       2 http://www.isda.org/statistics/pdf/ISDA-Market-Survey-annual-data.pdf. 

      3 http://www.nytimes.com/2008/02/17/business/worldbusiness/17iht‐17swap.10104972.html 
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uncertainty about future stock prices. Interestingly, VIX hit its historic high of 89.53 on 

October 24, 2008, immediately after the oil price reached its historic peak in July of the same 

year, three months after the oil price reached all time high. It will be useful to determine the 

dynamic relationships between market and credit risks generated by changes in the oil price, 

oil-related CDS sector indexes and VIX. The information should be valuable to investors in 

these sectors and to the energy regulators that regulate this sector. 

As the CDS contracts are protection insurance against adverse credit events in the credit 

markets, it will also be interesting to examine how oil-pertinent CDS indexes are related to 

expected risk in the bond market, as measured by the Merrill Lynch Option Volatility 

Estimate (MOVE) Index and the swap market, as represented by the swaption MOVE 

(SMOVE) index. MOVE is a yield curve weighted index of the normalized implied volatility 

on one-month Treasury options with 40% on the 10-year Treasury and 20% on the other 

Treasury maturities.  SMOVE measures volatility on options for US non-Treasury interest-rate 

swaps with maturities of one to ten years, and are used to speculate on and hedge interest rate risk.  

MOVE/SMOVE signals interest rate movements as uncertainty change in the bond markets, 

and also assembles information regarding concerns over inflation, deflation, and a massive 

rolling of the Government debt.  

There has been a discrepancy between MOVE and VIX since the collapse of Lehman 

Brothers, where VIX slowly falls methodically to pre-bankruptcy levels, while MOVE 

volatility has remained elevated, perhaps due to quantitative easing. As indicated above, it 

will be valuable to discern the impact of oil, credit and equity events on the oil-related CDS, 

stock, and bond/mortgage markets. The information derived from examining a complex of 

multiple measures of risk, where risk arises from different sources, should be useful for oil 
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companies, investors, creditors and energy regulators, particularly at times of risky events, 

such as the BP spill in the Gulf of Mexico in 2010, the GM bankruptcy, geopolitics in the 

Middle East and the radiation leak in the Japanese nuclear reactors arising from the tsunami 

in March 2011. 

The objectives of this paper are to: (1) determine how the four oil and oil-related sector 

CDS spreads interrelate with each other and to events in the oil market, as represented by 

futures oil price movements; and (2) explore the risk feedbacks in the multiple-risk complex 

between the oil-related CDS spreads, VIX and the bond/mortgage market MOVE/SMOVE. 

The paper is organized as follows. Section 2 discusses the data and descriptive statistics. 

Section 3 presents a review of the literature. Section 3 presents the empirical model and 

analyzes the empirical results. Section 5 gives some concluding comments. 

 

2. Data and Descriptive Statistics. 

The data set includes the closings for the West Texas Intermediate (WTI) futures price 

and the seven different measures of risk in the vast risk complex examined in this paper. The 

risk measures are four for the oil and oil-related CDS sectors (namely auto, chemicals, oil 

and gas, and utility), and for the one-month equity VIX index and the one month 

MOVE/SMOVE index.4  We could not include the oil VIX as a measure of risk and fear in 

                                                            
      4 Each index series has a given number of reference entities at a fixed coupon. The coupon is determined prior to 
the onset of each index series, and is the current spread of the underlying reference entities that equate the value of 
the index to par value (100%) at the time of calculation. The levels of the indices are calculated at the end of each 
business day at around 5:15 pm. 
 



 

7 
 

the oil market because of its excessively short time period compared with the other variables, 

which is from January 1, 2004 to January 21, 2011. 

The CDS sector indices, which are based on the most liquid 5-year term, are equally 

weighted and reflect an average mid-spread calculation of the given index’s constituents. The 

proprietary indices are rebalanced every six months to better reflect liquidity in the CDS 

market. The identification of the CDS sector indices follows the DJ/FTSE Industry 

Classification Benchmark (ICB) supersectors as their basis, and reflects the price 

performance of a basket of corporate 5-year CDSs within a given sector.  As stated, the data 

for the CDS sector indices are available from 2004 only. The years 2004-2007 of the full 

sample for the CDS market were rapid growth years. However, the years 2008-2009 were 

troubling years for this market, which experienced simulative packages and QE1 and QE2. 

As indicated above, the equity VIX is an index which measures expectations of volatility 

of the S&P 500 index, and typically moves in an adverse direction to the latter. It assembles 

risk information on events related to more than the stock market. In fact, VIX increased by 

more than 30% in the week that followed the magnitude 9.0 Great Eastern Japan Earthquake 

on March 11, 2011. This index has sentiment extremes: (30-32) signals excessive bearishness 

that foreshadows bullish reversals, while (16-18) signals excessive bullishness that 

foreshadows bearish reversals. On the other hand, the one-month MOVE index is a yield 

curve weighted index of the normalized implied volatility on one-month Treasury options, 

with a 40% on the 10-year Treasury and 20% on each of the other 2-30 year Treasury 

maturities. It trades between two extremes: 80, indicating extreme complacency which 

presages a market problem, and 120, which signals extreme fear. Moves to the extremes are 

quite rare for this credit index. 
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The descriptive statistics for both the (log of) levels and first logarithmic differences are 

presented in Table 1 (Panels A and B, respectively). The average percentage change over the 

sample period is the highest for the utility CDS index, followed by the oil/gas sector, while it 

is the lowest for the auto and chemicals sectors. The average return for the futures oil prices 

is much higher than for any of the CDS sector indexes. It is interesting to note that the 

average percentage change for VIX is lower than for MOVE/SMOVE, and both are much 

lower than for the oil-related CDS indexes.  

[Table 1 goes here] 

In terms of historical volatility, as measured by standard deviation, the highest percentage 

change volatility is for the auto CDS index, followed by oil/gas CD index, while the lowest is 

for the CDS index for utility, followed by chemicals. It is interesting to note the volatilities 

for the CDS indexes of utility, chemicals and oil/gas, and the oil price are very similar. 

Unexpectedly, the historical volatility of VIX is the highest among the seven variables. The 

auto and chemicals CDS indexes and the oil price are skewed to the left, suggesting that the 

mass of the distribution is concentrated on the right of the figure, and they have a few 

extremely low values. This means the spreads are bunched up on the high end of the spread 

scale.  In comparison, the utility, oil and gas CDS indexes, VIX and MOVE/SMOVE are 

skewed to the right. 

The correlation coefficients in Table 1 are provided for the log values and for returns. 

