307

COMPARISONS OF RISK AVERSION, WITH AN APPLICATION
TO BARGAINING

Peter WAKKER, Nijmegen
Hans PETERS, Maastricht
Tom van RIEL, Nijmegen

ABSTRACT: Key results of Pratt (1964) , Arrow (1971), Yaari (1969),
and Kihlstrom and Mirman (1974) on the comparability of the risk
aversion of different decision makers, are extended to completely
general consequence sets, without any restriction on the utility
functions, for decision making undex risk, and to topologically
connected consequence spaces with continuous utility functions,
for decision making under uncertainty. An application to bar-
gaining game theory is given.

1. INTRODUCTION. Around 1965 Pratt and Arrow, independently,

found a key tool to compare the risk aversion of different de-—
cision makers who maximize expected utility. Yaari (1969) gave
further results for the context of decision making under un=
certainty. All this was done for real numbers (amounts of
money) as consequences. Kihlstrom and Mirman (1974) gave re-
sults for multidimensional consequences. In all these papers
differentiability assumptions for the utility functions were
made, so the Euclidean space structure on the consequence set
was used. In Kihlstrom, Roth and gchmeidler (1981) these re-
sults on risk aversion were introduced into bargaining game
theory, to define and study "risk sensitivity" of bargaining
solutions. In Peters and Tijs (1981) a slightly different de-
finition of "more risk averse than" has been introduced to
define and study risk sensitivity.

The present paper extends results for decision making under
risk (DMUR) to completely general consequence sets and utility
functions. For decision making under uncertainty (DMUU) matters
are more complicated. Here different decision makers may, in
principle, have different subjective probabilities. Hence we
shall assume here that the utility functions are continuous
w.r.t. a connected topology on the consequence set. This still
is less restrictive than the assumptions, usually made in lite-

rature. Remark 4.2, under expected utility maximization an ex-
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tension of Remark 1 in Yaari (1969), now shows that it is only
possible to compare the risk aversion of decision makers who
(can be thought to) have the same subjective probabilities.

Our work enables the extension of comparisons of risk aver-
sion to cases where conseguences (contrary to money or commodity
bundles) have no (known) physical quantification. Although for
such cases risk aversion as such is undefined, "more risk averse
than" can be defined; as we shall see in subsection 2.4; and
use in section 6.

2. ELEMENTARY DEFINITIONS

2.1. GENERAL DEFINITIONS. Let X be a nonempty set. Elements of X
are called alternatives, and denoted by x,y,v,w, etc. By », a

binary relation on X, we denote the preference relation of a

person T on X. We write x < y if y » x, X >y or y < x if

x »y and not y » x, and x my if x > y and y > x. > is a weak
order if it is complete (x » y or y » x for all x,y € X) and
transitive. A weak order induces an equivalence relation w~.

> is trivial if x » y for all x,y.

C is another nonempty set. Its elements are consequences,
and denoted by o, B, vy, §. Intuitively, an alternative x will
yield a consequence; but T has not sufficient information to
know for sure which one. It is custom to distinguish between
two ways to model the insufficiency of information: decision
making under risk (DMUR) and decision making under uncertainty
(DMUU) .

2.2. DEFINITIONS FOR DMUR. Here X is L°(C) , the set of simple
lotteries on C, i.e. probability measures on (C,ZC) that assign

probability 1 to a finite subset of C. Simple lotteries (= al-

ternatives) are also denoted as (pj;xj)?=1, where n can be any
n

natural number, xj € C and Pj > 0 for all j, = pj= 1. It as~
i=1

signs probability pj to every consequence xj. For any o € C,
we write o for (1:o).

DEFINITION 2.1. A function U: C -» R is a von Neumann-Morgen-
stern (vNM) utility function (for ») if:
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n m
n m
(pj,xj)j=1 > (qyivy)iaq ® T PiUX) 2 §=1qu(yi)

j=1 3 ]
for all (p.:x )n and (q.;y )m in X. Here g U{x.), nota-
37537 5=1 17¥ily=g 205 FIPLE R L
tion EU((pj;xj)?=1), is the expected utility of (pj;xj)?=1.

2.3. DEFINITIONS FOR DMUU. Here we deal with a finite state
space, i.e. a set {s1,...,sn} of (possible) states (of nature).

Exactly one state is the true state, the others are untrue. T
does not know for sure which state is true, and cannot influence
the truth of the sj's. And now X is the cartesian product c”.

an act (= alternative) (x1,...,xn) is interpreted to yield con-
iequence xj, with j such that_sj is true. For a € C, we write

a for (¢,...,a). As in DMUR, o yields consequence o with cer-
tainty. For DMUU, we shall throughout assume:

ASSUMPTION 2.2. C is a connected topological space; c" is

endowed with the product topology.
For ihstance C may be R, or ]RT.

DEFINITION 2.3. ((pj)?=1,U) is a subjective expected utility

(SEU) model {for ») if U: C - IR (U is the (subjective) utility
function), pj > 0 for all j, ij= 1 (pj is the subjective pro-

bability of T for state sj), and:

n n
X = (x1,..-,xn) > Yqreeaayy) =y e §=1ij(xj) > §=1pj0(yj)

n
for all x,y € X. Here I ij(xj), notation SEU(x), is the

i=1
subjective expected utility of x.

2.4. FURTHER GENERAL DEFINITIONS. In this subsection we intro-
duce two ways to compare the risk aversion of two decision
makers T‘I and Tz, with preference relations >1, >2. The first
definition has been introduced by Yaari (1969, p. 316) (his

formulation in terms of "acceptance sets" is logically equiva-

lent to ours), as an alternative for the formulations used in
Pratt (1964) and Arrow (1971). The second, slightly different
property (that we have renamed) has been introduced in Peters
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and Tijs (1981).

DEFINITION 2.4. >1 (or T1) is more risk averse than (MRA) >2

(or T2) if x>'a = x>25 for all x € X, a € C.

DEFINITION 2.5. >1 (or T1) is less risk prone than (LRP) >2

(or T2) if x>'G = x>2a for all x € X, a € C.

Note that the trivial > is both the least risk averse, and the

least risk prone, preference relation.

3. THE MAIN RESULT FOR DMUR

THEOREM 3.1. Let, for DMUR, Uk be a vNM utility function for

5K, k = 1,2. Then:

(3.1.2) > mra 2 @ 02 = you! with y: 01 (Q) - UP(C)
nondecreasing and convex.

(3.1.b) > 'LRP»2 » 0' = ¢-0% with ¢: vZ(e) - v
nondecreasing and concave.

PROOF: To derlvo "»" in (3. 1 a), suppose >1MRA>2 Then in par-

ticular B>'a = B>, i.e. u' (B) > ul(a) = U?(B) > v?(a), for

all a,B. By Lemma A7.7 U2 Yo U1 for a nondecrea51ng Y

U (C) - U (C). To show convexity of V¥, suppose U () is a

n 1=

welghted mean z p U (u ). Then (p.il.)i_,> H, DY
3=1 3773 3=1
n _2- o 2 2
MRA (pP.iHs)s_.> M. Hence I p.U (u.) > % (w), i.e.
J J 3’1 ] =1 J -

2 Py ¢(U (u )) > w(U (n)) = W(Z Py y! (u )y : ¥ is convex.
3=1 3=1
To derive "«" in (3.1.a), suppose U2= w,U1 for a convex

nondecreasing y. And suppose (pj;xj)§=1>1&, i.e.

2 P. U (x ) > U (). To derive is (pj;xj)>2a, i.e.

] 1

Z p U (x.) > U (a) , OX Z p ¢(U (x )) > w(U (¢)). This is

=1 3 3=1

direct if U (xj) > U {(a) for all j, so suppose U (x ) < U (a) .