The correlations are very high for the levels. In fact, it is almost 99% between the levels of 

MOVE and SMOVE over the historical period (Table 2 - Panel A). However, the 

correlations between the first log differences (returns) of the other risk measures and with the 
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oil price are low, with the exception of the correlation between MOVE and SMOVE, which 

exceeds 81% (panel B). This suggests that these risk measures have different risk 

components and measure different types of risk. 

[Table 2 goes here] 

The kurtosis results indicate that the distributions of the spreads are more platykurtic 

(flat) for the levels, while more leptokurtic (peaked with fat tails) for the returns or first log 

differences. The Jarque-Bera Lagrange multiplier statistics reject the null hypothesis of a 

normal distribution, which is consistent with the statistics for skewness and kurtosis for most 

speculative assets. 

The ADF and Phillips-Perron (PP) unit root tests for the intercept and intercept plus trend 

were calculated for all eight variables.  The results indicate that all variables have unit roots 

or are I(1). One may contend that VIX is an implied option volatility index, and thus is a 

proxy for option prices. This explains why VIX has unit root behavior. Based on those 

findings, we model all measures of risk and the oil prices in logarithmic differences.  This 

paves the way for conducting cointegration tests. 

 

3. Review of the Literature 

Given the short history of CDS index spreads, the limited availability of data and the 

raging debate over the social benefits and costs of CDSs, the literature on these credit 

derivatives is still quite sparse, particularly after the 2008 financial and 2010 sovereign debt 

crises. Clearly, there is substantial scope for contribution to this area. The recent literature 

examines the difference between spreads in the cash/asset market and the CDS credit market, 
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known as the “basis” (Das and Hanouna, 2006).  Longstaff et al. (2005) examined the basis 

using an approach that extracted the corporate bond-implied CDS spreads, compared it with 

the actual market CDS spreads, and found the former to be higher than the latter.  

Berndt et al. (2008) investigated the variations in the credit risk premium that comprises a 

major component of the CDS spread for three sectors, namely broadcasting and 

entertainment, health care, and oil and gas. They found remarkable differences in the spread 

variations between these sectors. Zhang et al. (2009) used an approach that identifies the 

volatility and jump risks of individual firms from high frequency stock prices to explain the 

CDS premium. Their empirical results suggested that the volatility risk alone predicts 48% of 

the variation in CDS spread levels, whereas the jump risk alone forecasted 19%. After 

controlling for credit ratings, macroeconomic conditions, and firm balance sheet information, 

they predicted 73% of the total variation. Simulation results suggested that the high 

frequency-based volatility measures can help explain the credit spreads above and beyond 

what is already captured by the true leverage ratio. 

Another stream of the literature uses structural models to examine CDS spreads as pure 

measures of credit risk. This literature includes Bharath and Shumway (2008), Blanco et al. 

(2005), and Ericsson et al. (2009), among others. Bharath and Shumway (2008) examined the 

accuracy and contribution of the Merton distance to default (DD) model and compared it with 

a “naïve” alternative which uses the functional form adopted by the Merton model, but does 

not solve the model for an implied probability of default. The empirical results suggest that 

the naïve predictor performs slightly better in hazard models and in out-of-sample forecasts 

than both the Merton DD model and a reduced-form model that uses the same inputs.  
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Using a small sample of US and European firms, Blanco et al. (2005) find support for the 

theoretical arbitrage relationship between CDS prices and credit spreads, on average. When 

this relationship is violated, the CDS price can be considered as the upper bound for the true 

credit risk price, while the spread can be viewed as the lower bound. Their results suggest 

that the common variables used in the literature have greater explanatory power in explaining 

the changes in credit default swap prices than in the credit spreads. They also suggest that the 

CDS is the main forum for credit risk price discovery.  

Ericsson et al. (2009) investigated the relationship between theory-based determinants of 

default risk and default swap spreads. They found that only a small set of theoretical 

determinants of default risk are consistent with theory, and are significant statistically and 

economically meaningful. Specifically, volatility and leverage have strong explanatory 

power in univariate and multivariate regressions. A principal component analysis of residuals 

and spreads indicates limited significance for a residual common factor, confirming that the 

theory-based variables explain a significant portion of the variation in the data.  

Other studies have examined the relationships between equity and credit markets using 

time series data instead of cross section data, as is the cases discussed above. Bystrom (2006) 

examines the properties of the Dow Jones iTraxx index, which is an index of CDS securities 

on 12 European reference entities. He found that CDS spreads are significantly 

autocorrelated in the seven sectors comprising the iTraxx index, and are also significantly 

negatively related to the contemporaneous stock returns in all sectors, except for energy, 

consumers, and financials.  
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Fung et al. (2008) studied the relationship between the stock market and high yield and 

investment grades and the CDS markets in the USA, and found that the lead/lag relationship 

between them depends on the credit quality of the underlying reference entity. Forte and 

Lovreta (2008) examined the relationship between company-level CDS and stock market-

implied credit spreads (ICS) in recent years, and found the relationship to be stronger, and 

the probability that the stock market leads in the price discovery to be higher, at lower credit 

quality levels. However, the probability of CDS spreads leading in the price discovery rises 

with increases in the frequency of the severity of credit downturns.  

Zhu (2006) discovered a long-run (cointegrating) relationship between credit risk in the 

corporate bond market and CDS market, although a substantial deviation from the theoretical 

parity relationship can arise in the short run. The VECM analysis suggests that the deviation 

is largely due to the higher responsiveness of CDS premia to changes in the credit conditions. 

Norden and Weber (2009) examined the relationships between CDS, bond and stock markets 

during the period 2000-2002. They investigated monthly, weekly and daily lead-lag 

relationships using VAR/VEC models, and found that stock returns lead CDS and bond 

spread changes. They also found that CDS spread changes Granger-cause bond spread 

changes for a higher number of firms than the reverse.  They contended that the CDS market 

is more sensitive to the stock market than the bond market, and that this sensitivity increases 

for the lower credit quality. Finally, they found that the CDS market contributes more to 

price discovery than the bond market, with this result being stronger for US than for 

European firms.  

On the informational content of the VIX, Luo and Zhang (2010) extended VIX to other 

maturities and constructed daily VIX term structure data, proposing a simple two-factor 
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stochastic volatility framework for VIX. Their results indicate that the framework captures 

both the time series dynamics of VIX and the rich cross-sectional shape of the term structure.  

Consistent with previous studies, it was found that VIX contains more information than 

historical volatility. 