31

n
Let 0 <p < 1 be s.t. (1-p)U'(x,) + PT p. U (x,) = U (a).
- 1 =1 J 3
n
Since (1-p) + pf p. = 1, convexity of ¢y implies
3=1_° |
(1-p) 0" (x)) + pE P (v (xy)) > $(0' (@) . since
j=1
n
00 (x)) < v (@) and p > 0, ve have T py(u' (x5)) 2 V(U (a)),
n 2 2 =
or £ p.U%(x,) > U"(a).
5=1 J J -
J
For (3.1.b), note that >1LRP>2 if and only if
[x<26 = x<15 for all x,a]. Now the proof of (3.1.b) is completely
analogous to that of (3.1.a), mainly by interchanging < and »,
1 and 2, MRA and LRP, > and < , ¥ and ¢ , concave and cbnvex,

> and <.

4. THE MAIN RESULT FOR DMUU. Recall that we assume C to be a

connected topological space.

THEOREM 4.1. Let ((p§)§=1,uk) be a SEU-model for »*, with US

continuous, k = 1,2. Eguivalent are:
(4.1.1) > MrA>2 [respectively >1LRP>2]. :
(4.1.1i1) (a),(b) or (c) below applies: :

(a) (The nondegenerate case} Uz= qu1
. ¢.U2 for a concave nondecrea- f

for a convex nondecreasing

continuous ¥ &espectively U
. . 1, n 2, n

i cont a L) = ) 4.
sing continuous $] an (P])j=1 (PJ)J=1

(b) (The degenerate case of certainty) U2= w.U1 for a nondecrea-

sing continuous, possibly nonconvex Y késpectively U1= ¢.U2

for a nondecreasing continuous ¢, possibly nenconcave] and

p! = 1= pg for some j.

(c} (The degenerate case oftriviality')>2 is trivial [respec-
tively >' is triviall.

PROOF: {iic) = (i) and (iib) = (i) are straightforward. (iia) =

(i) is exactly as the "&" 's in Theorem 3.1.

So now we assume (i), and derive (ii). First the case where
>1MRA>2, so the parts not between brackets [...]. If >2 is tri-
vial, i.e. U2 is constant, nothing remains to be proved. So let

02 not be constant. As in the proof of Theorem 3.17., U2= w=U1
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with ¢ nondecreasing. U1 and Yy are nonconstant too. By Lemma
A.7.7 ¢ is continuous.
For all (A:)U1(a),(v=)U1(y) in the connected U1(C) we can

£ind U (8) with u'(p) = py UM (a) + (1-p])u1(y). so
(a,Y,-o-,Y)N1E. By (1) (a,y,...,y)>2E, i.e.
p; U2(a) + (1-p2)u? (1) > U2(8). so:

(4.2) (Rey inequality) pfw(x) + (1-p€)¢(v) > ¢(p1k + (1“P1)V)
for all A,veu'(c).

Since ¢ is a continuous nondecreasing nonconstant function
on a connected domain, p] =1 & p? = 1 and p: =0 e p? =0

straightforwardly follow from (4 2). Analogously
1egw pj = 0 follow for all j # 1. For

n

1 - —
pj 1 & pJ = 1 and p.

the case where some p

[N T

1, everything has been proved, we are
in case (b) then.

Remains the case where not only U2 is nonconstant, Uz— Yo u'
with ¢ nondecreasing and continuous, Y and U1 nonconstant, but
where also 0 < pJ < 1 for some j, say j=1. Then also 0 < pj < 1.
First convexity of ¢ is derlved Let 0 >t evul(e). 1f
Py 2 7, then ply(o) + (1-p)y(r) » p1w(o) + (1-pIUUT) > (4.2)

Yiplo + (1-p1)1). If p) < p?, then (1-p1)w(o) + pyvin) 2

(1‘91)¢(0) + P1¢(T) > (4.2) W((1—p1)o+ p1T). By Theorem A 7.6
Y is convex.
Finally in the above mentioned remaining case we must show

that p; = pg for all j. We do it only for 0 < p: < 1 and

0 < pf < 1, other cases are analogous or have been handled
above. Since Y is convex and nonconstant on a connected domain,
there must exist p € int U1(C) where ¢ is differentiable with
¥'(u) > 0. Let € # 0 with [el so small that A:= p + (1-p;)e

u - p:e in U1(C). Now p = p:A + (1-p1)v. By (4.2)

and v:
2 1 2 1 .

pav(u + (1=-pyle) + (1=p) ¥ (u -Pq,€) > ¥(u). Letting e approach
zero, this can only be if (pf(1-p})£)¢'(u) - (p:(1—p$)e)w'(u) >0
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for all € close to zero, both positive and negative.
¢'(n) being > 0, we conlude that p? = p}.

For the parts not between brackets, (i) = (ii) has been
derived. So we turn to the parts between brackets.

[Let >

proof is completely analogous to that where >

LRP>2. Then x<3& = x<1a. As in Theorem 3.1, the
1MRA>2.] o

REMARK 4.2. Note that, also in (4.1.ii.c) equality of sub-
jective probabilities can be arranged, because the probabi-
lities for the trivial preference relation can be chosen

completely arbitrary.

5. SOME GENERAL OBSERVATIONS. In literature usually risk aver-

sion of preference relations >1 and >2 is compared under the

presupposition that >1 and >2 induce the same ordering on the

2 for strictly increa-

certain alternatives, i.e. have U1= ¢U
sing ¢. Our theorems, in the present general context, show

as an implication of comparability of risk aversion, that
U1= ] .Uz or U2= on1, with ¢, respectively ¢, only non-
decreasing. Note that a nondecreasing concave (convex) ¢ (¢)
can be not-strictly-increasing only where it is maximal (mi-
nimal). In the case of strict increasingness, MRA and LRP by
Lemma A 7.5 are equivalent; MRA and LRP hold simultaneously,
only in the case of strict increasingness.

By Theorem A 7.4 and Lemma A7.7 a characterization of
comparability of risk aversion can be obtained by means of
quotients of differences of utilities, in the spirit of (e)
in Theorem 1 in Pratt (1964), also in our present general
context.

Finally we refer to observation 85 in section 3.4 of
Hardy, Littlewood and Polya (1959). This mathematical result
on comparability of "means" (= "certainty equivalents") in
fact is very close to the results of Pratt (1964), and to

our Theorem 3.1 for C c R.
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6. RISK SENSITIVITY OF BARGAINING SOLUTIONS FOR GENERAL
CONSEQUENCE SETS. A (two-person) bargaining situation is a

triple <C, U1 Uz> where C is a nonempty set of consequences
1

and U :C »ZR are bounded functions, with
(U1(a),U (a)) » 0 for some o € C. Such a bargaining situation
<C,U1,U2> is interpreted to involve two bargainers who either

agree on some X € L5¢0) giving EUi(x) to bargainer i, or dis-
agree, in which case each bargainer ends up with 0 utility.
A (two-person) bargaining game is a compact convex subset S
ofimf, with x > 0 for some x € S, and with y € 8 if y € mf
with y < x for some x € S. B denotes the family of all bar~
gaining games. A bargaining solution is a map f: B »IRZ with

f(S) € S for every S € B, Note that, if T = <C,U1,U2> is a

bargaining situation, then

= {y GZRi y < x for some x € conv cl {(U (o), U (o))
a € C}}

(where "cl" means "closure") is a bargaining game since §

is compact (cf. Rockafellar (1970, Th. 17.2)). The following

property for bargaining solutions was introduced in Kihl-~

F

strom, Roth, and Schmeidler (1981). For its interpretation,
see (3.71.a), (3.1.b); and also section 5, first paragraph.