Becker et al. (2009) examined two issues relating to the informational content of the VIX 

implied volatility index. One relates to whether it subsumes information on how historical 

jump activity contributed to the price volatility, and the other one pertains to whether VIX 

reflects any incremental information pertaining to future jump activity relative to model-

based forecasts. It is found that VIX both subsumes information relating to past jump 

contributions to total volatility and reflects incremental information relevant to future jumps.  

In a related study, Figuerola-Ferretti, and Paraskevopoulos (2010) considered the 

cointegration and lead in the price discovery process between credit risk, as represented by 

CDS spreads, and market risk embedded in the equity VIX. They found that CDS and VIX 

are cointergated and that VIX has a clear lead over the CDS market in the price discovery 

process, implying that CDS adjusts to market risk when there is temporary mispricing from 

the long-run equilibrium. They found that there are long-term arbitrage relationships between 

VIX and CDS for most companies, implying that excess returns may be earned using “pairs 

trading” strategies. 

Forte and Peña (2009) explore the dynamic relationship between stock market implied 

credit spreads, CDS spreads and bond spreads. Using a sample of North American and 

European firms, and using VECM , the empirical results on price discovery indicate that 

stocks lead CDS and bonds more frequently than the reverse. It also confirms the leading role 

of CDS with respect to bonds. 
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Fernandes et al. (2009) examined the time series properties of daily VIX. Their results 

suggest that VIX displays long-range dependence. They confirm the evidence in the literature 

that there is a strong negative relationship between VIX and S&P500 index returns, as well 

as a positive contemporaneous link with the volume of the S&P500 index. Moreover, they 

demonstrated that VIX tends to decline as the long-run oil price increases, reflecting the high 

demand from oil in recent years, as well as the recent trend of shorting energy prices in the 

hedge fund industry.  

In contrast to the above, and given the pivotal importance of oil in the modern economy, 

we will examine the third-party credit risk embedded in the oil-related sectors, and relate that 

to types of market risk, such the expected option volatility in the stock and credit markets. 

Such an analysis will enable an examination of the migration of risk in the different sectors 

and markets at a time of volatile oil prices. The near bankruptcy of GM attests to the 

importance of such a risk-related examination. We will also determine the dynamic 

relationships between these markets in the post 2007-2008 financial crisis subperiod. Thus, 

our approach will examine forcing-dependent variable relationships at the sector level, in 

contrast to the previous literature, which has focused on the firm level. This will be of 

substantial interest to energy regulators, policy-makers and investors in the energy-related 

sectors.  

 

4.  Methodology and Empirical Results 

Let tX  denote a p-dimensional column of I(1) variables, which follows the following 

VAR(k) process: 
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1 1 1 2 1...t t t t k tX A X A X A X                                       (1) 

where   is a deterministic term, k is the order of lag length, and t  is a Gaussian error term.5  

The VAR(k) process can be written in the following VECM representation: 

1

1
1

k

t t i t i t
i

X X X  


 


                 (2) 

where   and i  are pxp matrices of coefficients representing the long-run impacts and the 

short-run adjustments, respectively. The matrix, i , represents the interim multipliers. The 

hypothesis of cointegration states that the long-run impact matrix, , can be rewritten as: 

'                  (3) 

where   and   are pxr  matrices. The row of matrix   forms the cointegrating vectors, 

while matrix   contains the loading factors which are the weights of the cointegrating 

vectors in the various equations. These matrices are of full rank, r, such that 0 1r p   , 

given tX  is a I(1) process. If r=0, then no cointegration relationship exists among the 

elements of tX . If the rank r is such that 0 1r p    , then r cointegrating vectors exist, 

namely r stationary linear combinations of the elements of tX  exist with p-r common 

stochastic trends.  

 We use the Johansen (1995) method to test the rank of the impact matrix, . We can also 

perform the Granger-causality test based on equation (2). If all ( , )i m n are jointly not equal 

to zero, then the nth variable in vector X is said to Granger-cause the mth variable. 

                                                            
        5 A deterministic time trend can also be included.  
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Otherwise, the nth variable does not Granger-cause the mth variable. The joint significance 

can be tested by various methods such as F, Wald or LR tests. 

In this paper, the possibly maximum VAR dimension p is seven, representing the four 

oil-related CDS sector indexes, oil futures price, VIX and MOVE/SMOVE index. We will 

include SMOVE and exclude MOVE in the two VAR systems as the correlation between 

MOVE and SMOVE is very high, the systems that include SMOVE satisfy the diagnostic 

tests more strongly than those that include MOVE, and SMOVE involves floating interest 

rates that carry risk while all Treasury yields that define MOVE are risk free.  

 

Cointegration Tests (full period) 

There are many tests for detecting cointegration, the most general being the multivariate 

tests based on the autoregressive representation, as discussed in Johansen (1988), and 

Johansen and Juselius (1990). As is well known, the Johansen maximum likelihood method 

provides two different likelihood ratio tests, namely the trace and maximum eigenvalue tests, 

to determine the number of cointegrating vectors over the full period and the 2009 Recovery 

subperiod. We will also use both the Akaike Information Criterion (AIC) and the Schwartz 

Bayesian Criterion (SBC) to determine the VAR and cointegration specifications, as well as 

the lag lengths. 

We will examine cointegration for two systems. System I is the seven-variable system, 

which includes the non-risk variable oil futures price, while System II contains the six risk-

measuring variables only, and excludes the oil price. We will investigate System II under the 

full sample period and under the subsample July 1, 2009 - January 21, 2011, which marks 



 

17 
 

economic recovery in the USA following the 2007-2008 Great Recession that ended in June 

2009. 

As indicated above, both systems include SMOVE instead of MOVE. Interestingly, 

Johansen’s cointegration tests suggest that under all five possible cointegration and VAR 

specifications, System I for the full sample has one cointegrating vector, while System II has 

two cointegrating vectors, according to both the trace and maximum eigenvalue tests (Table 

3 - Panels A and B).  The oil price does not measure risk and the four oil-related CDS sector 

indexes, which incorporate default and liquidity components, are significantly different from 

the VIX and SMOVE indexes, which assimilate expected volatility components. These facts 

should confirm the results that the cointegration relationships for these two systems should 

be different. 

[Table 3 goes here] 

In this paper, which concentrates on risk measures, we will focus on System II that does 

not include the oil price. As indicated above, this system has two long-run equilibrium 

relationships among its six indexes over the whole sample (Tables 4 and 5). This finding 

implies that there are four common stochastic trends that co-move the four CDS indexes, 

SMOVE and VIX, making System II more stable than System I.  Specification 2 of the 

intercept and no trend in the cointegrating and VAR specifications gives the best fit of all 

five specifications under the full sample, according to both AIC and SBC. 