DEFINITION 6.71. The bargaining solution £ is risk sensitive

on a family A of bargaining situations if, for all i,j €{1,2}
with i # j, we have f; (SF') > f (S ) for every

' =< C U1,U2> € A where ' is the bargainlng situation ob-
tained from ' by replacing Uj by ¢o Uj with ¢: UJ(C) >R,

strictly increasing, concave, and continuous.

(strict increasingness and continuity are assumed for con-
venience.) As far as the authors know, all results in the

literature on risk sensitivity are derived for bargaining si-

tuations <C,U1,U2> with C a compact subset of a Euclidean

i

space and with the U~ continuous. Here, in particular in view

of Theorem 3.1, we omit these restrictions. Also, most results
in the literature are derived for bargaining situations

r = <C,U1,U2> satisfying:
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(6.1) B(s,) < c1{(w'(a),0%(@)): o € C).

(P(T):= {x € T: y=x if y € T and y > x} is the Pareto set

of T c R%.) Assumption (6.1) would, in Definition 6.1, imply
that ¢ is defined on the second coordinate of every point of
P(SP); which simplifies the analysis. Here, we relax assump-
tion (6.1) and, instead, denote by BS a family of bargaining

situations such that:

(6.2) For every S € B, there is a T = <C,U1,Uz> € BS with

S = s, and B(5;) = c1{(ul (@) ,v?@)): o € C}.

Further, by BSC ("certain") we denote the subfamily of bar-
gaining situations in BS satisfying (6.1) . For such families
BS with BS # BSC, only few results on risk sensitivity of
bargaining solutions have been derived (see Roth and Roth~-
blum (1982), and Peters and Tijs (1985))., The following
theorem enables us to extend risk sensitivity results, ob-

tained on BSC, to BS.

THEOREM 6.2. Let the bargaining solution f be risk sensitive

on BSC. Then f is risk sensitive on BS.

In order to prove this theorem, we give some notations and a
lemma. For a nonempty compact convex subset Y of:mz, we de-
note by nY:[§¥,E¥] + R the function whose graph is P(Y) (here,

EY and QYare the left and right endpoints of P(Y), respecti-
vely) .

LEMMA 6.3, Let X CZRZ be nonempty and compact, with X = P(X),
and Y := conv(X). Let ¢: {x2:(x1,x2) € X for some x1} -+ R be
a continuous strictly increasing concave function such that

X' ¢ P(Y') where X':= {(x1,¢(x2)): x € X} and Y':= conv(X').

Then 7% = w.ﬂY with y: [Eg,ﬁg] - R continuous, strictly in-
creasing, and concave.

PROOF: The proof is in a few steps, some of which will be
only outlined, for briefness' sake. For ever x € X, denote
by % the point in P(Y) with first coordinate x,. Define the
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function §: W:= {§2: x € X} >R by E(iz):= ¢ (x,) for every
X, € W. Since X = P(X), ¢ is well-defined, and since, more-
over, ¢ is strictly increasing, so is ¢. We proceed with
showing that & is concave. In view of Lemma ;A7.4 , it is
sufficient to show, for §2,§2,§2 € W with §2 > 52 and

§2= a§2 + (1—u)§2 for some 0 < o < 1, that

$(§2) > u$(§2) + (1-u)5(§2). There are eight cases, depending
on whether x,y,z € P(Y) or not, or equivalently, depending
on whether x=%, y=y, 2=z, or not. The case x=X, y=y, 2=z,
follows from the concavity of ¢. The other cases are dealt
with in (i) = {(iii) below.
(1) Suppose X=X, y=y, 2#Z. We write §2= Biz + (1--B)z2 with
1 > B » o. Then ¢(y2) =
$lyy) 2 Bolx,) + (1-B)d(2zy) 2 ad(x,) + (1-a)d(z,).
(i1) Suppose x=x, z=z, y#y. There are s,t € X 0N P(Y) with
X, > 5, > ¥, > ty 2 2, such that y = §s + (1-8)t for
some 0 <« § < 1. Concavity of ¢ implies
5$(§2) + (1—5)5(52) > a$(§2) + (1—a)$(§2). Hence

5(;2) > a$(§2) + (1-a)$(§2) since otherwise

(§1r$(§2)) = (y,r$(y,)) € X' = P(¥') would be contra-
dicted.