[Tables 4 and 5 go here] 

All the drivers in both two long-run equilibrium (cointegrating) relationships for the oil 

and gas CDS index and the utility CDS index are significant in System II. This suggests that 
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these indexes drive adjustments to the long-run equilibrium in the associated VEC as they 

process new information or reflect new risk events (Table 6).6 In the first cointegrating 

equation, with the oil and gas CDS index placed on the left-hand side of the first long-run 

relationship, the auto CDS index, VIX and SMOVE have positive signs on the right-hand 

side of the relationship. This finding suggests that rising risk in the auto sector (arising from, 

for example, the bankruptcy of GM), the stock market and interest rate swap options market 

increases the insurance protection premium in the auto sector. However, the chemical CDS 

index in that relationship has a surprisingly negative sign when placed on the right-hand side 

of the equation, implying that protection risk in the chemical sector moves in a different 

direction from the same risk in the auto sector. This might arise because oil and natural gas 

are the basic ingredients in the chemical sector, which benefits from lower oil prices. 

Chemicals and oil prices usually have negative correlations. 

[Table 6 goes here] 

The second cointegrating relationship, which has the utility CDS index on the left-hand 

side, has similar characteristics to the first equation. In summary, protection and expected 

volatility risks can migrate between the different oil-related sectors, and from and the stock 

and interest rate swap options markets. The highest impacts come from VIX, followed by 

SMOVE and the chemical sector CDS index. 

 

Vector Error Correction Models (full period) 

                                                            
       6 If the CDS index of the chemical sector is ordered among the first two variables in the system, it will not 
respond to drivers such as the utility CDS index and SMOVE. 
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The estimation of the six-risk variable VEC model for System II under the full sample, 

which has two long-run (cointegrating) relationships, demonstrates significance for almost all 

error-correction terms (Table 7). This means that the ECT terms are error correcting in the 

adjustment to the long-run equilibrium, and that for the auto CDS demonstrates the largest 

error correction. Exceptions are the ECTs for the utility CDS indexes, which are not error 

correcting to either of the two ECTs in the long run, perhaps because this sector is highly 

regulated and represents a natural monopoly, as indicated above. These characteristics might 

have impacted this sector’s CDS spread response to the long run drivers. The chemical CDS 

index also does not no error correct to the adjustment arising from only the first long-run 

equilibrium relationship.  

[Table 7 goes here] 

Based on the significance and sizes of the two ECTs, or speeds of adjustments for the six 

risk spreads, the auto CDS spread has the highest size for both ECTs.  The auto CDS spread 

leads in the price discovery of risk in the long run. The VIS spread has a slightly lower speed 

of adjustment than the auto CDS spread, which makes it a close runner-up in this complex of 

risk.  

Regarding the sensitivity in the short run, the oil and gas CDS spread is responsive to 

changes in almost all of the variables, with the exception of SMOVE.  The exception could 

hold because oil and gas companies do not deal with interest rate swaps, which are based 

mainly on bonds, consumer loans and mortgages, which are reflected in SMOVE.  The 

sensitivity of the utility CDS spread excludes the changes in the chemical CDS and 
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SMOVE.7 The auto CDS spread is less sensitive than the oil and gas CD spread, but has a 

similar sensitivity to the utility CDS spread, showing particular short-run adjustments to 

changes in its own CDS spread, utility CDS and the VIX spread. The chemical CDS spread 

demonstrates the least responsiveness to the adjustment in the other variables in the short run, 

with its adjustment being to itself and VIX.  

It is worth noting that SMOVE is responsive to changes in the auto CDS spread, probably 

because SMOVE reflects options written on auto loans. In summary, in the short run, oil and 

gas CDS spread demonstrates the greatest adjustments, while the chemical CDS shows the 

least adjustments.  All four oil-related CDS indexes are responsive to VIX in the short run, 

but none is sensitive to SMOVE, which receives risk unilaterally from VIX. 

 

 Exogeneity Restrictions (full period) 

The cointegration and short- and long-run results are also confirmed by the long-run, 

weak exogenity and block exogeneity tests (Urbain, 1992) (Table 8). The test results of the long-

run Granger-(non)causality hypothesis is rejected for all the variables, with the exception of 

SMOVE, which does not show strong adjustments in the long run. This test indicates that there is 

long-run Granger-causality because almost all the endogenous variables adjust to the deviations 

from the long-run equilibrium. The weak exogeneity test also suggests that each of the six 

variables in the system plays a significant role in the long-run equilibrium, given that the beta 

parameters are not equal to zero in the VECM system.  

[Table 8 goes here] 

                                                            
      7 This result also holds for the system with MOVE. 
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The results for the multivariable block exogeneity Wald test derived from the VEC 

model, which examines the additional causal relationship between each dependent variable of the 

six variables in System II and the lagged endogenous variables in the VEC equation, are also 

significant. The null hypothesis in this case is that the lagged endogenous variables do not 

Granger-cause the dependent variable. The null hypothesis is rejected, which is to be expected, 

given that more than the lagged endogenous variable is significant. Such an outcome shows that 

this model will be superior to the naïve model.  

 

Generalized Variance Decomposition (full period) 

The previous analysis concentrated on the long-run equilibrium relationships and the causal 

explanatory power among the variables. The short-run relationships deserve further attention 

because more information can be obtained from examining the relationships among all the 

variables in the short run. We concentrate on the relative importance of a shock in any of the six 

variables in the individual forecast error variances of all those variables in System II for the full 

period. This should provide the market participants, who are shock-averse, with the required 

information to recognize the relative importance of shocks and to use adequate financial 

instruments to benefit from them in the short run. 

The results over a 50-day horizon are reported in Table 9.  They suggest that the relative 

importance of an own shock in any of the variables in the individual forecast error variance of all 

the variables is more than 45%, but with varying degrees. SMOVE has the highest weight for the 

own shock among all the variables, reaching 89%, while the utility CDS index touches 45%. It is 

interesting to note that the weight of VIX in the oil and gas CDS forecast error variance is about 
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30%, while the weight of the oil and gas CDS in the standard error variance of the utility CDS is 

39%. Oil and CDS account for 20% of the standard error variance of VIX, emphasizing the 

importance of fluctuations in oil and gas prices and in energy stocks. 

[Table 9 goes here] 

 

Impulse Response Analysis 

We also examined several possible orderings to perform the orthogonal impulse response 

function (IRF) analysis for the six-risk variable in System II, and found sensitivity to the 

orderings. However, Koop et al. (1996) and Pesaran and Shin (1998) developed the generalized 

IRF that is not sensitive to the ordering of the variables in the VAR.  In addition, the generalized 

IRF is able to capture immediate responses of endogenous variables to shocks, which is 

advantageous when analyzing markets where information is assimilated quickly. Thus, we 

performed the generalized IRF analysis with 95% confidence bands. 

The results of the impulse response analysis for the four oil-related sector CDS spreads 

show the strongest response is to own sector shock and VIX (that is, expected equity volatility), 

which confirm the results of the VEC model.  For all of these CDS sector indexes, the response 

to the shock from the chemical sector declines over time. 

The responses to the oil and gas CDS spread to the other shocks increase for most of the 

shocks over the 50-period horizon, with the shock to VIX having the highest value, followed by 

its own shock and that of the utility CDS spread. Most of the responses of the utility CDS spread 
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come from their own, followed by VIX and the oil and gas CDS spread. The response to the 

chemical CDS declined over the horizon, as is the case for the oil and gas CDS. 

The auto CDS spread receives the strongest shock from its own, followed by shocks from 

VIX. The response to utility CDS is third, as is the case for the other non utility sectors. 

Interestingly, the chemical CDS spread responds the most to VIX, more than to its own shock. 

Its response to shocks for the other sectors is almost even. 

Somewhat strangely, the response of SMOVE to VIX decreases over the horizon, but it 

shows greater sensitivity to the auto CDS. This is perhaps due to the fact that some interest rate 

options are written on auto loans. Finally as expected, most of the response of VIX is to its own 

shock that is related to expected volatility in the stock market. The second highest response of 

VIX is to the shock emanating from the oil and gas CDS. Oil prices are highly volatile, and 

energy stock capitalization is among the highest in the S&P 500 index. 

 

Cointegration Tests (Recovery Subperiod) 

As indicated above, this subperiod follows the Great Recession, which started in the USA in 

December 2007 and ended in June 2009. The economic recovery period starts from July 2009 

and continues until the end of our sample, January 21, 2011. The two cointegration procedures, 

namely the trace and the maximum eigenvalue tests, show that the six-risk variable System II 

under the economic recovery subperiod has only one long-run equilibrium relationship among 

the variables, compared with two under the full period (see Table 10 and Table 4 - Panel C). 

This result implies that there are five common stochastic shocks that co-move this system in the 

subperiod, which suggests that System II has become relatively easier to model and interpret 
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after the US economic sectors and markets underwent adjustments during the 2007-2008 Great 

Recession.  

Interestingly, VIX and SMOVE do not error correct to the long-run equilibrium in this 

subperiod (the results are available from the authors on request). This outcome is likely to be due 

to the damage caused by the global financial crisis to the credit and stock markets. Moreover, the 

oil and gas CDS spread, which actively adjusts in the long run under the full period, shows no 

significance in the recovery period. Such an outcome may be due to the collapse of oil prices and 

the inertia in the natural gas prices as a result of the increases in shale gas reserves. Surprisingly, 

the chemical CDS spread error corrects in the long run, possibly because of the drastic fall in oil 

prices during the Great Recession.  

[Table 10 goes here] 

In the short run, the adjustments are also much less in the subperiod than in the full period. 

SMOVE does not adjust to VIX, as do the oil and gas CDS and auto CDS indexes. However, the 

chemical CDS spread adjusts in the short run, which is contrary to the full period.  

 

5. Conclusions 

Given the increased risk in oil prices, the US oil and transportation sectors and high 

volatility in the US equity and credit markets, this paper examined the interrelations among six 

different measures of risk in four oil-related sectors and equity and bond/ interest rate options 

markets during the period January 1, 2004 - January 21, 2011, and also in the economic recovery 

July 1, 2009 - January 21, 2011 subperiod that followed the 2007-2008 Great Recession. The risk 



 

25 
 

in the oil-related sectors is represented by insurance protection CDS spreads or premiums, which 

incorporate liquidity and default risk components, while the risk in the equity and interest rate 

options markets are captured by the expected volatility risk.   

The overall results demonstrate that these six different measures of risk have only two 

long-run equilibrium relationships in the full period, and only one such relationship in the 

recovery subperiod. Moreover, the long- and short-run adjustments appear to have weakened in 

the subperiod, suggesting that there is greater “localization” of risk in their own sectors. It seems 

that this complex of risk has less co-movement and interrelationships among the different 

measures in the recovery period after dealing with from the subprime real estate crisis and the 

commodity and stock market bubbles, particularly in the long run. This is an important result for 

the future of the economy and its financial markets, particularly in the oil-related sectors. 

The auto sector had the highest speed of risk adjustments in the long run, and was a leader 

of risk transmission in the short run. This result suggests that policy makers should give special 

attention to risk in this sector. Based on this finding, the bailout of the auto companies after the 

Great Recession was quite possibly the correct decision. Interestingly, the risk in the chemical 

sector, which uses oil and natural gas as feedstock, seems to co-move inversely with the risk in 

the oil and other oil-related sectors.  

It seems that the equity market is a common and consistent source of risk for all the oil-

related sectors and the bond/ interest rate options markets, particularly for the full period. The 

important policy implication is that regulatory authorities (such as the Fed and SEC) should be 

aware of this result when policy comes to transmission and migration of risk to the CDS sector 

market. 
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Table 1: Descriptive Statistics (full period) 

 

Panel A: Levels 

 
 

Panel B: Return 

 DCDS_AUTODCDS_CHEM DCDS_OILGADCDS_UTIL DMOVE DOIL_PRICDSMOVEDSP_VIX
 Mean  0.000144  0.000146  0.000406  0.000497 -0.000119  0.000577 -0.000130  4.73E-06
 Median -0.000630 -0.000438 -0.000752 -0.000751  0.000000  0.000113  0.000000-0.003592
 Maximum  0.464140  0.866491  0.370979  0.162910  0.245538  0.121150  0.244481  0.496008
 Minimum -1.414047 -1.269284 -0.347246 -0.153227 -0.193224 -0.103815 -0.214509-0.350588
 Std. Dev.  0.057879  0.055778  0.026322  0.022991  0.041282  0.022040  0.038284  0.064194
 Skewness -7.902431 -4.488479  0.679604  0.590542  0.474207 -0.141444  0.438743  0.634740
 Kurtosis  205.9458  196.6863  43.10651  9.427756  7.495324  5.713115  7.750522  7.818432
         
 Jarque-Bera  3178547.  2883847.  123529.5  3276.290  1619.116  570.7880  1790.176  1904.581
 Probability  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000
Notes: All variables are expressed in natural logarithms of the levels for Panel A and log difference for 
panel B. The coefficient of variation (C.V.) is the ratio of the standard deviation to the mean. CDS_AUTO 
is the US CDS spread sector index for the auto sector; CDS_CHEM is the US CDS spread sector index for 
the chemicals sector; CDS_OILGA is the US CDS spread sector index for the oil & gas sector; OIL_PRIC 
is the daily closing price for the crude oil futures contract 3 (dollars per gallon) delivered in Cushing, OK; 
and SP_VIX is the CBOE SPX volatility VIX (NEW) - price index; MOVE is the one- month bond 
volatility index; and SMOVE is the one-month volatility index for swaption.  The full period is January 1, 
2004-January 21, 2011.