(iii) The case x#X, y=y, 2=z, is analogous to (i). In the
remaining cases at least two out of {X,y,z} are not in
X. Suppose, e.g., X#X, V#y, z=z. First prove the lemma
for the case {x} = X\P(Y); then replace x by X and ¢
by the so obtained ¢. This construction brings us back
in case (ii). Similarly for the other cases.

(iv) We now describe y. Let X € [Qg,ﬁg]. If X = §2 for some

X, € W, then Y(A) = $(§2). Otherwise, XA = aiz + (1-0¢)E2

wiere 0 <a <1, and X,:= min{§2 € W: §2 > A} and
Ez:= max {§2 € W: §2 < A} exist 1in view of the compact-
ness of X: then y(A) = u¢(x2) + (1—a)¢(22). Y can be
seen to be strictly increasing and concave since ¢ is;

and hence continuous (also for A = E§)~ D
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PROOF OF THEOREM 6.2. Let I' = <C,U1,Uz> € BS, and let
Ir'= <C,U1,¢-U2> where ¢: UZ(C) -+ R, is strictly increasing,

continuous, and concave. We show:

(6.3) f1(sr,) > f1(SF)'

On account of ¢'s properties, we can continuously extend it

to a function on cl(UZ(C)); we call this extension also ¢.
Next, we apply Lemma 6.3 with X:= {z € Z: (21,¢(22)) € P(SF.)}
where z:= cl {(U'(a),0%(a)): o € CI.

Then, with notations as in Lemma 6.3, SF = {x Eimzz x <y for
some y € P(Y)} and Sp1= {x e:mi: x < y for some y € P(Y')}.

In view of (6.2), A = <D,V1,V2> € BSC exists with SF= SA‘

Then SF'= S where A'= <D,V1,w°V2>, with ¢ as in Lemma 6.3,

is well-defined in view of (6.2). Since f is risk sensitive

on BSC, we have f1(SA.) > f1(SA), from which (6.3) follows. ul

7. (APPENDIX) CONVEX FUNCTIONS ON_NON-CONVEX DOMAINS. In this
appendix we adapt some more Or less elementary results on con-

vex functions to the case of nonconvex domains. No literature
on this case is known to us, apart from the following defini-
tion, which is given in Peters and Tijs (1981, (2.2)).
DEFINITION A 7.1. et V be a subset of a real vector space,

$: V »R. Then ¢ is convex [respectively concave] if:

n n

(X pju.) < [respectivelyz]i pj¢(uj) whenever 0 < Pj <1
3=1 413 n 3=1 n

for all j, §=1pj= 1, and u1,...,un and §=1pjuj are in V.

REMARK A 7.7. ¢ is concave if and only if -¢ is convex. All
results below for convex ¢'s can be reformulated for concave

¢'s by the substitution ¢ » -b.

We shall only consider domains in IR. Our main tool:
DEFINITION A 7.3. Let Ve R, ¢: V>R, u, v €V, u < V.
Then [¢(v) - ¢(u)]/ (v - u) is the average increase of ¢

over [u,v], denoted AI¢[u,v].