 CDS_AUTOCDS_CHEMCDS_OILGA CDS_UTIL MOVE OIL_PRIC SMOVE SP_VIX 

 Mean  6.177634  4.737999  4.642684  4.859333  4.559414  0.458167  4.622181  2.929088
 Median  6.046399  4.624237  4.546250  4.750241  4.526127  0.477417  4.587006  2.860485
 Maximum  9.073113  8.056770  6.007378  6.114004  5.578219  1.246827  5.540871  4.392719
 Minimum  4.939497  3.803960  3.760735  3.653723  3.935740 -0.296931  3.998934  2.291524
 Std. Dev.  0.857914  0.667193  0.562507  0.602889  0.323624  0.307533  0.322789  0.424777
C.V. 0.138874 0.140817 0.12116 0.124068 0.070979 0.671225 0.069835 0.14502 
 Skewness  1.328446  1.830563  0.487414  0.271974  0.481751 -0.134256  0.567750  0.864953
 Kurtosis  4.508491  7.007191  2.172830  1.910314  2.723003  3.020406  2.771115  3.403074
 Jarque-Bera  716.4323  2261.164  125.4479  113.8428  77.13856  5.565540  102.9793  242.1496
 Probability  0.000000  0.000000  0.000000  0.000000  0.000000  0.061867  0.000000  0.000000
 Observations  1842  1842  1842  1842  1842  1842  1842  1842 
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Table 2: Correlation Matrix for Levels and Returns (full period) 
 
 
Panel A: Levels 

 
 

Pane A: Returns 
 

Correlations DCDS_AUT
O  

DCDS_CHEM
 
DCDS_OILGA

 
DCDS_UTIL

 
DMOVE

 

 
DOIL_PRIC

  
DSMOVE

 
DSP_VIX

 

DCDS_AUT 1.00000        
DCDS_CHE

M 0.12732 1.00000       
DCDS_OILG 0.32102 0.24914 1.00000      
DCDS_UTIL 0.33560 0.28612 0.65923 1.00000     

DMOVE 0.04368 0.07084 0.12342 0.14889 1.00000    
DOIL_PRIC -0.11359 -0.03494 -0.16874 -0.18861 -0.05096 1.00000   

DSMOVE 0.04513 0.06893 0.12398 0.15875 0.81579 -0.07096 1.00000  
DSP_VIX 0.19129 0.09219 0.23856 0.23788 0.18525 -0.19672 0.22432 1.00000

Notes: All variables are expressed in natural logarithms of the levels for Panel A and log difference for 
panel B. The coefficient of variation (C.V.) is the standard deviation to the mean. CDS_AUTO is the US 
CDS spread sector index for the auto sector; CDS_CHEM is the US CDS spread sector index for the 
chemicals sector; CDS_OILGA is the US CDS spread sector index for the oil & gas sector; OIL_PRIC is 
the daily closing price for the crude oil futures contract 3 (dollars per gallon) delivered in Cushing, OK; 
and SP_VIX is the CBOE SPX volatility VIX (NEW) - price index; MOVE is the one- month bond 
volatility index; and SMOVE is the one-month volatility index for swaption.  The full period is January 1, 
2004-January 21, 2011. 

 
 

 

Correlations CDS_AUTO  CDS_CHEM CDS_OIGA CDS_UTIL MOVE Oil_PRIC  SMOVE SP_VIX 

CDS_AUTO  1.00000        

CDS_CHEM 0.84086 1.00000       

CDS_OILGA  0.69260 0.85120 1.00000      

CDS_UTIL  0.6533 0.78930 0.97462 1.00000     

    MOVE  0.61715 0.77313 0.7508 0.72574   1.00000    

OIL_PRIC  0.25530 0.07533 0.13308 0.10689 0.125949 1.0000   

SMOVE  0.63021 0.77048 0.74926 0.73053 0.98499 0.10471 1.00000  

SP_VIX  0.77113 0.87374 0.87869 0.82653 0.82784 0.18831 0.79977 1.00000

    



 

32 
 

Table 3: Unit Root Tests (full period) 

Levels ADF (constant) 
t-statistic 

ADF (const & 
trend) 
t-statistic 

PP (constant) 
Adj. t-statistic  

PP(const & trend) 
Adj. t-statistic 

CDS_AUTO -1.609798 -1.051821 -1.735014 -1.511779 
CDS_CHEM -1.323433 -1.366534 -1.706130 -1.894390 
CDS_OILGA -1.312602 -1.729808 -1.308393 -1.669351 
CDS_UTIL -0.917851 -1.563846 -0.988033 -1.699290 
OIL_PRIC -2.287116 -2.347307 -2.260227 -2.294210 

MOVE -2.509701 -2.748824 -2.471671 -2.746934 
SMOVE -2.783388 -3.033995 -2.384573 -2.627608 
SP_VIX -2.614858 -3.248820 -2.585638 -3.405480 

 

1% level -3.433724 
5% level -2.862917 

10% level -2.567550 

1% level -3.963068 
5% level -3.412267 

10% level -3.128065 

1% level -3.433701 
5% level -2.862907 

10% level -2.567544 

1% level -3.963035 
5% level -3.412251 

10% level -3.128055 

 

First difference ADF (constant) 
t-statistic 

ADF (cons & 
trend) 
t-statistic 

PP (constant) 
Adj. t-statistic  

PP(cons & trend) 
Adj. t-statistic 

CDS_AUTO -15.11209 -15.17437 -35.60763 -35.61610 
CDS_CHEM -12.87392 -12.87395 -40.44335 -40.43268 
CDS_OILGA -22.02235 -22.01664 -33.98031 -33.97301 
CDS_UTIL -32.38672 -32.38086 -33.05977 -33.04981 
OIL_PRIC -45.22243 -45.22482 -45.20802 -45.21201 

MOVE -27.53884 -27.53166 -41.48660 -41.47731 
SMOVE -39.78622 -39.77598 -40.12973 -40.11876 
SP_VIX -35.52866 -35.51908 -52.37522 -52.35945 
Notes: The variables are expressed in logarithms, while the first difference is the log difference. 
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Table 4: Number of Possible Cointegrating Relationships  

 

Panel A: System I (full period with oil price) 

Data Trend: None None Linear  Linear  Quadratic 
Test Type: No Intercept 

No Trend 
Intercept 
No Trend 

Intercept 
No Trend 

Intercept 
Trend 

Intercept 
Trend 

Trace 1 1* 1 1 1 
Max-Eig 1 1* 1 1 1 
 

Panel B: System II (full period without oil price) 

Data Trend: None None Linear  Linear  Quadratic 
Test Type: No Intercept 

No Trend 
Intercept 
No Trend 

Intercept 
No Trend 

Intercept 
Trend 

Intercept 
Trend 

Trace 1 2* 2 1 2 
Max-Eig 1 2* 2 2 2 
 

Panel C: System II (subperiod without oil price) 

Data Trend: None None Linear  Linear  Quadratic 
Test Type: No Intercept 

No Trend 
Intercept 
No Trend 

Intercept 
No Trend 

Intercept 
Trend 

Intercept 
Trend 

Trace 2 1* 1 1 1 
Max-Eig 1 1* 1 1 1 
 

Notes: VAR System I includes the four CDS sector indexes, oil_PRIC, SMOVE and S&P_VIX.  VAR System II 
excludes the oil price only. The SMOVE validates diagnostic tests better than MOVE and its SWAP floating interest 
rate contains risk, in contrast to the Treasury yields for MOVE. Cointegration tests are based on lags of length 3.  
The full period is January 1, 2004-January 21, 2011 and  the subperiod is 7/01/2009-1/21/2011. * indicates the best 
selection based on both the AIC and SBC information criteria. Critical values are based on MacKinnon-Haug-
Michelis (1999). 
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            Table 5: Cointegration Equation for System I (full period)  

Cointegrating Eq:  CointEq1 

CDS_AUTO(-1)  1.000000 

  

CDS_CHEM(-1) -9.943068a 

 [-5.67714] 

  

CDS_OILGA(-1) -11.27968b 

 [-2.21819] 

  

CDS_UTIL(-1)  3.918394 

 [ 0.99126] 

  

OIL_PRIC(-1) -2.970719c 

 [-1.75917] 

  

SMOVE(-1) -0.041354 

 [-0.01514] 

  

SP_VIX(-1)  25.45662a 

 [ 7.55759] 

  

C  1.265657 

 [ 0.15012] 
 
Notes:  System I includes the four CDS sector indexes, VIX, SMOVE and  
the oil price. The numbers in brackets are t-statistics. Superscripts a, b and  
c represent significance at the 1%, 5% and 10% levels respectively. The  
cointegrating equations can be written by changing the signs of the variables  
on the right-hand side of each equation. The full period is January 1, 2004 –  
January 21, 2011.   
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Table 6: Cointegration Equations for System II (full period) 

Cointegrating Eq:  CointEq1 CointEq2 

CDS_OILGA(-1)  1.000000  0.000000 

   

CDS_UTIL(-1)  0.000000  1.000000 

   

CDS_AUTO(-1) -0.656611 -1.725260 

 [-1.98394] [-2.50938] 

CDS_CHEM(-1)  3.607673  7.857463 

 [ 6.13062] [ 6.42761] 

SMOVE(-1) -1.871838 -4.803628 

 [-2.29651] [-2.83700] 

SP_VIX(-1) -4.893549 -8.058299 

 [-5.80311] [-4.60014] 

C  5.254517  14.27832 

 [ 2.07160] [ 2.70982] 
 
Notes:  System II does not include the non-risk variable oil price. The variables are logarithms 
and the numbers in brackets are t-statistics. The cointegrating equations can be written by changing 
the signs of the variables on the right-hand side of each equation. The full period is January 1, 2004 
– January 21, 2011. 
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        Table 7: VEC for System II (full period) 

Error Correction: D(CDS_OILGA) D(CDS_UTIL) D(CDS_AUTO)D(CDS_CHEM) D(SMOVE) D(SP_VIX) 

CointEq1 -0.008658a -0.004191 -0.031764a  0.010860 -0.009843b  0.025767a 

CointEq2  0.003201c  0.001421  0.016265a -0.007891b  0.004938c -0.011006b 

D(CDS_OILGA(-1))  0.081633a  0.081308a  0.006400  0.050100 -0.078630c -0.029333 

D(CDS_OILGA(-2)) -0.181004a  0.058840b  0.001049  0.060407  0.087347c -0.148662c 

D(CDS_UTIL(-1))  0.119073a  0.106165a  0.123345  0.122380  0.042042  0.171903c 

D(CDS_UTIL(-2))  0.190565a  0.007033  0.149624c  0.041880  0.004157  0.043550 

D(CDS_AUTO(-1))  0.032358a  0.033509a  0.161928a  0.041401c  0.011159  0.012226 

D(CDS_AUTO(-2)) -0.004858 -0.010557 -0.105476a  0.016255  0.035912b -0.010246 

D(CDS_CHEM(-1))  0.021456c  0.010467 -0.002901  0.037436 -0.008379  0.032393 

D(CDS_CHEM(-2)) -0.005163 -0.006538 -0.044195c -0.117362a  0.000337 -0.011562 

D(SMOVE(-1)) -0.006808  0.011571  0.034396 -0.021406  0.066851a  0.022816 

D(SMOVE(-2)) -0.018079 -0.012140 -0.026407 -0.019916 -0.057498b  0.016319 

D(SP_VIX(-1))  0.069523a  0.069197a  0.064709a  0.060417a  0.036469b -0.126298a 

D(SP_VIX(-2))  0.008106  0.004212 -0.029564 -0.008439 -0.012329 -0.097011a 

 
Notes: System II does not include the non-risk variable oil price Variables are all first differences of logarithms. 
Superscripts a, b and c represent significance at the 1%, 5% and 10% levels, respectively. 
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Table 8:  Block Exogeneity Wald Tests for System II (full period)  

 
D(CDS_OILGA) D(CDS_UTIL) D(CDS_AUTO) D(CDS_CHEM) D(SMOVE) D(SP_VIX)

 