THEOREM A 7.4. Let Vc R, ¢:V » R. Equivalent are:

(A7.4.1i) ¢ is convex.
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(A7.4.i1) Let 0 < p < 1,u,t and py + (1-p)T € V. Then
$p(pu + (1-p)T) < pdp(w) + (1=-p)é{T).
(A 7.4.1ii1) If p < v < T for p,v , T € V, then
AI¢(p,v) < AI¢(V,T).
(A7.4.iv) If w<v,0 <71, Wso,Vv<rtT, for y,v,0,1T €V,
then AI¢(u,v) < AI¢(U,T).
PROOF: We write AI instead of AI¢. (i) = (ii) is immediate.
For (ii) = (iii), let p = (t-v)/(T-W), so v = pu + (1-p)rT.
Now ¢(v) < po(u) + (1-p)¢(T) & AI(u,v) < AI(v,T).
For (iii) = (iv), suppose (iii). If v = 0, (iv) equals (iii).
If v < 0, then by (iii): AI(m,v) < AT(v,c) < AI(o,t). Finally,
if ¢ <« v, then, with the conventibn AI(p,0) := AI(o,v) in case
u = o, and AI(v,t):= AI(0o,v) in case v = 1, (iii) gives:
AI(p,0) < AI(0,v) < AI(v,T). Now AI(u,v) < AI(c,t) follows,
since AI (u,v) is a weighted mean of AI(u,c) and AI(g,v}, and
AI(o,t) is a weighted mean of AI(c,v) and AI(v,T).
For (iv) = (i), assume (iv). Let W € V be a weighted mean

n
S AT of elements of V. Let I = {i:pi<u}, J = {j:uj> u}.
k=1
n
Then £p,[p~-n,] = Ep.[p.-u] . To prove is ¢(n) < £ P o(U ),
T+ i 733 k=1 k k

ice. zpy[o(u)-o(u)] < ij[¢(u-)-¢(u)]- Let I # # # J (other
I J J
cases are trivial). Let W= max{ui: i € I}. Now
zp, [o () =¢ (u) ] = Zp [u-u JAT (g0 < (by (1v) Zp, [u-u,; JAT (u,0)
I I I

= gpj[uj—u]AI(uk,u) < (by (iv)) §pj{uj-u]AI(u,uj) =
§Pj[¢(uj)—¢(u)]. o

LEMMA A 7.5. Let V<R, ¢: V - IR strictly increasing,

Y: ¢(V) » V the inverse of ¢. Then ¢ is concave if and only

if Yy is convex.

PROOF: ¢ is concave e [¢(v)= ¢ (u) ]/ (v=u) > [o (D) =d (V) ]/ (T-V)

for all p < v < 1 in V e (v=u)/[¢(v)=d ()] < (t-v) /[ (1) =d (V)]
for all § < v < 1 in V & [v(V)-p(M 1/ (3-1) < [v (@)1 =y (%) ]/ (T-V)
for all ¥ <9 < T in ¢(V) « ¢ is convex. We applied Remark
A7.2, and tow times (A 7.4 .iii) « (A 7.4 .1i). =}
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THEOREM A7.6. Let V <R convex. Let ¢:V -» R continuous. Let
for every W >v € V there exists 0 < p < 1 such that

¢{pr + (1-p)v) < pp(u) + (1-p)¢(v). Then ¢ is convex.

PROOF: See observation 88 in section 3.7 of Hardy, Littlewood
and Polya (1959). -0

LEMMA A7.7. Let C be a nonempty set. Let U1: ¢ » R and

U2: C - R. Equivalent are:
(A7JJJ:UL«LN mranmﬂaxmmMg¢:UHC)»m.
(27.7.11): u'(@ > u'(8) » v?(a) > U*(B) for all o, B € C.
Furthermore, if C is a connected topological space, and U1
and U2 are continuous, then so is ¢ in (i).

PROOF: (i) = (ii) is direct. For (ii) = (i), note that by
(11): 0'(a) = ' (B) e[’ (@) > u'(B) and U (8) > U (a)]~
Uz(a) = UZ(B). So Uz= $.U' for some ¢. Nondecreasingness is
straightforward. For the furthermore statement note that a
nondecreasing function from a connected U1(C) onto a connec-

ted Uz(C) must be continuous (it cannot make "jumps"). o
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