Long-run Granger Non-causality Test a(j,r)=0 

Long-run 
causality 20.88822a  9.846240a 11.36229a 19.36493a 2.024306 13.60472a 

Restriction A(1,1)=A(1,2)=0A(2,1)=A(2,2)=0A(3,1)=A(3,2)=0A(4,1)=A(4,2)=0A(5,1)=A(5,2)=0A(6,1)=A(6,2)=0
 

Weak Exogeneity Test, B(r,j)=0 

Weak 
Exogeneity 12.34101a  5.017240b 9.696122a 22.24250a 8.921740b 37.99691a 

Restriction B(1,1)=B(2,1)=0 B(1,2)=B(2,2)=0B(1,3)=B(2,3)=0B(1,4)=B(2,4)=0B(1,5)=B(2,5)=0 B(1,6)=B(2,6)=0
 

Block Exogeneity Wald Test 

Block Exogeneity  134.7548a 123.0567a 28.94996a 32.00744a 23.39210a 12.38637a 
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Table 9:  Variance Decomposition 

 

 Period CDS_OILGA CDS_UTIL CDS_AUTO CDS_CHEM SMOVE SP_VIX 
DV  of CDS_OILGA     

 1  100.0000  0.000000  0.000000  0.000000  0.000000  0.000000 
 50  69.59238  6.625924  0.981198  1.058233  1.248252  20.49401 

DV of CDS_UTIL    
 1  37.15866  62.84134  0.000000  0.000000  0.000000  0.000000 

 50  38.98698  45.03182  0.870076  0.761704  1.205479  13.14395 
DV of CDS_AUTO 

 1  8.703190  2.881302  88.41551  0.000000  0.000000  0.000000 
 50  9.178839  11.36553  65.40236  3.947938  1.949611  8.155727 

DV of CDS_CHEM 
 1  4.631845  2.281287  0.039881  93.04699  0.000000  0.000000 

 50  20.17204  7.057288  4.917429  50.99282  7.636346  9.224075 
 
DV of SMOVE 

 1  1.352944  0.885158  0.048982  0.055044  97.65787  0.000000 
 50  2.217500  3.767189  0.050246  1.577486  89.11342  3.274161 

DV of SP_VIX 
 1  9.649101  2.717321  1.096133  0.038557  3.951231  82.54766 

 50  22.08538  4.307342  2.386359  1.043024  6.279235  63.89866 

 



 

39 
 

 

Table 10: Cointegration Equation for System II (subperiod)  

Cointegrating Eq:        CointEq1     

LN_CDS_OILGA(-1)  1.000000      
       

LN_CDS_UTIL(-1)  95.89103      
  (23.8475)      
 [ 4.02101]      
       

LN_CDS_AUTO(-1)  66.26017      
  (10.9402)      
 [ 6.05659]      
       

LN_CDS_CHEMICALS(-1) -101.6466      
  (26.3888)      
 [-3.85188]      
       

LN_SMOVE(-1) -8.384126      
  (9.19565)      
 [-0.91175]      
       

LN_SP_VIX(-1) -42.69604      
  (10.6922)      
 [-3.99318]      
       

C -272.8897      
  (87.7639)      
   [-3.10936]      

Notes:  Cointegration equation for System II with the subperiod 7/01/2009-1/21/2011.  
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Table 11: VEC for System II (subperiod) [Tengdong: later we will delete this table] 

Error Correction: D(CDS_OILGA) D(CDS_UTIL) D(CDS_AUTO) D(CDS_CHEM) D(SMOVE) D(SP_VIX)

CointEq1 -0.000157 -0.000277a -0.001356a -0.000226b  3.72E-05  0.000148
       
       

D(CDS_OILGA(-1))  0.022965 -0.003357 -0.102230 -0.023581  0.023101 -0.135991
       
       

D(CDS_OILGA(-2)) -0.389523a  0.002970 -0.030611  0.021335  0.031684 -0.215675c
       
       

D(CDS_UTIL(-1))  0.168905  0.187703b  0.014193  0.126656 -0.115713 -0.151212
       
       

D(CDS_UTIL(-2))  0.293143b  0.042988  0.016974  0.001842 -0.139735  0.214114
       
       

D(CDS_AUTO(-1))  0.009579 -0.001791  0.376339a  0.024584 -0.004167  0.040698
       
       

D(CDS_AUTO(-2)) -0.015770 -0.021293 -0.070307 -0.034452  0.035032 -0.065470
       
       

D(CDS_CHEM(-1))  0.084588  0.044580 -0.111087  0.118446 -0.005895  0.607216a
       
       

D(CDS_CHEM(-2))  0.101412 -0.020512  0.256011  0.058963  0.119929 -0.234813
       
       

D(LN_SMOVE(-1))  0.015246  0.019918  0.048812  0.021111  0.032175  0.123037
       
       

D(SMOVE(-2)) -0.031927 -0.015406 -0.125942b -0.036210 -0.076164 -0.056164
       
       

D(SP_VIX(-1))  0.029643  0.029019c -0.017386  0.035354c  0.054472 -0.113345c
       
       

D(SP_VIX(-2))  0.019207  0.006048 -0.028073 -0.000942  0.043359 -0.020262
  (0.02906)  (0.01670)  (0.04180)  (0.01909)  (0.03523)  (0.05846)
 [ 0.66085] [ 0.36204] [-0.67153] [-0.04931] [ 1.23081] [-0.34658]

 R-squared  0.156413  0.139503  0.243121  0.134006  0.020834  0.048081 
 Adj. R-squared  0.130785  0.113361  0.220127  0.107697 -0.008913  0.019161 
 Sum sq. resids  0.399182  0.131860  0.825873  0.172300  0.586463  1.615216 
 S.E. equation  0.031790  0.018271  0.045725  0.020885  0.038532  0.063946 
 F-statistic  6.103226  5.336420  10.57334  5.093601  0.700377  1.662590 
 Log likelihood  834.7125  1060.678  686.3997  1006.110  756.2352  549.5600 
 Akaike AIC -4.028003 -5.135676 -3.300979 -4.868186 -3.643310 -2.630196 
 Schwarz SC -3.900193 -5.007866 -3.173169 -4.740376 -3.515500 -2.502386 
 Mean dependent -0.000964 -0.000280 -0.005709 -0.001599 -0.001715 -0.000871 
 S.D. dependent  0.034098  0.019404  0.051778  0.022110  0.038361  0.064568 
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 Determinant resid covariance (dof adj.)  3.07E-19     
 Determinant resid covariance  2.53E-19     
 Log likelihood  5261.795     
 Akaike information criterion -25.37645     
 Schwarz criterion -24.54077     

Notes: Superscript a represents significance at 1%, b at 5%, and c at 10%. 

 


